Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/btf.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (c) 2018 Facebook */
3
4
#include <uapi/linux/btf.h>
5
#include <uapi/linux/bpf.h>
6
#include <uapi/linux/bpf_perf_event.h>
7
#include <uapi/linux/types.h>
8
#include <linux/seq_file.h>
9
#include <linux/compiler.h>
10
#include <linux/ctype.h>
11
#include <linux/errno.h>
12
#include <linux/slab.h>
13
#include <linux/anon_inodes.h>
14
#include <linux/file.h>
15
#include <linux/uaccess.h>
16
#include <linux/kernel.h>
17
#include <linux/idr.h>
18
#include <linux/sort.h>
19
#include <linux/bpf_verifier.h>
20
#include <linux/btf.h>
21
#include <linux/btf_ids.h>
22
#include <linux/bpf.h>
23
#include <linux/bpf_lsm.h>
24
#include <linux/skmsg.h>
25
#include <linux/perf_event.h>
26
#include <linux/bsearch.h>
27
#include <linux/kobject.h>
28
#include <linux/sysfs.h>
29
#include <linux/overflow.h>
30
31
#include <net/netfilter/nf_bpf_link.h>
32
33
#include <net/sock.h>
34
#include <net/xdp.h>
35
#include "../tools/lib/bpf/relo_core.h"
36
37
/* BTF (BPF Type Format) is the meta data format which describes
38
* the data types of BPF program/map. Hence, it basically focus
39
* on the C programming language which the modern BPF is primary
40
* using.
41
*
42
* ELF Section:
43
* ~~~~~~~~~~~
44
* The BTF data is stored under the ".BTF" ELF section
45
*
46
* struct btf_type:
47
* ~~~~~~~~~~~~~~~
48
* Each 'struct btf_type' object describes a C data type.
49
* Depending on the type it is describing, a 'struct btf_type'
50
* object may be followed by more data. F.e.
51
* To describe an array, 'struct btf_type' is followed by
52
* 'struct btf_array'.
53
*
54
* 'struct btf_type' and any extra data following it are
55
* 4 bytes aligned.
56
*
57
* Type section:
58
* ~~~~~~~~~~~~~
59
* The BTF type section contains a list of 'struct btf_type' objects.
60
* Each one describes a C type. Recall from the above section
61
* that a 'struct btf_type' object could be immediately followed by extra
62
* data in order to describe some particular C types.
63
*
64
* type_id:
65
* ~~~~~~~
66
* Each btf_type object is identified by a type_id. The type_id
67
* is implicitly implied by the location of the btf_type object in
68
* the BTF type section. The first one has type_id 1. The second
69
* one has type_id 2...etc. Hence, an earlier btf_type has
70
* a smaller type_id.
71
*
72
* A btf_type object may refer to another btf_type object by using
73
* type_id (i.e. the "type" in the "struct btf_type").
74
*
75
* NOTE that we cannot assume any reference-order.
76
* A btf_type object can refer to an earlier btf_type object
77
* but it can also refer to a later btf_type object.
78
*
79
* For example, to describe "const void *". A btf_type
80
* object describing "const" may refer to another btf_type
81
* object describing "void *". This type-reference is done
82
* by specifying type_id:
83
*
84
* [1] CONST (anon) type_id=2
85
* [2] PTR (anon) type_id=0
86
*
87
* The above is the btf_verifier debug log:
88
* - Each line started with "[?]" is a btf_type object
89
* - [?] is the type_id of the btf_type object.
90
* - CONST/PTR is the BTF_KIND_XXX
91
* - "(anon)" is the name of the type. It just
92
* happens that CONST and PTR has no name.
93
* - type_id=XXX is the 'u32 type' in btf_type
94
*
95
* NOTE: "void" has type_id 0
96
*
97
* String section:
98
* ~~~~~~~~~~~~~~
99
* The BTF string section contains the names used by the type section.
100
* Each string is referred by an "offset" from the beginning of the
101
* string section.
102
*
103
* Each string is '\0' terminated.
104
*
105
* The first character in the string section must be '\0'
106
* which is used to mean 'anonymous'. Some btf_type may not
107
* have a name.
108
*/
109
110
/* BTF verification:
111
*
112
* To verify BTF data, two passes are needed.
113
*
114
* Pass #1
115
* ~~~~~~~
116
* The first pass is to collect all btf_type objects to
117
* an array: "btf->types".
118
*
119
* Depending on the C type that a btf_type is describing,
120
* a btf_type may be followed by extra data. We don't know
121
* how many btf_type is there, and more importantly we don't
122
* know where each btf_type is located in the type section.
123
*
124
* Without knowing the location of each type_id, most verifications
125
* cannot be done. e.g. an earlier btf_type may refer to a later
126
* btf_type (recall the "const void *" above), so we cannot
127
* check this type-reference in the first pass.
128
*
129
* In the first pass, it still does some verifications (e.g.
130
* checking the name is a valid offset to the string section).
131
*
132
* Pass #2
133
* ~~~~~~~
134
* The main focus is to resolve a btf_type that is referring
135
* to another type.
136
*
137
* We have to ensure the referring type:
138
* 1) does exist in the BTF (i.e. in btf->types[])
139
* 2) does not cause a loop:
140
* struct A {
141
* struct B b;
142
* };
143
*
144
* struct B {
145
* struct A a;
146
* };
147
*
148
* btf_type_needs_resolve() decides if a btf_type needs
149
* to be resolved.
150
*
151
* The needs_resolve type implements the "resolve()" ops which
152
* essentially does a DFS and detects backedge.
153
*
154
* During resolve (or DFS), different C types have different
155
* "RESOLVED" conditions.
156
*
157
* When resolving a BTF_KIND_STRUCT, we need to resolve all its
158
* members because a member is always referring to another
159
* type. A struct's member can be treated as "RESOLVED" if
160
* it is referring to a BTF_KIND_PTR. Otherwise, the
161
* following valid C struct would be rejected:
162
*
163
* struct A {
164
* int m;
165
* struct A *a;
166
* };
167
*
168
* When resolving a BTF_KIND_PTR, it needs to keep resolving if
169
* it is referring to another BTF_KIND_PTR. Otherwise, we cannot
170
* detect a pointer loop, e.g.:
171
* BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
172
* ^ |
173
* +-----------------------------------------+
174
*
175
*/
176
177
#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
178
#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
179
#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
180
#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
181
#define BITS_ROUNDUP_BYTES(bits) \
182
(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
183
184
#define BTF_INFO_MASK 0x9f00ffff
185
#define BTF_INT_MASK 0x0fffffff
186
#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
187
#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
188
189
/* 16MB for 64k structs and each has 16 members and
190
* a few MB spaces for the string section.
191
* The hard limit is S32_MAX.
192
*/
193
#define BTF_MAX_SIZE (16 * 1024 * 1024)
194
195
#define for_each_member_from(i, from, struct_type, member) \
196
for (i = from, member = btf_type_member(struct_type) + from; \
197
i < btf_type_vlen(struct_type); \
198
i++, member++)
199
200
#define for_each_vsi_from(i, from, struct_type, member) \
201
for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
202
i < btf_type_vlen(struct_type); \
203
i++, member++)
204
205
DEFINE_IDR(btf_idr);
206
DEFINE_SPINLOCK(btf_idr_lock);
207
208
enum btf_kfunc_hook {
209
BTF_KFUNC_HOOK_COMMON,
210
BTF_KFUNC_HOOK_XDP,
211
BTF_KFUNC_HOOK_TC,
212
BTF_KFUNC_HOOK_STRUCT_OPS,
213
BTF_KFUNC_HOOK_TRACING,
214
BTF_KFUNC_HOOK_SYSCALL,
215
BTF_KFUNC_HOOK_FMODRET,
216
BTF_KFUNC_HOOK_CGROUP,
217
BTF_KFUNC_HOOK_SCHED_ACT,
218
BTF_KFUNC_HOOK_SK_SKB,
219
BTF_KFUNC_HOOK_SOCKET_FILTER,
220
BTF_KFUNC_HOOK_LWT,
221
BTF_KFUNC_HOOK_NETFILTER,
222
BTF_KFUNC_HOOK_KPROBE,
223
BTF_KFUNC_HOOK_MAX,
224
};
225
226
enum {
227
BTF_KFUNC_SET_MAX_CNT = 256,
228
BTF_DTOR_KFUNC_MAX_CNT = 256,
229
BTF_KFUNC_FILTER_MAX_CNT = 16,
230
};
231
232
struct btf_kfunc_hook_filter {
233
btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
234
u32 nr_filters;
235
};
236
237
struct btf_kfunc_set_tab {
238
struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
239
struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
240
};
241
242
struct btf_id_dtor_kfunc_tab {
243
u32 cnt;
244
struct btf_id_dtor_kfunc dtors[];
245
};
246
247
struct btf_struct_ops_tab {
248
u32 cnt;
249
u32 capacity;
250
struct bpf_struct_ops_desc ops[];
251
};
252
253
struct btf {
254
void *data;
255
struct btf_type **types;
256
u32 *resolved_ids;
257
u32 *resolved_sizes;
258
const char *strings;
259
void *nohdr_data;
260
struct btf_header hdr;
261
u32 nr_types; /* includes VOID for base BTF */
262
u32 types_size;
263
u32 data_size;
264
refcount_t refcnt;
265
u32 id;
266
struct rcu_head rcu;
267
struct btf_kfunc_set_tab *kfunc_set_tab;
268
struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
269
struct btf_struct_metas *struct_meta_tab;
270
struct btf_struct_ops_tab *struct_ops_tab;
271
272
/* split BTF support */
273
struct btf *base_btf;
274
u32 start_id; /* first type ID in this BTF (0 for base BTF) */
275
u32 start_str_off; /* first string offset (0 for base BTF) */
276
char name[MODULE_NAME_LEN];
277
bool kernel_btf;
278
__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
279
};
280
281
enum verifier_phase {
282
CHECK_META,
283
CHECK_TYPE,
284
};
285
286
struct resolve_vertex {
287
const struct btf_type *t;
288
u32 type_id;
289
u16 next_member;
290
};
291
292
enum visit_state {
293
NOT_VISITED,
294
VISITED,
295
RESOLVED,
296
};
297
298
enum resolve_mode {
299
RESOLVE_TBD, /* To Be Determined */
300
RESOLVE_PTR, /* Resolving for Pointer */
301
RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
302
* or array
303
*/
304
};
305
306
#define MAX_RESOLVE_DEPTH 32
307
308
struct btf_sec_info {
309
u32 off;
310
u32 len;
311
};
312
313
struct btf_verifier_env {
314
struct btf *btf;
315
u8 *visit_states;
316
struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
317
struct bpf_verifier_log log;
318
u32 log_type_id;
319
u32 top_stack;
320
enum verifier_phase phase;
321
enum resolve_mode resolve_mode;
322
};
323
324
static const char * const btf_kind_str[NR_BTF_KINDS] = {
325
[BTF_KIND_UNKN] = "UNKNOWN",
326
[BTF_KIND_INT] = "INT",
327
[BTF_KIND_PTR] = "PTR",
328
[BTF_KIND_ARRAY] = "ARRAY",
329
[BTF_KIND_STRUCT] = "STRUCT",
330
[BTF_KIND_UNION] = "UNION",
331
[BTF_KIND_ENUM] = "ENUM",
332
[BTF_KIND_FWD] = "FWD",
333
[BTF_KIND_TYPEDEF] = "TYPEDEF",
334
[BTF_KIND_VOLATILE] = "VOLATILE",
335
[BTF_KIND_CONST] = "CONST",
336
[BTF_KIND_RESTRICT] = "RESTRICT",
337
[BTF_KIND_FUNC] = "FUNC",
338
[BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
339
[BTF_KIND_VAR] = "VAR",
340
[BTF_KIND_DATASEC] = "DATASEC",
341
[BTF_KIND_FLOAT] = "FLOAT",
342
[BTF_KIND_DECL_TAG] = "DECL_TAG",
343
[BTF_KIND_TYPE_TAG] = "TYPE_TAG",
344
[BTF_KIND_ENUM64] = "ENUM64",
345
};
346
347
const char *btf_type_str(const struct btf_type *t)
348
{
349
return btf_kind_str[BTF_INFO_KIND(t->info)];
350
}
351
352
/* Chunk size we use in safe copy of data to be shown. */
353
#define BTF_SHOW_OBJ_SAFE_SIZE 32
354
355
/*
356
* This is the maximum size of a base type value (equivalent to a
357
* 128-bit int); if we are at the end of our safe buffer and have
358
* less than 16 bytes space we can't be assured of being able
359
* to copy the next type safely, so in such cases we will initiate
360
* a new copy.
361
*/
362
#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
363
364
/* Type name size */
365
#define BTF_SHOW_NAME_SIZE 80
366
367
/*
368
* The suffix of a type that indicates it cannot alias another type when
369
* comparing BTF IDs for kfunc invocations.
370
*/
371
#define NOCAST_ALIAS_SUFFIX "___init"
372
373
/*
374
* Common data to all BTF show operations. Private show functions can add
375
* their own data to a structure containing a struct btf_show and consult it
376
* in the show callback. See btf_type_show() below.
377
*
378
* One challenge with showing nested data is we want to skip 0-valued
379
* data, but in order to figure out whether a nested object is all zeros
380
* we need to walk through it. As a result, we need to make two passes
381
* when handling structs, unions and arrays; the first path simply looks
382
* for nonzero data, while the second actually does the display. The first
383
* pass is signalled by show->state.depth_check being set, and if we
384
* encounter a non-zero value we set show->state.depth_to_show to
385
* the depth at which we encountered it. When we have completed the
386
* first pass, we will know if anything needs to be displayed if
387
* depth_to_show > depth. See btf_[struct,array]_show() for the
388
* implementation of this.
389
*
390
* Another problem is we want to ensure the data for display is safe to
391
* access. To support this, the anonymous "struct {} obj" tracks the data
392
* object and our safe copy of it. We copy portions of the data needed
393
* to the object "copy" buffer, but because its size is limited to
394
* BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
395
* traverse larger objects for display.
396
*
397
* The various data type show functions all start with a call to
398
* btf_show_start_type() which returns a pointer to the safe copy
399
* of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
400
* raw data itself). btf_show_obj_safe() is responsible for
401
* using copy_from_kernel_nofault() to update the safe data if necessary
402
* as we traverse the object's data. skbuff-like semantics are
403
* used:
404
*
405
* - obj.head points to the start of the toplevel object for display
406
* - obj.size is the size of the toplevel object
407
* - obj.data points to the current point in the original data at
408
* which our safe data starts. obj.data will advance as we copy
409
* portions of the data.
410
*
411
* In most cases a single copy will suffice, but larger data structures
412
* such as "struct task_struct" will require many copies. The logic in
413
* btf_show_obj_safe() handles the logic that determines if a new
414
* copy_from_kernel_nofault() is needed.
415
*/
416
struct btf_show {
417
u64 flags;
418
void *target; /* target of show operation (seq file, buffer) */
419
__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
420
const struct btf *btf;
421
/* below are used during iteration */
422
struct {
423
u8 depth;
424
u8 depth_to_show;
425
u8 depth_check;
426
u8 array_member:1,
427
array_terminated:1;
428
u16 array_encoding;
429
u32 type_id;
430
int status; /* non-zero for error */
431
const struct btf_type *type;
432
const struct btf_member *member;
433
char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
434
} state;
435
struct {
436
u32 size;
437
void *head;
438
void *data;
439
u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
440
} obj;
441
};
442
443
struct btf_kind_operations {
444
s32 (*check_meta)(struct btf_verifier_env *env,
445
const struct btf_type *t,
446
u32 meta_left);
447
int (*resolve)(struct btf_verifier_env *env,
448
const struct resolve_vertex *v);
449
int (*check_member)(struct btf_verifier_env *env,
450
const struct btf_type *struct_type,
451
const struct btf_member *member,
452
const struct btf_type *member_type);
453
int (*check_kflag_member)(struct btf_verifier_env *env,
454
const struct btf_type *struct_type,
455
const struct btf_member *member,
456
const struct btf_type *member_type);
457
void (*log_details)(struct btf_verifier_env *env,
458
const struct btf_type *t);
459
void (*show)(const struct btf *btf, const struct btf_type *t,
460
u32 type_id, void *data, u8 bits_offsets,
461
struct btf_show *show);
462
};
463
464
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
465
static struct btf_type btf_void;
466
467
static int btf_resolve(struct btf_verifier_env *env,
468
const struct btf_type *t, u32 type_id);
469
470
static int btf_func_check(struct btf_verifier_env *env,
471
const struct btf_type *t);
472
473
static bool btf_type_is_modifier(const struct btf_type *t)
474
{
475
/* Some of them is not strictly a C modifier
476
* but they are grouped into the same bucket
477
* for BTF concern:
478
* A type (t) that refers to another
479
* type through t->type AND its size cannot
480
* be determined without following the t->type.
481
*
482
* ptr does not fall into this bucket
483
* because its size is always sizeof(void *).
484
*/
485
switch (BTF_INFO_KIND(t->info)) {
486
case BTF_KIND_TYPEDEF:
487
case BTF_KIND_VOLATILE:
488
case BTF_KIND_CONST:
489
case BTF_KIND_RESTRICT:
490
case BTF_KIND_TYPE_TAG:
491
return true;
492
}
493
494
return false;
495
}
496
497
bool btf_type_is_void(const struct btf_type *t)
498
{
499
return t == &btf_void;
500
}
501
502
static bool btf_type_is_datasec(const struct btf_type *t)
503
{
504
return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
505
}
506
507
static bool btf_type_is_decl_tag(const struct btf_type *t)
508
{
509
return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
510
}
511
512
static bool btf_type_nosize(const struct btf_type *t)
513
{
514
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
515
btf_type_is_func(t) || btf_type_is_func_proto(t) ||
516
btf_type_is_decl_tag(t);
517
}
518
519
static bool btf_type_nosize_or_null(const struct btf_type *t)
520
{
521
return !t || btf_type_nosize(t);
522
}
523
524
static bool btf_type_is_decl_tag_target(const struct btf_type *t)
525
{
526
return btf_type_is_func(t) || btf_type_is_struct(t) ||
527
btf_type_is_var(t) || btf_type_is_typedef(t);
528
}
529
530
bool btf_is_vmlinux(const struct btf *btf)
531
{
532
return btf->kernel_btf && !btf->base_btf;
533
}
534
535
u32 btf_nr_types(const struct btf *btf)
536
{
537
u32 total = 0;
538
539
while (btf) {
540
total += btf->nr_types;
541
btf = btf->base_btf;
542
}
543
544
return total;
545
}
546
547
s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
548
{
549
const struct btf_type *t;
550
const char *tname;
551
u32 i, total;
552
553
total = btf_nr_types(btf);
554
for (i = 1; i < total; i++) {
555
t = btf_type_by_id(btf, i);
556
if (BTF_INFO_KIND(t->info) != kind)
557
continue;
558
559
tname = btf_name_by_offset(btf, t->name_off);
560
if (!strcmp(tname, name))
561
return i;
562
}
563
564
return -ENOENT;
565
}
566
567
s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
568
{
569
struct btf *btf;
570
s32 ret;
571
int id;
572
573
btf = bpf_get_btf_vmlinux();
574
if (IS_ERR(btf))
575
return PTR_ERR(btf);
576
if (!btf)
577
return -EINVAL;
578
579
ret = btf_find_by_name_kind(btf, name, kind);
580
/* ret is never zero, since btf_find_by_name_kind returns
581
* positive btf_id or negative error.
582
*/
583
if (ret > 0) {
584
btf_get(btf);
585
*btf_p = btf;
586
return ret;
587
}
588
589
/* If name is not found in vmlinux's BTF then search in module's BTFs */
590
spin_lock_bh(&btf_idr_lock);
591
idr_for_each_entry(&btf_idr, btf, id) {
592
if (!btf_is_module(btf))
593
continue;
594
/* linear search could be slow hence unlock/lock
595
* the IDR to avoiding holding it for too long
596
*/
597
btf_get(btf);
598
spin_unlock_bh(&btf_idr_lock);
599
ret = btf_find_by_name_kind(btf, name, kind);
600
if (ret > 0) {
601
*btf_p = btf;
602
return ret;
603
}
604
btf_put(btf);
605
spin_lock_bh(&btf_idr_lock);
606
}
607
spin_unlock_bh(&btf_idr_lock);
608
return ret;
609
}
610
EXPORT_SYMBOL_GPL(bpf_find_btf_id);
611
612
const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
613
u32 id, u32 *res_id)
614
{
615
const struct btf_type *t = btf_type_by_id(btf, id);
616
617
while (btf_type_is_modifier(t)) {
618
id = t->type;
619
t = btf_type_by_id(btf, t->type);
620
}
621
622
if (res_id)
623
*res_id = id;
624
625
return t;
626
}
627
628
const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
629
u32 id, u32 *res_id)
630
{
631
const struct btf_type *t;
632
633
t = btf_type_skip_modifiers(btf, id, NULL);
634
if (!btf_type_is_ptr(t))
635
return NULL;
636
637
return btf_type_skip_modifiers(btf, t->type, res_id);
638
}
639
640
const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
641
u32 id, u32 *res_id)
642
{
643
const struct btf_type *ptype;
644
645
ptype = btf_type_resolve_ptr(btf, id, res_id);
646
if (ptype && btf_type_is_func_proto(ptype))
647
return ptype;
648
649
return NULL;
650
}
651
652
/* Types that act only as a source, not sink or intermediate
653
* type when resolving.
654
*/
655
static bool btf_type_is_resolve_source_only(const struct btf_type *t)
656
{
657
return btf_type_is_var(t) ||
658
btf_type_is_decl_tag(t) ||
659
btf_type_is_datasec(t);
660
}
661
662
/* What types need to be resolved?
663
*
664
* btf_type_is_modifier() is an obvious one.
665
*
666
* btf_type_is_struct() because its member refers to
667
* another type (through member->type).
668
*
669
* btf_type_is_var() because the variable refers to
670
* another type. btf_type_is_datasec() holds multiple
671
* btf_type_is_var() types that need resolving.
672
*
673
* btf_type_is_array() because its element (array->type)
674
* refers to another type. Array can be thought of a
675
* special case of struct while array just has the same
676
* member-type repeated by array->nelems of times.
677
*/
678
static bool btf_type_needs_resolve(const struct btf_type *t)
679
{
680
return btf_type_is_modifier(t) ||
681
btf_type_is_ptr(t) ||
682
btf_type_is_struct(t) ||
683
btf_type_is_array(t) ||
684
btf_type_is_var(t) ||
685
btf_type_is_func(t) ||
686
btf_type_is_decl_tag(t) ||
687
btf_type_is_datasec(t);
688
}
689
690
/* t->size can be used */
691
static bool btf_type_has_size(const struct btf_type *t)
692
{
693
switch (BTF_INFO_KIND(t->info)) {
694
case BTF_KIND_INT:
695
case BTF_KIND_STRUCT:
696
case BTF_KIND_UNION:
697
case BTF_KIND_ENUM:
698
case BTF_KIND_DATASEC:
699
case BTF_KIND_FLOAT:
700
case BTF_KIND_ENUM64:
701
return true;
702
}
703
704
return false;
705
}
706
707
static const char *btf_int_encoding_str(u8 encoding)
708
{
709
if (encoding == 0)
710
return "(none)";
711
else if (encoding == BTF_INT_SIGNED)
712
return "SIGNED";
713
else if (encoding == BTF_INT_CHAR)
714
return "CHAR";
715
else if (encoding == BTF_INT_BOOL)
716
return "BOOL";
717
else
718
return "UNKN";
719
}
720
721
static u32 btf_type_int(const struct btf_type *t)
722
{
723
return *(u32 *)(t + 1);
724
}
725
726
static const struct btf_array *btf_type_array(const struct btf_type *t)
727
{
728
return (const struct btf_array *)(t + 1);
729
}
730
731
static const struct btf_enum *btf_type_enum(const struct btf_type *t)
732
{
733
return (const struct btf_enum *)(t + 1);
734
}
735
736
static const struct btf_var *btf_type_var(const struct btf_type *t)
737
{
738
return (const struct btf_var *)(t + 1);
739
}
740
741
static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
742
{
743
return (const struct btf_decl_tag *)(t + 1);
744
}
745
746
static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
747
{
748
return (const struct btf_enum64 *)(t + 1);
749
}
750
751
static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
752
{
753
return kind_ops[BTF_INFO_KIND(t->info)];
754
}
755
756
static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
757
{
758
if (!BTF_STR_OFFSET_VALID(offset))
759
return false;
760
761
while (offset < btf->start_str_off)
762
btf = btf->base_btf;
763
764
offset -= btf->start_str_off;
765
return offset < btf->hdr.str_len;
766
}
767
768
static bool __btf_name_char_ok(char c, bool first)
769
{
770
if ((first ? !isalpha(c) :
771
!isalnum(c)) &&
772
c != '_' &&
773
c != '.')
774
return false;
775
return true;
776
}
777
778
const char *btf_str_by_offset(const struct btf *btf, u32 offset)
779
{
780
while (offset < btf->start_str_off)
781
btf = btf->base_btf;
782
783
offset -= btf->start_str_off;
784
if (offset < btf->hdr.str_len)
785
return &btf->strings[offset];
786
787
return NULL;
788
}
789
790
static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
791
{
792
/* offset must be valid */
793
const char *src = btf_str_by_offset(btf, offset);
794
const char *src_limit;
795
796
if (!__btf_name_char_ok(*src, true))
797
return false;
798
799
/* set a limit on identifier length */
800
src_limit = src + KSYM_NAME_LEN;
801
src++;
802
while (*src && src < src_limit) {
803
if (!__btf_name_char_ok(*src, false))
804
return false;
805
src++;
806
}
807
808
return !*src;
809
}
810
811
/* Allow any printable character in DATASEC names */
812
static bool btf_name_valid_section(const struct btf *btf, u32 offset)
813
{
814
/* offset must be valid */
815
const char *src = btf_str_by_offset(btf, offset);
816
const char *src_limit;
817
818
if (!*src)
819
return false;
820
821
/* set a limit on identifier length */
822
src_limit = src + KSYM_NAME_LEN;
823
while (*src && src < src_limit) {
824
if (!isprint(*src))
825
return false;
826
src++;
827
}
828
829
return !*src;
830
}
831
832
static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
833
{
834
const char *name;
835
836
if (!offset)
837
return "(anon)";
838
839
name = btf_str_by_offset(btf, offset);
840
return name ?: "(invalid-name-offset)";
841
}
842
843
const char *btf_name_by_offset(const struct btf *btf, u32 offset)
844
{
845
return btf_str_by_offset(btf, offset);
846
}
847
848
const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
849
{
850
while (type_id < btf->start_id)
851
btf = btf->base_btf;
852
853
type_id -= btf->start_id;
854
if (type_id >= btf->nr_types)
855
return NULL;
856
return btf->types[type_id];
857
}
858
EXPORT_SYMBOL_GPL(btf_type_by_id);
859
860
/*
861
* Check that the type @t is a regular int. This means that @t is not
862
* a bit field and it has the same size as either of u8/u16/u32/u64
863
* or __int128. If @expected_size is not zero, then size of @t should
864
* be the same. A caller should already have checked that the type @t
865
* is an integer.
866
*/
867
static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size)
868
{
869
u32 int_data = btf_type_int(t);
870
u8 nr_bits = BTF_INT_BITS(int_data);
871
u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
872
873
return BITS_PER_BYTE_MASKED(nr_bits) == 0 &&
874
BTF_INT_OFFSET(int_data) == 0 &&
875
(nr_bytes <= 16 && is_power_of_2(nr_bytes)) &&
876
(expected_size == 0 || nr_bytes == expected_size);
877
}
878
879
static bool btf_type_int_is_regular(const struct btf_type *t)
880
{
881
return __btf_type_int_is_regular(t, 0);
882
}
883
884
bool btf_type_is_i32(const struct btf_type *t)
885
{
886
return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4);
887
}
888
889
bool btf_type_is_i64(const struct btf_type *t)
890
{
891
return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8);
892
}
893
894
bool btf_type_is_primitive(const struct btf_type *t)
895
{
896
return (btf_type_is_int(t) && btf_type_int_is_regular(t)) ||
897
btf_is_any_enum(t);
898
}
899
900
/*
901
* Check that given struct member is a regular int with expected
902
* offset and size.
903
*/
904
bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
905
const struct btf_member *m,
906
u32 expected_offset, u32 expected_size)
907
{
908
const struct btf_type *t;
909
u32 id, int_data;
910
u8 nr_bits;
911
912
id = m->type;
913
t = btf_type_id_size(btf, &id, NULL);
914
if (!t || !btf_type_is_int(t))
915
return false;
916
917
int_data = btf_type_int(t);
918
nr_bits = BTF_INT_BITS(int_data);
919
if (btf_type_kflag(s)) {
920
u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
921
u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
922
923
/* if kflag set, int should be a regular int and
924
* bit offset should be at byte boundary.
925
*/
926
return !bitfield_size &&
927
BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
928
BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
929
}
930
931
if (BTF_INT_OFFSET(int_data) ||
932
BITS_PER_BYTE_MASKED(m->offset) ||
933
BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
934
BITS_PER_BYTE_MASKED(nr_bits) ||
935
BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
936
return false;
937
938
return true;
939
}
940
941
/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
942
static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
943
u32 id)
944
{
945
const struct btf_type *t = btf_type_by_id(btf, id);
946
947
while (btf_type_is_modifier(t) &&
948
BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
949
t = btf_type_by_id(btf, t->type);
950
}
951
952
return t;
953
}
954
955
#define BTF_SHOW_MAX_ITER 10
956
957
#define BTF_KIND_BIT(kind) (1ULL << kind)
958
959
/*
960
* Populate show->state.name with type name information.
961
* Format of type name is
962
*
963
* [.member_name = ] (type_name)
964
*/
965
static const char *btf_show_name(struct btf_show *show)
966
{
967
/* BTF_MAX_ITER array suffixes "[]" */
968
const char *array_suffixes = "[][][][][][][][][][]";
969
const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
970
/* BTF_MAX_ITER pointer suffixes "*" */
971
const char *ptr_suffixes = "**********";
972
const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
973
const char *name = NULL, *prefix = "", *parens = "";
974
const struct btf_member *m = show->state.member;
975
const struct btf_type *t;
976
const struct btf_array *array;
977
u32 id = show->state.type_id;
978
const char *member = NULL;
979
bool show_member = false;
980
u64 kinds = 0;
981
int i;
982
983
show->state.name[0] = '\0';
984
985
/*
986
* Don't show type name if we're showing an array member;
987
* in that case we show the array type so don't need to repeat
988
* ourselves for each member.
989
*/
990
if (show->state.array_member)
991
return "";
992
993
/* Retrieve member name, if any. */
994
if (m) {
995
member = btf_name_by_offset(show->btf, m->name_off);
996
show_member = strlen(member) > 0;
997
id = m->type;
998
}
999
1000
/*
1001
* Start with type_id, as we have resolved the struct btf_type *
1002
* via btf_modifier_show() past the parent typedef to the child
1003
* struct, int etc it is defined as. In such cases, the type_id
1004
* still represents the starting type while the struct btf_type *
1005
* in our show->state points at the resolved type of the typedef.
1006
*/
1007
t = btf_type_by_id(show->btf, id);
1008
if (!t)
1009
return "";
1010
1011
/*
1012
* The goal here is to build up the right number of pointer and
1013
* array suffixes while ensuring the type name for a typedef
1014
* is represented. Along the way we accumulate a list of
1015
* BTF kinds we have encountered, since these will inform later
1016
* display; for example, pointer types will not require an
1017
* opening "{" for struct, we will just display the pointer value.
1018
*
1019
* We also want to accumulate the right number of pointer or array
1020
* indices in the format string while iterating until we get to
1021
* the typedef/pointee/array member target type.
1022
*
1023
* We start by pointing at the end of pointer and array suffix
1024
* strings; as we accumulate pointers and arrays we move the pointer
1025
* or array string backwards so it will show the expected number of
1026
* '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
1027
* and/or arrays and typedefs are supported as a precaution.
1028
*
1029
* We also want to get typedef name while proceeding to resolve
1030
* type it points to so that we can add parentheses if it is a
1031
* "typedef struct" etc.
1032
*/
1033
for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1034
1035
switch (BTF_INFO_KIND(t->info)) {
1036
case BTF_KIND_TYPEDEF:
1037
if (!name)
1038
name = btf_name_by_offset(show->btf,
1039
t->name_off);
1040
kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1041
id = t->type;
1042
break;
1043
case BTF_KIND_ARRAY:
1044
kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1045
parens = "[";
1046
if (!t)
1047
return "";
1048
array = btf_type_array(t);
1049
if (array_suffix > array_suffixes)
1050
array_suffix -= 2;
1051
id = array->type;
1052
break;
1053
case BTF_KIND_PTR:
1054
kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1055
if (ptr_suffix > ptr_suffixes)
1056
ptr_suffix -= 1;
1057
id = t->type;
1058
break;
1059
default:
1060
id = 0;
1061
break;
1062
}
1063
if (!id)
1064
break;
1065
t = btf_type_skip_qualifiers(show->btf, id);
1066
}
1067
/* We may not be able to represent this type; bail to be safe */
1068
if (i == BTF_SHOW_MAX_ITER)
1069
return "";
1070
1071
if (!name)
1072
name = btf_name_by_offset(show->btf, t->name_off);
1073
1074
switch (BTF_INFO_KIND(t->info)) {
1075
case BTF_KIND_STRUCT:
1076
case BTF_KIND_UNION:
1077
prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1078
"struct" : "union";
1079
/* if it's an array of struct/union, parens is already set */
1080
if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1081
parens = "{";
1082
break;
1083
case BTF_KIND_ENUM:
1084
case BTF_KIND_ENUM64:
1085
prefix = "enum";
1086
break;
1087
default:
1088
break;
1089
}
1090
1091
/* pointer does not require parens */
1092
if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1093
parens = "";
1094
/* typedef does not require struct/union/enum prefix */
1095
if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1096
prefix = "";
1097
1098
if (!name)
1099
name = "";
1100
1101
/* Even if we don't want type name info, we want parentheses etc */
1102
if (show->flags & BTF_SHOW_NONAME)
1103
snprintf(show->state.name, sizeof(show->state.name), "%s",
1104
parens);
1105
else
1106
snprintf(show->state.name, sizeof(show->state.name),
1107
"%s%s%s(%s%s%s%s%s%s)%s",
1108
/* first 3 strings comprise ".member = " */
1109
show_member ? "." : "",
1110
show_member ? member : "",
1111
show_member ? " = " : "",
1112
/* ...next is our prefix (struct, enum, etc) */
1113
prefix,
1114
strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1115
/* ...this is the type name itself */
1116
name,
1117
/* ...suffixed by the appropriate '*', '[]' suffixes */
1118
strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1119
array_suffix, parens);
1120
1121
return show->state.name;
1122
}
1123
1124
static const char *__btf_show_indent(struct btf_show *show)
1125
{
1126
const char *indents = " ";
1127
const char *indent = &indents[strlen(indents)];
1128
1129
if ((indent - show->state.depth) >= indents)
1130
return indent - show->state.depth;
1131
return indents;
1132
}
1133
1134
static const char *btf_show_indent(struct btf_show *show)
1135
{
1136
return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1137
}
1138
1139
static const char *btf_show_newline(struct btf_show *show)
1140
{
1141
return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1142
}
1143
1144
static const char *btf_show_delim(struct btf_show *show)
1145
{
1146
if (show->state.depth == 0)
1147
return "";
1148
1149
if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1150
BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1151
return "|";
1152
1153
return ",";
1154
}
1155
1156
__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1157
{
1158
va_list args;
1159
1160
if (!show->state.depth_check) {
1161
va_start(args, fmt);
1162
show->showfn(show, fmt, args);
1163
va_end(args);
1164
}
1165
}
1166
1167
/* Macros are used here as btf_show_type_value[s]() prepends and appends
1168
* format specifiers to the format specifier passed in; these do the work of
1169
* adding indentation, delimiters etc while the caller simply has to specify
1170
* the type value(s) in the format specifier + value(s).
