Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/arena.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
3
#include <linux/bpf.h>
4
#include <linux/btf.h>
5
#include <linux/err.h>
6
#include "linux/filter.h"
7
#include <linux/btf_ids.h>
8
#include <linux/vmalloc.h>
9
#include <linux/pagemap.h>
10
#include "range_tree.h"
11
12
/*
13
* bpf_arena is a sparsely populated shared memory region between bpf program and
14
* user space process.
15
*
16
* For example on x86-64 the values could be:
17
* user_vm_start 7f7d26200000 // picked by mmap()
18
* kern_vm_start ffffc90001e69000 // picked by get_vm_area()
19
* For user space all pointers within the arena are normal 8-byte addresses.
20
* In this example 7f7d26200000 is the address of the first page (pgoff=0).
21
* The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr
22
* (u32)7f7d26200000 -> 26200000
23
* hence
24
* ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb
25
* kernel memory region.
26
*
27
* BPF JITs generate the following code to access arena:
28
* mov eax, eax // eax has lower 32-bit of user pointer
29
* mov word ptr [rax + r12 + off], bx
30
* where r12 == kern_vm_start and off is s16.
31
* Hence allocate 4Gb + GUARD_SZ/2 on each side.
32
*
33
* Initially kernel vm_area and user vma are not populated.
34
* User space can fault-in any address which will insert the page
35
* into kernel and user vma.
36
* bpf program can allocate a page via bpf_arena_alloc_pages() kfunc
37
* which will insert it into kernel vm_area.
38
* The later fault-in from user space will populate that page into user vma.
39
*/
40
41
/* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */
42
#define GUARD_SZ round_up(1ull << sizeof_field(struct bpf_insn, off) * 8, PAGE_SIZE << 1)
43
#define KERN_VM_SZ (SZ_4G + GUARD_SZ)
44
45
struct bpf_arena {
46
struct bpf_map map;
47
u64 user_vm_start;
48
u64 user_vm_end;
49
struct vm_struct *kern_vm;
50
struct range_tree rt;
51
struct list_head vma_list;
52
struct mutex lock;
53
};
54
55
u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
56
{
57
return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0;
58
}
59
60
u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
61
{
62
return arena ? arena->user_vm_start : 0;
63
}
64
65
static long arena_map_peek_elem(struct bpf_map *map, void *value)
66
{
67
return -EOPNOTSUPP;
68
}
69
70
static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags)
71
{
72
return -EOPNOTSUPP;
73
}
74
75
static long arena_map_pop_elem(struct bpf_map *map, void *value)
76
{
77
return -EOPNOTSUPP;
78
}
79
80
static long arena_map_delete_elem(struct bpf_map *map, void *value)
81
{
82
return -EOPNOTSUPP;
83
}
84
85
static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
86
{
87
return -EOPNOTSUPP;
88
}
89
90
static long compute_pgoff(struct bpf_arena *arena, long uaddr)
91
{
92
return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT;
93
}
94
95
static struct bpf_map *arena_map_alloc(union bpf_attr *attr)
96
{
97
struct vm_struct *kern_vm;
98
int numa_node = bpf_map_attr_numa_node(attr);
99
struct bpf_arena *arena;
100
u64 vm_range;
101
int err = -ENOMEM;
102
103
if (!bpf_jit_supports_arena())
104
return ERR_PTR(-EOPNOTSUPP);
105
106
if (attr->key_size || attr->value_size || attr->max_entries == 0 ||
107
/* BPF_F_MMAPABLE must be set */
108
!(attr->map_flags & BPF_F_MMAPABLE) ||
109
/* No unsupported flags present */
110
(attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV)))
111
return ERR_PTR(-EINVAL);
112
113
if (attr->map_extra & ~PAGE_MASK)
114
/* If non-zero the map_extra is an expected user VMA start address */
115
return ERR_PTR(-EINVAL);
116
117
vm_range = (u64)attr->max_entries * PAGE_SIZE;
118
if (vm_range > SZ_4G)
119
return ERR_PTR(-E2BIG);
120
121