1171
*/
1172
#define btf_show_type_value(show, fmt, value) \
1173
do { \
1174
if ((value) != (__typeof__(value))0 || \
1175
(show->flags & BTF_SHOW_ZERO) || \
1176
show->state.depth == 0) { \
1177
btf_show(show, "%s%s" fmt "%s%s", \
1178
btf_show_indent(show), \
1179
btf_show_name(show), \
1180
value, btf_show_delim(show), \
1181
btf_show_newline(show)); \
1182
if (show->state.depth > show->state.depth_to_show) \
1183
show->state.depth_to_show = show->state.depth; \
1184
} \
1185
} while (0)
1186
1187
#define btf_show_type_values(show, fmt, ...) \
1188
do { \
1189
btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1190
btf_show_name(show), \
1191
__VA_ARGS__, btf_show_delim(show), \
1192
btf_show_newline(show)); \
1193
if (show->state.depth > show->state.depth_to_show) \
1194
show->state.depth_to_show = show->state.depth; \
1195
} while (0)
1196
1197
/* How much is left to copy to safe buffer after @data? */
1198
static int btf_show_obj_size_left(struct btf_show *show, void *data)
1199
{
1200
return show->obj.head + show->obj.size - data;
1201
}
1202
1203
/* Is object pointed to by @data of @size already copied to our safe buffer? */
1204
static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1205
{
1206
return data >= show->obj.data &&
1207
(data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1208
}
1209
1210
/*
1211
* If object pointed to by @data of @size falls within our safe buffer, return
1212
* the equivalent pointer to the same safe data. Assumes
1213
* copy_from_kernel_nofault() has already happened and our safe buffer is
1214
* populated.
1215
*/
1216
static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1217
{
1218
if (btf_show_obj_is_safe(show, data, size))
1219
return show->obj.safe + (data - show->obj.data);
1220
return NULL;
1221
}
1222
1223
/*
1224
* Return a safe-to-access version of data pointed to by @data.
1225
* We do this by copying the relevant amount of information
1226
* to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1227
*
1228
* If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1229
* safe copy is needed.
1230
*
1231
* Otherwise we need to determine if we have the required amount
1232
* of data (determined by the @data pointer and the size of the
1233
* largest base type we can encounter (represented by
1234
* BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1235
* that we will be able to print some of the current object,
1236
* and if more is needed a copy will be triggered.
1237
* Some objects such as structs will not fit into the buffer;
1238
* in such cases additional copies when we iterate over their
1239
* members may be needed.
1240
*
1241
* btf_show_obj_safe() is used to return a safe buffer for
1242
* btf_show_start_type(); this ensures that as we recurse into
1243
* nested types we always have safe data for the given type.
1244
* This approach is somewhat wasteful; it's possible for example
1245
* that when iterating over a large union we'll end up copying the
1246
* same data repeatedly, but the goal is safety not performance.
1247
* We use stack data as opposed to per-CPU buffers because the
1248
* iteration over a type can take some time, and preemption handling
1249
* would greatly complicate use of the safe buffer.
1250
*/
1251
static void *btf_show_obj_safe(struct btf_show *show,
1252
const struct btf_type *t,
1253
void *data)
1254
{
1255
const struct btf_type *rt;
1256
int size_left, size;
1257
void *safe = NULL;
1258
1259
if (show->flags & BTF_SHOW_UNSAFE)
1260
return data;
1261
1262
rt = btf_resolve_size(show->btf, t, &size);
1263
if (IS_ERR(rt)) {
1264
show->state.status = PTR_ERR(rt);
1265
return NULL;
1266
}
1267
1268
/*
1269
* Is this toplevel object? If so, set total object size and
1270
* initialize pointers. Otherwise check if we still fall within
1271
* our safe object data.
1272
*/
1273
if (show->state.depth == 0) {
1274
show->obj.size = size;
1275
show->obj.head = data;
1276
} else {
1277
/*
1278
* If the size of the current object is > our remaining
1279
* safe buffer we _may_ need to do a new copy. However
1280
* consider the case of a nested struct; it's size pushes
1281
* us over the safe buffer limit, but showing any individual
1282
* struct members does not. In such cases, we don't need
1283
* to initiate a fresh copy yet; however we definitely need
1284
* at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1285
* in our buffer, regardless of the current object size.
1286
* The logic here is that as we resolve types we will
1287
* hit a base type at some point, and we need to be sure
1288
* the next chunk of data is safely available to display
1289
* that type info safely. We cannot rely on the size of
1290
* the current object here because it may be much larger
1291
* than our current buffer (e.g. task_struct is 8k).
1292
* All we want to do here is ensure that we can print the
1293
* next basic type, which we can if either
1294
* - the current type size is within the safe buffer; or
1295
* - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1296
* the safe buffer.
1297
*/
1298
safe = __btf_show_obj_safe(show, data,
1299
min(size,
1300
BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1301
}
1302
1303
/*
1304
* We need a new copy to our safe object, either because we haven't
1305
* yet copied and are initializing safe data, or because the data
1306
* we want falls outside the boundaries of the safe object.
1307
*/
1308
if (!safe) {
1309
size_left = btf_show_obj_size_left(show, data);
1310
if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1311
size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1312
show->state.status = copy_from_kernel_nofault(show->obj.safe,
1313
data, size_left);
1314
if (!show->state.status) {
1315
show->obj.data = data;
1316
safe = show->obj.safe;
1317
}
1318
}
1319
1320
return safe;
1321
}
1322
1323
/*
1324
* Set the type we are starting to show and return a safe data pointer
1325
* to be used for showing the associated data.
1326
*/
1327
static void *btf_show_start_type(struct btf_show *show,
1328
const struct btf_type *t,
1329
u32 type_id, void *data)
1330
{
1331
show->state.type = t;
1332
show->state.type_id = type_id;
1333
show->state.name[0] = '\0';
1334
1335
return btf_show_obj_safe(show, t, data);
1336
}
1337
1338
static void btf_show_end_type(struct btf_show *show)
1339
{
1340
show->state.type = NULL;
1341
show->state.type_id = 0;
1342
show->state.name[0] = '\0';
1343
}
1344
1345
static void *btf_show_start_aggr_type(struct btf_show *show,
1346
const struct btf_type *t,
1347
u32 type_id, void *data)
1348
{
1349
void *safe_data = btf_show_start_type(show, t, type_id, data);
1350
1351
if (!safe_data)
1352
return safe_data;
1353
1354
btf_show(show, "%s%s%s", btf_show_indent(show),
1355
btf_show_name(show),
1356
btf_show_newline(show));
1357
show->state.depth++;
1358
return safe_data;
1359
}
1360
1361
static void btf_show_end_aggr_type(struct btf_show *show,
1362
const char *suffix)
1363
{
1364
show->state.depth--;
1365
btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1366
btf_show_delim(show), btf_show_newline(show));
1367
btf_show_end_type(show);
1368
}
1369
1370
static void btf_show_start_member(struct btf_show *show,
1371
const struct btf_member *m)
1372
{
1373
show->state.member = m;
1374
}
1375
1376
static void btf_show_start_array_member(struct btf_show *show)
1377
{
1378
show->state.array_member = 1;
1379
btf_show_start_member(show, NULL);
1380
}
1381
1382
static void btf_show_end_member(struct btf_show *show)
1383
{
1384
show->state.member = NULL;
1385
}
1386
1387
static void btf_show_end_array_member(struct btf_show *show)
1388
{
1389
show->state.array_member = 0;
1390
btf_show_end_member(show);
1391
}
1392
1393
static void *btf_show_start_array_type(struct btf_show *show,
1394
const struct btf_type *t,
1395
u32 type_id,
1396
u16 array_encoding,
1397
void *data)
1398
{
1399
show->state.array_encoding = array_encoding;
1400
show->state.array_terminated = 0;
1401
return btf_show_start_aggr_type(show, t, type_id, data);
1402
}
1403
1404
static void btf_show_end_array_type(struct btf_show *show)
1405
{
1406
show->state.array_encoding = 0;
1407
show->state.array_terminated = 0;
1408
btf_show_end_aggr_type(show, "]");
1409
}
1410
1411
static void *btf_show_start_struct_type(struct btf_show *show,
1412
const struct btf_type *t,
1413
u32 type_id,
1414
void *data)
1415
{
1416
return btf_show_start_aggr_type(show, t, type_id, data);
1417
}
1418
1419
static void btf_show_end_struct_type(struct btf_show *show)
1420
{
1421
btf_show_end_aggr_type(show, "}");
1422
}
1423
1424
__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1425
const char *fmt, ...)
1426
{
1427
va_list args;
1428
1429
va_start(args, fmt);
1430
bpf_verifier_vlog(log, fmt, args);
1431
va_end(args);
1432
}
1433
1434
__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1435
const char *fmt, ...)
1436
{
1437
struct bpf_verifier_log *log = &env->log;
1438
va_list args;
1439
1440
if (!bpf_verifier_log_needed(log))
1441
return;
1442
1443
va_start(args, fmt);
1444
bpf_verifier_vlog(log, fmt, args);
1445
va_end(args);
1446
}
1447
1448
__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1449
const struct btf_type *t,
1450
bool log_details,
1451
const char *fmt, ...)
1452
{
1453
struct bpf_verifier_log *log = &env->log;
1454
struct btf *btf = env->btf;
1455
va_list args;
1456
1457
if (!bpf_verifier_log_needed(log))
1458
return;
1459
1460
if (log->level == BPF_LOG_KERNEL) {
1461
/* btf verifier prints all types it is processing via
1462
* btf_verifier_log_type(..., fmt = NULL).
1463
* Skip those prints for in-kernel BTF verification.
1464
*/
1465
if (!fmt)
1466
return;
1467
1468
/* Skip logging when loading module BTF with mismatches permitted */
1469
if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1470
return;
1471
}
1472
1473
__btf_verifier_log(log, "[%u] %s %s%s",
1474
env->log_type_id,
1475
btf_type_str(t),
1476
__btf_name_by_offset(btf, t->name_off),
1477
log_details ? " " : "");
1478
1479
if (log_details)
1480
btf_type_ops(t)->log_details(env, t);
1481
1482
if (fmt && *fmt) {
1483
__btf_verifier_log(log, " ");
1484
va_start(args, fmt);
1485
bpf_verifier_vlog(log, fmt, args);
1486
va_end(args);
1487
}
1488
1489
__btf_verifier_log(log, "\n");
1490
}
1491
1492
#define btf_verifier_log_type(env, t, ...) \
1493
__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1494
#define btf_verifier_log_basic(env, t, ...) \
1495
__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1496
1497
__printf(4, 5)
1498
static void btf_verifier_log_member(struct btf_verifier_env *env,
1499
const struct btf_type *struct_type,
1500
const struct btf_member *member,
1501
const char *fmt, ...)
1502
{
1503
struct bpf_verifier_log *log = &env->log;
1504
struct btf *btf = env->btf;
1505
va_list args;
1506
1507
if (!bpf_verifier_log_needed(log))
1508
return;
1509
1510
if (log->level == BPF_LOG_KERNEL) {
1511
if (!fmt)
1512
return;
1513
1514
/* Skip logging when loading module BTF with mismatches permitted */
1515
if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1516
return;
1517
}
1518
1519
/* The CHECK_META phase already did a btf dump.
1520
*
1521
* If member is logged again, it must hit an error in
1522
* parsing this member. It is useful to print out which
1523
* struct this member belongs to.
1524
*/
1525
if (env->phase != CHECK_META)
1526
btf_verifier_log_type(env, struct_type, NULL);
1527
1528
if (btf_type_kflag(struct_type))
1529
__btf_verifier_log(log,
1530
"\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1531
__btf_name_by_offset(btf, member->name_off),
1532
member->type,
1533
BTF_MEMBER_BITFIELD_SIZE(member->offset),
1534
BTF_MEMBER_BIT_OFFSET(member->offset));
1535
else
1536
__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1537
__btf_name_by_offset(btf, member->name_off),
1538
member->type, member->offset);
1539
1540
if (fmt && *fmt) {
1541
__btf_verifier_log(log, " ");
1542
va_start(args, fmt);
1543
bpf_verifier_vlog(log, fmt, args);
1544
va_end(args);
1545
}
1546
1547
__btf_verifier_log(log, "\n");
1548
}
1549
1550
__printf(4, 5)
1551
static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1552
const struct btf_type *datasec_type,
1553
const struct btf_var_secinfo *vsi,
1554
const char *fmt, ...)
1555
{
1556
struct bpf_verifier_log *log = &env->log;
1557
va_list args;
1558
1559
if (!bpf_verifier_log_needed(log))
1560
return;
1561
if (log->level == BPF_LOG_KERNEL && !fmt)
1562
return;
1563
if (env->phase != CHECK_META)
1564
btf_verifier_log_type(env, datasec_type, NULL);
1565
1566
__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1567
vsi->type, vsi->offset, vsi->size);
1568
if (fmt && *fmt) {
1569
__btf_verifier_log(log, " ");
1570
va_start(args, fmt);
1571
bpf_verifier_vlog(log, fmt, args);
1572
va_end(args);
1573
}
1574
1575
__btf_verifier_log(log, "\n");
1576
}
1577
1578
static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1579
u32 btf_data_size)
1580
{
1581
struct bpf_verifier_log *log = &env->log;
1582
const struct btf *btf = env->btf;
1583
const struct btf_header *hdr;
1584
1585
if (!bpf_verifier_log_needed(log))
1586
return;
1587
1588
if (log->level == BPF_LOG_KERNEL)
1589
return;
1590
hdr = &btf->hdr;
1591
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1592
__btf_verifier_log(log, "version: %u\n", hdr->version);
1593
__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1594
__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1595
__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1596
__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1597
__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1598
__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1599
__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1600
}
1601
1602
static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1603
{
1604
struct btf *btf = env->btf;
1605
1606
if (btf->types_size == btf->nr_types) {
1607
/* Expand 'types' array */
1608
1609
struct btf_type **new_types;
1610
u32 expand_by, new_size;
1611
1612
if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1613
btf_verifier_log(env, "Exceeded max num of types");
1614
return -E2BIG;
1615
}
1616
1617
expand_by = max_t(u32, btf->types_size >> 2, 16);
1618
new_size = min_t(u32, BTF_MAX_TYPE,
1619
btf->types_size + expand_by);
1620
1621
new_types = kvcalloc(new_size, sizeof(*new_types),
1622
GFP_KERNEL | __GFP_NOWARN);
1623
if (!new_types)
1624
return -ENOMEM;
1625
1626
if (btf->nr_types == 0) {
1627
if (!btf->base_btf) {
1628
/* lazily init VOID type */
1629
new_types[0] = &btf_void;
1630
btf->nr_types++;
1631
}
1632
} else {
1633
memcpy(new_types, btf->types,
1634
sizeof(*btf->types) * btf->nr_types);
1635
}
1636
1637
kvfree(btf->types);
1638
btf->types = new_types;
1639
btf->types_size = new_size;
1640
}
1641
1642
btf->types[btf->nr_types++] = t;
1643
1644
return 0;
1645
}
1646
1647
static int btf_alloc_id(struct btf *btf)
1648
{
1649
int id;
1650
1651
idr_preload(GFP_KERNEL);
1652
spin_lock_bh(&btf_idr_lock);
1653
id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1654
if (id > 0)
1655
btf->id = id;
1656
spin_unlock_bh(&btf_idr_lock);
1657
idr_preload_end();
1658
1659
if (WARN_ON_ONCE(!id))
1660
return -ENOSPC;
1661
1662
return id > 0 ? 0 : id;
1663
}
1664
1665
static void btf_free_id(struct btf *btf)
1666
{
1667
unsigned long flags;
1668
1669
/*
1670
* In map-in-map, calling map_delete_elem() on outer
1671
* map will call bpf_map_put on the inner map.
1672
* It will then eventually call btf_free_id()
1673
* on the inner map. Some of the map_delete_elem()
1674
* implementation may have irq disabled, so
1675
* we need to use the _irqsave() version instead
1676
* of the _bh() version.
1677
*/
1678
spin_lock_irqsave(&btf_idr_lock, flags);
1679
idr_remove(&btf_idr, btf->id);
1680
spin_unlock_irqrestore(&btf_idr_lock, flags);
1681
}
1682
1683
static void btf_free_kfunc_set_tab(struct btf *btf)
1684
{
1685
struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1686
int hook;
1687
1688
if (!tab)
1689
return;
1690
for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1691
kfree(tab->sets[hook]);
1692
kfree(tab);
1693
btf->kfunc_set_tab = NULL;
1694
}
1695
1696
static void btf_free_dtor_kfunc_tab(struct btf *btf)
1697
{
1698
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1699
1700
if (!tab)
1701
return;
1702
kfree(tab);
1703
btf->dtor_kfunc_tab = NULL;
1704
}
1705
1706
static void btf_struct_metas_free(struct btf_struct_metas *tab)
1707
{
1708
int i;
1709
1710
if (!tab)
1711
return;
1712
for (i = 0; i < tab->cnt; i++)
1713
btf_record_free(tab->types[i].record);
1714
kfree(tab);
1715
}
1716
1717
static void btf_free_struct_meta_tab(struct btf *btf)
1718
{
1719
struct btf_struct_metas *tab = btf->struct_meta_tab;
1720
1721
btf_struct_metas_free(tab);
1722
btf->struct_meta_tab = NULL;
1723
}
1724
1725
static void btf_free_struct_ops_tab(struct btf *btf)
1726
{
1727
struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1728
u32 i;
1729
1730
if (!tab)
1731
return;
1732
1733
for (i = 0; i < tab->cnt; i++)
1734
bpf_struct_ops_desc_release(&tab->ops[i]);
1735
1736
kfree(tab);
1737
btf->struct_ops_tab = NULL;
1738
}
1739
1740
static void btf_free(struct btf *btf)
1741
{
1742
btf_free_struct_meta_tab(btf);
1743
btf_free_dtor_kfunc_tab(btf);
1744
btf_free_kfunc_set_tab(btf);
1745
btf_free_struct_ops_tab(btf);
1746
kvfree(btf->types);
1747
kvfree(btf->resolved_sizes);
1748
kvfree(btf->resolved_ids);
1749
/* vmlinux does not allocate btf->data, it simply points it at
1750
* __start_BTF.
1751
*/
1752
if (!btf_is_vmlinux(btf))
1753
kvfree(btf->data);
1754
kvfree(btf->base_id_map);
1755
kfree(btf);
1756
}
1757
1758
static void btf_free_rcu(struct rcu_head *rcu)
1759
{
1760
struct btf *btf = container_of(rcu, struct btf, rcu);
1761
1762
btf_free(btf);
1763
}
1764
1765
const char *btf_get_name(const struct btf *btf)
1766
{
1767
return btf->name;
1768
}
1769
1770
void btf_get(struct btf *btf)
1771
{
1772
refcount_inc(&btf->refcnt);
1773
}
1774
1775
void btf_put(struct btf *btf)
1776
{
1777
if (btf && refcount_dec_and_test(&btf->refcnt)) {
1778
btf_free_id(btf);
1779
call_rcu(&btf->rcu, btf_free_rcu);
1780
}
1781
}
1782
1783
struct btf *btf_base_btf(const struct btf *btf)
1784
{
1785
return btf->base_btf;
1786
}
1787
1788
const struct btf_header *btf_header(const struct btf *btf)
1789
{
1790
return &btf->hdr;
1791
}
1792
1793
void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1794
{
1795
btf->base_btf = (struct btf *)base_btf;
1796
btf->start_id = btf_nr_types(base_btf);
1797
btf->start_str_off = base_btf->hdr.str_len;
1798
}
1799
1800
static int env_resolve_init(struct btf_verifier_env *env)
1801
{
1802
struct btf *btf = env->btf;
1803
u32 nr_types = btf->nr_types;
1804
u32 *resolved_sizes = NULL;
1805
u32 *resolved_ids = NULL;
1806
u8 *visit_states = NULL;
1807
1808
resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1809
GFP_KERNEL | __GFP_NOWARN);
1810
if (!resolved_sizes)
1811
goto nomem;
1812
1813
resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1814
GFP_KERNEL | __GFP_NOWARN);
1815
if (!resolved_ids)
1816
goto nomem;
1817
1818
visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1819
GFP_KERNEL | __GFP_NOWARN);
1820
if (!visit_states)
1821
goto nomem;
1822
1823
btf->resolved_sizes = resolved_sizes;
1824
btf->resolved_ids = resolved_ids;
1825
env->visit_states = visit_states;
1826
1827
return 0;
1828
1829
nomem:
1830
kvfree(resolved_sizes);
1831
kvfree(resolved_ids);
1832
kvfree(visit_states);
1833
return -ENOMEM;
1834
}
1835
1836
static void btf_verifier_env_free(struct btf_verifier_env *env)
1837
{
1838
kvfree(env->visit_states);
1839
kfree(env);
1840
}
1841
1842
static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1843
const struct btf_type *next_type)
1844
{
1845
switch (env->resolve_mode) {
1846
case RESOLVE_TBD:
1847
/* int, enum or void is a sink */
1848
return !btf_type_needs_resolve(next_type);
1849
case RESOLVE_PTR:
1850
/* int, enum, void, struct, array, func or func_proto is a sink
1851
* for ptr
1852
*/
1853
return !btf_type_is_modifier(next_type) &&
1854
!btf_type_is_ptr(next_type);
1855
case RESOLVE_STRUCT_OR_ARRAY:
1856
/* int, enum, void, ptr, func or func_proto is a sink
1857
* for struct and array
1858
*/
1859
return !btf_type_is_modifier(next_type) &&
1860
!btf_type_is_array(next_type) &&
1861
!btf_type_is_struct(next_type);
1862
default:
1863
BUG();
1864
}
1865
}
1866
1867
static bool env_type_is_resolved(const struct btf_verifier_env *env,
1868
u32 type_id)
1869
{
1870
/* base BTF types should be resolved by now */
1871
if (type_id < env->btf->start_id)
1872
return true;
1873
1874
return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1875
}
1876
1877
static int env_stack_push(struct btf_verifier_env *env,
1878
const struct btf_type *t, u32 type_id)
1879
{
1880
const struct btf *btf = env->btf;
1881
struct resolve_vertex *v;
1882
1883
if (env->top_stack == MAX_RESOLVE_DEPTH)
1884
return -E2BIG;
1885
1886
if (type_id < btf->start_id
1887
|| env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1888
return -EEXIST;
1889
1890
env->visit_states[type_id - btf->start_id] = VISITED;
1891
1892
v = &env->stack[env->top_stack++];
1893
v->t = t;
1894
v->type_id = type_id;
1895
v->next_member = 0;
1896
1897
if (env->resolve_mode == RESOLVE_TBD) {
1898
if (btf_type_is_ptr(t))
1899
env->resolve_mode = RESOLVE_PTR;
1900
else if (btf_type_is_struct(t) || btf_type_is_array(t))
1901
env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1902
}
1903
1904
return 0;
1905
}
1906
1907
static void env_stack_set_next_member(struct btf_verifier_env *env,
1908
u16 next_member)
1909
{
1910
env->stack[env->top_stack - 1].next_member = next_member;
1911
}
1912
1913
static void env_stack_pop_resolved(struct btf_verifier_env *env,
1914
u32 resolved_type_id,
1915
u32 resolved_size)
1916
{
1917
u32 type_id = env->stack[--(env->top_stack)].type_id;
1918
struct btf *btf = env->btf;
1919
1920
type_id -= btf->start_id; /* adjust to local type id */
1921
btf->resolved_sizes[type_id] = resolved_size;
1922
btf->resolved_ids[type_id] = resolved_type_id;
1923
env->visit_states[type_id] = RESOLVED;
1924
}
1925
1926
static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1927
{
1928
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1929
}
1930
1931
/* Resolve the size of a passed-in "type"
1932
*
1933
* type: is an array (e.g. u32 array[x][y])
1934
* return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1935
* *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1936
* corresponds to the return type.
1937
* *elem_type: u32
1938
* *elem_id: id of u32
1939
* *total_nelems: (x * y). Hence, individual elem size is
1940
* (*type_size / *total_nelems)
1941
* *type_id: id of type if it's changed within the function, 0 if not
1942
*
1943
* type: is not an array (e.g. const struct X)
1944
* return type: type "struct X"
1945
* *type_size: sizeof(struct X)
1946
* *elem_type: same as return type ("struct X")
1947
* *elem_id: 0
1948
* *total_nelems: 1
1949
* *type_id: id of type if it's changed within the function, 0 if not
1950
*/
1951
static const struct btf_type *
1952
__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1953
u32 *type_size, const struct btf_type **elem_type,
1954
u32 *elem_id, u32 *total_nelems, u32 *type_id)
1955
{
1956
const struct btf_type *array_type = NULL;
1957
const struct btf_array *array = NULL;
1958
u32 i, size, nelems = 1, id = 0;
1959
1960
for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1961
switch (BTF_INFO_KIND(type->info)) {
1962
/* type->size can be used */
1963
case BTF_KIND_INT:
1964
case BTF_KIND_STRUCT:
1965
case BTF_KIND_UNION:
1966
case BTF_KIND_ENUM:
1967
case BTF_KIND_FLOAT:
1968
case BTF_KIND_ENUM64:
1969
size = type->size;
1970
goto resolved;
1971
1972
case BTF_KIND_PTR:
1973
size = sizeof(void *);
1974
goto resolved;
1975
1976
/* Modifiers */
1977
case BTF_KIND_TYPEDEF:
1978
case BTF_KIND_VOLATILE:
1979
case BTF_KIND_CONST:
1980
case BTF_KIND_RESTRICT:
1981
case BTF_KIND_TYPE_TAG:
1982
id = type->type;
1983
type = btf_type_by_id(btf, type->type);
1984
break;
1985
1986
case BTF_KIND_ARRAY:
1987
if (!array_type)
1988
array_type = type;
1989
array = btf_type_array(type);
1990
if (nelems && array->nelems > U32_MAX / nelems)
1991
return ERR_PTR(-EINVAL);
1992
nelems *= array->nelems;
1993
type = btf_type_by_id(btf, array->type);
1994
break;
1995
1996
/* type without size */
1997
default:
1998
return ERR_PTR(-EINVAL);
1999
}
2000
}
2001
2002
return ERR_PTR(-EINVAL);
2003
2004
resolved:
2005
if (nelems && size > U32_MAX / nelems)
2006
return ERR_PTR(-EINVAL);
2007
2008
*type_size = nelems * size;
2009
if (total_nelems)
2010
*total_nelems = nelems;
2011
if (elem_type)
2012
*elem_type = type;
2013
if (elem_id)
2014
*elem_id = array ? array->type : 0;
2015
if (type_id && id)
2016
*type_id = id;
2017
2018
return array_type ? : type;
2019
}
2020
2021
const struct btf_type *
2022
btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2023
u32 *type_size)
2024
{
2025
return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2026
}
2027
2028
static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2029
{
2030
while (type_id < btf->start_id)
2031
btf = btf->base_btf;
2032
2033
return btf->resolved_ids[type_id - btf->start_id];
2034
}
2035
2036
/* The input param "type_id" must point to a needs_resolve type */
2037
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2038
u32 *type_id)
2039
{
2040
*type_id = btf_resolved_type_id(btf, *type_id);
2041
return btf_type_by_id(btf, *type_id);
2042
}
2043
2044
static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2045
{
2046
while (type_id < btf->start_id)
2047
btf = btf->base_btf;
2048
2049
return btf->resolved_sizes[type_id - btf->start_id];
2050
}
2051
2052
const struct btf_type *btf_type_id_size(const struct btf *btf,
2053
u32 *type_id, u32 *ret_size)
2054
{
2055
const struct btf_type *size_type;
2056
u32 size_type_id = *type_id;
2057
u32 size = 0;
2058
2059
size_type = btf_type_by_id(btf, size_type_id);
2060
if (btf_type_nosize_or_null(size_type))
2061
return NULL;
2062
2063
if (btf_type_has_size(size_type)) {
2064
size = size_type->size;
2065
} else if (btf_type_is_array(size_type)) {
2066
size = btf_resolved_type_size(btf, size_type_id);
2067
} else if (btf_type_is_ptr(size_type)) {
2068
size = sizeof(void *);
2069
} else {
2070
if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2071
!btf_type_is_var(size_type)))
2072
return NULL;
2073
2074
size_type_id = btf_resolved_type_id(btf, size_type_id);
2075
size_type = btf_type_by_id(btf, size_type_id);
2076
if (btf_type_nosize_or_null(size_type))
2077
return NULL;
2078
else if (btf_type_has_size(size_type))
2079
size = size_type->size;
2080
else if (btf_type_is_array(size_type))
2081
size = btf_resolved_type_size(btf, size_type_id);
2082
else if (btf_type_is_ptr(size_type))
2083
size = sizeof(void *);
2084
else
2085
return NULL;
2086
}
2087
2088
*type_id = size_type_id;
2089
if (ret_size)
2090
*ret_size = size;
2091
2092
return size_type;
2093
}
2094
2095
static int btf_df_check_member(struct btf_verifier_env *env,
2096
const struct btf_type *struct_type,
2097
const struct btf_member *member,
2098
const struct btf_type *member_type)
2099
{
2100
btf_verifier_log_basic(env, struct_type,
2101
"Unsupported check_member");
2102
return -EINVAL;
2103
}
2104
2105
static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2106
const struct btf_type *struct_type,
2107
const struct btf_member *member,
2108
const struct btf_type *member_type)
2109
{
2110
btf_verifier_log_basic(env, struct_type,
2111
"Unsupported check_kflag_member");
2112
return -EINVAL;
2113
}
2114
2115
/* Used for ptr, array struct/union and float type members.
2116
* int, enum and modifier types have their specific callback functions.
2117
*/
2118
static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2119
const struct btf_type *struct_type,
2120
const struct btf_member *member,
2121
const struct btf_type *member_type)
2122
{
2123
if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2124
btf_verifier_log_member(env, struct_type, member,
2125
"Invalid member bitfield_size");
2126
return -EINVAL;
2127
}
2128
2129
/* bitfield size is 0, so member->offset represents bit offset only.
2130
* It is safe to call non kflag check_member variants.
2131
*/
2132
return btf_type_ops(member_type)->check_member(env, struct_type,
2133
member,
2134
member_type);
2135
}
2136
2137
static int btf_df_resolve(struct btf_verifier_env *env,
2138
const struct resolve_vertex *v)
2139
{
2140
btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2141
return -EINVAL;
2142
}
2143
2144
static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2145
u32 type_id, void *data, u8 bits_offsets,
2146
struct btf_show *show)
2147
{
2148
btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2149
}
2150
2151
static int btf_int_check_member(struct btf_verifier_env *env,
2152
const struct btf_type *struct_type,
2153
const struct btf_member *member,
2154
const struct btf_type *member_type)
2155
{
2156
u32 int_data = btf_type_int(member_type);
2157
u32 struct_bits_off = member->offset;
2158
u32 struct_size = struct_type->size;
2159
u32 nr_copy_bits;
2160
u32 bytes_offset;
2161
2162
if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2163
btf_verifier_log_member(env, struct_type, member,
2164
"bits_offset exceeds U32_MAX");
2165
return -EINVAL;
2166
}
2167
2168
struct_bits_off += BTF_INT_OFFSET(int_data);
2169
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2170
nr_copy_bits = BTF_INT_BITS(int_data) +
2171
BITS_PER_BYTE_MASKED(struct_bits_off);
2172
2173
if (nr_copy_bits > BITS_PER_U128) {
2174
btf_verifier_log_member(env, struct_type, member,
2175
"nr_copy_bits exceeds 128");
2176
return -EINVAL;
2177
}
2178
2179
if (struct_size < bytes_offset ||
2180
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2181
btf_verifier_log_member(env, struct_type, member,
2182
"Member exceeds struct_size");
2183
return -EINVAL;
2184
}
2185
2186
return 0;
2187
}
2188
2189
static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2190
const struct btf_type *struct_type,
2191
const struct btf_member *member,
2192
const struct btf_type *member_type)
2193
{
2194
u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2195
u32 int_data = btf_type_int(member_type);
2196
u32 struct_size = struct_type->size;
2197
u32 nr_copy_bits;
2198
2199
/* a regular int type is required for the kflag int member */
2200
if (!btf_type_int_is_regular(member_type)) {
2201
btf_verifier_log_member(env, struct_type, member,
2202
"Invalid member base type");
2203
return -EINVAL;
2204
}
2205
2206
/* check sanity of bitfield size */
2207
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2208
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2209
nr_int_data_bits = BTF_INT_BITS(int_data);
2210
if (!nr_bits) {
2211
/* Not a bitfield member, member offset must be at byte
2212
* boundary.
2213
*/
2214
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2215
btf_verifier_log_member(env, struct_type, member,
2216
"Invalid member offset");
2217
return -EINVAL;
2218
}
2219
2220
nr_bits = nr_int_data_bits;
2221
} else if (nr_bits > nr_int_data_bits) {
2222
btf_verifier_log_member(env, struct_type, member,
2223
"Invalid member bitfield_size");
2224
return -EINVAL;
2225
}
2226
2227
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2228
nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2229
if (nr_copy_bits > BITS_PER_U128) {
2230
btf_verifier_log_member(env, struct_type, member,
2231
"nr_copy_bits exceeds 128");
2232
return -EINVAL;
2233
}
2234
2235
if (struct_size < bytes_offset ||
2236
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2237
btf_verifier_log_member(env, struct_type, member,
2238
"Member exceeds struct_size");
2239
return -EINVAL;
2240
}
2241
2242
return 0;
2243
}
2244
2245
static s32 btf_int_check_meta(struct btf_verifier_env *env,
2246
const struct btf_type *t,
2247
u32 meta_left)
2248
{
2249
u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2250
u16 encoding;
2251
2252
if (meta_left < meta_needed) {
2253
btf_verifier_log_basic(env, t,
2254
"meta_left:%u meta_needed:%u",
2255
meta_left, meta_needed);
2256
return -EINVAL;
2257
}
2258
2259
if (btf_type_vlen(t)) {
2260
btf_verifier_log_type(env, t, "vlen != 0");
2261
return -EINVAL;
2262
}
2263
2264
if (btf_type_kflag(t)) {
2265
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2266
return -EINVAL;
2267
}
2268
2269
int_data = btf_type_int(t);
2270
if (int_data & ~BTF_INT_MASK) {
2271
btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2272
int_data);
2273
return -EINVAL;
2274
}
2275
2276
nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2277
2278
if (nr_bits > BITS_PER_U128) {
2279
btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2280
BITS_PER_U128);
2281
return -EINVAL;
2282
}
2283
2284
if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2285
btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2286
return -EINVAL;
2287
}
2288
2289
/*
2290
* Only one of the encoding bits is allowed and it
2291
* should be sufficient for the pretty print purpose (i.e. decoding).
2292
* Multiple bits can be allowed later if it is found
2293
* to be insufficient.
2294
*/
2295
encoding = BTF_INT_ENCODING(int_data);
2296
if (encoding &&
2297
encoding != BTF_INT_SIGNED &&
2298
encoding != BTF_INT_CHAR &&
2299
encoding != BTF_INT_BOOL) {
2300
btf_verifier_log_type(env, t, "Unsupported encoding");
2301
return -ENOTSUPP;
2302
}
2303
2304
btf_verifier_log_type(env, t, NULL);
2305
2306
return meta_needed;
2307
}
2308
2309
static void btf_int_log(struct btf_verifier_env *env,
2310
const struct btf_type *t)
2311
{
2312
int int_data = btf_type_int(t);
2313
2314
btf_verifier_log(env,
2315
"size=%u bits_offset=%u nr_bits=%u encoding=%s",
2316
t->size, BTF_INT_OFFSET(int_data),
2317
BTF_INT_BITS(int_data),
2318
btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2319
}
2320
2321
static void btf_int128_print(struct btf_show *show, void *data)
2322
{
2323
/* data points to a __int128 number.