if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32))
122
/* user vma must not cross 32-bit boundary */
123
return ERR_PTR(-ERANGE);
124
125
kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP);
126
if (!kern_vm)
127
return ERR_PTR(-ENOMEM);
128
129
arena = bpf_map_area_alloc(sizeof(*arena), numa_node);
130
if (!arena)
131
goto err;
132
133
arena->kern_vm = kern_vm;
134
arena->user_vm_start = attr->map_extra;
135
if (arena->user_vm_start)
136
arena->user_vm_end = arena->user_vm_start + vm_range;
137
138
INIT_LIST_HEAD(&arena->vma_list);
139
bpf_map_init_from_attr(&arena->map, attr);
140
range_tree_init(&arena->rt);
141
err = range_tree_set(&arena->rt, 0, attr->max_entries);
142
if (err) {
143
bpf_map_area_free(arena);
144
goto err;
145
}
146
mutex_init(&arena->lock);
147
148
return &arena->map;
149
err:
150
free_vm_area(kern_vm);
151
return ERR_PTR(err);
152
}
153
154
static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data)
155
{
156
struct page *page;
157
pte_t pte;
158
159
pte = ptep_get(ptep);
160
if (!pte_present(pte)) /* sanity check */
161
return 0;
162
page = pte_page(pte);
163
/*
164
* We do not update pte here:
165
* 1. Nobody should be accessing bpf_arena's range outside of a kernel bug
166
* 2. TLB flushing is batched or deferred. Even if we clear pte,
167
* the TLB entries can stick around and continue to permit access to
168
* the freed page. So it all relies on 1.
169
*/
170
__free_page(page);
171
return 0;
172
}
173
174
static void arena_map_free(struct bpf_map *map)
175
{
176
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
177
178
/*
179
* Check that user vma-s are not around when bpf map is freed.
180
* mmap() holds vm_file which holds bpf_map refcnt.
181
* munmap() must have happened on vma followed by arena_vm_close()
182
* which would clear arena->vma_list.
183
*/
184
if (WARN_ON_ONCE(!list_empty(&arena->vma_list)))
185
return;
186
187
/*
188
* free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area().
189
* It unmaps everything from vmalloc area and clears pgtables.
190
* Call apply_to_existing_page_range() first to find populated ptes and
191
* free those pages.
192
*/
193
apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena),
194
KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL);
195
free_vm_area(arena->kern_vm);
196
range_tree_destroy(&arena->rt);
197
bpf_map_area_free(arena);
198
}
199
200
static void *arena_map_lookup_elem(struct bpf_map *map, void *key)
201
{
202
return ERR_PTR(-EINVAL);
203
}
204
205
static long arena_map_update_elem(struct bpf_map *map, void *key,
206
void *value, u64 flags)
207
{
208
return -EOPNOTSUPP;
209
}
210
211
static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf,
212
const struct btf_type *key_type, const struct btf_type *value_type)
213
{
214
return 0;
215
}
216
217
static u64 arena_map_mem_usage(const struct bpf_map *map)
218
{
219
return 0;
220
}
221
222
struct vma_list {
223
struct vm_area_struct *vma;
224
struct list_head head;
225
refcount_t mmap_count;
226
};
227
228
static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma)
229
{
230
struct vma_list *vml;
231
232
vml = kmalloc(sizeof(*vml), GFP_KERNEL);
233
if (!vml)
234
return -ENOMEM;
235
refcount_set(&vml->mmap_count, 1);
236
vma->vm_private_data = vml;
237
vml->vma = vma;
238
list_add(&vml->head, &arena->vma_list);
239
return 0;
240
}
241
242
static void arena_vm_open(struct vm_area_struct *vma)
243
{
244
struct vma_list *vml = vma->vm_private_data;
245
246
refcount_inc(&vml->mmap_count);
247
}
248
249
static void arena_vm_close(struct vm_area_struct *vma)
250
{
251
struct bpf_map *map = vma->vm_file->private_data;
252
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
253
struct vma_list *vml = vma->vm_private_data;
254
255
if (!refcount_dec_and_test(&vml->mmap_count))