2324
* Suppose
2325
* int128_num = *(__int128 *)data;
2326
* The below formulas shows what upper_num and lower_num represents:
2327
* upper_num = int128_num >> 64;
2328
* lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2329
*/
2330
u64 upper_num, lower_num;
2331
2332
#ifdef __BIG_ENDIAN_BITFIELD
2333
upper_num = *(u64 *)data;
2334
lower_num = *(u64 *)(data + 8);
2335
#else
2336
upper_num = *(u64 *)(data + 8);
2337
lower_num = *(u64 *)data;
2338
#endif
2339
if (upper_num == 0)
2340
btf_show_type_value(show, "0x%llx", lower_num);
2341
else
2342
btf_show_type_values(show, "0x%llx%016llx", upper_num,
2343
lower_num);
2344
}
2345
2346
static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2347
u16 right_shift_bits)
2348
{
2349
u64 upper_num, lower_num;
2350
2351
#ifdef __BIG_ENDIAN_BITFIELD
2352
upper_num = print_num[0];
2353
lower_num = print_num[1];
2354
#else
2355
upper_num = print_num[1];
2356
lower_num = print_num[0];
2357
#endif
2358
2359
/* shake out un-needed bits by shift/or operations */
2360
if (left_shift_bits >= 64) {
2361
upper_num = lower_num << (left_shift_bits - 64);
2362
lower_num = 0;
2363
} else {
2364
upper_num = (upper_num << left_shift_bits) |
2365
(lower_num >> (64 - left_shift_bits));
2366
lower_num = lower_num << left_shift_bits;
2367
}
2368
2369
if (right_shift_bits >= 64) {
2370
lower_num = upper_num >> (right_shift_bits - 64);
2371
upper_num = 0;
2372
} else {
2373
lower_num = (lower_num >> right_shift_bits) |
2374
(upper_num << (64 - right_shift_bits));
2375
upper_num = upper_num >> right_shift_bits;
2376
}
2377
2378
#ifdef __BIG_ENDIAN_BITFIELD
2379
print_num[0] = upper_num;
2380
print_num[1] = lower_num;
2381
#else
2382
print_num[0] = lower_num;
2383
print_num[1] = upper_num;
2384
#endif
2385
}
2386
2387
static void btf_bitfield_show(void *data, u8 bits_offset,
2388
u8 nr_bits, struct btf_show *show)
2389
{
2390
u16 left_shift_bits, right_shift_bits;
2391
u8 nr_copy_bytes;
2392
u8 nr_copy_bits;
2393
u64 print_num[2] = {};
2394
2395
nr_copy_bits = nr_bits + bits_offset;
2396
nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2397
2398
memcpy(print_num, data, nr_copy_bytes);
2399
2400
#ifdef __BIG_ENDIAN_BITFIELD
2401
left_shift_bits = bits_offset;
2402
#else
2403
left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2404
#endif
2405
right_shift_bits = BITS_PER_U128 - nr_bits;
2406
2407
btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2408
btf_int128_print(show, print_num);
2409
}
2410
2411
2412
static void btf_int_bits_show(const struct btf *btf,
2413
const struct btf_type *t,
2414
void *data, u8 bits_offset,
2415
struct btf_show *show)
2416
{
2417
u32 int_data = btf_type_int(t);
2418
u8 nr_bits = BTF_INT_BITS(int_data);
2419
u8 total_bits_offset;
2420
2421
/*
2422
* bits_offset is at most 7.
2423
* BTF_INT_OFFSET() cannot exceed 128 bits.
2424
*/
2425
total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2426
data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2427
bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2428
btf_bitfield_show(data, bits_offset, nr_bits, show);
2429
}
2430
2431
static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2432
u32 type_id, void *data, u8 bits_offset,
2433
struct btf_show *show)
2434
{
2435
u32 int_data = btf_type_int(t);
2436
u8 encoding = BTF_INT_ENCODING(int_data);
2437
bool sign = encoding & BTF_INT_SIGNED;
2438
u8 nr_bits = BTF_INT_BITS(int_data);
2439
void *safe_data;
2440
2441
safe_data = btf_show_start_type(show, t, type_id, data);
2442
if (!safe_data)
2443
return;
2444
2445
if (bits_offset || BTF_INT_OFFSET(int_data) ||
2446
BITS_PER_BYTE_MASKED(nr_bits)) {
2447
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2448
goto out;
2449
}
2450
2451
switch (nr_bits) {
2452
case 128:
2453
btf_int128_print(show, safe_data);
2454
break;
2455
case 64:
2456
if (sign)
2457
btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2458
else
2459
btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2460
break;
2461
case 32:
2462
if (sign)
2463
btf_show_type_value(show, "%d", *(s32 *)safe_data);
2464
else
2465
btf_show_type_value(show, "%u", *(u32 *)safe_data);
2466
break;
2467
case 16:
2468
if (sign)
2469
btf_show_type_value(show, "%d", *(s16 *)safe_data);
2470
else
2471
btf_show_type_value(show, "%u", *(u16 *)safe_data);
2472
break;
2473
case 8:
2474
if (show->state.array_encoding == BTF_INT_CHAR) {
2475
/* check for null terminator */
2476
if (show->state.array_terminated)
2477
break;
2478
if (*(char *)data == '\0') {
2479
show->state.array_terminated = 1;
2480
break;
2481
}
2482
if (isprint(*(char *)data)) {
2483
btf_show_type_value(show, "'%c'",
2484
*(char *)safe_data);
2485
break;
2486
}
2487
}
2488
if (sign)
2489
btf_show_type_value(show, "%d", *(s8 *)safe_data);
2490
else
2491
btf_show_type_value(show, "%u", *(u8 *)safe_data);
2492
break;
2493
default:
2494
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2495
break;
2496
}
2497
out:
2498
btf_show_end_type(show);
2499
}
2500
2501
static const struct btf_kind_operations int_ops = {
2502
.check_meta = btf_int_check_meta,
2503
.resolve = btf_df_resolve,
2504
.check_member = btf_int_check_member,
2505
.check_kflag_member = btf_int_check_kflag_member,
2506
.log_details = btf_int_log,
2507
.show = btf_int_show,
2508
};
2509
2510
static int btf_modifier_check_member(struct btf_verifier_env *env,
2511
const struct btf_type *struct_type,
2512
const struct btf_member *member,
2513
const struct btf_type *member_type)
2514
{
2515
const struct btf_type *resolved_type;
2516
u32 resolved_type_id = member->type;
2517
struct btf_member resolved_member;
2518
struct btf *btf = env->btf;
2519
2520
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2521
if (!resolved_type) {
2522
btf_verifier_log_member(env, struct_type, member,
2523
"Invalid member");
2524
return -EINVAL;
2525
}
2526
2527
resolved_member = *member;
2528
resolved_member.type = resolved_type_id;
2529
2530
return btf_type_ops(resolved_type)->check_member(env, struct_type,
2531
&resolved_member,
2532
resolved_type);
2533
}
2534
2535
static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2536
const struct btf_type *struct_type,
2537
const struct btf_member *member,
2538
const struct btf_type *member_type)
2539
{
2540
const struct btf_type *resolved_type;
2541
u32 resolved_type_id = member->type;
2542
struct btf_member resolved_member;
2543
struct btf *btf = env->btf;
2544
2545
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2546
if (!resolved_type) {
2547
btf_verifier_log_member(env, struct_type, member,
2548
"Invalid member");
2549
return -EINVAL;
2550
}
2551
2552
resolved_member = *member;
2553
resolved_member.type = resolved_type_id;
2554
2555
return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2556
&resolved_member,
2557
resolved_type);
2558
}
2559
2560
static int btf_ptr_check_member(struct btf_verifier_env *env,
2561
const struct btf_type *struct_type,
2562
const struct btf_member *member,
2563
const struct btf_type *member_type)
2564
{
2565
u32 struct_size, struct_bits_off, bytes_offset;
2566
2567
struct_size = struct_type->size;
2568
struct_bits_off = member->offset;
2569
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2570
2571
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2572
btf_verifier_log_member(env, struct_type, member,
2573
"Member is not byte aligned");
2574
return -EINVAL;
2575
}
2576
2577
if (struct_size - bytes_offset < sizeof(void *)) {
2578
btf_verifier_log_member(env, struct_type, member,
2579
"Member exceeds struct_size");
2580
return -EINVAL;
2581
}
2582
2583
return 0;
2584
}
2585
2586
static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2587
const struct btf_type *t,
2588
u32 meta_left)
2589
{
2590
const char *value;
2591
2592
if (btf_type_vlen(t)) {
2593
btf_verifier_log_type(env, t, "vlen != 0");
2594
return -EINVAL;
2595
}
2596
2597
if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) {
2598
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2599
return -EINVAL;
2600
}
2601
2602
if (!BTF_TYPE_ID_VALID(t->type)) {
2603
btf_verifier_log_type(env, t, "Invalid type_id");
2604
return -EINVAL;
2605
}
2606
2607
/* typedef/type_tag type must have a valid name, and other ref types,
2608
* volatile, const, restrict, should have a null name.
2609
*/
2610
if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2611
if (!t->name_off ||
2612
!btf_name_valid_identifier(env->btf, t->name_off)) {
2613
btf_verifier_log_type(env, t, "Invalid name");
2614
return -EINVAL;
2615
}
2616
} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2617
value = btf_name_by_offset(env->btf, t->name_off);
2618
if (!value || !value[0]) {
2619
btf_verifier_log_type(env, t, "Invalid name");
2620
return -EINVAL;
2621
}
2622
} else {
2623
if (t->name_off) {
2624
btf_verifier_log_type(env, t, "Invalid name");
2625
return -EINVAL;
2626
}
2627
}
2628
2629
btf_verifier_log_type(env, t, NULL);
2630
2631
return 0;
2632
}
2633
2634
static int btf_modifier_resolve(struct btf_verifier_env *env,
2635
const struct resolve_vertex *v)
2636
{
2637
const struct btf_type *t = v->t;
2638
const struct btf_type *next_type;
2639
u32 next_type_id = t->type;
2640
struct btf *btf = env->btf;
2641
2642
next_type = btf_type_by_id(btf, next_type_id);
2643
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2644
btf_verifier_log_type(env, v->t, "Invalid type_id");
2645
return -EINVAL;
2646
}
2647
2648
if (!env_type_is_resolve_sink(env, next_type) &&
2649
!env_type_is_resolved(env, next_type_id))
2650
return env_stack_push(env, next_type, next_type_id);
2651
2652
/* Figure out the resolved next_type_id with size.
2653
* They will be stored in the current modifier's
2654
* resolved_ids and resolved_sizes such that it can
2655
* save us a few type-following when we use it later (e.g. in
2656
* pretty print).
2657
*/
2658
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2659
if (env_type_is_resolved(env, next_type_id))
2660
next_type = btf_type_id_resolve(btf, &next_type_id);
2661
2662
/* "typedef void new_void", "const void"...etc */
2663
if (!btf_type_is_void(next_type) &&
2664
!btf_type_is_fwd(next_type) &&
2665
!btf_type_is_func_proto(next_type)) {
2666
btf_verifier_log_type(env, v->t, "Invalid type_id");
2667
return -EINVAL;
2668
}
2669
}
2670
2671
env_stack_pop_resolved(env, next_type_id, 0);
2672
2673
return 0;
2674
}
2675
2676
static int btf_var_resolve(struct btf_verifier_env *env,
2677
const struct resolve_vertex *v)
2678
{
2679
const struct btf_type *next_type;
2680
const struct btf_type *t = v->t;
2681
u32 next_type_id = t->type;
2682
struct btf *btf = env->btf;
2683
2684
next_type = btf_type_by_id(btf, next_type_id);
2685
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2686
btf_verifier_log_type(env, v->t, "Invalid type_id");
2687
return -EINVAL;
2688
}
2689
2690
if (!env_type_is_resolve_sink(env, next_type) &&
2691
!env_type_is_resolved(env, next_type_id))
2692
return env_stack_push(env, next_type, next_type_id);
2693
2694
if (btf_type_is_modifier(next_type)) {
2695
const struct btf_type *resolved_type;
2696
u32 resolved_type_id;
2697
2698
resolved_type_id = next_type_id;
2699
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2700
2701
if (btf_type_is_ptr(resolved_type) &&
2702
!env_type_is_resolve_sink(env, resolved_type) &&
2703
!env_type_is_resolved(env, resolved_type_id))
2704
return env_stack_push(env, resolved_type,
2705
resolved_type_id);
2706
}
2707
2708
/* We must resolve to something concrete at this point, no
2709
* forward types or similar that would resolve to size of
2710
* zero is allowed.
2711
*/
2712
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2713
btf_verifier_log_type(env, v->t, "Invalid type_id");
2714
return -EINVAL;
2715
}
2716
2717
env_stack_pop_resolved(env, next_type_id, 0);
2718
2719
return 0;
2720
}
2721
2722
static int btf_ptr_resolve(struct btf_verifier_env *env,
2723
const struct resolve_vertex *v)
2724
{
2725
const struct btf_type *next_type;
2726
const struct btf_type *t = v->t;
2727
u32 next_type_id = t->type;
2728
struct btf *btf = env->btf;
2729
2730
next_type = btf_type_by_id(btf, next_type_id);
2731
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2732
btf_verifier_log_type(env, v->t, "Invalid type_id");
2733
return -EINVAL;
2734
}
2735
2736
if (!env_type_is_resolve_sink(env, next_type) &&
2737
!env_type_is_resolved(env, next_type_id))
2738
return env_stack_push(env, next_type, next_type_id);
2739
2740
/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2741
* the modifier may have stopped resolving when it was resolved
2742
* to a ptr (last-resolved-ptr).
2743
*
2744
* We now need to continue from the last-resolved-ptr to
2745
* ensure the last-resolved-ptr will not referring back to
2746
* the current ptr (t).
2747
*/
2748
if (btf_type_is_modifier(next_type)) {
2749
const struct btf_type *resolved_type;
2750
u32 resolved_type_id;
2751
2752
resolved_type_id = next_type_id;
2753
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2754
2755
if (btf_type_is_ptr(resolved_type) &&
2756
!env_type_is_resolve_sink(env, resolved_type) &&
2757
!env_type_is_resolved(env, resolved_type_id))
2758
return env_stack_push(env, resolved_type,
2759
resolved_type_id);
2760
}
2761
2762
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2763
if (env_type_is_resolved(env, next_type_id))
2764
next_type = btf_type_id_resolve(btf, &next_type_id);
2765
2766
if (!btf_type_is_void(next_type) &&
2767
!btf_type_is_fwd(next_type) &&
2768
!btf_type_is_func_proto(next_type)) {
2769
btf_verifier_log_type(env, v->t, "Invalid type_id");
2770
return -EINVAL;
2771
}
2772
}
2773
2774
env_stack_pop_resolved(env, next_type_id, 0);
2775
2776
return 0;
2777
}
2778
2779
static void btf_modifier_show(const struct btf *btf,
2780
const struct btf_type *t,
2781
u32 type_id, void *data,
2782
u8 bits_offset, struct btf_show *show)
2783
{
2784
if (btf->resolved_ids)
2785
t = btf_type_id_resolve(btf, &type_id);
2786
else
2787
t = btf_type_skip_modifiers(btf, type_id, NULL);
2788
2789
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2790
}
2791
2792
static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2793
u32 type_id, void *data, u8 bits_offset,
2794
struct btf_show *show)
2795
{
2796
t = btf_type_id_resolve(btf, &type_id);
2797
2798
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2799
}
2800
2801
static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2802
u32 type_id, void *data, u8 bits_offset,
2803
struct btf_show *show)
2804
{
2805
void *safe_data;
2806
2807
safe_data = btf_show_start_type(show, t, type_id, data);
2808
if (!safe_data)
2809
return;
2810
2811
/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2812
if (show->flags & BTF_SHOW_PTR_RAW)
2813
btf_show_type_value(show, "0x%px", *(void **)safe_data);
2814
else
2815
btf_show_type_value(show, "0x%p", *(void **)safe_data);
2816
btf_show_end_type(show);
2817
}
2818
2819
static void btf_ref_type_log(struct btf_verifier_env *env,
2820
const struct btf_type *t)
2821
{
2822
btf_verifier_log(env, "type_id=%u", t->type);
2823
}
2824
2825
static const struct btf_kind_operations modifier_ops = {
2826
.check_meta = btf_ref_type_check_meta,
2827
.resolve = btf_modifier_resolve,
2828
.check_member = btf_modifier_check_member,
2829
.check_kflag_member = btf_modifier_check_kflag_member,
2830
.log_details = btf_ref_type_log,
2831
.show = btf_modifier_show,
2832
};
2833
2834
static const struct btf_kind_operations ptr_ops = {
2835
.check_meta = btf_ref_type_check_meta,
2836
.resolve = btf_ptr_resolve,
2837
.check_member = btf_ptr_check_member,
2838
.check_kflag_member = btf_generic_check_kflag_member,
2839
.log_details = btf_ref_type_log,
2840
.show = btf_ptr_show,
2841
};
2842
2843
static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2844
const struct btf_type *t,
2845
u32 meta_left)
2846
{
2847
if (btf_type_vlen(t)) {
2848
btf_verifier_log_type(env, t, "vlen != 0");
2849
return -EINVAL;
2850
}
2851
2852
if (t->type) {
2853
btf_verifier_log_type(env, t, "type != 0");
2854
return -EINVAL;
2855
}
2856
2857
/* fwd type must have a valid name */
2858
if (!t->name_off ||
2859
!btf_name_valid_identifier(env->btf, t->name_off)) {
2860
btf_verifier_log_type(env, t, "Invalid name");
2861
return -EINVAL;
2862
}
2863
2864
btf_verifier_log_type(env, t, NULL);
2865
2866
return 0;
2867
}
2868
2869
static void btf_fwd_type_log(struct btf_verifier_env *env,
2870
const struct btf_type *t)
2871
{
2872
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2873
}
2874
2875
static const struct btf_kind_operations fwd_ops = {
2876
.check_meta = btf_fwd_check_meta,
2877
.resolve = btf_df_resolve,
2878
.check_member = btf_df_check_member,
2879
.check_kflag_member = btf_df_check_kflag_member,
2880
.log_details = btf_fwd_type_log,
2881
.show = btf_df_show,
2882
};
2883
2884
static int btf_array_check_member(struct btf_verifier_env *env,
2885
const struct btf_type *struct_type,
2886
const struct btf_member *member,
2887
const struct btf_type *member_type)
2888
{
2889
u32 struct_bits_off = member->offset;
2890
u32 struct_size, bytes_offset;
2891
u32 array_type_id, array_size;
2892
struct btf *btf = env->btf;
2893
2894
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2895
btf_verifier_log_member(env, struct_type, member,
2896
"Member is not byte aligned");
2897
return -EINVAL;
2898
}
2899
2900
array_type_id = member->type;
2901
btf_type_id_size(btf, &array_type_id, &array_size);
2902
struct_size = struct_type->size;
2903
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2904
if (struct_size - bytes_offset < array_size) {
2905
btf_verifier_log_member(env, struct_type, member,
2906
"Member exceeds struct_size");
2907
return -EINVAL;
2908
}
2909
2910
return 0;
2911
}
2912
2913
static s32 btf_array_check_meta(struct btf_verifier_env *env,
2914
const struct btf_type *t,
2915
u32 meta_left)
2916
{
2917
const struct btf_array *array = btf_type_array(t);
2918
u32 meta_needed = sizeof(*array);
2919
2920
if (meta_left < meta_needed) {
2921
btf_verifier_log_basic(env, t,
2922
"meta_left:%u meta_needed:%u",
2923
meta_left, meta_needed);
2924
return -EINVAL;
2925
}
2926
2927
/* array type should not have a name */
2928
if (t->name_off) {
2929
btf_verifier_log_type(env, t, "Invalid name");
2930
return -EINVAL;
2931
}
2932
2933
if (btf_type_vlen(t)) {
2934
btf_verifier_log_type(env, t, "vlen != 0");
2935
return -EINVAL;
2936
}
2937
2938
if (btf_type_kflag(t)) {
2939
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2940
return -EINVAL;
2941
}
2942
2943
if (t->size) {
2944
btf_verifier_log_type(env, t, "size != 0");
2945
return -EINVAL;
2946
}
2947
2948
/* Array elem type and index type cannot be in type void,
2949
* so !array->type and !array->index_type are not allowed.
2950
*/
2951
if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2952
btf_verifier_log_type(env, t, "Invalid elem");
2953
return -EINVAL;
2954
}
2955
2956
if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2957
btf_verifier_log_type(env, t, "Invalid index");
2958
return -EINVAL;
2959
}
2960
2961
btf_verifier_log_type(env, t, NULL);
2962
2963
return meta_needed;
2964
}
2965
2966
static int btf_array_resolve(struct btf_verifier_env *env,
2967
const struct resolve_vertex *v)
2968
{
2969
const struct btf_array *array = btf_type_array(v->t);
2970
const struct btf_type *elem_type, *index_type;
2971
u32 elem_type_id, index_type_id;
2972
struct btf *btf = env->btf;
2973
u32 elem_size;
2974
2975
/* Check array->index_type */
2976
index_type_id = array->index_type;
2977
index_type = btf_type_by_id(btf, index_type_id);
2978
if (btf_type_nosize_or_null(index_type) ||
2979
btf_type_is_resolve_source_only(index_type)) {
2980
btf_verifier_log_type(env, v->t, "Invalid index");
2981
return -EINVAL;
2982
}
2983
2984
if (!env_type_is_resolve_sink(env, index_type) &&
2985
!env_type_is_resolved(env, index_type_id))
2986
return env_stack_push(env, index_type, index_type_id);
2987
2988
index_type = btf_type_id_size(btf, &index_type_id, NULL);
2989
if (!index_type || !btf_type_is_int(index_type) ||
2990
!btf_type_int_is_regular(index_type)) {
2991
btf_verifier_log_type(env, v->t, "Invalid index");
2992
return -EINVAL;
2993
}
2994
2995
/* Check array->type */
2996
elem_type_id = array->type;
2997
elem_type = btf_type_by_id(btf, elem_type_id);
2998
if (btf_type_nosize_or_null(elem_type) ||
2999
btf_type_is_resolve_source_only(elem_type)) {
3000
btf_verifier_log_type(env, v->t,
3001
"Invalid elem");
3002
return -EINVAL;
3003
}
3004
3005
if (!env_type_is_resolve_sink(env, elem_type) &&
3006
!env_type_is_resolved(env, elem_type_id))
3007
return env_stack_push(env, elem_type, elem_type_id);
3008
3009
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3010
if (!elem_type) {
3011
btf_verifier_log_type(env, v->t, "Invalid elem");
3012
return -EINVAL;
3013
}
3014
3015
if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3016
btf_verifier_log_type(env, v->t, "Invalid array of int");
3017
return -EINVAL;
3018
}
3019
3020
if (array->nelems && elem_size > U32_MAX / array->nelems) {
3021
btf_verifier_log_type(env, v->t,
3022
"Array size overflows U32_MAX");
3023
return -EINVAL;
3024
}
3025
3026
env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3027
3028
return 0;
3029
}
3030
3031
static void btf_array_log(struct btf_verifier_env *env,
3032
const struct btf_type *t)
3033
{
3034
const struct btf_array *array = btf_type_array(t);
3035
3036
btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3037
array->type, array->index_type, array->nelems);
3038
}
3039
3040
static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3041
u32 type_id, void *data, u8 bits_offset,
3042
struct btf_show *show)
3043
{
3044
const struct btf_array *array = btf_type_array(t);
3045
const struct btf_kind_operations *elem_ops;
3046
const struct btf_type *elem_type;
3047
u32 i, elem_size = 0, elem_type_id;
3048
u16 encoding = 0;
3049
3050
elem_type_id = array->type;
3051
elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3052
if (elem_type && btf_type_has_size(elem_type))
3053
elem_size = elem_type->size;
3054
3055
if (elem_type && btf_type_is_int(elem_type)) {
3056
u32 int_type = btf_type_int(elem_type);
3057
3058
encoding = BTF_INT_ENCODING(int_type);
3059
3060
/*
3061
* BTF_INT_CHAR encoding never seems to be set for
3062
* char arrays, so if size is 1 and element is
3063
* printable as a char, we'll do that.
3064
*/
3065
if (elem_size == 1)
3066
encoding = BTF_INT_CHAR;
3067
}
3068
3069
if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3070
return;
3071
3072
if (!elem_type)
3073
goto out;
3074
elem_ops = btf_type_ops(elem_type);
3075
3076
for (i = 0; i < array->nelems; i++) {
3077
3078
btf_show_start_array_member(show);
3079
3080
elem_ops->show(btf, elem_type, elem_type_id, data,
3081
bits_offset, show);
3082
data += elem_size;
3083
3084
btf_show_end_array_member(show);
3085
3086
if (show->state.array_terminated)
3087
break;
3088
}
3089
out:
3090
btf_show_end_array_type(show);
3091
}
3092
3093
static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3094
u32 type_id, void *data, u8 bits_offset,
3095
struct btf_show *show)
3096
{
3097
const struct btf_member *m = show->state.member;
3098
3099
/*
3100
* First check if any members would be shown (are non-zero).
3101
* See comments above "struct btf_show" definition for more
3102
* details on how this works at a high-level.
3103
*/
3104
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3105
if (!show->state.depth_check) {
3106
show->state.depth_check = show->state.depth + 1;
3107
show->state.depth_to_show = 0;
3108
}
3109
__btf_array_show(btf, t, type_id, data, bits_offset, show);
3110
show->state.member = m;
3111
3112
if (show->state.depth_check != show->state.depth + 1)
3113
return;
3114
show->state.depth_check = 0;
3115
3116
if (show->state.depth_to_show <= show->state.depth)
3117
return;
3118
/*
3119
* Reaching here indicates we have recursed and found
3120
* non-zero array member(s).
3121
*/
3122
}
3123
__btf_array_show(btf, t, type_id, data, bits_offset, show);
3124
}
3125
3126
static const struct btf_kind_operations array_ops = {
3127
.check_meta = btf_array_check_meta,
3128
.resolve = btf_array_resolve,
3129
.check_member = btf_array_check_member,
3130
.check_kflag_member = btf_generic_check_kflag_member,
3131
.log_details = btf_array_log,
3132
.show = btf_array_show,
3133
};
3134
3135
static int btf_struct_check_member(struct btf_verifier_env *env,
3136
const struct btf_type *struct_type,
3137
const struct btf_member *member,
3138
const struct btf_type *member_type)
3139
{
3140
u32 struct_bits_off = member->offset;
3141
u32 struct_size, bytes_offset;
3142
3143
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3144
btf_verifier_log_member(env, struct_type, member,
3145
"Member is not byte aligned");
3146
return -EINVAL;
3147
}
3148
3149
struct_size = struct_type->size;
3150
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3151
if (struct_size - bytes_offset < member_type->size) {
3152
btf_verifier_log_member(env, struct_type, member,
3153
"Member exceeds struct_size");
3154
return -EINVAL;
3155
}
3156
3157
return 0;
3158
}
3159
3160
static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3161
const struct btf_type *t,
3162
u32 meta_left)
3163
{
3164
bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3165
const struct btf_member *member;
3166
u32 meta_needed, last_offset;
3167
struct btf *btf = env->btf;
3168
u32 struct_size = t->size;
3169
u32 offset;
3170
u16 i;
3171
3172
meta_needed = btf_type_vlen(t) * sizeof(*member);
3173
if (meta_left < meta_needed) {
3174
btf_verifier_log_basic(env, t,
3175
"meta_left:%u meta_needed:%u",
3176
meta_left, meta_needed);
3177
return -EINVAL;
3178
}
3179
3180
/* struct type either no name or a valid one */
3181
if (t->name_off &&
3182
!btf_name_valid_identifier(env->btf, t->name_off)) {
3183
btf_verifier_log_type(env, t, "Invalid name");
3184
return -EINVAL;
3185
}
3186
3187
btf_verifier_log_type(env, t, NULL);
3188
3189
last_offset = 0;
3190
for_each_member(i, t, member) {
3191
if (!btf_name_offset_valid(btf, member->name_off)) {
3192
btf_verifier_log_member(env, t, member,
3193
"Invalid member name_offset:%u",
3194
member->name_off);
3195
return -EINVAL;
3196
}
3197
3198
/* struct member either no name or a valid one */
3199
if (member->name_off &&
3200
!btf_name_valid_identifier(btf, member->name_off)) {
3201
btf_verifier_log_member(env, t, member, "Invalid name");
3202
return -EINVAL;
3203
}
3204
/* A member cannot be in type void */
3205
if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3206
btf_verifier_log_member(env, t, member,
3207
"Invalid type_id");
3208
return -EINVAL;
3209
}
3210
3211
offset = __btf_member_bit_offset(t, member);
3212
if (is_union && offset) {
3213
btf_verifier_log_member(env, t, member,
3214
"Invalid member bits_offset");
3215
return -EINVAL;
3216
}
3217
3218
/*
3219
* ">" instead of ">=" because the last member could be
3220
* "char a[0];"
3221
*/
3222
if (last_offset > offset) {
3223
btf_verifier_log_member(env, t, member,
3224
"Invalid member bits_offset");
3225
return -EINVAL;
3226
}
3227
3228
if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3229
btf_verifier_log_member(env, t, member,
3230
"Member bits_offset exceeds its struct size");
3231
return -EINVAL;
3232
}
3233
3234
btf_verifier_log_member(env, t, member, NULL);
3235
last_offset = offset;
3236
}
3237
3238
return meta_needed;
3239
}
3240
3241
static int btf_struct_resolve(struct btf_verifier_env *env,
3242
const struct resolve_vertex *v)
3243
{
3244
const struct btf_member *member;
3245
int err;
3246
u16 i;
3247
3248
/* Before continue resolving the next_member,
3249
* ensure the last member is indeed resolved to a
3250
* type with size info.
3251
*/
3252
if (v->next_member) {
3253
const struct btf_type *last_member_type;
3254
const struct btf_member *last_member;
3255
u32 last_member_type_id;
3256
3257
last_member = btf_type_member(v->t) + v->next_member - 1;
3258
last_member_type_id = last_member->type;
3259
if (WARN_ON_ONCE(!env_type_is_resolved(env,
3260
last_member_type_id)))
3261
return -EINVAL;
3262
3263
last_member_type = btf_type_by_id(env->btf,
3264
last_member_type_id);
3265
if (btf_type_kflag(v->t))
3266
err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3267
last_member,
3268
last_member_type);
3269
else
3270
err = btf_type_ops(last_member_type)->check_member(env, v->t,
3271
last_member,
3272
last_member_type);
3273
if (err)
3274
return err;
3275
}
3276
3277
for_each_member_from(i, v->next_member, v->t, member) {
3278
u32 member_type_id = member->type;
3279
const struct btf_type *member_type = btf_type_by_id(env->btf,
3280
member_type_id);
3281
3282
if (btf_type_nosize_or_null(member_type) ||
3283
btf_type_is_resolve_source_only(member_type)) {
3284
btf_verifier_log_member(env, v->t, member,
3285
"Invalid member");
3286
return -EINVAL;
3287
}
3288
3289
if (!env_type_is_resolve_sink(env, member_type) &&
3290
!env_type_is_resolved(env, member_type_id)) {
3291
env_stack_set_next_member(env, i + 1);
3292
return env_stack_push(env, member_type, member_type_id);
3293
}
3294
3295
if (btf_type_kflag(v->t))
3296
err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3297
member,
3298
member_type);
3299
else
3300
err = btf_type_ops(member_type)->check_member(env, v->t,
3301
member,
3302
member_type);
3303
if (err)
3304
return err;
3305
}
3306
3307
env_stack_pop_resolved(env, 0, 0);
3308
3309
return 0;
3310
}
3311
3312
static void btf_struct_log(struct btf_verifier_env *env,
3313
const struct btf_type *t)
3314
{
3315
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3316
}
3317
3318
enum {
3319
BTF_FIELD_IGNORE = 0,
3320
BTF_FIELD_FOUND = 1,
3321
};
3322
3323
struct btf_field_info {
3324
enum btf_field_type type;
3325
u32 off;
3326
union {
3327
struct {
3328
u32 type_id;
3329
} kptr;
3330
struct {
3331
const char *node_name;
3332
u32 value_btf_id;
3333
} graph_root;
3334
};
3335
};
3336
3337
static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3338
u32 off, int sz, enum btf_field_type field_type,
3339
struct btf_field_info *info)
3340
{
3341
if (!__btf_type_is_struct(t))
3342
return BTF_FIELD_IGNORE;
3343
if (t->size != sz)
3344
return BTF_FIELD_IGNORE;
3345
info->type = field_type;
3346
info->off = off;
3347
return BTF_FIELD_FOUND;
3348
}
3349
3350
static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3351
u32 off, int sz, struct btf_field_info *info, u32 field_mask)
3352
{
3353
enum btf_field_type type;
3354
const char *tag_value;
3355
bool is_type_tag;
3356
u32 res_id;
3357
3358
/* Permit modifiers on the pointer itself */
3359
if (btf_type_is_volatile(t))
3360
t = btf_type_by_id(btf, t->type);
3361
/* For PTR, sz is always == 8 */
3362
if (!btf_type_is_ptr(t))
3363
return BTF_FIELD_IGNORE;
3364
t = btf_type_by_id(btf, t->type);
3365
is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t);
3366
if (!is_type_tag)
3367
return BTF_FIELD_IGNORE;
3368
/* Reject extra tags */
3369
if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3370
return -EINVAL;
3371
tag_value = __btf_name_by_offset(btf, t->name_off);
3372
if (!strcmp("kptr_untrusted", tag_value))
3373
type = BPF_KPTR_UNREF;
3374
else if (!strcmp("kptr", tag_value))
3375
type = BPF_KPTR_REF;
3376
else if (!strcmp("percpu_kptr", tag_value))
3377
type = BPF_KPTR_PERCPU;
3378
else if (!strcmp("uptr", tag_value))
3379
type = BPF_UPTR;
3380
else
3381
return -EINVAL;
3382
3383
if (!(type & field_mask))
3384
return BTF_FIELD_IGNORE;
3385
3386
/* Get the base type */
3387
t = btf_type_skip_modifiers(btf, t->type, &res_id);
3388
/* Only pointer to struct is allowed */
3389
if (!__btf_type_is_struct(t))
3390
return -EINVAL;
3391
3392
info->type = type;
3393
info->off = off;
3394
info->kptr.type_id = res_id;
3395
return BTF_FIELD_FOUND;
3396
}
3397
3398
int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3399
int comp_idx, const char *tag_key, int last_id)
3400
{
3401
int len = strlen(tag_key);
3402
int i, n;
3403
3404
for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3405
const struct btf_type *t = btf_type_by_id(btf, i);
3406
3407
if (!btf_type_is_decl_tag(t))
3408
continue;
3409
if (pt != btf_type_by_id(btf, t->type))
3410
continue;
3411
if (btf_type_decl_tag(t)->component_idx != comp_idx)
3412
continue;
3413
if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3414
continue;
3415
return i;
3416
}
3417
return -ENOENT;
3418
}
3419
3420
const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3421
int comp_idx, const char *tag_key)
3422
{
3423
const char *value = NULL;
3424
const struct btf_type *t;
3425
int len, id;
3426
3427
id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3428
if (id < 0)
3429
return ERR_PTR(id);
3430
3431
t = btf_type_by_id(btf, id);
3432
len = strlen(tag_key);
3433
value = __btf_name_by_offset(btf, t->name_off) + len;
3434
3435
/* Prevent duplicate entries for same type */
3436
id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3437
if (id >= 0)
3438
return ERR_PTR(-EEXIST);
3439
3440
return value;
3441
}
3442
3443
static int
3444
btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3445
const struct btf_type *t, int comp_idx, u32 off,
3446
int sz, struct btf_field_info *info,
3447
enum btf_field_type head_type)
3448
{
3449
const char *node_field_name;
3450
const char *value_type;
3451
s32 id;
3452
3453
if (!__btf_type_is_struct(t))
3454
return BTF_FIELD_IGNORE;
3455
if (t->size != sz)
3456
return BTF_FIELD_IGNORE;
3457
value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3458
if (IS_ERR(value_type))
3459
return -EINVAL;
3460
node_field_name = strstr(value_type, ":");
3461
if (!node_field_name)
3462
return -EINVAL;
3463
value_type = kstrndup(value_type, node_field_name - value_type,
3464
GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
3465
if (!value_type)
3466
return -ENOMEM;
3467
id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3468
kfree(value_type);
3469
if (id < 0)
3470
return id;
3471
node_field_name++;
3472
if (str_is_empty(node_field_name))
3473
return -EINVAL;
3474
info->type = head_type;
3475
info->off = off;
3476
info->graph_root.value_btf_id = id;
3477
info->graph_root.node_name = node_field_name;
3478
return BTF_FIELD_FOUND;
3479
}
3480
3481
static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3482
u32 field_mask, u32 *seen_mask, int *align, int *sz)
3483
{
3484
const struct {
3485
enum btf_field_type type;
3486
const char *const name;
3487
const bool is_unique;
3488
} field_types[] = {
3489
{ BPF_SPIN_LOCK, "bpf_spin_lock", true },
3490
{ BPF_RES_SPIN_LOCK, "bpf_res_spin_lock", true },
3491
{ BPF_TIMER, "bpf_timer", true },
3492
{ BPF_WORKQUEUE, "bpf_wq", true },
3493
{ BPF_TASK_WORK, "bpf_task_work", true },
3494
{ BPF_LIST_HEAD, "bpf_list_head", false },
3495
{ BPF_LIST_NODE, "bpf_list_node", false },
3496
{ BPF_RB_ROOT, "bpf_rb_root", false },
3497
{ BPF_RB_NODE, "bpf_rb_node", false },
3498
{ BPF_REFCOUNT, "bpf_refcount", false },
3499
};
3500
int type = 0, i;
3501
const char *name = __btf_name_by_offset(btf, var_type->name_off);
3502
const char *field_type_name;
3503
enum btf_field_type field_type;
3504
bool is_unique;
3505
3506
for (i = 0; i < ARRAY_SIZE(field_types); ++i) {
3507
field_type = field_types[i].type;
3508
field_type_name = field_types[i].name;
3509
is_unique = field_types[i].is_unique;
3510
if (!(field_mask & field_type) || strcmp(name, field_type_name))
3511
continue;
3512
if (is_unique) {
3513
if (*seen_mask & field_type)
3514
return -E2BIG;
3515
*seen_mask |= field_type;
3516
}
3517
type = field_type;
3518
goto end;
3519
}
3520
3521
/* Only return BPF_KPTR when all other types with matchable names fail */
3522
if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
3523
type = BPF_KPTR_REF;
3524
goto end;
3525
}
3526
return 0;
3527
end:
3528
*sz = btf_field_type_size(type);
3529
*align = btf_field_type_align(type);
3530
return type;
3531
}
3532
3533
/* Repeat a number of fields for a specified number of times.