256
return;
257
guard(mutex)(&arena->lock);
258
/* update link list under lock */
259
list_del(&vml->head);
260
vma->vm_private_data = NULL;
261
kfree(vml);
262
}
263
264
static vm_fault_t arena_vm_fault(struct vm_fault *vmf)
265
{
266
struct bpf_map *map = vmf->vma->vm_file->private_data;
267
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
268
struct page *page;
269
long kbase, kaddr;
270
int ret;
271
272
kbase = bpf_arena_get_kern_vm_start(arena);
273
kaddr = kbase + (u32)(vmf->address);
274
275
guard(mutex)(&arena->lock);
276
page = vmalloc_to_page((void *)kaddr);
277
if (page)
278
/* already have a page vmap-ed */
279
goto out;
280
281
if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT)
282
/* User space requested to segfault when page is not allocated by bpf prog */
283
return VM_FAULT_SIGSEGV;
284
285
ret = range_tree_clear(&arena->rt, vmf->pgoff, 1);
286
if (ret)
287
return VM_FAULT_SIGSEGV;
288
289
/* Account into memcg of the process that created bpf_arena */
290
ret = bpf_map_alloc_pages(map, NUMA_NO_NODE, 1, &page);
291
if (ret) {
292
range_tree_set(&arena->rt, vmf->pgoff, 1);
293
return VM_FAULT_SIGSEGV;
294
}
295
296
ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page);
297
if (ret) {
298
range_tree_set(&arena->rt, vmf->pgoff, 1);
299
__free_page(page);
300
return VM_FAULT_SIGSEGV;
301
}
302
out:
303
page_ref_add(page, 1);
304
vmf->page = page;
305
return 0;
306
}
307
308
static const struct vm_operations_struct arena_vm_ops = {
309
.open = arena_vm_open,
310
.close = arena_vm_close,
311
.fault = arena_vm_fault,
312
};
313
314
static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr,
315
unsigned long len, unsigned long pgoff,
316
unsigned long flags)
317
{
318
struct bpf_map *map = filp->private_data;
319
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
320
long ret;
321
322
if (pgoff)
323
return -EINVAL;
324
if (len > SZ_4G)
325
return -E2BIG;
326
327
/* if user_vm_start was specified at arena creation time */
328
if (arena->user_vm_start) {
329
if (len > arena->user_vm_end - arena->user_vm_start)
330
return -E2BIG;
331
if (len != arena->user_vm_end - arena->user_vm_start)
332
return -EINVAL;
333
if (addr != arena->user_vm_start)
334
return -EINVAL;
335
}
336
337
ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags);
338
if (IS_ERR_VALUE(ret))
339
return ret;
340
if ((ret >> 32) == ((ret + len - 1) >> 32))
341
return ret;
342
if (WARN_ON_ONCE(arena->user_vm_start))
343
/* checks at map creation time should prevent this */
344
return -EFAULT;
345
return round_up(ret, SZ_4G);
346
}
347
348
static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
349
{
350
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
351
352
guard(mutex)(&arena->lock);
353
if (arena->user_vm_start && arena->user_vm_start != vma->vm_start)
354
/*
355
* If map_extra was not specified at arena creation time then
356
* 1st user process can do mmap(NULL, ...) to pick user_vm_start
357
* 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..);
358
* or
359
* specify addr in map_extra and
360
* use the same addr later with mmap(addr, MAP_FIXED..);
361
*/
362
return -EBUSY;
363
364
if (arena->user_vm_end && arena->user_vm_end != vma->vm_end)
365
/* all user processes must have the same size of mmap-ed region */
366
return -EBUSY;
367
368
/* Earlier checks should prevent this */
369
if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff))
370
return -EFAULT;
371
372
if (remember_vma(arena, vma))
373
return -ENOMEM;
374
375
arena->user_vm_start = vma->vm_start;
376
arena->user_vm_end = vma->vm_end;
377
/*
378
* bpf_map_mmap() checks that it's being mmaped as VM_SHARED and
379
* clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid
380
* potential change of user_vm_start.