3534
*
3535
* Copy the fields starting from the first field and repeat them for
3536
* repeat_cnt times. The fields are repeated by adding the offset of each
3537
* field with
3538
* (i + 1) * elem_size
3539
* where i is the repeat index and elem_size is the size of an element.
3540
*/
3541
static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
3542
u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3543
{
3544
u32 i, j;
3545
u32 cur;
3546
3547
/* Ensure not repeating fields that should not be repeated. */
3548
for (i = 0; i < field_cnt; i++) {
3549
switch (info[i].type) {
3550
case BPF_KPTR_UNREF:
3551
case BPF_KPTR_REF:
3552
case BPF_KPTR_PERCPU:
3553
case BPF_UPTR:
3554
case BPF_LIST_HEAD:
3555
case BPF_RB_ROOT:
3556
break;
3557
default:
3558
return -EINVAL;
3559
}
3560
}
3561
3562
/* The type of struct size or variable size is u32,
3563
* so the multiplication will not overflow.
3564
*/
3565
if (field_cnt * (repeat_cnt + 1) > info_cnt)
3566
return -E2BIG;
3567
3568
cur = field_cnt;
3569
for (i = 0; i < repeat_cnt; i++) {
3570
memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3571
for (j = 0; j < field_cnt; j++)
3572
info[cur++].off += (i + 1) * elem_size;
3573
}
3574
3575
return 0;
3576
}
3577
3578
static int btf_find_struct_field(const struct btf *btf,
3579
const struct btf_type *t, u32 field_mask,
3580
struct btf_field_info *info, int info_cnt,
3581
u32 level);
3582
3583
/* Find special fields in the struct type of a field.
3584
*
3585
* This function is used to find fields of special types that is not a
3586
* global variable or a direct field of a struct type. It also handles the
3587
* repetition if it is the element type of an array.
3588
*/
3589
static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3590
u32 off, u32 nelems,
3591
u32 field_mask, struct btf_field_info *info,
3592
int info_cnt, u32 level)
3593
{
3594
int ret, err, i;
3595
3596
level++;
3597
if (level >= MAX_RESOLVE_DEPTH)
3598
return -E2BIG;
3599
3600
ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3601
3602
if (ret <= 0)
3603
return ret;
3604
3605
/* Shift the offsets of the nested struct fields to the offsets
3606
* related to the container.
3607
*/
3608
for (i = 0; i < ret; i++)
3609
info[i].off += off;
3610
3611
if (nelems > 1) {
3612
err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
3613
if (err == 0)
3614
ret *= nelems;
3615
else
3616
ret = err;
3617
}
3618
3619
return ret;
3620
}
3621
3622
static int btf_find_field_one(const struct btf *btf,
3623
const struct btf_type *var,
3624
const struct btf_type *var_type,
3625
int var_idx,
3626
u32 off, u32 expected_size,
3627
u32 field_mask, u32 *seen_mask,
3628
struct btf_field_info *info, int info_cnt,
3629
u32 level)
3630
{
3631
int ret, align, sz, field_type;
3632
struct btf_field_info tmp;
3633
const struct btf_array *array;
3634
u32 i, nelems = 1;
3635
3636
/* Walk into array types to find the element type and the number of
3637
* elements in the (flattened) array.
3638
*/
3639
for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3640
array = btf_array(var_type);
3641
nelems *= array->nelems;
3642
var_type = btf_type_by_id(btf, array->type);
3643
}
3644
if (i == MAX_RESOLVE_DEPTH)
3645
return -E2BIG;
3646
if (nelems == 0)
3647
return 0;
3648
3649
field_type = btf_get_field_type(btf, var_type,
3650
field_mask, seen_mask, &align, &sz);
3651
/* Look into variables of struct types */
3652
if (!field_type && __btf_type_is_struct(var_type)) {
3653
sz = var_type->size;
3654
if (expected_size && expected_size != sz * nelems)
3655
return 0;
3656
ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3657
&info[0], info_cnt, level);
3658
return ret;
3659
}
3660
3661
if (field_type == 0)
3662
return 0;
3663
if (field_type < 0)
3664
return field_type;
3665
3666
if (expected_size && expected_size != sz * nelems)
3667
return 0;
3668
if (off % align)
3669
return 0;
3670
3671
switch (field_type) {
3672
case BPF_SPIN_LOCK:
3673
case BPF_RES_SPIN_LOCK:
3674
case BPF_TIMER:
3675
case BPF_WORKQUEUE:
3676
case BPF_LIST_NODE:
3677
case BPF_RB_NODE:
3678
case BPF_REFCOUNT:
3679
case BPF_TASK_WORK:
3680
ret = btf_find_struct(btf, var_type, off, sz, field_type,
3681
info_cnt ? &info[0] : &tmp);
3682
if (ret < 0)
3683
return ret;
3684
break;
3685
case BPF_KPTR_UNREF:
3686
case BPF_KPTR_REF:
3687
case BPF_KPTR_PERCPU:
3688
case BPF_UPTR:
3689
ret = btf_find_kptr(btf, var_type, off, sz,
3690
info_cnt ? &info[0] : &tmp, field_mask);
3691
if (ret < 0)
3692
return ret;
3693
break;
3694
case BPF_LIST_HEAD:
3695
case BPF_RB_ROOT:
3696
ret = btf_find_graph_root(btf, var, var_type,
3697
var_idx, off, sz,
3698
info_cnt ? &info[0] : &tmp,
3699
field_type);
3700
if (ret < 0)
3701
return ret;
3702
break;
3703
default:
3704
return -EFAULT;
3705
}
3706
3707
if (ret == BTF_FIELD_IGNORE)
3708
return 0;
3709
if (!info_cnt)
3710
return -E2BIG;
3711
if (nelems > 1) {
3712
ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
3713
if (ret < 0)
3714
return ret;
3715
}
3716
return nelems;
3717
}
3718
3719
static int btf_find_struct_field(const struct btf *btf,
3720
const struct btf_type *t, u32 field_mask,
3721
struct btf_field_info *info, int info_cnt,
3722
u32 level)
3723
{
3724
int ret, idx = 0;
3725
const struct btf_member *member;
3726
u32 i, off, seen_mask = 0;
3727
3728
for_each_member(i, t, member) {
3729
const struct btf_type *member_type = btf_type_by_id(btf,
3730
member->type);
3731
3732
off = __btf_member_bit_offset(t, member);
3733
if (off % 8)
3734
/* valid C code cannot generate such BTF */
3735
return -EINVAL;
3736
off /= 8;
3737
3738
ret = btf_find_field_one(btf, t, member_type, i,
3739
off, 0,
3740
field_mask, &seen_mask,
3741
&info[idx], info_cnt - idx, level);
3742
if (ret < 0)
3743
return ret;
3744
idx += ret;
3745
}
3746
return idx;
3747
}
3748
3749
static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3750
u32 field_mask, struct btf_field_info *info,
3751
int info_cnt, u32 level)
3752
{
3753
int ret, idx = 0;
3754
const struct btf_var_secinfo *vsi;
3755
u32 i, off, seen_mask = 0;
3756
3757
for_each_vsi(i, t, vsi) {
3758
const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3759
const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3760
3761
off = vsi->offset;
3762
ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3763
field_mask, &seen_mask,
3764
&info[idx], info_cnt - idx,
3765
level);
3766
if (ret < 0)
3767
return ret;
3768
idx += ret;
3769
}
3770
return idx;
3771
}
3772
3773
static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3774
u32 field_mask, struct btf_field_info *info,
3775
int info_cnt)
3776
{
3777
if (__btf_type_is_struct(t))
3778
return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3779
else if (btf_type_is_datasec(t))
3780
return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3781
return -EINVAL;
3782
}
3783
3784
/* Callers have to ensure the life cycle of btf if it is program BTF */
3785
static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3786
struct btf_field_info *info)
3787
{
3788
struct module *mod = NULL;
3789
const struct btf_type *t;
3790
/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3791
* is that BTF, otherwise it's program BTF
3792
*/
3793
struct btf *kptr_btf;
3794
int ret;
3795
s32 id;
3796
3797
/* Find type in map BTF, and use it to look up the matching type
3798
* in vmlinux or module BTFs, by name and kind.
3799
*/
3800
t = btf_type_by_id(btf, info->kptr.type_id);
3801
id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3802
&kptr_btf);
3803
if (id == -ENOENT) {
3804
/* btf_parse_kptr should only be called w/ btf = program BTF */
3805
WARN_ON_ONCE(btf_is_kernel(btf));
3806
3807
/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3808
* kptr allocated via bpf_obj_new
3809
*/
3810
field->kptr.dtor = NULL;
3811
id = info->kptr.type_id;
3812
kptr_btf = (struct btf *)btf;
3813
goto found_dtor;
3814
}
3815
if (id < 0)
3816
return id;
3817
3818
/* Find and stash the function pointer for the destruction function that
3819
* needs to be eventually invoked from the map free path.
3820
*/
3821
if (info->type == BPF_KPTR_REF) {
3822
const struct btf_type *dtor_func;
3823
const char *dtor_func_name;
3824
unsigned long addr;
3825
s32 dtor_btf_id;
3826
3827
/* This call also serves as a whitelist of allowed objects that
3828
* can be used as a referenced pointer and be stored in a map at
3829
* the same time.
3830
*/
3831
dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3832
if (dtor_btf_id < 0) {
3833
ret = dtor_btf_id;
3834
goto end_btf;
3835
}
3836
3837
dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3838
if (!dtor_func) {
3839
ret = -ENOENT;
3840
goto end_btf;
3841
}
3842
3843
if (btf_is_module(kptr_btf)) {
3844
mod = btf_try_get_module(kptr_btf);
3845
if (!mod) {
3846
ret = -ENXIO;
3847
goto end_btf;
3848
}
3849
}
3850
3851
/* We already verified dtor_func to be btf_type_is_func
3852
* in register_btf_id_dtor_kfuncs.
3853
*/
3854
dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3855
addr = kallsyms_lookup_name(dtor_func_name);
3856
if (!addr) {
3857
ret = -EINVAL;
3858
goto end_mod;
3859
}
3860
field->kptr.dtor = (void *)addr;
3861
}
3862
3863
found_dtor:
3864
field->kptr.btf_id = id;
3865
field->kptr.btf = kptr_btf;
3866
field->kptr.module = mod;
3867
return 0;
3868
end_mod:
3869
module_put(mod);
3870
end_btf:
3871
btf_put(kptr_btf);
3872
return ret;
3873
}
3874
3875
static int btf_parse_graph_root(const struct btf *btf,
3876
struct btf_field *field,
3877
struct btf_field_info *info,
3878
const char *node_type_name,
3879
size_t node_type_align)
3880
{
3881
const struct btf_type *t, *n = NULL;
3882
const struct btf_member *member;
3883
u32 offset;
3884
int i;
3885
3886
t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3887
/* We've already checked that value_btf_id is a struct type. We
3888
* just need to figure out the offset of the list_node, and
3889
* verify its type.
3890
*/
3891
for_each_member(i, t, member) {
3892
if (strcmp(info->graph_root.node_name,
3893
__btf_name_by_offset(btf, member->name_off)))
3894
continue;
3895
/* Invalid BTF, two members with same name */
3896
if (n)
3897
return -EINVAL;
3898
n = btf_type_by_id(btf, member->type);
3899
if (!__btf_type_is_struct(n))
3900
return -EINVAL;
3901
if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3902
return -EINVAL;
3903
offset = __btf_member_bit_offset(n, member);
3904
if (offset % 8)
3905
return -EINVAL;
3906
offset /= 8;
3907
if (offset % node_type_align)
3908
return -EINVAL;
3909
3910
field->graph_root.btf = (struct btf *)btf;
3911
field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3912
field->graph_root.node_offset = offset;
3913
}
3914
if (!n)
3915
return -ENOENT;
3916
return 0;
3917
}
3918
3919
static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3920
struct btf_field_info *info)
3921
{
3922
return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3923
__alignof__(struct bpf_list_node));
3924
}
3925
3926
static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3927
struct btf_field_info *info)
3928
{
3929
return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3930
__alignof__(struct bpf_rb_node));
3931
}
3932
3933
static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3934
{
3935
const struct btf_field *a = (const struct btf_field *)_a;
3936
const struct btf_field *b = (const struct btf_field *)_b;
3937
3938
if (a->offset < b->offset)
3939
return -1;
3940
else if (a->offset > b->offset)
3941
return 1;
3942
return 0;
3943
}
3944
3945
struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3946
u32 field_mask, u32 value_size)
3947
{
3948
struct btf_field_info info_arr[BTF_FIELDS_MAX];
3949
u32 next_off = 0, field_type_size;
3950
struct btf_record *rec;
3951
int ret, i, cnt;
3952
3953
ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3954
if (ret < 0)
3955
return ERR_PTR(ret);
3956
if (!ret)
3957
return NULL;
3958
3959
cnt = ret;
3960
/* This needs to be kzalloc to zero out padding and unused fields, see
3961
* comment in btf_record_equal.
3962
*/
3963
rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
3964
if (!rec)
3965
return ERR_PTR(-ENOMEM);
3966
3967
rec->spin_lock_off = -EINVAL;
3968
rec->res_spin_lock_off = -EINVAL;
3969
rec->timer_off = -EINVAL;
3970
rec->wq_off = -EINVAL;
3971
rec->refcount_off = -EINVAL;
3972
rec->task_work_off = -EINVAL;
3973
for (i = 0; i < cnt; i++) {
3974
field_type_size = btf_field_type_size(info_arr[i].type);
3975
if (info_arr[i].off + field_type_size > value_size) {
3976
WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3977
ret = -EFAULT;
3978
goto end;
3979
}
3980
if (info_arr[i].off < next_off) {
3981
ret = -EEXIST;
3982
goto end;
3983
}
3984
next_off = info_arr[i].off + field_type_size;
3985
3986
rec->field_mask |= info_arr[i].type;
3987
rec->fields[i].offset = info_arr[i].off;
3988
rec->fields[i].type = info_arr[i].type;
3989
rec->fields[i].size = field_type_size;
3990
3991
switch (info_arr[i].type) {
3992
case BPF_SPIN_LOCK:
3993
WARN_ON_ONCE(rec->spin_lock_off >= 0);
3994
/* Cache offset for faster lookup at runtime */
3995
rec->spin_lock_off = rec->fields[i].offset;
3996
break;
3997
case BPF_RES_SPIN_LOCK:
3998
WARN_ON_ONCE(rec->spin_lock_off >= 0);
3999
/* Cache offset for faster lookup at runtime */
4000
rec->res_spin_lock_off = rec->fields[i].offset;
4001
break;
4002
case BPF_TIMER:
4003
WARN_ON_ONCE(rec->timer_off >= 0);
4004
/* Cache offset for faster lookup at runtime */
4005
rec->timer_off = rec->fields[i].offset;
4006
break;
4007
case BPF_WORKQUEUE:
4008
WARN_ON_ONCE(rec->wq_off >= 0);
4009
/* Cache offset for faster lookup at runtime */
4010
rec->wq_off = rec->fields[i].offset;
4011
break;
4012
case BPF_TASK_WORK:
4013
WARN_ON_ONCE(rec->task_work_off >= 0);
4014
rec->task_work_off = rec->fields[i].offset;
4015
break;
4016
case BPF_REFCOUNT:
4017
WARN_ON_ONCE(rec->refcount_off >= 0);
4018
/* Cache offset for faster lookup at runtime */
4019
rec->refcount_off = rec->fields[i].offset;
4020
break;
4021
case BPF_KPTR_UNREF:
4022
case BPF_KPTR_REF:
4023
case BPF_KPTR_PERCPU:
4024
case BPF_UPTR:
4025
ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
4026
if (ret < 0)
4027
goto end;
4028
break;
4029
case BPF_LIST_HEAD:
4030
ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
4031
if (ret < 0)
4032
goto end;
4033
break;
4034
case BPF_RB_ROOT:
4035
ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4036
if (ret < 0)
4037
goto end;
4038
break;
4039
case BPF_LIST_NODE:
4040
case BPF_RB_NODE:
4041
break;
4042
default:
4043
ret = -EFAULT;
4044
goto end;
4045
}
4046
rec->cnt++;
4047
}
4048
4049
if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) {
4050
ret = -EINVAL;
4051
goto end;
4052
}
4053
4054
/* bpf_{list_head, rb_node} require bpf_spin_lock */
4055
if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4056
btf_record_has_field(rec, BPF_RB_ROOT)) &&
4057
(rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) {
4058
ret = -EINVAL;
4059
goto end;
4060
}
4061
4062
if (rec->refcount_off < 0 &&
4063
btf_record_has_field(rec, BPF_LIST_NODE) &&
4064
btf_record_has_field(rec, BPF_RB_NODE)) {
4065
ret = -EINVAL;
4066
goto end;
4067
}
4068
4069
sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4070
NULL, rec);
4071
4072
return rec;
4073
end:
4074
btf_record_free(rec);
4075
return ERR_PTR(ret);
4076
}
4077
4078
int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4079
{
4080
int i;
4081
4082
/* There are three types that signify ownership of some other type:
4083
* kptr_ref, bpf_list_head, bpf_rb_root.
4084
* kptr_ref only supports storing kernel types, which can't store
4085
* references to program allocated local types.
4086
*
4087
* Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4088
* does not form cycles.
4089
*/
4090
if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
4091
return 0;
4092
for (i = 0; i < rec->cnt; i++) {
4093
struct btf_struct_meta *meta;
4094
const struct btf_type *t;
4095
u32 btf_id;
4096
4097
if (rec->fields[i].type == BPF_UPTR) {
4098
/* The uptr only supports pinning one page and cannot
4099
* point to a kernel struct
4100
*/
4101
if (btf_is_kernel(rec->fields[i].kptr.btf))
4102
return -EINVAL;
4103
t = btf_type_by_id(rec->fields[i].kptr.btf,
4104
rec->fields[i].kptr.btf_id);
4105
if (!t->size)
4106
return -EINVAL;
4107
if (t->size > PAGE_SIZE)
4108
return -E2BIG;
4109
continue;
4110
}
4111
4112
if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4113
continue;
4114
btf_id = rec->fields[i].graph_root.value_btf_id;
4115
meta = btf_find_struct_meta(btf, btf_id);
4116
if (!meta)
4117
return -EFAULT;
4118
rec->fields[i].graph_root.value_rec = meta->record;
4119
4120
/* We need to set value_rec for all root types, but no need
4121
* to check ownership cycle for a type unless it's also a
4122
* node type.
4123
*/
4124
if (!(rec->field_mask & BPF_GRAPH_NODE))
4125
continue;
4126
4127
/* We need to ensure ownership acyclicity among all types. The
4128
* proper way to do it would be to topologically sort all BTF
4129
* IDs based on the ownership edges, since there can be multiple
4130
* bpf_{list_head,rb_node} in a type. Instead, we use the
4131
* following resaoning:
4132
*
4133
* - A type can only be owned by another type in user BTF if it
4134
* has a bpf_{list,rb}_node. Let's call these node types.
4135
* - A type can only _own_ another type in user BTF if it has a
4136
* bpf_{list_head,rb_root}. Let's call these root types.
4137
*
4138
* We ensure that if a type is both a root and node, its
4139
* element types cannot be root types.
4140
*
4141
* To ensure acyclicity:
4142
*
4143
* When A is an root type but not a node, its ownership
4144
* chain can be:
4145
* A -> B -> C
4146
* Where:
4147
* - A is an root, e.g. has bpf_rb_root.
4148
* - B is both a root and node, e.g. has bpf_rb_node and
4149
* bpf_list_head.
4150
* - C is only an root, e.g. has bpf_list_node
4151
*
4152
* When A is both a root and node, some other type already
4153
* owns it in the BTF domain, hence it can not own
4154
* another root type through any of the ownership edges.
4155
* A -> B
4156
* Where:
4157
* - A is both an root and node.
4158
* - B is only an node.
4159
*/
4160
if (meta->record->field_mask & BPF_GRAPH_ROOT)
4161
return -ELOOP;
4162
}
4163
return 0;
4164
}
4165
4166
static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4167
u32 type_id, void *data, u8 bits_offset,
4168
struct btf_show *show)
4169
{
4170
const struct btf_member *member;
4171
void *safe_data;
4172
u32 i;
4173
4174
safe_data = btf_show_start_struct_type(show, t, type_id, data);
4175
if (!safe_data)
4176
return;
4177
4178
for_each_member(i, t, member) {
4179
const struct btf_type *member_type = btf_type_by_id(btf,
4180
member->type);
4181
const struct btf_kind_operations *ops;
4182
u32 member_offset, bitfield_size;
4183
u32 bytes_offset;
4184
u8 bits8_offset;
4185
4186
btf_show_start_member(show, member);
4187
4188
member_offset = __btf_member_bit_offset(t, member);
4189
bitfield_size = __btf_member_bitfield_size(t, member);
4190
bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4191
bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4192
if (bitfield_size) {
4193
safe_data = btf_show_start_type(show, member_type,
4194
member->type,
4195
data + bytes_offset);
4196
if (safe_data)
4197
btf_bitfield_show(safe_data,
4198
bits8_offset,
4199
bitfield_size, show);
4200
btf_show_end_type(show);
4201
} else {
4202
ops = btf_type_ops(member_type);
4203
ops->show(btf, member_type, member->type,
4204
data + bytes_offset, bits8_offset, show);
4205
}
4206
4207
btf_show_end_member(show);
4208
}
4209
4210
btf_show_end_struct_type(show);
4211
}
4212
4213
static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4214
u32 type_id, void *data, u8 bits_offset,
4215
struct btf_show *show)
4216
{
4217
const struct btf_member *m = show->state.member;
4218
4219
/*
4220
* First check if any members would be shown (are non-zero).
4221
* See comments above "struct btf_show" definition for more
4222
* details on how this works at a high-level.
4223
*/
4224
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4225
if (!show->state.depth_check) {
4226
show->state.depth_check = show->state.depth + 1;
4227
show->state.depth_to_show = 0;
4228
}
4229
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4230
/* Restore saved member data here */
4231
show->state.member = m;
4232
if (show->state.depth_check != show->state.depth + 1)
4233
return;
4234
show->state.depth_check = 0;
4235
4236
if (show->state.depth_to_show <= show->state.depth)
4237
return;
4238
/*
4239
* Reaching here indicates we have recursed and found
4240
* non-zero child values.
4241
*/
4242
}
4243
4244
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4245
}
4246
4247
static const struct btf_kind_operations struct_ops = {
4248
.check_meta = btf_struct_check_meta,
4249
.resolve = btf_struct_resolve,
4250
.check_member = btf_struct_check_member,
4251
.check_kflag_member = btf_generic_check_kflag_member,
4252
.log_details = btf_struct_log,
4253
.show = btf_struct_show,
4254
};
4255
4256
static int btf_enum_check_member(struct btf_verifier_env *env,
4257
const struct btf_type *struct_type,
4258
const struct btf_member *member,
4259
const struct btf_type *member_type)
4260
{
4261
u32 struct_bits_off = member->offset;
4262
u32 struct_size, bytes_offset;
4263
4264
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4265
btf_verifier_log_member(env, struct_type, member,
4266
"Member is not byte aligned");
4267
return -EINVAL;
4268
}
4269
4270
struct_size = struct_type->size;
4271
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4272
if (struct_size - bytes_offset < member_type->size) {
4273
btf_verifier_log_member(env, struct_type, member,
4274
"Member exceeds struct_size");
4275
return -EINVAL;
4276
}
4277
4278
return 0;
4279
}
4280
4281
static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4282
const struct btf_type *struct_type,
4283
const struct btf_member *member,
4284
const struct btf_type *member_type)
4285
{
4286
u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4287
u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4288
4289
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4290
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4291
if (!nr_bits) {
4292
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4293
btf_verifier_log_member(env, struct_type, member,
4294
"Member is not byte aligned");
4295
return -EINVAL;
4296
}
4297
4298
nr_bits = int_bitsize;
4299
} else if (nr_bits > int_bitsize) {
4300
btf_verifier_log_member(env, struct_type, member,
4301
"Invalid member bitfield_size");
4302
return -EINVAL;
4303
}
4304
4305
struct_size = struct_type->size;
4306
bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4307
if (struct_size < bytes_end) {
4308
btf_verifier_log_member(env, struct_type, member,
4309
"Member exceeds struct_size");
4310
return -EINVAL;
4311
}
4312
4313
return 0;
4314
}
4315
4316
static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4317
const struct btf_type *t,
4318
u32 meta_left)
4319
{
4320
const struct btf_enum *enums = btf_type_enum(t);
4321
struct btf *btf = env->btf;
4322
const char *fmt_str;
4323
u16 i, nr_enums;
4324
u32 meta_needed;
4325
4326
nr_enums = btf_type_vlen(t);
4327
meta_needed = nr_enums * sizeof(*enums);
4328
4329
if (meta_left < meta_needed) {
4330
btf_verifier_log_basic(env, t,
4331
"meta_left:%u meta_needed:%u",
4332
meta_left, meta_needed);
4333
return -EINVAL;
4334
}
4335
4336
if (t->size > 8 || !is_power_of_2(t->size)) {
4337
btf_verifier_log_type(env, t, "Unexpected size");
4338
return -EINVAL;
4339
}
4340
4341
/* enum type either no name or a valid one */
4342
if (t->name_off &&
4343
!btf_name_valid_identifier(env->btf, t->name_off)) {
4344
btf_verifier_log_type(env, t, "Invalid name");
4345
return -EINVAL;
4346
}
4347
4348
btf_verifier_log_type(env, t, NULL);
4349
4350
for (i = 0; i < nr_enums; i++) {
4351
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4352
btf_verifier_log(env, "\tInvalid name_offset:%u",
4353
enums[i].name_off);
4354
return -EINVAL;
4355
}
4356
4357
/* enum member must have a valid name */
4358
if (!enums[i].name_off ||
4359
!btf_name_valid_identifier(btf, enums[i].name_off)) {
4360
btf_verifier_log_type(env, t, "Invalid name");
4361
return -EINVAL;
4362
}
4363
4364
if (env->log.level == BPF_LOG_KERNEL)
4365
continue;
4366
fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4367
btf_verifier_log(env, fmt_str,
4368
__btf_name_by_offset(btf, enums[i].name_off),
4369
enums[i].val);
4370
}
4371
4372
return meta_needed;
4373
}
4374
4375
static void btf_enum_log(struct btf_verifier_env *env,
4376
const struct btf_type *t)
4377
{
4378
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4379
}
4380
4381
static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4382
u32 type_id, void *data, u8 bits_offset,
4383
struct btf_show *show)
4384
{
4385
const struct btf_enum *enums = btf_type_enum(t);
4386
u32 i, nr_enums = btf_type_vlen(t);
4387
void *safe_data;
4388
int v;
4389
4390
safe_data = btf_show_start_type(show, t, type_id, data);
4391
if (!safe_data)
4392
return;
4393
4394
v = *(int *)safe_data;
4395
4396
for (i = 0; i < nr_enums; i++) {
4397
if (v != enums[i].val)
4398
continue;
4399
4400
btf_show_type_value(show, "%s",
4401
__btf_name_by_offset(btf,
4402
enums[i].name_off));
4403
4404
btf_show_end_type(show);
4405
return;
4406
}
4407
4408
if (btf_type_kflag(t))
4409
btf_show_type_value(show, "%d", v);
4410
else
4411
btf_show_type_value(show, "%u", v);
4412
btf_show_end_type(show);
4413
}
4414
4415
static const struct btf_kind_operations enum_ops = {
4416
.check_meta = btf_enum_check_meta,
4417
.resolve = btf_df_resolve,
4418
.check_member = btf_enum_check_member,
4419
.check_kflag_member = btf_enum_check_kflag_member,
4420
.log_details = btf_enum_log,
4421
.show = btf_enum_show,
4422
};
4423
4424
static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4425
const struct btf_type *t,
4426
u32 meta_left)
4427
{
4428
const struct btf_enum64 *enums = btf_type_enum64(t);
4429
struct btf *btf = env->btf;
4430
const char *fmt_str;
4431
u16 i, nr_enums;
4432
u32 meta_needed;
4433
4434
nr_enums = btf_type_vlen(t);
4435
meta_needed = nr_enums * sizeof(*enums);
4436
4437
if (meta_left < meta_needed) {
4438
btf_verifier_log_basic(env, t,
4439
"meta_left:%u meta_needed:%u",
4440
meta_left, meta_needed);
4441
return -EINVAL;
4442
}
4443
4444
if (t->size > 8 || !is_power_of_2(t->size)) {
4445
btf_verifier_log_type(env, t, "Unexpected size");
4446
return -EINVAL;
4447
}
4448
4449
/* enum type either no name or a valid one */
4450
if (t->name_off &&
4451
!btf_name_valid_identifier(env->btf, t->name_off)) {
4452
btf_verifier_log_type(env, t, "Invalid name");
4453
return -EINVAL;
4454
}
4455
4456
btf_verifier_log_type(env, t, NULL);
4457
4458
for (i = 0; i < nr_enums; i++) {
4459
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4460
btf_verifier_log(env, "\tInvalid name_offset:%u",
4461
enums[i].name_off);
4462
return -EINVAL;
4463
}
4464
4465
/* enum member must have a valid name */
4466
if (!enums[i].name_off ||
4467
!btf_name_valid_identifier(btf, enums[i].name_off)) {
4468
btf_verifier_log_type(env, t, "Invalid name");
4469
return -EINVAL;
4470
}
4471
4472
if (env->log.level == BPF_LOG_KERNEL)
4473
continue;
4474
4475
fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4476
btf_verifier_log(env, fmt_str,
4477
__btf_name_by_offset(btf, enums[i].name_off),
4478
btf_enum64_value(enums + i));
4479
}
4480
4481
return meta_needed;
4482
}
4483
4484
static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4485
u32 type_id, void *data, u8 bits_offset,
4486
struct btf_show *show)
4487
{
4488
const struct btf_enum64 *enums = btf_type_enum64(t);
4489
u32 i, nr_enums = btf_type_vlen(t);
4490
void *safe_data;
4491
s64 v;
4492
4493
safe_data = btf_show_start_type(show, t, type_id, data);
4494
if (!safe_data)
4495
return;
4496
4497
v = *(u64 *)safe_data;
4498
4499
for (i = 0; i < nr_enums; i++) {
4500
if (v != btf_enum64_value(enums + i))
4501
continue;
4502
4503
btf_show_type_value(show, "%s",
4504
__btf_name_by_offset(btf,
4505
enums[i].name_off));
4506
4507
btf_show_end_type(show);
4508
return;
4509
}
4510
4511
if (btf_type_kflag(t))
4512
btf_show_type_value(show, "%lld", v);
4513
else
4514
btf_show_type_value(show, "%llu", v);
4515
btf_show_end_type(show);
4516
}
4517
4518
static const struct btf_kind_operations enum64_ops = {
4519
.check_meta = btf_enum64_check_meta,
4520
.resolve = btf_df_resolve,
4521
.check_member = btf_enum_check_member,
4522
.check_kflag_member = btf_enum_check_kflag_member,
4523
.log_details = btf_enum_log,
4524
.show = btf_enum64_show,
4525
};
4526
4527
static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4528
const struct btf_type *t,
4529
u32 meta_left)
4530
{
4531
u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4532
4533
if (meta_left < meta_needed) {
4534
btf_verifier_log_basic(env, t,
4535
"meta_left:%u meta_needed:%u",
4536
meta_left, meta_needed);
4537
return -EINVAL;
4538
}
4539
4540
if (t->name_off) {
4541
btf_verifier_log_type(env, t, "Invalid name");
4542
return -EINVAL;
4543
}
4544
4545
if (btf_type_kflag(t)) {
4546
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4547
return -EINVAL;
4548
}
4549
4550
btf_verifier_log_type(env, t, NULL);
4551
4552
return meta_needed;
4553
}
4554
4555
static void btf_func_proto_log(struct btf_verifier_env *env,
4556
const struct btf_type *t)
4557
{
4558
const struct btf_param *args = (const struct btf_param *)(t + 1);
4559
u16 nr_args = btf_type_vlen(t), i;
4560
4561
btf_verifier_log(env, "return=%u args=(", t->type);
4562
if (!nr_args) {
4563
btf_verifier_log(env, "void");
4564
goto done;
4565
}
4566
4567
if (nr_args == 1 && !args[0].type) {
4568
/* Only one vararg */
4569
btf_verifier_log(env, "vararg");
4570
goto done;
4571
}
4572
4573
btf_verifier_log(env, "%u %s", args[0].type,
4574
__btf_name_by_offset(env->btf,
4575
args[0].name_off));
4576
for (i = 1; i < nr_args - 1; i++)
4577
btf_verifier_log(env, ", %u %s", args[i].type,
4578
__btf_name_by_offset(env->btf,
4579
args[i].name_off));
4580
4581
if (nr_args > 1) {
4582
const struct btf_param *last_arg = &args[nr_args - 1];
4583
4584
if (last_arg->type)
4585
btf_verifier_log(env, ", %u %s", last_arg->type,
4586
__btf_name_by_offset(env->btf,
4587
last_arg->name_off));
4588
else
4589
btf_verifier_log(env, ", vararg");
4590
}
4591
4592
done:
4593
btf_verifier_log(env, ")");
4594
}
4595
4596
static const struct btf_kind_operations func_proto_ops = {
4597
.check_meta = btf_func_proto_check_meta,
4598
.resolve = btf_df_resolve,
4599
/*
4600
* BTF_KIND_FUNC_PROTO cannot be directly referred by
4601
* a struct's member.
4602
*
4603
* It should be a function pointer instead.
4604
* (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4605
*
4606
* Hence, there is no btf_func_check_member().
4607
*/
4608
.check_member = btf_df_check_member,
4609
.check_kflag_member = btf_df_check_kflag_member,
4610
.log_details = btf_func_proto_log,
4611
.show = btf_df_show,
4612
};
4613
4614
static s32 btf_func_check_meta(struct btf_verifier_env *env,
4615
const struct btf_type *t,
4616
u32 meta_left)
4617
{
4618
if (!t->name_off ||
4619
!btf_name_valid_identifier(env->btf, t->name_off)) {
4620
btf_verifier_log_type(env, t, "Invalid name");
4621
return -EINVAL;
4622
}
4623
4624
if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4625
btf_verifier_log_type(env, t, "Invalid func linkage");
4626
return -EINVAL;
4627
}
4628
4629
if (btf_type_kflag(t)) {
4630
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4631
return -EINVAL;
4632
}
4633
4634
btf_verifier_log_type(env, t, NULL);
4635
4636
return 0;
4637
}
4638
4639
static int btf_func_resolve(struct btf_verifier_env *env,
4640
const struct resolve_vertex *v)
4641
{
4642
const struct btf_type *t = v->t;
4643
u32 next_type_id = t->type;
4644
int err;
4645
4646
err = btf_func_check(env, t);
4647
if (err)
4648
return err;
4649
4650
env_stack_pop_resolved(env, next_type_id, 0);
4651
return 0;
4652
}
4653
4654
static const struct btf_kind_operations func_ops = {
4655
.check_meta = btf_func_check_meta,
4656
.resolve = btf_func_resolve,
4657
.check_member = btf_df_check_member,
4658
.check_kflag_member = btf_df_check_kflag_member,
4659
.log_details = btf_ref_type_log,
4660
.show = btf_df_show,
4661
};
4662
4663
static s32 btf_var_check_meta(struct btf_verifier_env *env,
4664
const struct btf_type *t,
4665
u32 meta_left)
4666
{
4667
const struct btf_var *var;
4668
u32 meta_needed = sizeof(*var);
4669
4670
if (meta_left < meta_needed) {
4671
btf_verifier_log_basic(env, t,
4672
"meta_left:%u meta_needed:%u",
4673
meta_left, meta_needed);
4674
return -EINVAL;
4675
}
4676
4677
if (btf_type_vlen(t)) {
4678
btf_verifier_log_type(env, t, "vlen != 0");
4679
return -EINVAL;
4680
}
4681
4682
if (btf_type_kflag(t)) {
4683
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4684
return -EINVAL;
4685
}
4686
4687
if (!t->name_off ||
4688
!btf_name_valid_identifier(env->btf, t->name_off)) {
4689
btf_verifier_log_type(env, t, "Invalid name");
4690
return -EINVAL;
4691
}
4692
4693
/* A var cannot be in type void */
4694
if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4695
btf_verifier_log_type(env, t, "Invalid type_id");
4696
return -EINVAL;
4697
}
4698
4699
var = btf_type_var(t);
4700
if (var->linkage != BTF_VAR_STATIC &&
4701
var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4702
btf_verifier_log_type(env, t, "Linkage not supported");
4703
return -EINVAL;
4704
}
4705
4706
btf_verifier_log_type(env, t, NULL);
4707
4708
return meta_needed;
4709
}
4710
4711
static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4712
{
4713
const struct btf_var *var = btf_type_var(t);
4714
4715
btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4716
}
4717
4718
static const struct btf_kind_operations var_ops = {
4719
.check_meta = btf_var_check_meta,
4720
.resolve = btf_var_resolve,
4721
.check_member = btf_df_check_member,
4722
.check_kflag_member = btf_df_check_kflag_member,
4723
.log_details = btf_var_log,
4724
.show = btf_var_show,
4725
};
4726
4727
static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4728
const struct btf_type *t,
4729
u32 meta_left)
4730
{
4731
const struct btf_var_secinfo *vsi;
4732
u64 last_vsi_end_off = 0, sum = 0;
4733
u32 i, meta_needed;
4734
4735
meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4736
if (meta_left < meta_needed) {
4737
btf_verifier_log_basic(env, t,
4738
"meta_left:%u meta_needed:%u",
4739
meta_left, meta_needed);
4740
return -EINVAL;
4741
}
4742
4743
if (!t->size) {
4744
btf_verifier_log_type(env, t, "size == 0");
4745
return -EINVAL;
4746
}
4747
4748
if (btf_type_kflag(t)) {
4749
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4750
return -EINVAL;
4751
}
4752
4753
if (!t->name_off ||
4754
!btf_name_valid_section(env->btf, t->name_off)) {
4755
btf_verifier_log_type(env, t, "Invalid name");
4756
return -EINVAL;
4757
}
4758
4759
btf_verifier_log_type(env, t, NULL);
4760
4761
for_each_vsi(i, t, vsi) {
4762
/* A var cannot be in type void */
4763
if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4764
btf_verifier_log_vsi(env, t, vsi,
4765
"Invalid type_id");
4766
return -EINVAL;
4767
}
4768
4769
if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4770
btf_verifier_log_vsi(env, t, vsi,
4771
"Invalid offset");
4772
return -EINVAL;
4773
}
4774
4775
if (!vsi->size || vsi->size > t->size) {
4776
btf_verifier_log_vsi(env, t, vsi,
4777
"Invalid size");
4778
return -EINVAL;
4779
}
4780
4781
last_vsi_end_off = vsi->offset + vsi->size;
4782
if (last_vsi_end_off > t->size) {
4783
btf_verifier_log_vsi(env, t, vsi,
4784
"Invalid offset+size");
4785
return -EINVAL;
4786
}
4787
4788
btf_verifier_log_vsi(env, t, vsi, NULL);
4789
sum += vsi->size;
4790
}
4791
4792
if (t->size < sum) {
4793
btf_verifier_log_type(env, t, "Invalid btf_info size");
4794
return -EINVAL;
4795
}
4796
4797
return meta_needed;
4798
}
4799
4800
static int btf_datasec_resolve(struct btf_verifier_env *env,
4801
const struct resolve_vertex *v)
4802
{
4803
const struct btf_var_secinfo *vsi;
4804
struct btf *btf = env->btf;
4805
u16 i;
4806
4807
env->resolve_mode = RESOLVE_TBD;
4808
for_each_vsi_from(i, v->next_member, v->t, vsi) {
4809
u32 var_type_id = vsi->type, type_id, type_size = 0;
4810
const struct btf_type *var_type = btf_type_by_id(env->btf,
4811
var_type_id);
4812
if (!var_type || !btf_type_is_var(var_type)) {
4813
btf_verifier_log_vsi(env, v->t, vsi,
4814
"Not a VAR kind member");
4815
return -EINVAL;
4816
}
4817
4818
if (!env_type_is_resolve_sink(env, var_type) &&
4819
!env_type_is_resolved(env, var_type_id)) {
4820
env_stack_set_next_member(env, i + 1);
4821
return env_stack_push(env, var_type, var_type_id);
4822
}
4823
4824
type_id = var_type->type;
4825
if (!btf_type_id_size(btf, &type_id, &type_size)) {
4826
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4827
return -EINVAL;
4828
}
4829
4830
if (vsi->size < type_size) {
4831
btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4832
return -EINVAL;
4833
}
4834
}
4835
4836
env_stack_pop_resolved(env, 0, 0);
4837
return 0;
4838
}
4839
4840
static void btf_datasec_log(struct btf_verifier_env *env,
4841
const struct btf_type *t)
4842
{
4843
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4844
}
4845
4846
static void btf_datasec_show(const struct btf *btf,
4847
const struct btf_type *t, u32 type_id,
4848
void *data, u8 bits_offset,
4849
struct btf_show *show)
4850
{
4851
const struct btf_var_secinfo *vsi;
4852
const struct btf_type *var;
4853
u32 i;
4854
4855
if (!btf_show_start_type(show, t, type_id, data))
4856
return;
4857
4858
btf_show_type_value(show, "section (\"%s\") = {",
4859
__btf_name_by_offset(btf, t->name_off));
4860
for_each_vsi(i, t, vsi) {
4861
var = btf_type_by_id(btf, vsi->type);
4862
if (i)
4863
btf_show(show, ",");
4864
btf_type_ops(var)->show(btf, var, vsi->type,
4865
data + vsi->offset, bits_offset, show);
4866
}
4867
btf_show_end_type(show);
4868
}
4869
4870
static const struct btf_kind_operations datasec_ops = {
4871
.check_meta = btf_datasec_check_meta,
4872
.resolve = btf_datasec_resolve,
4873
.check_member = btf_df_check_member,
4874
.check_kflag_member = btf_df_check_kflag_member,
4875
.log_details = btf_datasec_log,
4876
.show = btf_datasec_show,
4877
};
4878
4879
static s32 btf_float_check_meta(struct btf_verifier_env *env,
4880
const struct btf_type *t,
4881
u32 meta_left)
4882
{
4883
if (btf_type_vlen(t)) {
4884
btf_verifier_log_type(env, t, "vlen != 0");
4885
return -EINVAL;
4886
}
4887
4888
if (btf_type_kflag(t)) {
4889
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4890
return -EINVAL;
4891
}
4892
4893
if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4894
t->size != 16) {
4895
btf_verifier_log_type(env, t, "Invalid type_size");
4896
return -EINVAL;
4897
}
4898
4899
btf_verifier_log_type(env, t, NULL);
4900
4901
return 0;
4902
}
4903
4904
static int btf_float_check_member(struct btf_verifier_env *env,
4905
const struct btf_type *struct_type,
4906
const struct btf_member *member,
4907
const struct btf_type *member_type)
4908
{
4909
u64 start_offset_bytes;
4910
u64 end_offset_bytes;
4911
u64 misalign_bits;
4912
u64 align_bytes;
4913
u64 align_bits;
4914
4915
/* Different architectures have different alignment requirements, so
4916
* here we check only for the reasonable minimum. This way we ensure
4917
* that types after CO-RE can pass the kernel BTF verifier.
4918
*/
4919
align_bytes = min_t(u64, sizeof(void *), member_type->size);
4920
align_bits = align_bytes * BITS_PER_BYTE;
4921
div64_u64_rem(member->offset, align_bits, &misalign_bits);
4922
if (misalign_bits) {
4923
btf_verifier_log_member(env, struct_type, member,
4924
"Member is not properly aligned");
4925
return -EINVAL;
4926
}
4927
4928
start_offset_bytes = member->offset / BITS_PER_BYTE;
4929
end_offset_bytes = start_offset_bytes + member_type->size;
4930
if (end_offset_bytes > struct_type->size) {
4931
btf_verifier_log_member(env, struct_type, member,
4932
"Member exceeds struct_size");
4933
return -EINVAL;
4934
}
4935
4936
return 0;
4937
}
4938
4939
static void btf_float_log(struct btf_verifier_env *env,
4940
const struct btf_type *t)
4941
{
4942
btf_verifier_log(env, "size=%u", t->size);
4943
}
4944
4945
static const struct btf_kind_operations float_ops = {
4946
.check_meta = btf_float_check_meta,
4947
.resolve = btf_df_resolve,
4948
.check_member = btf_float_check_member,
4949
.check_kflag_member = btf_generic_check_kflag_member,
4950
.log_details = btf_float_log,
4951
.show = btf_df_show,
4952
};
4953
4954
static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4955
const struct btf_type *t,
4956
u32 meta_left)
4957
{
4958
const struct btf_decl_tag *tag;
4959
u32 meta_needed = sizeof(*tag);
4960
s32 component_idx;
4961
const char *value;
4962
4963
if (meta_left < meta_needed) {
4964
btf_verifier_log_basic(env, t,
4965
"meta_left:%u meta_needed:%u",
4966
meta_left, meta_needed);
4967
return -EINVAL;
4968
}
4969
4970
value = btf_name_by_offset(env->btf, t->name_off);
4971
if (!value || !value[0]) {
4972
btf_verifier_log_type(env, t, "Invalid value");
4973
return -EINVAL;
4974
}
4975
4976
if (btf_type_vlen(t)) {
4977
btf_verifier_log_type(env, t, "vlen != 0");
4978
return -EINVAL;
4979
}
4980
4981
component_idx = btf_type_decl_tag(t)->component_idx;
4982
if (component_idx < -1) {
4983
btf_verifier_log_type(env, t, "Invalid component_idx");
4984
return -EINVAL;
4985
}
4986
4987
btf_verifier_log_type(env, t, NULL);
4988
4989
return meta_needed;
4990
}
4991
4992
static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4993
const struct resolve_vertex *v)
4994
{
4995
const struct btf_type *next_type;
4996
const struct btf_type *t = v->t;
4997
u32 next_type_id = t->type;
4998
struct btf *btf = env->btf;
4999
s32 component_idx;
5000
u32 vlen;
5001
5002
next_type = btf_type_by_id(btf, next_type_id);
5003
if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
5004
btf_verifier_log_type(env, v->t, "Invalid type_id");
5005
return -EINVAL;
5006
}
5007
5008
if (!env_type_is_resolve_sink(env, next_type) &&
5009
!env_type_is_resolved(env, next_type_id))
5010
return env_stack_push(env, next_type, next_type_id);
5011
5012
component_idx = btf_type_decl_tag(t)->component_idx;
5013
if (component_idx != -1) {
5014
if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
5015
btf_verifier_log_type(env, v->t, "Invalid component_idx");
5016
return -EINVAL;
5017
}
5018
5019
if (btf_type_is_struct(next_type)) {
5020
vlen = btf_type_vlen(next_type);
5021
} else {
5022
/* next_type should be a function */
5023
next_type = btf_type_by_id(btf, next_type->type);
5024
vlen = btf_type_vlen(next_type);
5025
}
5026
5027
if ((u32)component_idx >= vlen) {
5028
btf_verifier_log_type(env, v->t, "Invalid component_idx");
5029
return -EINVAL;
5030
}
5031
}
5032
5033
env_stack_pop_resolved(env, next_type_id, 0);
5034
5035
return 0;
5036
}
5037
5038
static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
5039
{
5040
btf_verifier_log(env, "type=%u component_idx=%d", t->type,
5041
btf_type_decl_tag(t)->component_idx);
5042
}
5043
5044
static const struct btf_kind_operations decl_tag_ops = {
5045
.check_meta = btf_decl_tag_check_meta,
5046
.resolve = btf_decl_tag_resolve,
5047
.check_member = btf_df_check_member,
5048
.check_kflag_member = btf_df_check_kflag_member,
5049
.log_details = btf_decl_tag_log,
5050
.show = btf_df_show,
5051
};
5052
5053
static int btf_func_proto_check(struct btf_verifier_env *env,
5054
const struct btf_type *t)
5055
{
5056
const struct btf_type *ret_type;
5057
const struct btf_param *args;
5058
const struct btf *btf;
5059
u16 nr_args, i;
5060
int err;
5061
5062
btf = env->btf;
5063
args = (const struct btf_param *)(t + 1);
5064
nr_args = btf_type_vlen(t);
5065
5066
/* Check func return type which could be "void" (t->type == 0) */
5067
if (t->type) {
5068
u32 ret_type_id = t->type;
5069
5070
ret_type = btf_type_by_id(btf, ret_type_id);
5071
if (!ret_type) {
5072
btf_verifier_log_type(env, t, "Invalid return type");
5073
return -EINVAL;
5074
}
5075
5076
if (btf_type_is_resolve_source_only(ret_type)) {
5077
btf_verifier_log_type(env, t, "Invalid return type");
5078
return -EINVAL;
5079
}
5080
5081
if (btf_type_needs_resolve(ret_type) &&
5082
!env_type_is_resolved(env, ret_type_id)) {
5083
err = btf_resolve(env, ret_type, ret_type_id);
5084
if (err)
5085
return err;
5086
}
5087
5088
/* Ensure the return type is a type that has a size */
5089
if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5090
btf_verifier_log_type(env, t, "Invalid return type");
5091
return -EINVAL;
5092
}
5093
}
5094
5095
if (!nr_args)
5096
return 0;
5097
5098
/* Last func arg type_id could be 0 if it is a vararg */
5099
if (!args[nr_args - 1].type) {
5100
if (args[nr_args - 1].name_off) {
5101
btf_verifier_log_type(env, t, "Invalid arg#%u",
5102
nr_args);
5103
return -EINVAL;
5104
}
5105
nr_args--;
5106
}
5107
5108
for (i = 0; i < nr_args; i++) {
5109
const struct btf_type *arg_type;
5110
u32 arg_type_id;
5111
5112
arg_type_id = args[i].type;
5113
arg_type = btf_type_by_id(btf, arg_type_id);
5114
if (!arg_type) {
5115
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5116
return -EINVAL;
5117
}
5118
5119
if (btf_type_is_resolve_source_only(arg_type)) {
5120
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5121
return -EINVAL;
5122
}
5123
5124
if (args[i].name_off &&
5125
(!btf_name_offset_valid(btf, args[i].name_off) ||
5126
!btf_name_valid_identifier(btf, args[i].name_off))) {
5127
btf_verifier_log_type(env, t,
5128
"Invalid arg#%u", i + 1);
5129
return -EINVAL;
5130
}
5131
5132
if (btf_type_needs_resolve(arg_type) &&
5133
!env_type_is_resolved(env, arg_type_id)) {
5134
err = btf_resolve(env, arg_type, arg_type_id);
5135
if (err)
5136
return err;
5137
}
5138
5139
if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5140
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5141
return -EINVAL;
5142
}
5143
}
5144
5145
return 0;
5146
}
5147
5148
static int btf_func_check(struct btf_verifier_env *env,
5149
const struct btf_type *t)
5150
{
5151
const struct btf_type *proto_type;
5152
const struct btf_param *args;
5153
const struct btf *btf;
5154
u16 nr_args, i;
5155
5156
btf = env->btf;
5157
proto_type = btf_type_by_id(btf, t->type);
5158
5159
if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5160
btf_verifier_log_type(env, t, "Invalid type_id");
5161
return -EINVAL;
5162
}
5163
5164
args = (const struct btf_param *)(proto_type + 1);
5165
nr_args = btf_type_vlen(proto_type);
5166
for (i = 0; i < nr_args; i++) {
5167
if (!args[i].name_off && args[i].type) {
5168
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5169
return -EINVAL;
5170
}
5171
}
5172
5173
return 0;
5174
}
5175
5176
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5177
[BTF_KIND_INT] = &int_ops,
5178
[BTF_KIND_PTR] = &ptr_ops,
5179
[BTF_KIND_ARRAY] = &array_ops,
5180
[BTF_KIND_STRUCT] = &struct_ops,
5181
[BTF_KIND_UNION] = &struct_ops,
5182
[BTF_KIND_ENUM] = &enum_ops,
5183
[BTF_KIND_FWD] = &fwd_ops,
5184
[BTF_KIND_TYPEDEF] = &modifier_ops,
5185
[BTF_KIND_VOLATILE] = &modifier_ops,
5186
[BTF_KIND_CONST] = &modifier_ops,
5187
[BTF_KIND_RESTRICT] = &modifier_ops,
5188
[BTF_KIND_FUNC] = &func_ops,
5189
[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5190
[BTF_KIND_VAR] = &var_ops,
5191
[BTF_KIND_DATASEC] = &datasec_ops,
5192
[BTF_KIND_FLOAT] = &float_ops,
5193
[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5194
[BTF_KIND_TYPE_TAG] = &modifier_ops,
5195
[BTF_KIND_ENUM64] = &enum64_ops,
5196
};
5197
5198
static s32 btf_check_meta(struct btf_verifier_env *env,
5199
const struct btf_type *t,
5200
u32 meta_left)
5201
{
5202
u32 saved_meta_left = meta_left;
5203
s32 var_meta_size;
5204
5205
if (meta_left < sizeof(*t)) {
5206
btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5207
env->log_type_id, meta_left, sizeof(*t));
5208
return -EINVAL;
5209
}
5210
meta_left -= sizeof(*t);
5211
5212
if (t->info & ~BTF_INFO_MASK) {
5213
btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5214
env->log_type_id, t->info);
5215
return -EINVAL;
5216
}
5217
5218
if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5219
BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5220
btf_verifier_log(env, "[%u] Invalid kind:%u",
5221
env->log_type_id, BTF_INFO_KIND(t->info));
5222
return -EINVAL;
5223
}
5224
5225
if (!btf_name_offset_valid(env->btf, t->name_off)) {
5226
btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5227
env->log_type_id, t->name_off);
5228
return -EINVAL;
5229
}
5230
5231
var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5232
if (var_meta_size < 0)
5233
return var_meta_size;
5234
5235
meta_left -= var_meta_size;
5236
5237
return saved_meta_left - meta_left;
5238
}
5239
5240
static int btf_check_all_metas(struct btf_verifier_env *env)
5241
{
5242
struct btf *btf = env->btf;
5243
struct btf_header *hdr;
5244
void *cur, *end;
5245
5246
hdr = &btf->hdr;
5247
cur = btf->nohdr_data + hdr->type_off;
5248
end = cur + hdr->type_len;
5249
5250
env->log_type_id = btf->base_btf ? btf->start_id : 1;
5251
while (cur < end) {
5252
struct btf_type *t = cur;
5253
s32 meta_size;
5254
5255
meta_size = btf_check_meta(env, t, end - cur);
5256
if (meta_size < 0)
5257
return meta_size;
5258
5259
btf_add_type(env, t);
5260
cur += meta_size;
5261
env->log_type_id++;
5262
}
5263
5264
return 0;
5265
}
5266
5267
static bool btf_resolve_valid(struct btf_verifier_env *env,
5268
const struct btf_type *t,
5269
u32 type_id)
5270
{
5271
struct btf *btf = env->btf;
5272
5273
if (!env_type_is_resolved(env, type_id))
5274
return false;
5275
5276
if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5277
return !btf_resolved_type_id(btf, type_id) &&
5278
!btf_resolved_type_size(btf, type_id);
5279
5280
if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5281
return btf_resolved_type_id(btf, type_id) &&
5282
!btf_resolved_type_size(btf, type_id);
5283
5284
if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5285
btf_type_is_var(t)) {
5286
t = btf_type_id_resolve(btf, &type_id);
5287
return t &&
5288
!btf_type_is_modifier(t) &&
5289
!btf_type_is_var(t) &&
5290
!btf_type_is_datasec(t);
5291
}
5292
5293
if (btf_type_is_array(t)) {
5294
const struct btf_array *array = btf_type_array(t);
5295
const struct btf_type *elem_type;
5296
u32 elem_type_id = array->type;
5297
u32 elem_size;
5298
5299
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5300
return elem_type && !btf_type_is_modifier(elem_type) &&
5301
(array->nelems * elem_size ==
5302
btf_resolved_type_size(btf, type_id));
5303
}
5304
5305
return false;
5306
}
5307
5308
static int btf_resolve(struct btf_verifier_env *env,
5309
const struct btf_type *t, u32 type_id)
5310
{
5311
u32 save_log_type_id = env->log_type_id;
5312
const struct resolve_vertex *v;
5313
int err = 0;
5314
5315
env->resolve_mode = RESOLVE_TBD;
5316
env_stack_push(env, t, type_id);
5317
while (!err && (v = env_stack_peak(env))) {
5318
env->log_type_id = v->type_id;
5319
err = btf_type_ops(v->t)->resolve(env, v);
5320
}
5321
5322
env->log_type_id = type_id;
5323
if (err == -E2BIG) {
5324
btf_verifier_log_type(env, t,
5325
"Exceeded max resolving depth:%u",
5326
MAX_RESOLVE_DEPTH);
5327
} else if (err == -EEXIST) {
5328
btf_verifier_log_type(env, t, "Loop detected");
5329
}
5330
5331
/* Final sanity check */
5332
if (!err && !btf_resolve_valid(env, t, type_id)) {
5333
btf_verifier_log_type(env, t, "Invalid resolve state");
5334
err = -EINVAL;
5335
}
5336
5337
env->log_type_id = save_log_type_id;
5338
return err;
5339
}
5340
5341
static int btf_check_all_types(struct btf_verifier_env *env)
5342
{
5343
struct btf *btf = env->btf;
5344
const struct btf_type *t;
5345
u32 type_id, i;
5346
int err;
5347
5348
err = env_resolve_init(env);
5349
if (err)
5350
return err;
5351
5352
env->phase++;
5353
for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5354
type_id = btf->start_id + i;
5355
t = btf_type_by_id(btf, type_id);
5356
5357
env->log_type_id = type_id;
5358
if (btf_type_needs_resolve(t) &&
5359
!env_type_is_resolved(env, type_id)) {
5360
err = btf_resolve(env, t, type_id);
5361
if (err)
5362
return err;
5363
}
5364
5365
if (btf_type_is_func_proto(t)) {
5366
err = btf_func_proto_check(env, t);
5367
if (err)
5368
return err;
5369
}
5370
}
5371
5372
return 0;
5373
}
5374
5375
static int btf_parse_type_sec(struct btf_verifier_env *env)
5376
{
5377
const struct btf_header *hdr = &env->btf->hdr;
5378
int err;
5379
5380
/* Type section must align to 4 bytes */
5381
if (hdr->type_off & (sizeof(u32) - 1)) {
5382
btf_verifier_log(env, "Unaligned type_off");
5383
return -EINVAL;
5384
}
5385
5386
if (!env->btf->base_btf && !hdr->type_len) {
5387
btf_verifier_log(env, "No type found");
5388
return -EINVAL;
5389
}
5390
5391
err = btf_check_all_metas(env);
5392
if (err)
5393
return err;
5394
5395
return btf_check_all_types(env);
5396
}
5397
5398
static int btf_parse_str_sec(struct btf_verifier_env *env)
5399
{
5400
const struct btf_header *hdr;
5401
struct btf *btf = env->btf;
5402
const char *start, *end;
5403
5404
hdr = &btf->hdr;
5405
start = btf->nohdr_data + hdr->str_off;
5406
end = start + hdr->str_len;
5407
5408
if (end != btf->data + btf->data_size) {
5409
btf_verifier_log(env, "String section is not at the end");
5410
return -EINVAL;
5411
}
5412
5413
btf->strings = start;
5414
5415
if (btf->base_btf && !hdr->str_len)
5416
return 0;
5417
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5418
btf_verifier_log(env, "Invalid string section");
5419
return -EINVAL;
5420
}
5421
if (!btf->base_btf && start[0]) {
5422
btf_verifier_log(env, "Invalid string section");
5423
return -EINVAL;
5424
}
5425
5426
return 0;
5427
}
5428
5429
static const size_t btf_sec_info_offset[] = {
5430
offsetof(struct btf_header, type_off),
5431
offsetof(struct btf_header, str_off),
5432
};
5433
5434
static int btf_sec_info_cmp(const void *a, const void *b)
5435
{
5436
const struct btf_sec_info *x = a;
5437
const struct btf_sec_info *y = b;
5438
5439
return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5440
}
5441
5442
static int btf_check_sec_info(struct btf_verifier_env *env,
5443
u32 btf_data_size)
5444
{
5445
struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5446
u32 total, expected_total, i;
5447
const struct btf_header *hdr;
5448
const struct btf *btf;
5449
5450
btf = env->btf;
5451
hdr = &btf->hdr;
5452
5453
/* Populate the secs from hdr */
5454
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5455
secs[i] = *(struct btf_sec_info *)((void *)hdr +
5456
btf_sec_info_offset[i]);
5457
5458
sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5459
sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5460
5461
/* Check for gaps and overlap among sections */
5462
total = 0;
5463
expected_total = btf_data_size - hdr->hdr_len;
5464
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5465
if (expected_total < secs[i].off) {
5466
btf_verifier_log(env, "Invalid section offset");
5467
return -EINVAL;
5468
}
5469
if (total < secs[i].off) {
5470
/* gap */
5471
btf_verifier_log(env, "Unsupported section found");
5472
return -EINVAL;
5473
}
5474
if (total > secs[i].off) {
5475
btf_verifier_log(env, "Section overlap found");
5476
return -EINVAL;
5477
}
5478
if (expected_total - total < secs[i].len) {
5479
btf_verifier_log(env,
5480
"Total section length too long");
5481
return -EINVAL;
5482
}
5483
total += secs[i].len;
5484
}
5485
5486
/* There is data other than hdr and known sections */
5487
if (expected_total != total) {
5488
btf_verifier_log(env, "Unsupported section found");
5489
return -EINVAL;
5490
}
5491
5492
return 0;
5493
}
5494
5495
static int btf_parse_hdr(struct btf_verifier_env *env)
5496
{
5497
u32 hdr_len, hdr_copy, btf_data_size;
5498
const struct btf_header *hdr;
5499
struct btf *btf;
5500
5501
btf = env->btf;
5502
btf_data_size = btf->data_size;
5503
5504
if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5505
btf_verifier_log(env, "hdr_len not found");
5506
return -EINVAL;
5507
}
5508
5509
hdr = btf->data;
5510
hdr_len = hdr->hdr_len;
5511
if (btf_data_size < hdr_len) {
5512
btf_verifier_log(env, "btf_header not found");
5513
return -EINVAL;
5514
}
5515
5516
/* Ensure the unsupported header fields are zero */
5517
if (hdr_len > sizeof(btf->hdr)) {
5518
u8 *expected_zero = btf->data + sizeof(btf->hdr);
5519
u8 *end = btf->data + hdr_len;
5520
5521
for (; expected_zero < end; expected_zero++) {
5522
if (*expected_zero) {
5523
btf_verifier_log(env, "Unsupported btf_header");
5524
return -E2BIG;
5525
}
5526
}
5527
}
5528
5529
hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5530
memcpy(&btf->hdr, btf->data, hdr_copy);
5531
5532
hdr = &btf->hdr;
5533
5534
btf_verifier_log_hdr(env, btf_data_size);
5535
5536
if (hdr->magic != BTF_MAGIC) {
5537
btf_verifier_log(env, "Invalid magic");
5538
return -EINVAL;
5539
}
5540
5541
if (hdr->version != BTF_VERSION) {
5542
btf_verifier_log(env, "Unsupported version");
5543
return -ENOTSUPP;
5544
}
5545
5546
if (hdr->flags) {
5547
btf_verifier_log(env, "Unsupported flags");
5548
return -ENOTSUPP;
5549
}
5550
5551
if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5552
btf_verifier_log(env, "No data");
5553
return -EINVAL;
5554
}
5555
5556
return btf_check_sec_info(env, btf_data_size);
5557
}
5558
5559
static const char *alloc_obj_fields[] = {
5560
"bpf_spin_lock",
5561
"bpf_list_head",
5562
"bpf_list_node",
5563
"bpf_rb_root",
5564
"bpf_rb_node",
5565
"bpf_refcount",
5566
};
5567
5568
static struct btf_struct_metas *
5569
btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5570
{
5571
struct btf_struct_metas *tab = NULL;
5572
struct btf_id_set *aof;
5573
int i, n, id, ret;
5574
5575
BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5576
BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5577
5578
aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
5579
if (!aof)
5580
return ERR_PTR(-ENOMEM);
5581
aof->cnt = 0;
5582
5583
for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5584
/* Try to find whether this special type exists in user BTF, and
5585
* if so remember its ID so we can easily find it among members
5586
* of structs that we iterate in the next loop.