381
*/
382
vm_flags_set(vma, VM_DONTEXPAND);
383
vma->vm_ops = &arena_vm_ops;
384
return 0;
385
}
386
387
static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off)
388
{
389
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
390
391
if ((u64)off > arena->user_vm_end - arena->user_vm_start)
392
return -ERANGE;
393
*imm = (unsigned long)arena->user_vm_start;
394
return 0;
395
}
396
397
BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena)
398
const struct bpf_map_ops arena_map_ops = {
399
.map_meta_equal = bpf_map_meta_equal,
400
.map_alloc = arena_map_alloc,
401
.map_free = arena_map_free,
402
.map_direct_value_addr = arena_map_direct_value_addr,
403
.map_mmap = arena_map_mmap,
404
.map_get_unmapped_area = arena_get_unmapped_area,
405
.map_get_next_key = arena_map_get_next_key,
406
.map_push_elem = arena_map_push_elem,
407
.map_peek_elem = arena_map_peek_elem,
408
.map_pop_elem = arena_map_pop_elem,
409
.map_lookup_elem = arena_map_lookup_elem,
410
.map_update_elem = arena_map_update_elem,
411
.map_delete_elem = arena_map_delete_elem,
412
.map_check_btf = arena_map_check_btf,
413
.map_mem_usage = arena_map_mem_usage,
414
.map_btf_id = &bpf_arena_map_btf_ids[0],
415
};
416
417
static u64 clear_lo32(u64 val)
418
{
419
return val & ~(u64)~0U;
420
}
421
422
/*
423
* Allocate pages and vmap them into kernel vmalloc area.
424
* Later the pages will be mmaped into user space vma.
425
*/
426
static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id)
427
{
428
/* user_vm_end/start are fixed before bpf prog runs */
429
long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT;
430
u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena);
431
struct page **pages;
432
long pgoff = 0;
433
u32 uaddr32;
434
int ret, i;
435
436
if (page_cnt > page_cnt_max)
437
return 0;
438
439
if (uaddr) {
440
if (uaddr & ~PAGE_MASK)
441
return 0;
442
pgoff = compute_pgoff(arena, uaddr);
443
if (pgoff > page_cnt_max - page_cnt)
444
/* requested address will be outside of user VMA */
445
return 0;
446
}
447
448
/* zeroing is needed, since alloc_pages_bulk() only fills in non-zero entries */
449
pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL);
450
if (!pages)
451
return 0;
452
453
guard(mutex)(&arena->lock);
454
455
if (uaddr) {
456
ret = is_range_tree_set(&arena->rt, pgoff, page_cnt);
457
if (ret)
458
goto out_free_pages;
459
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
460
} else {
461
ret = pgoff = range_tree_find(&arena->rt, page_cnt);
462
if (pgoff >= 0)
463
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
464
}
465
if (ret)
466
goto out_free_pages;
467
468
ret = bpf_map_alloc_pages(&arena->map, node_id, page_cnt, pages);
469
if (ret)
470
goto out;
471
472
uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE);
473
/* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1
474
* will not overflow 32-bit. Lower 32-bit need to represent
475
* contiguous user address range.
476
* Map these pages at kern_vm_start base.
477
* kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow
478
* lower 32-bit and it's ok.
479
*/
480
ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32,
481
kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages);
482
if (ret) {
483
for (i = 0; i < page_cnt; i++)
484
__free_page(pages[i]);
485
goto out;
486
}
487
kvfree(pages);
488
return clear_lo32(arena->user_vm_start) + uaddr32;
489
out:
490
range_tree_set(&arena->rt, pgoff, page_cnt);
491
out_free_pages:
492
kvfree(pages);
493
return 0;
494
}
495
496
/*
497
* If page is present in vmalloc area, unmap it from vmalloc area,
498
* unmap it from all user space vma-s,
499
* and free it.
500
*/
501
static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
502
{
503
struct vma_list *vml;
504
505
list_for_each_entry(vml, &arena->vma_list, head)
506
zap_page_range_single(vml->vma, uaddr,
507
PAGE_SIZE * page_cnt, NULL);
508
}
509
510
static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
511
{
512
u64 full_uaddr, uaddr_end;
513
long kaddr, pgoff, i;
514
struct page *page;
515
516
/* only aligned lower 32-bit are relevant */
517
uaddr = (u32)uaddr;
518
uaddr &= PAGE_MASK;
519
full_uaddr = clear_lo32(arena->user_vm_start) + uaddr;
520
uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT));
521
if (full_uaddr >= uaddr_end)
522
return;
523
524
page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT;
525
526
guard(mutex)(&arena->lock);
527
528
pgoff = compute_pgoff(arena, uaddr);
529
/* clear range */
530
range_tree_set(&arena->rt, pgoff, page_cnt);
531
532
if (page_cnt > 1)
533
/* bulk zap if multiple pages being freed */
534
zap_pages(arena, full_uaddr, page_cnt);
535
536
kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr;
537
for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) {
538
page = vmalloc_to_page((void *)kaddr);
539
if (!page)
540
continue;
541
if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */
542
/* Optimization for the common case of page_cnt==1:
543
* If page wasn't mapped into some user vma there
544
* is no need to call zap_pages which is slow. When
545
* page_cnt is big it's faster to do the batched zap.