5587
*/
5588
struct btf_id_set *new_aof;
5589
5590
id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5591
if (id < 0)
5592
continue;
5593
5594
new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5595
GFP_KERNEL | __GFP_NOWARN);
5596
if (!new_aof) {
5597
ret = -ENOMEM;
5598
goto free_aof;
5599
}
5600
aof = new_aof;
5601
aof->ids[aof->cnt++] = id;
5602
}
5603
5604
n = btf_nr_types(btf);
5605
for (i = 1; i < n; i++) {
5606
/* Try to find if there are kptrs in user BTF and remember their ID */
5607
struct btf_id_set *new_aof;
5608
struct btf_field_info tmp;
5609
const struct btf_type *t;
5610
5611
t = btf_type_by_id(btf, i);
5612
if (!t) {
5613
ret = -EINVAL;
5614
goto free_aof;
5615
}
5616
5617
ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
5618
if (ret != BTF_FIELD_FOUND)
5619
continue;
5620
5621
new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1),
5622
GFP_KERNEL | __GFP_NOWARN);
5623
if (!new_aof) {
5624
ret = -ENOMEM;
5625
goto free_aof;
5626
}
5627
aof = new_aof;
5628
aof->ids[aof->cnt++] = i;
5629
}
5630
5631
if (!aof->cnt) {
5632
kfree(aof);
5633
return NULL;
5634
}
5635
sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
5636
5637
for (i = 1; i < n; i++) {
5638
struct btf_struct_metas *new_tab;
5639
const struct btf_member *member;
5640
struct btf_struct_meta *type;
5641
struct btf_record *record;
5642
const struct btf_type *t;
5643
int j, tab_cnt;
5644
5645
t = btf_type_by_id(btf, i);
5646
if (!__btf_type_is_struct(t))
5647
continue;
5648
5649
cond_resched();
5650
5651
for_each_member(j, t, member) {
5652
if (btf_id_set_contains(aof, member->type))
5653
goto parse;
5654
}
5655
continue;
5656
parse:
5657
tab_cnt = tab ? tab->cnt : 0;
5658
new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1),
5659
GFP_KERNEL | __GFP_NOWARN);
5660
if (!new_tab) {
5661
ret = -ENOMEM;
5662
goto free;
5663
}
5664
if (!tab)
5665
new_tab->cnt = 0;
5666
tab = new_tab;
5667
5668
type = &tab->types[tab->cnt];
5669
type->btf_id = i;
5670
record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5671
BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
5672
BPF_KPTR, t->size);
5673
/* The record cannot be unset, treat it as an error if so */
5674
if (IS_ERR_OR_NULL(record)) {
5675
ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5676
goto free;
5677
}
5678
type->record = record;
5679
tab->cnt++;
5680
}
5681
kfree(aof);
5682
return tab;
5683
free:
5684
btf_struct_metas_free(tab);
5685
free_aof:
5686
kfree(aof);
5687
return ERR_PTR(ret);
5688
}
5689
5690
struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5691
{
5692
struct btf_struct_metas *tab;
5693
5694
BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5695
tab = btf->struct_meta_tab;
5696
if (!tab)
5697
return NULL;
5698
return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5699
}
5700
5701
static int btf_check_type_tags(struct btf_verifier_env *env,
5702
struct btf *btf, int start_id)
5703
{
5704
int i, n, good_id = start_id - 1;
5705
bool in_tags;
5706
5707
n = btf_nr_types(btf);
5708
for (i = start_id; i < n; i++) {
5709
const struct btf_type *t;
5710
int chain_limit = 32;
5711
u32 cur_id = i;
5712
5713
t = btf_type_by_id(btf, i);
5714
if (!t)
5715
return -EINVAL;
5716
if (!btf_type_is_modifier(t))
5717
continue;
5718
5719
cond_resched();
5720
5721
in_tags = btf_type_is_type_tag(t);
5722
while (btf_type_is_modifier(t)) {
5723
if (!chain_limit--) {
5724
btf_verifier_log(env, "Max chain length or cycle detected");
5725
return -ELOOP;
5726
}
5727
if (btf_type_is_type_tag(t)) {
5728
if (!in_tags) {
5729
btf_verifier_log(env, "Type tags don't precede modifiers");
5730
return -EINVAL;
5731
}
5732
} else if (in_tags) {
5733
in_tags = false;
5734
}
5735
if (cur_id <= good_id)
5736
break;
5737
/* Move to next type */
5738
cur_id = t->type;
5739
t = btf_type_by_id(btf, cur_id);
5740
if (!t)
5741
return -EINVAL;
5742
}
5743
good_id = i;
5744
}
5745
return 0;
5746
}
5747
5748
static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5749
{
5750
u32 log_true_size;
5751
int err;
5752
5753
err = bpf_vlog_finalize(log, &log_true_size);
5754
5755
if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5756
copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5757
&log_true_size, sizeof(log_true_size)))
5758
err = -EFAULT;
5759
5760
return err;
5761
}
5762
5763
static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5764
{
5765
bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5766
char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5767
struct btf_struct_metas *struct_meta_tab;
5768
struct btf_verifier_env *env = NULL;
5769
struct btf *btf = NULL;
5770
u8 *data;
5771
int err, ret;
5772
5773
if (attr->btf_size > BTF_MAX_SIZE)
5774
return ERR_PTR(-E2BIG);
5775
5776
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5777
if (!env)
5778
return ERR_PTR(-ENOMEM);
5779
5780
/* user could have requested verbose verifier output
5781
* and supplied buffer to store the verification trace
5782
*/
5783
err = bpf_vlog_init(&env->log, attr->btf_log_level,
5784
log_ubuf, attr->btf_log_size);
5785
if (err)
5786
goto errout_free;
5787
5788
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5789
if (!btf) {
5790
err = -ENOMEM;
5791
goto errout;
5792
}
5793
env->btf = btf;
5794
5795
data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5796
if (!data) {
5797
err = -ENOMEM;
5798
goto errout;
5799
}
5800
5801
btf->data = data;
5802
btf->data_size = attr->btf_size;
5803
5804
if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5805
err = -EFAULT;
5806
goto errout;
5807
}
5808
5809
err = btf_parse_hdr(env);
5810
if (err)
5811
goto errout;
5812
5813
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5814
5815
err = btf_parse_str_sec(env);
5816
if (err)
5817
goto errout;
5818
5819
err = btf_parse_type_sec(env);
5820
if (err)
5821
goto errout;
5822
5823
err = btf_check_type_tags(env, btf, 1);
5824
if (err)
5825
goto errout;
5826
5827
struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5828
if (IS_ERR(struct_meta_tab)) {
5829
err = PTR_ERR(struct_meta_tab);
5830
goto errout;
5831
}
5832
btf->struct_meta_tab = struct_meta_tab;
5833
5834
if (struct_meta_tab) {
5835
int i;
5836
5837
for (i = 0; i < struct_meta_tab->cnt; i++) {
5838
err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5839
if (err < 0)
5840
goto errout_meta;
5841
}
5842
}
5843
5844
err = finalize_log(&env->log, uattr, uattr_size);
5845
if (err)
5846
goto errout_free;
5847
5848
btf_verifier_env_free(env);
5849
refcount_set(&btf->refcnt, 1);
5850
return btf;
5851
5852
errout_meta:
5853
btf_free_struct_meta_tab(btf);
5854
errout:
5855
/* overwrite err with -ENOSPC or -EFAULT */
5856
ret = finalize_log(&env->log, uattr, uattr_size);
5857
if (ret)
5858
err = ret;
5859
errout_free:
5860
btf_verifier_env_free(env);
5861
if (btf)
5862
btf_free(btf);
5863
return ERR_PTR(err);
5864
}
5865
5866
extern char __start_BTF[];
5867
extern char __stop_BTF[];
5868
extern struct btf *btf_vmlinux;
5869
5870
#define BPF_MAP_TYPE(_id, _ops)
5871
#define BPF_LINK_TYPE(_id, _name)
5872
static union {
5873
struct bpf_ctx_convert {
5874
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5875
prog_ctx_type _id##_prog; \
5876
kern_ctx_type _id##_kern;
5877
#include <linux/bpf_types.h>
5878
#undef BPF_PROG_TYPE
5879
} *__t;
5880
/* 't' is written once under lock. Read many times. */
5881
const struct btf_type *t;
5882
} bpf_ctx_convert;
5883
enum {
5884
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5885
__ctx_convert##_id,
5886
#include <linux/bpf_types.h>
5887
#undef BPF_PROG_TYPE
5888
__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5889
};
5890
static u8 bpf_ctx_convert_map[] = {
5891
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5892
[_id] = __ctx_convert##_id,
5893
#include <linux/bpf_types.h>
5894
#undef BPF_PROG_TYPE
5895
0, /* avoid empty array */
5896
};
5897
#undef BPF_MAP_TYPE
5898
#undef BPF_LINK_TYPE
5899
5900
static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5901
{
5902
const struct btf_type *conv_struct;
5903
const struct btf_member *ctx_type;
5904
5905
conv_struct = bpf_ctx_convert.t;
5906
if (!conv_struct)
5907
return NULL;
5908
/* prog_type is valid bpf program type. No need for bounds check. */
5909
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5910
/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5911
* Like 'struct __sk_buff'
5912
*/
5913
return btf_type_by_id(btf_vmlinux, ctx_type->type);
5914
}
5915
5916
static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5917
{
5918
const struct btf_type *conv_struct;
5919
const struct btf_member *ctx_type;
5920
5921
conv_struct = bpf_ctx_convert.t;
5922
if (!conv_struct)
5923
return -EFAULT;
5924
/* prog_type is valid bpf program type. No need for bounds check. */
5925
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5926
/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5927
* Like 'struct sk_buff'
5928
*/
5929
return ctx_type->type;
5930
}
5931
5932
bool btf_is_projection_of(const char *pname, const char *tname)
5933
{
5934
if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5935
return true;
5936
if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5937
return true;
5938
return false;
5939
}
5940
5941
bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5942
const struct btf_type *t, enum bpf_prog_type prog_type,
5943
int arg)
5944
{
5945
const struct btf_type *ctx_type;
5946
const char *tname, *ctx_tname;
5947
5948
t = btf_type_by_id(btf, t->type);
5949
5950
/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5951
* check before we skip all the typedef below.
5952
*/
5953
if (prog_type == BPF_PROG_TYPE_KPROBE) {
5954
while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5955
t = btf_type_by_id(btf, t->type);
5956
5957
if (btf_type_is_typedef(t)) {
5958
tname = btf_name_by_offset(btf, t->name_off);
5959
if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5960
return true;
5961
}
5962
}
5963
5964
while (btf_type_is_modifier(t))
5965
t = btf_type_by_id(btf, t->type);
5966
if (!btf_type_is_struct(t)) {
5967
/* Only pointer to struct is supported for now.
5968
* That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5969
* is not supported yet.
5970
* BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5971
*/
5972
return false;
5973
}
5974
tname = btf_name_by_offset(btf, t->name_off);
5975
if (!tname) {
5976
bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5977
return false;
5978
}
5979
5980
ctx_type = find_canonical_prog_ctx_type(prog_type);
5981
if (!ctx_type) {
5982
bpf_log(log, "btf_vmlinux is malformed\n");
5983
/* should not happen */
5984
return false;
5985
}
5986
again:
5987
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5988
if (!ctx_tname) {
5989
/* should not happen */
5990
bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5991
return false;
5992
}
5993
/* program types without named context types work only with arg:ctx tag */
5994
if (ctx_tname[0] == '\0')
5995
return false;
5996
/* only compare that prog's ctx type name is the same as
5997
* kernel expects. No need to compare field by field.
5998
* It's ok for bpf prog to do:
5999
* struct __sk_buff {};
6000
* int socket_filter_bpf_prog(struct __sk_buff *skb)
6001
* { // no fields of skb are ever used }
6002
*/
6003
if (btf_is_projection_of(ctx_tname, tname))
6004
return true;
6005
if (strcmp(ctx_tname, tname)) {
6006
/* bpf_user_pt_regs_t is a typedef, so resolve it to
6007
* underlying struct and check name again
6008
*/
6009
if (!btf_type_is_modifier(ctx_type))
6010
return false;
6011
while (btf_type_is_modifier(ctx_type))
6012
ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6013
goto again;
6014
}
6015
return true;
6016
}
6017
6018
/* forward declarations for arch-specific underlying types of
6019
* bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
6020
* compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
6021
* works correctly with __builtin_types_compatible_p() on respective
6022
* architectures
6023
*/
6024
struct user_regs_struct;
6025
struct user_pt_regs;
6026
6027
static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
6028
const struct btf_type *t, int arg,
6029
enum bpf_prog_type prog_type,
6030
enum bpf_attach_type attach_type)
6031
{
6032
const struct btf_type *ctx_type;
6033
const char *tname, *ctx_tname;
6034
6035
if (!btf_is_ptr(t)) {
6036
bpf_log(log, "arg#%d type isn't a pointer\n", arg);
6037
return -EINVAL;
6038
}
6039
t = btf_type_by_id(btf, t->type);
6040
6041
/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
6042
if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
6043
while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
6044
t = btf_type_by_id(btf, t->type);
6045
6046
if (btf_type_is_typedef(t)) {
6047
tname = btf_name_by_offset(btf, t->name_off);
6048
if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
6049
return 0;
6050
}
6051
}
6052
6053
/* all other program types don't use typedefs for context type */
6054
while (btf_type_is_modifier(t))
6055
t = btf_type_by_id(btf, t->type);
6056
6057
/* `void *ctx __arg_ctx` is always valid */
6058
if (btf_type_is_void(t))
6059
return 0;
6060
6061
tname = btf_name_by_offset(btf, t->name_off);
6062
if (str_is_empty(tname)) {
6063
bpf_log(log, "arg#%d type doesn't have a name\n", arg);
6064
return -EINVAL;
6065
}
6066
6067
/* special cases */
6068
switch (prog_type) {
6069
case BPF_PROG_TYPE_KPROBE:
6070
if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6071
return 0;
6072
break;
6073
case BPF_PROG_TYPE_PERF_EVENT:
6074
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6075
__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6076
return 0;
6077
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6078
__btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6079
return 0;
6080
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6081
__btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6082
return 0;
6083
break;
6084
case BPF_PROG_TYPE_RAW_TRACEPOINT:
6085
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6086
/* allow u64* as ctx */
6087
if (btf_is_int(t) && t->size == 8)
6088
return 0;
6089
break;
6090
case BPF_PROG_TYPE_TRACING:
6091
switch (attach_type) {
6092
case BPF_TRACE_RAW_TP:
6093
/* tp_btf program is TRACING, so need special case here */
6094
if (__btf_type_is_struct(t) &&
6095
strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6096
return 0;
6097
/* allow u64* as ctx */
6098
if (btf_is_int(t) && t->size == 8)
6099
return 0;
6100
break;
6101
case BPF_TRACE_ITER:
6102
/* allow struct bpf_iter__xxx types only */
6103
if (__btf_type_is_struct(t) &&
6104
strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6105
return 0;
6106
break;
6107
case BPF_TRACE_FENTRY:
6108
case BPF_TRACE_FEXIT:
6109
case BPF_MODIFY_RETURN:
6110
/* allow u64* as ctx */
6111
if (btf_is_int(t) && t->size == 8)
6112
return 0;
6113
break;
6114
default:
6115
break;
6116
}
6117
break;
6118
case BPF_PROG_TYPE_LSM:
6119
case BPF_PROG_TYPE_STRUCT_OPS:
6120
/* allow u64* as ctx */
6121
if (btf_is_int(t) && t->size == 8)
6122
return 0;
6123
break;
6124
case BPF_PROG_TYPE_TRACEPOINT:
6125
case BPF_PROG_TYPE_SYSCALL:
6126
case BPF_PROG_TYPE_EXT:
6127
return 0; /* anything goes */
6128
default:
6129
break;
6130
}
6131
6132
ctx_type = find_canonical_prog_ctx_type(prog_type);
6133
if (!ctx_type) {
6134
/* should not happen */
6135
bpf_log(log, "btf_vmlinux is malformed\n");
6136
return -EINVAL;
6137
}
6138
6139
/* resolve typedefs and check that underlying structs are matching as well */
6140
while (btf_type_is_modifier(ctx_type))
6141
ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6142
6143
/* if program type doesn't have distinctly named struct type for
6144
* context, then __arg_ctx argument can only be `void *`, which we
6145
* already checked above
6146
*/
6147
if (!__btf_type_is_struct(ctx_type)) {
6148
bpf_log(log, "arg#%d should be void pointer\n", arg);
6149
return -EINVAL;
6150
}
6151
6152
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6153
if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6154
bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6155
return -EINVAL;
6156
}
6157
6158
return 0;
6159
}
6160
6161
static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6162
struct btf *btf,
6163
const struct btf_type *t,
6164
enum bpf_prog_type prog_type,
6165
int arg)
6166
{
6167
if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6168
return -ENOENT;
6169
return find_kern_ctx_type_id(prog_type);
6170
}
6171
6172
int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6173
{
6174
const struct btf_member *kctx_member;
6175
const struct btf_type *conv_struct;
6176
const struct btf_type *kctx_type;
6177
u32 kctx_type_id;
6178
6179
conv_struct = bpf_ctx_convert.t;
6180
/* get member for kernel ctx type */
6181
kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6182
kctx_type_id = kctx_member->type;
6183
kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6184
if (!btf_type_is_struct(kctx_type)) {
6185
bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6186
return -EINVAL;
6187
}
6188
6189
return kctx_type_id;
6190
}
6191
6192
BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id, struct, bpf_ctx_convert)
6193
6194
static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6195
void *data, unsigned int data_size)
6196
{
6197
struct btf *btf = NULL;
6198
int err;
6199
6200
if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6201
return ERR_PTR(-ENOENT);
6202
6203
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6204
if (!btf) {
6205
err = -ENOMEM;
6206
goto errout;
6207
}
6208
env->btf = btf;
6209
6210
btf->data = data;
6211
btf->data_size = data_size;
6212
btf->kernel_btf = true;
6213
snprintf(btf->name, sizeof(btf->name), "%s", name);
6214
6215
err = btf_parse_hdr(env);
6216
if (err)
6217
goto errout;
6218
6219
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6220
6221
err = btf_parse_str_sec(env);
6222
if (err)
6223
goto errout;
6224
6225
err = btf_check_all_metas(env);
6226
if (err)
6227
goto errout;
6228
6229
err = btf_check_type_tags(env, btf, 1);
6230
if (err)
6231
goto errout;
6232
6233
refcount_set(&btf->refcnt, 1);
6234
6235
return btf;
6236
6237
errout:
6238
if (btf) {
6239
kvfree(btf->types);
6240
kfree(btf);
6241
}
6242
return ERR_PTR(err);
6243
}
6244
6245
struct btf *btf_parse_vmlinux(void)
6246
{
6247
struct btf_verifier_env *env = NULL;
6248
struct bpf_verifier_log *log;
6249
struct btf *btf;
6250
int err;
6251
6252
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6253
if (!env)
6254
return ERR_PTR(-ENOMEM);
6255
6256
log = &env->log;
6257
log->level = BPF_LOG_KERNEL;
6258
btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6259
if (IS_ERR(btf))
6260
goto err_out;
6261
6262
/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6263
bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6264
err = btf_alloc_id(btf);
6265
if (err) {
6266
btf_free(btf);
6267
btf = ERR_PTR(err);
6268
}
6269
err_out:
6270
btf_verifier_env_free(env);
6271
return btf;
6272
}
6273
6274
/* If .BTF_ids section was created with distilled base BTF, both base and
6275
* split BTF ids will need to be mapped to actual base/split ids for
6276
* BTF now that it has been relocated.
6277
*/
6278
static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6279
{
6280
if (!btf->base_btf || !btf->base_id_map)
6281
return id;
6282
return btf->base_id_map[id];
6283
}
6284
6285
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6286
6287
static struct btf *btf_parse_module(const char *module_name, const void *data,
6288
unsigned int data_size, void *base_data,
6289
unsigned int base_data_size)
6290
{
6291
struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6292
struct btf_verifier_env *env = NULL;
6293
struct bpf_verifier_log *log;
6294
int err = 0;
6295
6296
vmlinux_btf = bpf_get_btf_vmlinux();
6297
if (IS_ERR(vmlinux_btf))
6298
return vmlinux_btf;
6299
if (!vmlinux_btf)
6300
return ERR_PTR(-EINVAL);
6301
6302
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6303
if (!env)
6304
return ERR_PTR(-ENOMEM);
6305
6306
log = &env->log;
6307
log->level = BPF_LOG_KERNEL;
6308
6309
if (base_data) {
6310
base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6311
if (IS_ERR(base_btf)) {
6312
err = PTR_ERR(base_btf);
6313
goto errout;
6314
}
6315
} else {
6316
base_btf = vmlinux_btf;
6317
}
6318
6319
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6320
if (!btf) {
6321
err = -ENOMEM;
6322
goto errout;
6323
}
6324
env->btf = btf;
6325
6326
btf->base_btf = base_btf;
6327
btf->start_id = base_btf->nr_types;
6328
btf->start_str_off = base_btf->hdr.str_len;
6329
btf->kernel_btf = true;
6330
snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6331
6332
btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
6333
if (!btf->data) {
6334
err = -ENOMEM;
6335
goto errout;
6336
}
6337
btf->data_size = data_size;
6338
6339
err = btf_parse_hdr(env);
6340
if (err)
6341
goto errout;
6342
6343
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6344
6345
err = btf_parse_str_sec(env);
6346
if (err)
6347
goto errout;
6348
6349
err = btf_check_all_metas(env);
6350
if (err)
6351
goto errout;
6352
6353
err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6354
if (err)
6355
goto errout;
6356
6357
if (base_btf != vmlinux_btf) {
6358
err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6359
if (err)
6360
goto errout;
6361
btf_free(base_btf);
6362
base_btf = vmlinux_btf;
6363
}
6364
6365
btf_verifier_env_free(env);
6366
refcount_set(&btf->refcnt, 1);
6367
return btf;
6368
6369
errout:
6370
btf_verifier_env_free(env);
6371
if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6372
btf_free(base_btf);
6373
if (btf) {
6374
kvfree(btf->data);
6375
kvfree(btf->types);
6376
kfree(btf);
6377
}
6378
return ERR_PTR(err);
6379
}
6380
6381
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6382
6383
struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6384
{
6385
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6386
6387
if (tgt_prog)
6388
return tgt_prog->aux->btf;
6389
else
6390
return prog->aux->attach_btf;
6391
}
6392
6393
static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t)
6394
{
6395
/* skip modifiers */
6396
t = btf_type_skip_modifiers(btf, t->type, NULL);
6397
return btf_type_is_void(t) || btf_type_is_int(t);
6398
}
6399
6400
u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6401
int off)
6402
{
6403
const struct btf_param *args;
6404
const struct btf_type *t;
6405
u32 offset = 0, nr_args;
6406
int i;
6407
6408
if (!func_proto)
6409
return off / 8;
6410
6411
nr_args = btf_type_vlen(func_proto);
6412
args = (const struct btf_param *)(func_proto + 1);
6413
for (i = 0; i < nr_args; i++) {
6414
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6415
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6416
if (off < offset)
6417
return i;
6418
}
6419
6420
t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6421
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6422
if (off < offset)
6423
return nr_args;
6424
6425
return nr_args + 1;
6426
}
6427
6428
static bool prog_args_trusted(const struct bpf_prog *prog)
6429
{
6430
enum bpf_attach_type atype = prog->expected_attach_type;
6431
6432
switch (prog->type) {
6433
case BPF_PROG_TYPE_TRACING:
6434
return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6435
case BPF_PROG_TYPE_LSM:
6436
return bpf_lsm_is_trusted(prog);
6437
case BPF_PROG_TYPE_STRUCT_OPS:
6438
return true;
6439
default:
6440
return false;
6441
}
6442
}
6443
6444
int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6445
u32 arg_no)
6446
{
6447
const struct btf_param *args;
6448
const struct btf_type *t;
6449
int off = 0, i;
6450
u32 sz;
6451
6452
args = btf_params(func_proto);
6453
for (i = 0; i < arg_no; i++) {
6454
t = btf_type_by_id(btf, args[i].type);
6455
t = btf_resolve_size(btf, t, &sz);
6456
if (IS_ERR(t))
6457
return PTR_ERR(t);
6458
off += roundup(sz, 8);
6459
}
6460
6461
return off;
6462
}
6463
6464
struct bpf_raw_tp_null_args {
6465
const char *func;
6466
u64 mask;
6467
};
6468
6469
static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
6470
/* sched */
6471
{ "sched_pi_setprio", 0x10 },
6472
/* ... from sched_numa_pair_template event class */
6473
{ "sched_stick_numa", 0x100 },
6474
{ "sched_swap_numa", 0x100 },
6475
/* afs */
6476
{ "afs_make_fs_call", 0x10 },
6477
{ "afs_make_fs_calli", 0x10 },
6478
{ "afs_make_fs_call1", 0x10 },
6479
{ "afs_make_fs_call2", 0x10 },
6480
{ "afs_protocol_error", 0x1 },
6481
{ "afs_flock_ev", 0x10 },
6482
/* cachefiles */
6483
{ "cachefiles_lookup", 0x1 | 0x200 },
6484
{ "cachefiles_unlink", 0x1 },
6485
{ "cachefiles_rename", 0x1 },
6486
{ "cachefiles_prep_read", 0x1 },
6487
{ "cachefiles_mark_active", 0x1 },
6488
{ "cachefiles_mark_failed", 0x1 },
6489
{ "cachefiles_mark_inactive", 0x1 },
6490
{ "cachefiles_vfs_error", 0x1 },
6491
{ "cachefiles_io_error", 0x1 },
6492
{ "cachefiles_ondemand_open", 0x1 },
6493
{ "cachefiles_ondemand_copen", 0x1 },
6494
{ "cachefiles_ondemand_close", 0x1 },
6495
{ "cachefiles_ondemand_read", 0x1 },
6496
{ "cachefiles_ondemand_cread", 0x1 },
6497
{ "cachefiles_ondemand_fd_write", 0x1 },
6498
{ "cachefiles_ondemand_fd_release", 0x1 },
6499
/* ext4, from ext4__mballoc event class */
6500
{ "ext4_mballoc_discard", 0x10 },
6501
{ "ext4_mballoc_free", 0x10 },
6502
/* fib */
6503
{ "fib_table_lookup", 0x100 },
6504
/* filelock */
6505
/* ... from filelock_lock event class */
6506
{ "posix_lock_inode", 0x10 },
6507
{ "fcntl_setlk", 0x10 },
6508
{ "locks_remove_posix", 0x10 },
6509
{ "flock_lock_inode", 0x10 },
6510
/* ... from filelock_lease event class */
6511
{ "break_lease_noblock", 0x10 },
6512
{ "break_lease_block", 0x10 },
6513
{ "break_lease_unblock", 0x10 },
6514
{ "generic_delete_lease", 0x10 },
6515
{ "time_out_leases", 0x10 },
6516
/* host1x */
6517
{ "host1x_cdma_push_gather", 0x10000 },
6518
/* huge_memory */
6519
{ "mm_khugepaged_scan_pmd", 0x10 },
6520
{ "mm_collapse_huge_page_isolate", 0x1 },
6521
{ "mm_khugepaged_scan_file", 0x10 },
6522
{ "mm_khugepaged_collapse_file", 0x10 },
6523
/* kmem */
6524
{ "mm_page_alloc", 0x1 },
6525
{ "mm_page_pcpu_drain", 0x1 },
6526
/* .. from mm_page event class */
6527
{ "mm_page_alloc_zone_locked", 0x1 },
6528
/* netfs */
6529
{ "netfs_failure", 0x10 },
6530
/* power */
6531
{ "device_pm_callback_start", 0x10 },
6532
/* qdisc */
6533
{ "qdisc_dequeue", 0x1000 },
6534
/* rxrpc */
6535
{ "rxrpc_recvdata", 0x1 },
6536
{ "rxrpc_resend", 0x10 },
6537
{ "rxrpc_tq", 0x10 },
6538
{ "rxrpc_client", 0x1 },
6539
/* skb */
6540
{"kfree_skb", 0x1000},
6541
/* sunrpc */
6542
{ "xs_stream_read_data", 0x1 },
6543
/* ... from xprt_cong_event event class */
6544
{ "xprt_reserve_cong", 0x10 },
6545
{ "xprt_release_cong", 0x10 },
6546
{ "xprt_get_cong", 0x10 },
6547
{ "xprt_put_cong", 0x10 },
6548
/* tcp */
6549
{ "tcp_send_reset", 0x11 },
6550
{ "tcp_sendmsg_locked", 0x100 },
6551
/* tegra_apb_dma */
6552
{ "tegra_dma_tx_status", 0x100 },
6553
/* timer_migration */
6554
{ "tmigr_update_events", 0x1 },
6555
/* writeback, from writeback_folio_template event class */
6556
{ "writeback_dirty_folio", 0x10 },
6557
{ "folio_wait_writeback", 0x10 },
6558
/* rdma */
6559
{ "mr_integ_alloc", 0x2000 },
6560
/* bpf_testmod */
6561
{ "bpf_testmod_test_read", 0x0 },
6562
/* amdgpu */
6563
{ "amdgpu_vm_bo_map", 0x1 },
6564
{ "amdgpu_vm_bo_unmap", 0x1 },
6565
/* netfs */
6566
{ "netfs_folioq", 0x1 },
6567
/* xfs from xfs_defer_pending_class */
6568
{ "xfs_defer_create_intent", 0x1 },
6569
{ "xfs_defer_cancel_list", 0x1 },
6570
{ "xfs_defer_pending_finish", 0x1 },
6571
{ "xfs_defer_pending_abort", 0x1 },
6572
{ "xfs_defer_relog_intent", 0x1 },
6573
{ "xfs_defer_isolate_paused", 0x1 },
6574
{ "xfs_defer_item_pause", 0x1 },
6575
{ "xfs_defer_item_unpause", 0x1 },
6576
/* xfs from xfs_defer_pending_item_class */
6577
{ "xfs_defer_add_item", 0x1 },
6578
{ "xfs_defer_cancel_item", 0x1 },
6579
{ "xfs_defer_finish_item", 0x1 },
6580
/* xfs from xfs_icwalk_class */
6581
{ "xfs_ioc_free_eofblocks", 0x10 },
6582
{ "xfs_blockgc_free_space", 0x10 },
6583
/* xfs from xfs_btree_cur_class */
6584
{ "xfs_btree_updkeys", 0x100 },
6585
{ "xfs_btree_overlapped_query_range", 0x100 },
6586
/* xfs from xfs_imap_class*/
6587
{ "xfs_map_blocks_found", 0x10000 },
6588
{ "xfs_map_blocks_alloc", 0x10000 },
6589
{ "xfs_iomap_alloc", 0x1000 },
6590
{ "xfs_iomap_found", 0x1000 },
6591
/* xfs from xfs_fs_class */
6592
{ "xfs_inodegc_flush", 0x1 },
6593
{ "xfs_inodegc_push", 0x1 },
6594
{ "xfs_inodegc_start", 0x1 },
6595
{ "xfs_inodegc_stop", 0x1 },
6596
{ "xfs_inodegc_queue", 0x1 },
6597
{ "xfs_inodegc_throttle", 0x1 },
6598
{ "xfs_fs_sync_fs", 0x1 },
6599
{ "xfs_blockgc_start", 0x1 },
6600
{ "xfs_blockgc_stop", 0x1 },
6601
{ "xfs_blockgc_worker", 0x1 },
6602
{ "xfs_blockgc_flush_all", 0x1 },
6603
/* xfs_scrub */
6604
{ "xchk_nlinks_live_update", 0x10 },
6605
/* xfs_scrub from xchk_metapath_class */
6606
{ "xchk_metapath_lookup", 0x100 },
6607
/* nfsd */
6608
{ "nfsd_dirent", 0x1 },
6609
{ "nfsd_file_acquire", 0x1001 },
6610
{ "nfsd_file_insert_err", 0x1 },
6611
{ "nfsd_file_cons_err", 0x1 },
6612
/* nfs4 */
6613
{ "nfs4_setup_sequence", 0x1 },
6614
{ "pnfs_update_layout", 0x10000 },
6615
{ "nfs4_inode_callback_event", 0x200 },
6616
{ "nfs4_inode_stateid_callback_event", 0x200 },
6617
/* nfs from pnfs_layout_event */
6618
{ "pnfs_mds_fallback_pg_init_read", 0x10000 },
6619
{ "pnfs_mds_fallback_pg_init_write", 0x10000 },
6620
{ "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 },
6621
{ "pnfs_mds_fallback_read_done", 0x10000 },
6622
{ "pnfs_mds_fallback_write_done", 0x10000 },
6623
{ "pnfs_mds_fallback_read_pagelist", 0x10000 },
6624
{ "pnfs_mds_fallback_write_pagelist", 0x10000 },
6625
/* coda */
6626
{ "coda_dec_pic_run", 0x10 },
6627
{ "coda_dec_pic_done", 0x10 },
6628
/* cfg80211 */
6629
{ "cfg80211_scan_done", 0x11 },
6630
{ "rdev_set_coalesce", 0x10 },
6631
{ "cfg80211_report_wowlan_wakeup", 0x100 },
6632
{ "cfg80211_inform_bss_frame", 0x100 },
6633
{ "cfg80211_michael_mic_failure", 0x10000 },
6634
/* cfg80211 from wiphy_work_event */
6635
{ "wiphy_work_queue", 0x10 },
6636
{ "wiphy_work_run", 0x10 },
6637
{ "wiphy_work_cancel", 0x10 },
6638
{ "wiphy_work_flush", 0x10 },
6639
/* hugetlbfs */
6640
{ "hugetlbfs_alloc_inode", 0x10 },
6641
/* spufs */
6642
{ "spufs_context", 0x10 },
6643
/* kvm_hv */
6644
{ "kvm_page_fault_enter", 0x100 },
6645
/* dpu */
6646
{ "dpu_crtc_setup_mixer", 0x100 },
6647
/* binder */
6648
{ "binder_transaction", 0x100 },
6649
/* bcachefs */
6650
{ "btree_path_free", 0x100 },
6651
/* hfi1_tx */
6652
{ "hfi1_sdma_progress", 0x1000 },
6653
/* iptfs */
6654
{ "iptfs_ingress_postq_event", 0x1000 },
6655
/* neigh */
6656
{ "neigh_update", 0x10 },
6657
/* snd_firewire_lib */
6658
{ "amdtp_packet", 0x100 },
6659
};
6660
6661
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6662
const struct bpf_prog *prog,
6663
struct bpf_insn_access_aux *info)
6664
{
6665
const struct btf_type *t = prog->aux->attach_func_proto;
6666
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6667
struct btf *btf = bpf_prog_get_target_btf(prog);
6668
const char *tname = prog->aux->attach_func_name;
6669
struct bpf_verifier_log *log = info->log;
6670
const struct btf_param *args;
6671
bool ptr_err_raw_tp = false;
6672
const char *tag_value;
6673
u32 nr_args, arg;
6674
int i, ret;
6675
6676
if (off % 8) {
6677
bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6678
tname, off);
6679
return false;
6680
}
6681
arg = btf_ctx_arg_idx(btf, t, off);
6682
args = (const struct btf_param *)(t + 1);
6683
/* if (t == NULL) Fall back to default BPF prog with
6684
* MAX_BPF_FUNC_REG_ARGS u64 arguments.
6685
*/
6686
nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6687
if (prog->aux->attach_btf_trace) {
6688
/* skip first 'void *__data' argument in btf_trace_##name typedef */
6689
args++;
6690
nr_args--;
6691
}
6692
6693
if (arg > nr_args) {
6694
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6695
tname, arg + 1);
6696
return false;
6697
}
6698
6699
if (arg == nr_args) {
6700
switch (prog->expected_attach_type) {
6701
case BPF_LSM_MAC:
6702
/* mark we are accessing the return value */
6703
info->is_retval = true;
6704
fallthrough;
6705
case BPF_LSM_CGROUP:
6706
case BPF_TRACE_FEXIT:
6707
/* When LSM programs are attached to void LSM hooks
6708
* they use FEXIT trampolines and when attached to
6709
* int LSM hooks, they use MODIFY_RETURN trampolines.
6710
*
6711
* While the LSM programs are BPF_MODIFY_RETURN-like
6712
* the check:
6713
*
6714
* if (ret_type != 'int')
6715
* return -EINVAL;
6716
*
6717
* is _not_ done here. This is still safe as LSM hooks
6718
* have only void and int return types.
6719
*/
6720
if (!t)
6721
return true;
6722
t = btf_type_by_id(btf, t->type);
6723
break;
6724
case BPF_MODIFY_RETURN:
6725
/* For now the BPF_MODIFY_RETURN can only be attached to
6726
* functions that return an int.
6727
*/
6728
if (!t)
6729
return false;
6730
6731
t = btf_type_skip_modifiers(btf, t->type, NULL);
6732
if (!btf_type_is_small_int(t)) {
6733
bpf_log(log,
6734
"ret type %s not allowed for fmod_ret\n",
6735
btf_type_str(t));
6736
return false;
6737
}
6738
break;
6739
default:
6740
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6741
tname, arg + 1);
6742
return false;
6743
}
6744
} else {
6745
if (!t)
6746
/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6747
return true;
6748
t = btf_type_by_id(btf, args[arg].type);
6749
}
6750
6751
/* skip modifiers */
6752
while (btf_type_is_modifier(t))
6753
t = btf_type_by_id(btf, t->type);
6754
if (btf_type_is_small_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
6755
/* accessing a scalar */
6756
return true;
6757
if (!btf_type_is_ptr(t)) {
6758
bpf_log(log,
6759
"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6760
tname, arg,
6761
__btf_name_by_offset(btf, t->name_off),
6762
btf_type_str(t));
6763
return false;
6764
}
6765
6766
if (size != sizeof(u64)) {
6767
bpf_log(log, "func '%s' size %d must be 8\n",
6768
tname, size);
6769
return false;
6770
}
6771
6772
/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6773
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6774
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6775
u32 type, flag;
6776
6777
type = base_type(ctx_arg_info->reg_type);
6778
flag = type_flag(ctx_arg_info->reg_type);
6779
if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6780
(flag & PTR_MAYBE_NULL)) {
6781
info->reg_type = ctx_arg_info->reg_type;
6782
return true;
6783
}
6784
}
6785
6786
/*
6787
* If it's a pointer to void, it's the same as scalar from the verifier
6788
* safety POV. Either way, no futher pointer walking is allowed.