546
*/
547
zap_pages(arena, full_uaddr, 1);
548
vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE);
549
__free_page(page);
550
}
551
}
552
553
/*
554
* Reserve an arena virtual address range without populating it. This call stops
555
* bpf_arena_alloc_pages from adding pages to this range.
556
*/
557
static int arena_reserve_pages(struct bpf_arena *arena, long uaddr, u32 page_cnt)
558
{
559
long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT;
560
long pgoff;
561
int ret;
562
563
if (uaddr & ~PAGE_MASK)
564
return 0;
565
566
pgoff = compute_pgoff(arena, uaddr);
567
if (pgoff + page_cnt > page_cnt_max)
568
return -EINVAL;
569
570
guard(mutex)(&arena->lock);
571
572
/* Cannot guard already allocated pages. */
573
ret = is_range_tree_set(&arena->rt, pgoff, page_cnt);
574
if (ret)
575
return -EBUSY;
576
577
/* "Allocate" the region to prevent it from being allocated. */
578
return range_tree_clear(&arena->rt, pgoff, page_cnt);
579
}
580
581
__bpf_kfunc_start_defs();
582
583
__bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt,
584
int node_id, u64 flags)
585
{
586
struct bpf_map *map = p__map;
587
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
588
589
if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt)
590
return NULL;
591
592
return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id);
593
}
594
595
__bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt)
596
{
597
struct bpf_map *map = p__map;
598
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
599
600
if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign)
601
return;
602
arena_free_pages(arena, (long)ptr__ign, page_cnt);
603
}
604
605
__bpf_kfunc int bpf_arena_reserve_pages(void *p__map, void *ptr__ign, u32 page_cnt)
606
{
607
struct bpf_map *map = p__map;
608
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
609
610
if (map->map_type != BPF_MAP_TYPE_ARENA)
611
return -EINVAL;
612
613
if (!page_cnt)
614
return 0;
615
616
return arena_reserve_pages(arena, (long)ptr__ign, page_cnt);
617
}
618
__bpf_kfunc_end_defs();
619
620
BTF_KFUNCS_START(arena_kfuncs)
621
BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_RET | KF_ARENA_ARG2)
622
BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_ARG2)
623
BTF_ID_FLAGS(func, bpf_arena_reserve_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_ARG2)
624
BTF_KFUNCS_END(arena_kfuncs)
625
626
static const struct btf_kfunc_id_set common_kfunc_set = {
627
.owner = THIS_MODULE,
628
.set = &arena_kfuncs,
629
};
630
631
static int __init kfunc_init(void)
632
{
633
return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
634
}
635
late_initcall(kfunc_init);
636
637
void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip)
638
{
639
struct bpf_stream_stage ss;
640
struct bpf_prog *prog;
641
u64 user_vm_start;
642
643
/*
644
* The RCU read lock is held to safely traverse the latch tree, but we
645
* don't need its protection when accessing the prog, since it will not
646
* disappear while we are handling the fault.
647
*/
648
rcu_read_lock();
649
prog = bpf_prog_ksym_find(fault_ip);
650
rcu_read_unlock();
651
if (!prog)
652
return;
653
654
/* Use main prog for stream access */
655
prog = prog->aux->main_prog_aux->prog;
656
657
user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
658
addr += clear_lo32(user_vm_start);
659
660
bpf_stream_stage(ss, prog, BPF_STDERR, ({
661
bpf_stream_printk(ss, "ERROR: Arena %s access at unmapped address 0x%lx\n",
662
write ? "WRITE" : "READ", addr);
663
bpf_stream_dump_stack(ss);
664
}));
665
}
666
667