6789
*/
6790
if (is_void_or_int_ptr(btf, t))
6791
return true;
6792
6793
/* this is a pointer to another type */
6794
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6795
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6796
6797
if (ctx_arg_info->offset == off) {
6798
if (!ctx_arg_info->btf_id) {
6799
bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6800
return false;
6801
}
6802
6803
info->reg_type = ctx_arg_info->reg_type;
6804
info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6805
info->btf_id = ctx_arg_info->btf_id;
6806
info->ref_obj_id = ctx_arg_info->ref_obj_id;
6807
return true;
6808
}
6809
}
6810
6811
info->reg_type = PTR_TO_BTF_ID;
6812
if (prog_args_trusted(prog))
6813
info->reg_type |= PTR_TRUSTED;
6814
6815
if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
6816
info->reg_type |= PTR_MAYBE_NULL;
6817
6818
if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
6819
struct btf *btf = prog->aux->attach_btf;
6820
const struct btf_type *t;
6821
const char *tname;
6822
6823
/* BTF lookups cannot fail, return false on error */
6824
t = btf_type_by_id(btf, prog->aux->attach_btf_id);
6825
if (!t)
6826
return false;
6827
tname = btf_name_by_offset(btf, t->name_off);
6828
if (!tname)
6829
return false;
6830
/* Checked by bpf_check_attach_target */
6831
tname += sizeof("btf_trace_") - 1;
6832
for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
6833
/* Is this a func with potential NULL args? */
6834
if (strcmp(tname, raw_tp_null_args[i].func))
6835
continue;
6836
if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4)))
6837
info->reg_type |= PTR_MAYBE_NULL;
6838
/* Is the current arg IS_ERR? */
6839
if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4)))
6840
ptr_err_raw_tp = true;
6841
break;
6842
}
6843
/* If we don't know NULL-ness specification and the tracepoint
6844
* is coming from a loadable module, be conservative and mark
6845
* argument as PTR_MAYBE_NULL.
6846
*/
6847
if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
6848
info->reg_type |= PTR_MAYBE_NULL;
6849
}
6850
6851
if (tgt_prog) {
6852
enum bpf_prog_type tgt_type;
6853
6854
if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6855
tgt_type = tgt_prog->aux->saved_dst_prog_type;
6856
else
6857
tgt_type = tgt_prog->type;
6858
6859
ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6860
if (ret > 0) {
6861
info->btf = btf_vmlinux;
6862
info->btf_id = ret;
6863
return true;
6864
} else {
6865
return false;
6866
}
6867
}
6868
6869
info->btf = btf;
6870
info->btf_id = t->type;
6871
t = btf_type_by_id(btf, t->type);
6872
6873
if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
6874
tag_value = __btf_name_by_offset(btf, t->name_off);
6875
if (strcmp(tag_value, "user") == 0)
6876
info->reg_type |= MEM_USER;
6877
if (strcmp(tag_value, "percpu") == 0)
6878
info->reg_type |= MEM_PERCPU;
6879
}
6880
6881
/* skip modifiers */
6882
while (btf_type_is_modifier(t)) {
6883
info->btf_id = t->type;
6884
t = btf_type_by_id(btf, t->type);
6885
}
6886
if (!btf_type_is_struct(t)) {
6887
bpf_log(log,
6888
"func '%s' arg%d type %s is not a struct\n",
6889
tname, arg, btf_type_str(t));
6890
return false;
6891
}
6892
bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6893
tname, arg, info->btf_id, btf_type_str(t),
6894
__btf_name_by_offset(btf, t->name_off));
6895
6896
/* Perform all checks on the validity of type for this argument, but if
6897
* we know it can be IS_ERR at runtime, scrub pointer type and mark as
6898
* scalar.
6899
*/
6900
if (ptr_err_raw_tp) {
6901
bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
6902
info->reg_type = SCALAR_VALUE;
6903
}
6904
return true;
6905
}
6906
EXPORT_SYMBOL_GPL(btf_ctx_access);
6907
6908
enum bpf_struct_walk_result {
6909
/* < 0 error */
6910
WALK_SCALAR = 0,
6911
WALK_PTR,
6912
WALK_PTR_UNTRUSTED,
6913
WALK_STRUCT,
6914
};
6915
6916
static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6917
const struct btf_type *t, int off, int size,
6918
u32 *next_btf_id, enum bpf_type_flag *flag,
6919
const char **field_name)
6920
{
6921
u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6922
const struct btf_type *mtype, *elem_type = NULL;
6923
const struct btf_member *member;
6924
const char *tname, *mname, *tag_value;
6925
u32 vlen, elem_id, mid;
6926
6927
again:
6928
if (btf_type_is_modifier(t))
6929
t = btf_type_skip_modifiers(btf, t->type, NULL);
6930
tname = __btf_name_by_offset(btf, t->name_off);
6931
if (!btf_type_is_struct(t)) {
6932
bpf_log(log, "Type '%s' is not a struct\n", tname);
6933
return -EINVAL;
6934
}
6935
6936
vlen = btf_type_vlen(t);
6937
if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6938
/*
6939
* walking unions yields untrusted pointers
6940
* with exception of __bpf_md_ptr and other
6941
* unions with a single member
6942
*/
6943
*flag |= PTR_UNTRUSTED;
6944
6945
if (off + size > t->size) {
6946
/* If the last element is a variable size array, we may
6947
* need to relax the rule.
6948
*/
6949
struct btf_array *array_elem;
6950
6951
if (vlen == 0)
6952
goto error;
6953
6954
member = btf_type_member(t) + vlen - 1;
6955
mtype = btf_type_skip_modifiers(btf, member->type,
6956
NULL);
6957
if (!btf_type_is_array(mtype))
6958
goto error;
6959
6960
array_elem = (struct btf_array *)(mtype + 1);
6961
if (array_elem->nelems != 0)
6962
goto error;
6963
6964
moff = __btf_member_bit_offset(t, member) / 8;
6965
if (off < moff)
6966
goto error;
6967
6968
/* allow structure and integer */
6969
t = btf_type_skip_modifiers(btf, array_elem->type,
6970
NULL);
6971
6972
if (btf_type_is_int(t))
6973
return WALK_SCALAR;
6974
6975
if (!btf_type_is_struct(t))
6976
goto error;
6977
6978
off = (off - moff) % t->size;
6979
goto again;
6980
6981
error:
6982
bpf_log(log, "access beyond struct %s at off %u size %u\n",
6983
tname, off, size);
6984
return -EACCES;
6985
}
6986
6987
for_each_member(i, t, member) {
6988
/* offset of the field in bytes */
6989
moff = __btf_member_bit_offset(t, member) / 8;
6990
if (off + size <= moff)
6991
/* won't find anything, field is already too far */
6992
break;
6993
6994
if (__btf_member_bitfield_size(t, member)) {
6995
u32 end_bit = __btf_member_bit_offset(t, member) +
6996
__btf_member_bitfield_size(t, member);
6997
6998
/* off <= moff instead of off == moff because clang
6999
* does not generate a BTF member for anonymous
7000
* bitfield like the ":16" here:
7001
* struct {
7002
* int :16;
7003
* int x:8;
7004
* };
7005
*/
7006
if (off <= moff &&
7007
BITS_ROUNDUP_BYTES(end_bit) <= off + size)
7008
return WALK_SCALAR;
7009
7010
/* off may be accessing a following member
7011
*
7012
* or
7013
*
7014
* Doing partial access at either end of this
7015
* bitfield. Continue on this case also to
7016
* treat it as not accessing this bitfield
7017
* and eventually error out as field not
7018
* found to keep it simple.
7019
* It could be relaxed if there was a legit
7020
* partial access case later.
7021
*/
7022
continue;
7023
}
7024
7025
/* In case of "off" is pointing to holes of a struct */
7026
if (off < moff)
7027
break;
7028
7029
/* type of the field */
7030
mid = member->type;
7031
mtype = btf_type_by_id(btf, member->type);
7032
mname = __btf_name_by_offset(btf, member->name_off);
7033
7034
mtype = __btf_resolve_size(btf, mtype, &msize,
7035
&elem_type, &elem_id, &total_nelems,
7036
&mid);
7037
if (IS_ERR(mtype)) {
7038
bpf_log(log, "field %s doesn't have size\n", mname);
7039
return -EFAULT;
7040
}
7041
7042
mtrue_end = moff + msize;
7043
if (off >= mtrue_end)
7044
/* no overlap with member, keep iterating */
7045
continue;
7046
7047
if (btf_type_is_array(mtype)) {
7048
u32 elem_idx;
7049
7050
/* __btf_resolve_size() above helps to
7051
* linearize a multi-dimensional array.
7052
*
7053
* The logic here is treating an array
7054
* in a struct as the following way:
7055
*
7056
* struct outer {
7057
* struct inner array[2][2];
7058
* };
7059
*
7060
* looks like:
7061
*
7062
* struct outer {
7063
* struct inner array_elem0;
7064
* struct inner array_elem1;
7065
* struct inner array_elem2;
7066
* struct inner array_elem3;
7067
* };
7068
*
7069
* When accessing outer->array[1][0], it moves
7070
* moff to "array_elem2", set mtype to
7071
* "struct inner", and msize also becomes
7072
* sizeof(struct inner). Then most of the
7073
* remaining logic will fall through without
7074
* caring the current member is an array or
7075
* not.
7076
*
7077
* Unlike mtype/msize/moff, mtrue_end does not
7078
* change. The naming difference ("_true") tells
7079
* that it is not always corresponding to
7080
* the current mtype/msize/moff.
7081
* It is the true end of the current
7082
* member (i.e. array in this case). That
7083
* will allow an int array to be accessed like
7084
* a scratch space,
7085
* i.e. allow access beyond the size of
7086
* the array's element as long as it is
7087
* within the mtrue_end boundary.
7088
*/
7089
7090
/* skip empty array */
7091
if (moff == mtrue_end)
7092
continue;
7093
7094
msize /= total_nelems;
7095
elem_idx = (off - moff) / msize;
7096
moff += elem_idx * msize;
7097
mtype = elem_type;
7098
mid = elem_id;
7099
}
7100
7101
/* the 'off' we're looking for is either equal to start
7102
* of this field or inside of this struct
7103
*/
7104
if (btf_type_is_struct(mtype)) {
7105
/* our field must be inside that union or struct */
7106
t = mtype;
7107
7108
/* return if the offset matches the member offset */
7109
if (off == moff) {
7110
*next_btf_id = mid;
7111
return WALK_STRUCT;
7112
}
7113
7114
/* adjust offset we're looking for */
7115
off -= moff;
7116
goto again;
7117
}
7118
7119
if (btf_type_is_ptr(mtype)) {
7120
const struct btf_type *stype, *t;
7121
enum bpf_type_flag tmp_flag = 0;
7122
u32 id;
7123
7124
if (msize != size || off != moff) {
7125
bpf_log(log,
7126
"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
7127
mname, moff, tname, off, size);
7128
return -EACCES;
7129
}
7130
7131
/* check type tag */
7132
t = btf_type_by_id(btf, mtype->type);
7133
if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) {
7134
tag_value = __btf_name_by_offset(btf, t->name_off);
7135
/* check __user tag */
7136
if (strcmp(tag_value, "user") == 0)
7137
tmp_flag = MEM_USER;
7138
/* check __percpu tag */
7139
if (strcmp(tag_value, "percpu") == 0)
7140
tmp_flag = MEM_PERCPU;
7141
/* check __rcu tag */
7142
if (strcmp(tag_value, "rcu") == 0)
7143
tmp_flag = MEM_RCU;
7144
}
7145
7146
stype = btf_type_skip_modifiers(btf, mtype->type, &id);
7147
if (btf_type_is_struct(stype)) {
7148
*next_btf_id = id;
7149
*flag |= tmp_flag;
7150
if (field_name)
7151
*field_name = mname;
7152
return WALK_PTR;
7153
}
7154
7155
return WALK_PTR_UNTRUSTED;
7156
}
7157
7158
/* Allow more flexible access within an int as long as
7159
* it is within mtrue_end.
7160
* Since mtrue_end could be the end of an array,
7161
* that also allows using an array of int as a scratch
7162
* space. e.g. skb->cb[].
7163
*/
7164
if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
7165
bpf_log(log,
7166
"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
7167
mname, mtrue_end, tname, off, size);
7168
return -EACCES;
7169
}
7170
7171
return WALK_SCALAR;
7172
}
7173
bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
7174
return -EINVAL;
7175
}
7176
7177
int btf_struct_access(struct bpf_verifier_log *log,
7178
const struct bpf_reg_state *reg,
7179
int off, int size, enum bpf_access_type atype __maybe_unused,
7180
u32 *next_btf_id, enum bpf_type_flag *flag,
7181
const char **field_name)
7182
{
7183
const struct btf *btf = reg->btf;
7184
enum bpf_type_flag tmp_flag = 0;
7185
const struct btf_type *t;
7186
u32 id = reg->btf_id;
7187
int err;
7188
7189
while (type_is_alloc(reg->type)) {
7190
struct btf_struct_meta *meta;
7191
struct btf_record *rec;
7192
int i;
7193
7194
meta = btf_find_struct_meta(btf, id);
7195
if (!meta)
7196
break;
7197
rec = meta->record;
7198
for (i = 0; i < rec->cnt; i++) {
7199
struct btf_field *field = &rec->fields[i];
7200
u32 offset = field->offset;
7201
if (off < offset + field->size && offset < off + size) {
7202
bpf_log(log,
7203
"direct access to %s is disallowed\n",
7204
btf_field_type_name(field->type));
7205
return -EACCES;
7206
}
7207
}
7208
break;
7209
}
7210
7211
t = btf_type_by_id(btf, id);
7212
do {
7213
err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
7214
7215
switch (err) {
7216
case WALK_PTR:
7217
/* For local types, the destination register cannot
7218
* become a pointer again.
7219
*/
7220
if (type_is_alloc(reg->type))
7221
return SCALAR_VALUE;
7222
/* If we found the pointer or scalar on t+off,
7223
* we're done.
7224
*/
7225
*next_btf_id = id;
7226
*flag = tmp_flag;
7227
return PTR_TO_BTF_ID;
7228
case WALK_PTR_UNTRUSTED:
7229
*flag = MEM_RDONLY | PTR_UNTRUSTED;
7230
return PTR_TO_MEM;
7231
case WALK_SCALAR:
7232
return SCALAR_VALUE;
7233
case WALK_STRUCT:
7234
/* We found nested struct, so continue the search
7235
* by diving in it. At this point the offset is
7236
* aligned with the new type, so set it to 0.
7237
*/
7238
t = btf_type_by_id(btf, id);
7239
off = 0;
7240
break;
7241
default:
7242
/* It's either error or unknown return value..
7243
* scream and leave.
7244
*/
7245
if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
7246
return -EINVAL;
7247
return err;
7248
}
7249
} while (t);
7250
7251
return -EINVAL;
7252
}
7253
7254
/* Check that two BTF types, each specified as an BTF object + id, are exactly
7255
* the same. Trivial ID check is not enough due to module BTFs, because we can
7256
* end up with two different module BTFs, but IDs point to the common type in
7257
* vmlinux BTF.
7258
*/
7259
bool btf_types_are_same(const struct btf *btf1, u32 id1,
7260
const struct btf *btf2, u32 id2)
7261
{
7262
if (id1 != id2)
7263
return false;
7264
if (btf1 == btf2)
7265
return true;
7266
return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
7267
}
7268
7269
bool btf_struct_ids_match(struct bpf_verifier_log *log,
7270
const struct btf *btf, u32 id, int off,
7271
const struct btf *need_btf, u32 need_type_id,
7272
bool strict)
7273
{
7274
const struct btf_type *type;
7275
enum bpf_type_flag flag = 0;
7276
int err;
7277
7278
/* Are we already done? */
7279
if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
7280
return true;
7281
/* In case of strict type match, we do not walk struct, the top level
7282
* type match must succeed. When strict is true, off should have already
7283
* been 0.
7284
*/
7285
if (strict)
7286
return false;
7287
again:
7288
type = btf_type_by_id(btf, id);
7289
if (!type)
7290
return false;
7291
err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
7292
if (err != WALK_STRUCT)
7293
return false;
7294
7295
/* We found nested struct object. If it matches
7296
* the requested ID, we're done. Otherwise let's
7297
* continue the search with offset 0 in the new
7298
* type.
7299
*/
7300
if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
7301
off = 0;
7302
goto again;
7303
}
7304
7305
return true;
7306
}
7307
7308
static int __get_type_size(struct btf *btf, u32 btf_id,
7309
const struct btf_type **ret_type)
7310
{
7311
const struct btf_type *t;
7312
7313
*ret_type = btf_type_by_id(btf, 0);
7314
if (!btf_id)
7315
/* void */
7316
return 0;
7317
t = btf_type_by_id(btf, btf_id);
7318
while (t && btf_type_is_modifier(t))
7319
t = btf_type_by_id(btf, t->type);
7320
if (!t)
7321
return -EINVAL;
7322
*ret_type = t;
7323
if (btf_type_is_ptr(t))
7324
/* kernel size of pointer. Not BPF's size of pointer*/
7325
return sizeof(void *);
7326
if (btf_type_is_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t))
7327
return t->size;
7328
return -EINVAL;
7329
}
7330
7331
static u8 __get_type_fmodel_flags(const struct btf_type *t)
7332
{
7333
u8 flags = 0;
7334
7335
if (btf_type_is_struct(t))
7336
flags |= BTF_FMODEL_STRUCT_ARG;
7337
if (btf_type_is_signed_int(t))
7338
flags |= BTF_FMODEL_SIGNED_ARG;
7339
7340
return flags;
7341
}
7342
7343
int btf_distill_func_proto(struct bpf_verifier_log *log,
7344
struct btf *btf,
7345
const struct btf_type *func,
7346
const char *tname,
7347
struct btf_func_model *m)
7348
{
7349
const struct btf_param *args;
7350
const struct btf_type *t;
7351
u32 i, nargs;
7352
int ret;
7353
7354
if (!func) {
7355
/* BTF function prototype doesn't match the verifier types.
7356
* Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7357
*/
7358
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7359
m->arg_size[i] = 8;
7360
m->arg_flags[i] = 0;
7361
}
7362
m->ret_size = 8;
7363
m->ret_flags = 0;
7364
m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7365
return 0;
7366
}
7367
args = (const struct btf_param *)(func + 1);
7368
nargs = btf_type_vlen(func);
7369
if (nargs > MAX_BPF_FUNC_ARGS) {
7370
bpf_log(log,
7371
"The function %s has %d arguments. Too many.\n",
7372
tname, nargs);
7373
return -EINVAL;
7374
}
7375
ret = __get_type_size(btf, func->type, &t);
7376
if (ret < 0 || btf_type_is_struct(t)) {
7377
bpf_log(log,
7378
"The function %s return type %s is unsupported.\n",
7379
tname, btf_type_str(t));
7380
return -EINVAL;
7381
}
7382
m->ret_size = ret;
7383
m->ret_flags = __get_type_fmodel_flags(t);
7384
7385
for (i = 0; i < nargs; i++) {
7386
if (i == nargs - 1 && args[i].type == 0) {
7387
bpf_log(log,
7388
"The function %s with variable args is unsupported.\n",
7389
tname);
7390
return -EINVAL;
7391
}
7392
ret = __get_type_size(btf, args[i].type, &t);
7393
7394
/* No support of struct argument size greater than 16 bytes */
7395
if (ret < 0 || ret > 16) {
7396
bpf_log(log,
7397
"The function %s arg%d type %s is unsupported.\n",
7398
tname, i, btf_type_str(t));
7399
return -EINVAL;
7400
}
7401
if (ret == 0) {
7402
bpf_log(log,
7403
"The function %s has malformed void argument.\n",
7404
tname);
7405
return -EINVAL;
7406
}
7407
m->arg_size[i] = ret;
7408
m->arg_flags[i] = __get_type_fmodel_flags(t);
7409
}
7410
m->nr_args = nargs;
7411
return 0;
7412
}
7413
7414
/* Compare BTFs of two functions assuming only scalars and pointers to context.
7415
* t1 points to BTF_KIND_FUNC in btf1
7416
* t2 points to BTF_KIND_FUNC in btf2
7417
* Returns:
7418
* EINVAL - function prototype mismatch
7419
* EFAULT - verifier bug
7420
* 0 - 99% match. The last 1% is validated by the verifier.
7421
*/
7422
static int btf_check_func_type_match(struct bpf_verifier_log *log,
7423
struct btf *btf1, const struct btf_type *t1,
7424
struct btf *btf2, const struct btf_type *t2)
7425
{
7426
const struct btf_param *args1, *args2;
7427
const char *fn1, *fn2, *s1, *s2;
7428
u32 nargs1, nargs2, i;
7429
7430
fn1 = btf_name_by_offset(btf1, t1->name_off);
7431
fn2 = btf_name_by_offset(btf2, t2->name_off);
7432
7433
if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7434
bpf_log(log, "%s() is not a global function\n", fn1);
7435
return -EINVAL;
7436
}
7437
if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7438
bpf_log(log, "%s() is not a global function\n", fn2);
7439
return -EINVAL;
7440
}
7441
7442
t1 = btf_type_by_id(btf1, t1->type);
7443
if (!t1 || !btf_type_is_func_proto(t1))
7444
return -EFAULT;
7445
t2 = btf_type_by_id(btf2, t2->type);
7446
if (!t2 || !btf_type_is_func_proto(t2))
7447
return -EFAULT;
7448
7449
args1 = (const struct btf_param *)(t1 + 1);
7450
nargs1 = btf_type_vlen(t1);
7451
args2 = (const struct btf_param *)(t2 + 1);
7452
nargs2 = btf_type_vlen(t2);
7453
7454
if (nargs1 != nargs2) {
7455
bpf_log(log, "%s() has %d args while %s() has %d args\n",
7456
fn1, nargs1, fn2, nargs2);
7457
return -EINVAL;
7458
}
7459
7460
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7461
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7462
if (t1->info != t2->info) {
7463
bpf_log(log,
7464
"Return type %s of %s() doesn't match type %s of %s()\n",
7465
btf_type_str(t1), fn1,
7466
btf_type_str(t2), fn2);
7467
return -EINVAL;
7468
}
7469
7470
for (i = 0; i < nargs1; i++) {
7471
t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7472
t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7473
7474
if (t1->info != t2->info) {
7475
bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7476
i, fn1, btf_type_str(t1),
7477
fn2, btf_type_str(t2));
7478
return -EINVAL;
7479
}
7480
if (btf_type_has_size(t1) && t1->size != t2->size) {
7481
bpf_log(log,
7482
"arg%d in %s() has size %d while %s() has %d\n",
7483
i, fn1, t1->size,
7484
fn2, t2->size);
7485
return -EINVAL;
7486
}
7487
7488
/* global functions are validated with scalars and pointers
7489
* to context only. And only global functions can be replaced.
7490
* Hence type check only those types.
7491
*/
7492
if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7493
continue;
7494
if (!btf_type_is_ptr(t1)) {
7495
bpf_log(log,
7496
"arg%d in %s() has unrecognized type\n",
7497
i, fn1);
7498
return -EINVAL;
7499
}
7500
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7501
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7502
if (!btf_type_is_struct(t1)) {
7503
bpf_log(log,
7504
"arg%d in %s() is not a pointer to context\n",
7505
i, fn1);
7506
return -EINVAL;
7507
}
7508
if (!btf_type_is_struct(t2)) {
7509
bpf_log(log,
7510
"arg%d in %s() is not a pointer to context\n",
7511
i, fn2);
7512
return -EINVAL;
7513
}
7514
/* This is an optional check to make program writing easier.
7515
* Compare names of structs and report an error to the user.
7516
* btf_prepare_func_args() already checked that t2 struct
7517
* is a context type. btf_prepare_func_args() will check
7518
* later that t1 struct is a context type as well.
7519
*/
7520
s1 = btf_name_by_offset(btf1, t1->name_off);
7521
s2 = btf_name_by_offset(btf2, t2->name_off);
7522
if (strcmp(s1, s2)) {
7523
bpf_log(log,
7524
"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7525
i, fn1, s1, fn2, s2);
7526
return -EINVAL;
7527
}
7528
}
7529
return 0;
7530
}
7531
7532
/* Compare BTFs of given program with BTF of target program */
7533
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7534
struct btf *btf2, const struct btf_type *t2)
7535
{
7536
struct btf *btf1 = prog->aux->btf;
7537
const struct btf_type *t1;
7538
u32 btf_id = 0;
7539
7540
if (!prog->aux->func_info) {
7541
bpf_log(log, "Program extension requires BTF\n");
7542
return -EINVAL;
7543
}
7544
7545
btf_id = prog->aux->func_info[0].type_id;
7546
if (!btf_id)
7547
return -EFAULT;
7548
7549
t1 = btf_type_by_id(btf1, btf_id);
7550
if (!t1 || !btf_type_is_func(t1))
7551
return -EFAULT;
7552
7553
return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7554
}
7555
7556
static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7557
{
7558
const char *name;
7559
7560
t = btf_type_by_id(btf, t->type); /* skip PTR */
7561
7562
while (btf_type_is_modifier(t))
7563
t = btf_type_by_id(btf, t->type);
7564
7565
/* allow either struct or struct forward declaration */
7566
if (btf_type_is_struct(t) ||
7567
(btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7568
name = btf_str_by_offset(btf, t->name_off);
7569
return name && strcmp(name, "bpf_dynptr") == 0;
7570
}
7571
7572
return false;
7573
}
7574
7575
struct bpf_cand_cache {
7576
const char *name;
7577
u32 name_len;
7578
u16 kind;
7579
u16 cnt;
7580
struct {
7581
const struct btf *btf;
7582
u32 id;
7583
} cands[];
7584
};
7585
7586
static DEFINE_MUTEX(cand_cache_mutex);
7587
7588
static struct bpf_cand_cache *
7589
bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7590
7591
static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7592
const struct btf *btf, const struct btf_type *t)
7593
{
7594
struct bpf_cand_cache *cc;
7595
struct bpf_core_ctx ctx = {
7596
.btf = btf,
7597
.log = log,
7598
};
7599
u32 kern_type_id, type_id;
7600
int err = 0;
7601
7602
/* skip PTR and modifiers */
7603
type_id = t->type;
7604
t = btf_type_by_id(btf, t->type);
7605
while (btf_type_is_modifier(t)) {
7606
type_id = t->type;
7607
t = btf_type_by_id(btf, t->type);
7608
}
7609
7610
mutex_lock(&cand_cache_mutex);
7611
cc = bpf_core_find_cands(&ctx, type_id);
7612
if (IS_ERR(cc)) {
7613
err = PTR_ERR(cc);
7614
bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7615
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7616
err);
7617
goto cand_cache_unlock;
7618
}
7619
if (cc->cnt != 1) {
7620
bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7621
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7622
cc->cnt == 0 ? "has no matches" : "is ambiguous");
7623
err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7624
goto cand_cache_unlock;
7625
}
7626
if (btf_is_module(cc->cands[0].btf)) {
7627
bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7628
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7629
err = -EOPNOTSUPP;
7630
goto cand_cache_unlock;
7631
}
7632
kern_type_id = cc->cands[0].id;
7633
7634
cand_cache_unlock:
7635
mutex_unlock(&cand_cache_mutex);
7636
if (err)
7637
return err;
7638
7639
return kern_type_id;
7640
}
7641
7642
enum btf_arg_tag {
7643
ARG_TAG_CTX = BIT_ULL(0),
7644
ARG_TAG_NONNULL = BIT_ULL(1),
7645
ARG_TAG_TRUSTED = BIT_ULL(2),
7646
ARG_TAG_UNTRUSTED = BIT_ULL(3),
7647
ARG_TAG_NULLABLE = BIT_ULL(4),
7648
ARG_TAG_ARENA = BIT_ULL(5),
7649
};
7650
7651
/* Process BTF of a function to produce high-level expectation of function
7652
* arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7653
* is cached in subprog info for reuse.
7654
* Returns:
7655
* EFAULT - there is a verifier bug. Abort verification.
7656
* EINVAL - cannot convert BTF.
7657
* 0 - Successfully processed BTF and constructed argument expectations.
7658
*/
7659
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7660
{
7661
bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7662
struct bpf_subprog_info *sub = subprog_info(env, subprog);
7663
struct bpf_verifier_log *log = &env->log;
7664
struct bpf_prog *prog = env->prog;
7665
enum bpf_prog_type prog_type = prog->type;
7666
struct btf *btf = prog->aux->btf;
7667
const struct btf_param *args;
7668
const struct btf_type *t, *ref_t, *fn_t;
7669
u32 i, nargs, btf_id;
7670
const char *tname;
7671
7672
if (sub->args_cached)
7673
return 0;
7674
7675
if (!prog->aux->func_info) {
7676
verifier_bug(env, "func_info undefined");
7677
return -EFAULT;
7678
}
7679
7680
btf_id = prog->aux->func_info[subprog].type_id;
7681
if (!btf_id) {
7682
if (!is_global) /* not fatal for static funcs */
7683
return -EINVAL;
7684
bpf_log(log, "Global functions need valid BTF\n");
7685
return -EFAULT;
7686
}
7687
7688
fn_t = btf_type_by_id(btf, btf_id);
7689
if (!fn_t || !btf_type_is_func(fn_t)) {
7690
/* These checks were already done by the verifier while loading
7691
* struct bpf_func_info
7692
*/
7693
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7694
subprog);
7695
return -EFAULT;
7696
}
7697
tname = btf_name_by_offset(btf, fn_t->name_off);
7698
7699
if (prog->aux->func_info_aux[subprog].unreliable) {
7700
verifier_bug(env, "unreliable BTF for function %s()", tname);
7701
return -EFAULT;
7702
}
7703
if (prog_type == BPF_PROG_TYPE_EXT)
7704
prog_type = prog->aux->dst_prog->type;
7705
7706
t = btf_type_by_id(btf, fn_t->type);
7707
if (!t || !btf_type_is_func_proto(t)) {
7708
bpf_log(log, "Invalid type of function %s()\n", tname);
7709
return -EFAULT;
7710
}
7711
args = (const struct btf_param *)(t + 1);
7712
nargs = btf_type_vlen(t);
7713
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7714
if (!is_global)
7715
return -EINVAL;
7716
bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7717
tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7718
return -EINVAL;
7719
}
7720
/* check that function returns int, exception cb also requires this */
7721
t = btf_type_by_id(btf, t->type);
7722
while (btf_type_is_modifier(t))
7723
t = btf_type_by_id(btf, t->type);
7724
if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7725
if (!is_global)
7726
return -EINVAL;
7727
bpf_log(log,
7728
"Global function %s() doesn't return scalar. Only those are supported.\n",
7729
tname);
7730
return -EINVAL;
7731
}
7732
/* Convert BTF function arguments into verifier types.
7733
* Only PTR_TO_CTX and SCALAR are supported atm.
7734
*/
7735
for (i = 0; i < nargs; i++) {
7736
u32 tags = 0;
7737
int id = 0;
7738
7739
/* 'arg:<tag>' decl_tag takes precedence over derivation of
7740
* register type from BTF type itself
7741
*/
7742
while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7743
const struct btf_type *tag_t = btf_type_by_id(btf, id);
7744
const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7745
7746
/* disallow arg tags in static subprogs */
7747
if (!is_global) {
7748
bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7749
return -EOPNOTSUPP;
7750
}
7751
7752
if (strcmp(tag, "ctx") == 0) {
7753
tags |= ARG_TAG_CTX;
7754
} else if (strcmp(tag, "trusted") == 0) {
7755
tags |= ARG_TAG_TRUSTED;
7756
} else if (strcmp(tag, "untrusted") == 0) {
7757
tags |= ARG_TAG_UNTRUSTED;
7758
} else if (strcmp(tag, "nonnull") == 0) {
7759
tags |= ARG_TAG_NONNULL;
7760
} else if (strcmp(tag, "nullable") == 0) {
7761
tags |= ARG_TAG_NULLABLE;
7762
} else if (strcmp(tag, "arena") == 0) {
7763
tags |= ARG_TAG_ARENA;
7764
} else {
7765
bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7766
return -EOPNOTSUPP;
7767
}
7768
}
7769
if (id != -ENOENT) {
7770
bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7771
return id;
7772
}
7773
7774
t = btf_type_by_id(btf, args[i].type);
7775
while (btf_type_is_modifier(t))
7776
t = btf_type_by_id(btf, t->type);
7777
if (!btf_type_is_ptr(t))
7778
goto skip_pointer;
7779
7780
if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7781
if (tags & ~ARG_TAG_CTX) {
7782
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7783
return -EINVAL;
7784
}
7785
if ((tags & ARG_TAG_CTX) &&
7786
btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7787
prog->expected_attach_type))
7788
return -EINVAL;
7789
sub->args[i].arg_type = ARG_PTR_TO_CTX;
7790
continue;
7791
}
7792
if (btf_is_dynptr_ptr(btf, t)) {
7793
if (tags) {
7794
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7795
return -EINVAL;
7796
}
7797
sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7798
continue;
7799
}
7800
if (tags & ARG_TAG_TRUSTED) {
7801
int kern_type_id;
7802
7803
if (tags & ARG_TAG_NONNULL) {
7804
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7805
return -EINVAL;
7806
}
7807
7808
kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7809
if (kern_type_id < 0)
7810
return kern_type_id;
7811
7812
sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7813
if (tags & ARG_TAG_NULLABLE)
7814
sub->args[i].arg_type |= PTR_MAYBE_NULL;
7815
sub->args[i].btf_id = kern_type_id;
7816
continue;
7817
}
7818
if (tags & ARG_TAG_UNTRUSTED) {
7819
struct btf *vmlinux_btf;
7820
int kern_type_id;
7821
7822
if (tags & ~ARG_TAG_UNTRUSTED) {
7823
bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i);
7824
return -EINVAL;
7825
}
7826
7827
ref_t = btf_type_skip_modifiers(btf, t->type, NULL);
7828
if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) {
7829
sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
7830
sub->args[i].mem_size = 0;
7831
continue;
7832
}
7833
7834
kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7835
if (kern_type_id < 0)
7836
return kern_type_id;
7837
7838
vmlinux_btf = bpf_get_btf_vmlinux();
7839
ref_t = btf_type_by_id(vmlinux_btf, kern_type_id);
7840
if (!btf_type_is_struct(ref_t)) {
7841
tname = __btf_name_by_offset(vmlinux_btf, t->name_off);
7842
bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n",
7843
i, btf_type_str(ref_t), tname);
7844
return -EINVAL;
7845
}
7846
sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED;
7847
sub->args[i].btf_id = kern_type_id;
7848
continue;
7849
}
7850
if (tags & ARG_TAG_ARENA) {
7851
if (tags & ~ARG_TAG_ARENA) {
7852
bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7853
return -EINVAL;
7854
}
7855
sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7856
continue;
7857
}
7858
if (is_global) { /* generic user data pointer */
7859
u32 mem_size;
7860
7861
if (tags & ARG_TAG_NULLABLE) {
7862
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7863
return -EINVAL;
7864
}
7865
7866
t = btf_type_skip_modifiers(btf, t->type, NULL);
7867
ref_t = btf_resolve_size(btf, t, &mem_size);
7868
if (IS_ERR(ref_t)) {
7869
bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7870
i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7871
PTR_ERR(ref_t));
7872
return -EINVAL;
7873
}
7874
7875
sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7876
if (tags & ARG_TAG_NONNULL)
7877
sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7878
sub->args[i].mem_size = mem_size;
7879
continue;
7880
}
7881
7882
skip_pointer:
7883
if (tags) {
7884
bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7885
return -EINVAL;
7886
}
7887
if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7888
sub->args[i].arg_type = ARG_ANYTHING;
7889
continue;
7890
}
7891
if (!is_global)
7892
return -EINVAL;
7893
bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7894
i, btf_type_str(t), tname);
7895
return -EINVAL;
7896
}
7897
7898
sub->arg_cnt = nargs;
7899
sub->args_cached = true;
7900
7901
return 0;
7902
}
7903
7904
static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7905
struct btf_show *show)
7906
{
7907
const struct btf_type *t = btf_type_by_id(btf, type_id);
7908
7909
show->btf = btf;
7910
memset(&show->state, 0, sizeof(show->state));
7911
memset(&show->obj, 0, sizeof(show->obj));
7912
7913
btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7914
}
7915
7916
__printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7917
va_list args)
7918
{
7919
seq_vprintf((struct seq_file *)show->target, fmt, args);
7920
}
7921
7922
int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7923
void *obj, struct seq_file *m, u64 flags)
7924
{
7925
struct btf_show sseq;
7926
7927
sseq.target = m;
7928
sseq.showfn = btf_seq_show;
7929
sseq.flags = flags;
7930
7931
btf_type_show(btf, type_id, obj, &sseq);
7932
7933
return sseq.state.status;
7934
}
7935
7936
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7937
struct seq_file *m)
7938
{
7939
(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7940
BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7941
BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7942
}
7943
7944
struct btf_show_snprintf {
7945
struct btf_show show;
7946
int len_left; /* space left in string */
7947
int len; /* length we would have written */
7948
};
7949
7950
__printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7951
va_list args)
7952
{
7953
struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7954
int len;
7955
7956
len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7957
7958
if (len < 0) {
7959
ssnprintf->len_left = 0;
7960
ssnprintf->len = len;
7961
} else if (len >= ssnprintf->len_left) {
7962
/* no space, drive on to get length we would have written */
7963
ssnprintf->len_left = 0;
7964
ssnprintf->len += len;
7965
} else {
7966
ssnprintf->len_left -= len;
7967
ssnprintf->len += len;
7968
show->target += len;
7969
}
7970
}
7971
7972
int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7973
char *buf, int len, u64 flags)
7974
{
7975
struct btf_show_snprintf ssnprintf;
7976
7977
ssnprintf.show.target = buf;
7978
ssnprintf.show.flags = flags;
7979
ssnprintf.show.showfn = btf_snprintf_show;
7980
ssnprintf.len_left = len;
7981
ssnprintf.len = 0;
7982
7983
btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7984
7985
/* If we encountered an error, return it. */
7986
if (ssnprintf.show.state.status)
7987
return ssnprintf.show.state.status;
7988
7989
/* Otherwise return length we would have written */
7990
return ssnprintf.len;
7991
}
7992
7993
#ifdef CONFIG_PROC_FS
7994
static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7995
{
7996
const struct btf *btf = filp->private_data;
7997
7998
seq_printf(m, "btf_id:\t%u\n", btf->id);
7999
}
8000
#endif
8001
8002
static int btf_release(struct inode *inode, struct file *filp)
8003
{
8004
btf_put(filp->private_data);
8005
return 0;
8006
}
8007
8008
const struct file_operations btf_fops = {
8009
#ifdef CONFIG_PROC_FS
8010
.show_fdinfo = bpf_btf_show_fdinfo,
8011
#endif
8012
.release = btf_release,
8013
};
8014
8015
static int __btf_new_fd(struct btf *btf)
8016
{
8017
return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
8018
}
8019
8020
int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
8021
{
8022
struct btf *btf;
8023
int ret;
8024
8025
btf = btf_parse(attr, uattr, uattr_size);
8026
if (IS_ERR(btf))
8027
return PTR_ERR(btf);
8028
8029
ret = btf_alloc_id(btf);
8030
if (ret) {
8031
btf_free(btf);
8032
return ret;
8033
}
8034
8035
/*
8036
* The BTF ID is published to the userspace.
8037
* All BTF free must go through call_rcu() from
8038
* now on (i.e. free by calling btf_put()).
8039
*/
8040
8041
ret = __btf_new_fd(btf);
8042
if (ret < 0)
8043
btf_put(btf);
8044
8045
return ret;
8046
}
8047
8048
struct btf *btf_get_by_fd(int fd)
8049
{
8050
struct btf *btf;
8051
CLASS(fd, f)(fd);
8052
8053
btf = __btf_get_by_fd(f);
8054
if (!IS_ERR(btf))
8055
refcount_inc(&btf->refcnt);
8056
8057
return btf;
8058
}
8059
8060
int btf_get_info_by_fd(const struct btf *btf,
8061
const union bpf_attr *attr,
8062
union bpf_attr __user *uattr)
8063
{
8064
struct bpf_btf_info __user *uinfo;
8065
struct bpf_btf_info info;
8066
u32 info_copy, btf_copy;
8067
void __user *ubtf;
8068
char __user *uname;
8069
u32 uinfo_len, uname_len, name_len;
8070
int ret = 0;
8071
8072
uinfo = u64_to_user_ptr(attr->info.info);
8073
uinfo_len = attr->info.info_len;
8074
8075
info_copy = min_t(u32, uinfo_len, sizeof(info));
8076
memset(&info, 0, sizeof(info));
8077
if (copy_from_user(&info, uinfo, info_copy))
8078
return -EFAULT;
8079
8080
info.id = btf->id;
8081
ubtf = u64_to_user_ptr(info.btf);
8082
btf_copy = min_t(u32, btf->data_size, info.btf_size);
8083
if (copy_to_user(ubtf, btf->data, btf_copy))
8084
return -EFAULT;
8085
info.btf_size = btf->data_size;
8086
8087
info.kernel_btf = btf->kernel_btf;
8088
8089
uname = u64_to_user_ptr(info.name);
8090
uname_len = info.name_len;
8091
if (!uname ^ !uname_len)
8092
return -EINVAL;
8093
8094
name_len = strlen(btf->name);
8095
info.name_len = name_len;
8096
8097
if (uname) {
8098
if (uname_len >= name_len + 1) {
8099
if (copy_to_user(uname, btf->name, name_len + 1))
8100
return -EFAULT;
8101
} else {
8102
char zero = '\0';
8103
8104
if (copy_to_user(uname, btf->name, uname_len - 1))
8105
return -EFAULT;
8106
if (put_user(zero, uname + uname_len - 1))
8107
return -EFAULT;
8108
/* let user-space know about too short buffer */
8109
ret = -ENOSPC;
8110
}
8111
}
8112
8113
if (copy_to_user(uinfo, &info, info_copy) ||
8114
put_user(info_copy, &uattr->info.info_len))
8115
return -EFAULT;
8116
8117
return ret;
8118
}
8119
8120
int btf_get_fd_by_id(u32 id)
8121
{
8122
struct btf *btf;
8123
int fd;
8124
8125
rcu_read_lock();
8126
btf = idr_find(&btf_idr, id);
8127
if (!btf || !refcount_inc_not_zero(&btf->refcnt))
8128
btf = ERR_PTR(-ENOENT);
8129
rcu_read_unlock();
8130
8131
if (IS_ERR(btf))
8132
return PTR_ERR(btf);
8133
8134
fd = __btf_new_fd(btf);
8135
if (fd < 0)
8136
btf_put(btf);
8137
8138
return fd;
8139
}
8140
8141
u32 btf_obj_id(const struct btf *btf)
8142
{
8143
return btf->id;
8144
}
8145
8146
bool btf_is_kernel(const struct btf *btf)
8147
{
8148
return btf->kernel_btf;
8149
}
8150
8151
bool btf_is_module(const struct btf *btf)
8152
{
8153
return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
8154
}
8155
8156
enum {
8157
BTF_MODULE_F_LIVE = (1 << 0),
8158
};
8159
8160
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8161
struct btf_module {
8162
struct list_head list;
8163
struct module *module;
8164
struct btf *btf;
8165
struct bin_attribute *sysfs_attr;
8166
int flags;
8167
};
8168
8169
static LIST_HEAD(btf_modules);
8170
static DEFINE_MUTEX(btf_module_mutex);
8171
8172
static void purge_cand_cache(struct btf *btf);
8173
8174
static int btf_module_notify(struct notifier_block *nb, unsigned long op,
8175
void *module)
8176
{
8177
struct btf_module *btf_mod, *tmp;
8178
struct module *mod = module;
8179
struct btf *btf;
8180
int err = 0;
8181
8182
if (mod->btf_data_size == 0 ||
8183
(op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
8184
op != MODULE_STATE_GOING))
8185
goto out;
8186
8187
switch (op) {
8188
case MODULE_STATE_COMING:
8189
btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
8190
if (!btf_mod) {
8191
err = -ENOMEM;
8192
goto out;
8193
}
8194
btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
8195
mod->btf_base_data, mod->btf_base_data_size);
8196
if (IS_ERR(btf)) {
8197
kfree(btf_mod);
8198
if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
8199
pr_warn("failed to validate module [%s] BTF: %ld\n",
8200
mod->name, PTR_ERR(btf));
8201
err = PTR_ERR(btf);
8202
} else {
8203
pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
8204
}
8205
goto out;
8206
}
8207
err = btf_alloc_id(btf);
8208
if (err) {
8209
btf_free(btf);
8210
kfree(btf_mod);
8211
goto out;
8212
}
8213
8214
purge_cand_cache(NULL);
8215
mutex_lock(&btf_module_mutex);
8216
btf_mod->module = module;
8217
btf_mod->btf = btf;
8218
list_add(&btf_mod->list, &btf_modules);
8219
mutex_unlock(&btf_module_mutex);
8220
8221
if (IS_ENABLED(CONFIG_SYSFS)) {
8222
struct bin_attribute *attr;
8223
8224
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
8225
if (!attr)
8226
goto out;
8227
8228
sysfs_bin_attr_init(attr);
8229
attr->attr.name = btf->name;
8230
attr->attr.mode = 0444;
8231
attr->size = btf->data_size;
8232
attr->private = btf->data;
8233
attr->read = sysfs_bin_attr_simple_read;
8234
8235
err = sysfs_create_bin_file(btf_kobj, attr);
8236
if (err) {
8237
pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
8238
mod->name, err);
8239
kfree(attr);
8240
err = 0;
8241
goto out;
8242
}
8243
8244
btf_mod->sysfs_attr = attr;
8245
}
8246
8247
break;
8248
case MODULE_STATE_LIVE:
8249
mutex_lock(&btf_module_mutex);
8250
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8251
if (btf_mod->module != module)
8252
continue;
8253
8254
btf_mod->flags |= BTF_MODULE_F_LIVE;
8255
break;
8256
}
8257
mutex_unlock(&btf_module_mutex);
8258
break;
8259
case MODULE_STATE_GOING:
8260
mutex_lock(&btf_module_mutex);
8261
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8262
if (btf_mod->module != module)
8263
continue;
8264
8265
list_del(&btf_mod->list);
8266
if (btf_mod->sysfs_attr)
8267
sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
8268
purge_cand_cache(btf_mod->btf);
8269
btf_put(btf_mod->btf);
8270
kfree(btf_mod->sysfs_attr);
8271
kfree(btf_mod);
8272
break;
8273
}
8274
mutex_unlock(&btf_module_mutex);
8275
break;
8276
}
8277
out:
8278
return notifier_from_errno(err);
8279
}
8280
8281
static struct notifier_block btf_module_nb = {
8282
.notifier_call = btf_module_notify,
8283
};
8284
8285
static int __init btf_module_init(void)
8286
{
8287
register_module_notifier(&btf_module_nb);
8288
return 0;
8289
}
8290
8291
fs_initcall(btf_module_init);
8292
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
8293
8294
struct module *btf_try_get_module(const struct btf *btf)
8295
{
8296
struct module *res = NULL;
8297
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8298
struct btf_module *btf_mod, *tmp;
8299
8300
mutex_lock(&btf_module_mutex);
8301
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8302
if (btf_mod->btf != btf)
8303
continue;
8304
8305
/* We must only consider module whose __init routine has
8306
* finished, hence we must check for BTF_MODULE_F_LIVE flag,
8307
* which is set from the notifier callback for
8308
* MODULE_STATE_LIVE.
8309
*/
8310
if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
8311
res = btf_mod->module;
8312
8313
break;
8314
}
8315
mutex_unlock(&btf_module_mutex);
8316
#endif
8317
8318
return res;
8319
}
8320
8321
/* Returns struct btf corresponding to the struct module.
8322
* This function can return NULL or ERR_PTR.
8323
*/
8324
static struct btf *btf_get_module_btf(const struct module *module)
8325
{
8326
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8327
struct btf_module *btf_mod, *tmp;
8328
#endif
8329
struct btf *btf = NULL;
8330
8331
if (!module) {
8332
btf = bpf_get_btf_vmlinux();
8333
if (!IS_ERR_OR_NULL(btf))
8334
btf_get(btf);
8335
return btf;
8336
}
8337
8338
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8339
mutex_lock(&btf_module_mutex);
8340
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
8341
if (btf_mod->module != module)
8342
continue;
8343
8344
btf_get(btf_mod->btf);
8345
btf = btf_mod->btf;
8346
break;
8347
}
8348
mutex_unlock(&btf_module_mutex);
8349
#endif
8350
8351
return btf;
8352
}
8353
8354
static int check_btf_kconfigs(const struct module *module, const char *feature)
8355
{
8356
if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8357
pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8358
return -ENOENT;
8359
}
8360
if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8361
pr_warn("missing module BTF, cannot register %s\n", feature);
8362
return 0;
8363
}
8364
8365
BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8366
{
8367
struct btf *btf = NULL;
8368
int btf_obj_fd = 0;
8369
long ret;
8370
8371
if (flags)
8372
return -EINVAL;
8373
8374
if (name_sz <= 1 || name[name_sz - 1])
8375
return -EINVAL;
8376
8377
ret = bpf_find_btf_id(name, kind, &btf);
8378
if (ret > 0 && btf_is_module(btf)) {
8379
btf_obj_fd = __btf_new_fd(btf);
8380
if (btf_obj_fd < 0) {
8381
btf_put(btf);
8382
return btf_obj_fd;
8383
}
8384
return ret | (((u64)btf_obj_fd) << 32);
8385
}
8386
if (ret > 0)
8387
btf_put(btf);
8388
return ret;
8389
}
8390
8391
const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8392
.func = bpf_btf_find_by_name_kind,
8393
.gpl_only = false,
8394
.ret_type = RET_INTEGER,
8395
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
8396
.arg2_type = ARG_CONST_SIZE,
8397
.arg3_type = ARG_ANYTHING,
8398
.arg4_type = ARG_ANYTHING,
8399
};
8400
8401
BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8402
#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8403
BTF_TRACING_TYPE_xxx
8404
#undef BTF_TRACING_TYPE
8405
8406
/* Validate well-formedness of iter argument type.
8407
* On success, return positive BTF ID of iter state's STRUCT type.
8408
* On error, negative error is returned.
8409
*/
8410
int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
8411
{
8412
const struct btf_param *arg;
8413
const struct btf_type *t;
8414
const char *name;
8415
int btf_id;
8416
8417
if (btf_type_vlen(func) <= arg_idx)
8418
return -EINVAL;
8419
8420
arg = &btf_params(func)[arg_idx];
8421
t = btf_type_skip_modifiers(btf, arg->type, NULL);
8422
if (!t || !btf_type_is_ptr(t))
8423
return -EINVAL;
8424
t = btf_type_skip_modifiers(btf, t->type, &btf_id);
8425
if (!t || !__btf_type_is_struct(t))
8426
return -EINVAL;
8427
8428
name = btf_name_by_offset(btf, t->name_off);
8429
if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8430
return -EINVAL;
8431
8432
return btf_id;
8433
}
8434
8435
static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8436
const struct btf_type *func, u32 func_flags)
8437
{
8438
u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8439
const char *sfx, *iter_name;
8440
const struct btf_type *t;
8441
char exp_name[128];
8442
u32 nr_args;
8443
int btf_id;
8444
8445
/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8446
if (!flags || (flags & (flags - 1)))
8447
return -EINVAL;
8448
8449
/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8450
nr_args = btf_type_vlen(func);
8451
if (nr_args < 1)
8452
return -EINVAL;
8453
8454
btf_id = btf_check_iter_arg(btf, func, 0);
8455
if (btf_id < 0)
8456
return btf_id;
8457
8458
/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8459
* fit nicely in stack slots
8460
*/
8461
t = btf_type_by_id(btf, btf_id);
8462
if (t->size == 0 || (t->size % 8))
8463
return -EINVAL;
8464
8465
/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8466
* naming pattern
8467
*/
8468
iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
8469
if (flags & KF_ITER_NEW)
8470
sfx = "new";
8471
else if (flags & KF_ITER_NEXT)
8472
sfx = "next";
8473
else /* (flags & KF_ITER_DESTROY) */
8474
sfx = "destroy";
8475
8476
snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8477
if (strcmp(func_name, exp_name))
8478
return -EINVAL;
8479
8480
/* only iter constructor should have extra arguments */
8481
if (!(flags & KF_ITER_NEW) && nr_args != 1)
8482
return -EINVAL;
8483
8484
if (flags & KF_ITER_NEXT) {
8485
/* bpf_iter_<type>_next() should return pointer */
8486
t = btf_type_skip_modifiers(btf, func->type, NULL);
8487
if (!t || !btf_type_is_ptr(t))
8488
return -EINVAL;
8489
}
8490
8491
if (flags & KF_ITER_DESTROY) {
8492
/* bpf_iter_<type>_destroy() should return void */
8493
t = btf_type_by_id(btf, func->type);
8494
if (!t || !btf_type_is_void(t))
8495
return -EINVAL;
8496
}
8497
8498
return 0;
8499
}
8500
8501
static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8502
{
8503
const struct btf_type *func;
8504
const char *func_name;
8505
int err;
8506
8507
/* any kfunc should be FUNC -> FUNC_PROTO */
8508
func = btf_type_by_id(btf, func_id);
8509
if (!func || !btf_type_is_func(func))
8510
return -EINVAL;
8511
8512
/* sanity check kfunc name */
8513
func_name = btf_name_by_offset(btf, func->name_off);
8514
if (!func_name || !func_name[0])
8515
return -EINVAL;
8516
8517
func = btf_type_by_id(btf, func->type);
8518
if (!func || !btf_type_is_func_proto(func))
8519
return -EINVAL;
8520
8521
if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8522
err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8523
if (err)
8524
return err;
8525
}
8526
8527
return 0;
8528
}
8529
8530
/* Kernel Function (kfunc) BTF ID set registration API */
8531
8532
static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8533
const struct btf_kfunc_id_set *kset)
8534
{
8535
struct btf_kfunc_hook_filter *hook_filter;
8536
struct btf_id_set8 *add_set = kset->set;
8537
bool vmlinux_set = !btf_is_module(btf);
8538
bool add_filter = !!kset->filter;
8539
struct btf_kfunc_set_tab *tab;
8540
struct btf_id_set8 *set;
8541
u32 set_cnt, i;
8542
int ret;
8543
8544
if (hook >= BTF_KFUNC_HOOK_MAX) {
8545
ret = -EINVAL;
8546
goto end;
8547
}
8548
8549
if (!add_set->cnt)
8550
return 0;
8551
8552
tab = btf->kfunc_set_tab;
8553
8554
if (tab && add_filter) {
8555
u32 i;
8556
8557
hook_filter = &tab->hook_filters[hook];
8558
for (i = 0; i < hook_filter->nr_filters; i++) {
8559
if (hook_filter->filters[i] == kset->filter) {
8560
add_filter = false;
8561
break;
8562
}
8563
}
8564
8565
if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8566
ret = -E2BIG;
8567
goto end;
8568
}
8569
}
8570
8571
if (!tab) {
8572
tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8573
if (!tab)
8574
return -ENOMEM;
8575
btf->kfunc_set_tab = tab;
8576
}
8577
8578
set = tab->sets[hook];
8579
/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8580
* for module sets.
8581
*/
8582
if (WARN_ON_ONCE(set && !vmlinux_set)) {
8583
ret = -EINVAL;
8584
goto end;
8585
}
8586
8587
/* In case of vmlinux sets, there may be more than one set being
8588
* registered per hook. To create a unified set, we allocate a new set
8589
* and concatenate all individual sets being registered. While each set
8590
* is individually sorted, they may become unsorted when concatenated,
8591
* hence re-sorting the final set again is required to make binary
8592
* searching the set using btf_id_set8_contains function work.
8593
*
8594
* For module sets, we need to allocate as we may need to relocate
8595
* BTF ids.
8596
*/
8597
set_cnt = set ? set->cnt : 0;
8598
8599
if (set_cnt > U32_MAX - add_set->cnt) {
8600
ret = -EOVERFLOW;
8601
goto end;
8602
}
8603
8604
if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8605
ret = -E2BIG;
8606
goto end;
8607
}
8608
8609
/* Grow set */
8610
set = krealloc(tab->sets[hook],
8611
struct_size(set, pairs, set_cnt + add_set->cnt),
8612
GFP_KERNEL | __GFP_NOWARN);
8613
if (!set) {
8614
ret = -ENOMEM;
8615
goto end;
8616
}
8617
8618
/* For newly allocated set, initialize set->cnt to 0 */
8619
if (!tab->sets[hook])
8620
set->cnt = 0;
8621
tab->sets[hook] = set;
8622
8623
/* Concatenate the two sets */
8624
memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8625
/* Now that the set is copied, update with relocated BTF ids */
8626
for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8627
set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8628
8629
set->cnt += add_set->cnt;
8630
8631
sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8632
8633
if (add_filter) {
8634
hook_filter = &tab->hook_filters[hook];
8635
hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8636
}
8637
return 0;
8638
end:
8639
btf_free_kfunc_set_tab(btf);
8640
return ret;
8641
}
8642
8643
static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8644
enum btf_kfunc_hook hook,
8645
u32 kfunc_btf_id,
8646
const struct bpf_prog *prog)
8647
{
8648
struct btf_kfunc_hook_filter *hook_filter;
8649
struct btf_id_set8 *set;
8650
u32 *id, i;
8651
8652
if (hook >= BTF_KFUNC_HOOK_MAX)
8653
return NULL;
8654
if (!btf->kfunc_set_tab)
8655
return NULL;
8656
hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8657
for (i = 0; i < hook_filter->nr_filters; i++) {
8658
if (hook_filter->filters[i](prog, kfunc_btf_id))
8659
return NULL;
8660
}
8661
set = btf->kfunc_set_tab->sets[hook];
8662
if (!set)
8663
return NULL;
8664
id = btf_id_set8_contains(set, kfunc_btf_id);
8665
if (!id)
8666
return NULL;
8667
/* The flags for BTF ID are located next to it */
8668
return id + 1;
8669
}
8670
8671
static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8672
{
8673
switch (prog_type) {
8674
case BPF_PROG_TYPE_UNSPEC:
8675
return BTF_KFUNC_HOOK_COMMON;
8676
case BPF_PROG_TYPE_XDP:
8677
return BTF_KFUNC_HOOK_XDP;
8678
case BPF_PROG_TYPE_SCHED_CLS:
8679
return BTF_KFUNC_HOOK_TC;
8680
case BPF_PROG_TYPE_STRUCT_OPS:
8681
return BTF_KFUNC_HOOK_STRUCT_OPS;
8682
case BPF_PROG_TYPE_TRACING:
8683
case BPF_PROG_TYPE_TRACEPOINT:
8684
case BPF_PROG_TYPE_PERF_EVENT:
8685
case BPF_PROG_TYPE_LSM:
8686
return BTF_KFUNC_HOOK_TRACING;
8687
case BPF_PROG_TYPE_SYSCALL:
8688
return BTF_KFUNC_HOOK_SYSCALL;
8689
case BPF_PROG_TYPE_CGROUP_SKB:
8690
case BPF_PROG_TYPE_CGROUP_SOCK:
8691
case BPF_PROG_TYPE_CGROUP_DEVICE:
8692
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8693
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8694
case BPF_PROG_TYPE_CGROUP_SYSCTL:
8695
case BPF_PROG_TYPE_SOCK_OPS:
8696
return BTF_KFUNC_HOOK_CGROUP;
8697
case BPF_PROG_TYPE_SCHED_ACT:
8698
return BTF_KFUNC_HOOK_SCHED_ACT;
8699
case BPF_PROG_TYPE_SK_SKB:
8700
return BTF_KFUNC_HOOK_SK_SKB;
8701
case BPF_PROG_TYPE_SOCKET_FILTER:
8702
return BTF_KFUNC_HOOK_SOCKET_FILTER;
8703
case BPF_PROG_TYPE_LWT_OUT:
8704
case BPF_PROG_TYPE_LWT_IN:
8705
case BPF_PROG_TYPE_LWT_XMIT:
8706
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8707
return BTF_KFUNC_HOOK_LWT;
8708
case BPF_PROG_TYPE_NETFILTER:
8709
return BTF_KFUNC_HOOK_NETFILTER;
8710
case BPF_PROG_TYPE_KPROBE:
8711
return BTF_KFUNC_HOOK_KPROBE;
8712
default:
8713
return BTF_KFUNC_HOOK_MAX;
8714
}
8715
}
8716
8717
/* Caution:
8718
* Reference to the module (obtained using btf_try_get_module) corresponding to
8719
* the struct btf *MUST* be held when calling this function from verifier
8720
* context. This is usually true as we stash references in prog's kfunc_btf_tab;
8721
* keeping the reference for the duration of the call provides the necessary
8722
* protection for looking up a well-formed btf->kfunc_set_tab.
8723
*/
8724
u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8725
u32 kfunc_btf_id,
8726
const struct bpf_prog *prog)
8727
{
8728
enum bpf_prog_type prog_type = resolve_prog_type(prog);
8729
enum btf_kfunc_hook hook;
8730
u32 *kfunc_flags;
8731
8732
kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8733
if (kfunc_flags)
8734
return kfunc_flags;
8735
8736
hook = bpf_prog_type_to_kfunc_hook(prog_type);
8737
return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8738
}
8739
8740
u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8741
const struct bpf_prog *prog)
8742
{
8743
return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8744
}
8745
8746
static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8747
const struct btf_kfunc_id_set *kset)
8748
{
8749
struct btf *btf;
8750
int ret, i;
8751
8752
btf = btf_get_module_btf(kset->owner);
8753
if (!btf)
8754
return check_btf_kconfigs(kset->owner, "kfunc");
8755
if (IS_ERR(btf))
8756
return PTR_ERR(btf);
8757
8758
for (i = 0; i < kset->set->cnt; i++) {
8759
ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8760
kset->set->pairs[i].flags);
8761
if (ret)
8762
goto err_out;
8763
}
8764
8765
ret = btf_populate_kfunc_set(btf, hook, kset);
8766
8767
err_out:
8768
btf_put(btf);
8769
return ret;
8770
}
8771
8772
/* This function must be invoked only from initcalls/module init functions */
8773
int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8774
const struct btf_kfunc_id_set *kset)
8775
{
8776
enum btf_kfunc_hook hook;
8777
8778
/* All kfuncs need to be tagged as such in BTF.
8779
* WARN() for initcall registrations that do not check errors.
8780
*/
8781
if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8782
WARN_ON(!kset->owner);
8783
return -EINVAL;
8784
}
8785
8786
hook = bpf_prog_type_to_kfunc_hook(prog_type);
8787
return __register_btf_kfunc_id_set(hook, kset);
8788
}
8789
EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8790
8791
/* This function must be invoked only from initcalls/module init functions */
8792
int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8793
{
8794
return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8795
}
8796
EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8797
8798
s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8799
{
8800
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8801
struct btf_id_dtor_kfunc *dtor;
8802
8803
if (!tab)
8804
return -ENOENT;
8805
/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8806
* to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8807
*/
8808
BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8809
dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8810
if (!dtor)
8811
return -ENOENT;
8812
return dtor->kfunc_btf_id;
8813
}
8814
8815
static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8816
{
8817
const struct btf_type *dtor_func, *dtor_func_proto, *t;
8818
const struct btf_param *args;
8819
s32 dtor_btf_id;
8820
u32 nr_args, i;
8821
8822
for (i = 0; i < cnt; i++) {
8823
dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8824
8825
dtor_func = btf_type_by_id(btf, dtor_btf_id);
8826
if (!dtor_func || !btf_type_is_func(dtor_func))
8827
return -EINVAL;
8828
8829
dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8830
if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8831
return -EINVAL;
8832
8833
/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8834
t = btf_type_by_id(btf, dtor_func_proto->type);
8835
if (!t || !btf_type_is_void(t))
8836
return -EINVAL;
8837
8838
nr_args = btf_type_vlen(dtor_func_proto);
8839
if (nr_args != 1)
8840
return -EINVAL;
8841
args = btf_params(dtor_func_proto);
8842
t = btf_type_by_id(btf, args[0].type);
8843
/* Allow any pointer type, as width on targets Linux supports
8844
* will be same for all pointer types (i.e. sizeof(void *))
8845
*/
8846
if (!t || !btf_type_is_ptr(t))
8847
return -EINVAL;
8848
}
8849
return 0;
8850
}
8851
8852
/* This function must be invoked only from initcalls/module init functions */
8853
int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8854
struct module *owner)
8855
{
8856
struct btf_id_dtor_kfunc_tab *tab;
8857
struct btf *btf;
8858
u32 tab_cnt, i;
8859
int ret;
8860
8861
btf = btf_get_module_btf(owner);
8862
if (!btf)
8863
return check_btf_kconfigs(owner, "dtor kfuncs");
8864
if (IS_ERR(btf))
8865
return PTR_ERR(btf);
8866
8867
if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8868
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8869
ret = -E2BIG;
8870
goto end;
8871
}
8872
8873
/* Ensure that the prototype of dtor kfuncs being registered is sane */
8874
ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8875
if (ret < 0)
8876
goto end;
8877
8878
tab = btf->dtor_kfunc_tab;
8879
/* Only one call allowed for modules */
8880
if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8881
ret = -EINVAL;
8882
goto end;
8883
}
8884
8885
tab_cnt = tab ? tab->cnt : 0;
8886
if (tab_cnt > U32_MAX - add_cnt) {
8887
ret = -EOVERFLOW;
8888
goto end;
8889
}
8890
if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8891
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8892
ret = -E2BIG;
8893
goto end;
8894
}
8895
8896
tab = krealloc(btf->dtor_kfunc_tab,
8897
struct_size(tab, dtors, tab_cnt + add_cnt),
8898
GFP_KERNEL | __GFP_NOWARN);
8899
if (!tab) {
8900
ret = -ENOMEM;
8901
goto end;
8902
}
8903
8904
if (!btf->dtor_kfunc_tab)
8905
tab->cnt = 0;
8906
btf->dtor_kfunc_tab = tab;
8907
8908
memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8909
8910
/* remap BTF ids based on BTF relocation (if any) */
8911
for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8912
tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8913
tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8914
}
8915
8916
tab->cnt += add_cnt;
8917
8918
sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8919
8920
end:
8921
if (ret)
8922
btf_free_dtor_kfunc_tab(btf);
8923
btf_put(btf);
8924
return ret;
8925
}
8926
EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8927
8928
#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8929
8930
/* Check local and target types for compatibility. This check is used for
8931
* type-based CO-RE relocations and follow slightly different rules than
8932
* field-based relocations. This function assumes that root types were already
8933
* checked for name match. Beyond that initial root-level name check, names
8934
* are completely ignored. Compatibility rules are as follows:
8935
* - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8936
* kind should match for local and target types (i.e., STRUCT is not
8937
* compatible with UNION);
8938
* - for ENUMs/ENUM64s, the size is ignored;
8939
* - for INT, size and signedness are ignored;
8940
* - for ARRAY, dimensionality is ignored, element types are checked for
8941
* compatibility recursively;
8942
* - CONST/VOLATILE/RESTRICT modifiers are ignored;
8943
* - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8944
* - FUNC_PROTOs are compatible if they have compatible signature: same
8945
* number of input args and compatible return and argument types.
8946
* These rules are not set in stone and probably will be adjusted as we get
8947
* more experience with using BPF CO-RE relocations.
8948
*/
8949
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8950
const struct btf *targ_btf, __u32 targ_id)
8951
{
8952
return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8953
MAX_TYPES_ARE_COMPAT_DEPTH);
8954
}
8955
8956
#define MAX_TYPES_MATCH_DEPTH 2
8957
8958
int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8959
const struct btf *targ_btf, u32 targ_id)
8960
{
8961
return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8962
MAX_TYPES_MATCH_DEPTH);
8963
}
8964
8965
static bool bpf_core_is_flavor_sep(const char *s)
8966
{
8967
/* check X___Y name pattern, where X and Y are not underscores */
8968
return s[0] != '_' && /* X */
8969
s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8970
s[4] != '_'; /* Y */
8971
}
8972
8973
size_t bpf_core_essential_name_len(const char *name)
8974
{
8975
size_t n = strlen(name);
8976
int i;
8977
8978
for (i = n - 5; i >= 0; i--) {
8979
if (bpf_core_is_flavor_sep(name + i))
8980
return i + 1;
8981
}
8982
return n;
8983
}
8984
8985
static void bpf_free_cands(struct bpf_cand_cache *cands)
8986
{
8987
if (!cands->cnt)
8988
/* empty candidate array was allocated on stack */
8989
return;
8990
kfree(cands);
8991
}
8992
8993
static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8994
{
8995
kfree(cands->name);
8996
kfree(cands);
8997
}
8998
8999
#define VMLINUX_CAND_CACHE_SIZE 31
9000
static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
9001
9002
#define MODULE_CAND_CACHE_SIZE 31
9003
static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
9004
9005
static void __print_cand_cache(struct bpf_verifier_log *log,
9006
struct bpf_cand_cache **cache,
9007
int cache_size)
9008
{
9009
struct bpf_cand_cache *cc;
9010
int i, j;
9011
9012
for (i = 0; i < cache_size; i++) {
9013
cc = cache[i];
9014
if (!cc)
9015
continue;
9016
bpf_log(log, "[%d]%s(", i, cc->name);
9017
for (j = 0; j < cc->cnt; j++) {
9018
bpf_log(log, "%d", cc->cands[j].id);
9019
if (j < cc->cnt - 1)
9020
bpf_log(log, " ");
9021
}
9022
bpf_log(log, "), ");
9023
}
9024
}
9025
9026
static void print_cand_cache(struct bpf_verifier_log *log)
9027
{
9028
mutex_lock(&cand_cache_mutex);
9029
bpf_log(log, "vmlinux_cand_cache:");
9030
__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9031
bpf_log(log, "\nmodule_cand_cache:");
9032
__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9033
bpf_log(log, "\n");
9034
mutex_unlock(&cand_cache_mutex);
9035
}
9036
9037
static u32 hash_cands(struct bpf_cand_cache *cands)
9038
{
9039
return jhash(cands->name, cands->name_len, 0);
9040
}
9041
9042
static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
9043
struct bpf_cand_cache **cache,
9044
int cache_size)
9045
{
9046
struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
9047
9048
if (cc && cc->name_len == cands->name_len &&
9049
!strncmp(cc->name, cands->name, cands->name_len))
9050
return cc;
9051
return NULL;
9052
}
9053
9054
static size_t sizeof_cands(int cnt)
9055
{
9056
return offsetof(struct bpf_cand_cache, cands[cnt]);
9057
}
9058
9059
static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
9060
struct bpf_cand_cache **cache,
9061
int cache_size)
9062
{
9063
struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
9064
9065
if (*cc) {
9066
bpf_free_cands_from_cache(*cc);
9067
*cc = NULL;
9068
}
9069
new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT);
9070
if (!new_cands) {
9071
bpf_free_cands(cands);
9072
return ERR_PTR(-ENOMEM);
9073
}
9074
/* strdup the name, since it will stay in cache.
9075
* the cands->name points to strings in prog's BTF and the prog can be unloaded.
9076
*/
9077
new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT);
9078
bpf_free_cands(cands);
9079
if (!new_cands->name) {
9080
kfree(new_cands);
9081
return ERR_PTR(-ENOMEM);
9082
}
9083
*cc = new_cands;
9084
return new_cands;
9085
}
9086
9087
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
9088
static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
9089
int cache_size)
9090
{
9091
struct bpf_cand_cache *cc;
9092
int i, j;
9093
9094
for (i = 0; i < cache_size; i++) {
9095
cc = cache[i];
9096
if (!cc)
9097
continue;
9098
if (!btf) {
9099
/* when new module is loaded purge all of module_cand_cache,
9100
* since new module might have candidates with the name
9101
* that matches cached cands.
9102
*/
9103
bpf_free_cands_from_cache(cc);
9104
cache[i] = NULL;
9105
continue;
9106
}
9107
/* when module is unloaded purge cache entries
9108
* that match module's btf
9109
*/
9110
for (j = 0; j < cc->cnt; j++)
9111
if (cc->cands[j].btf == btf) {
9112
bpf_free_cands_from_cache(cc);
9113
cache[i] = NULL;
9114
break;
9115
}
9116
}
9117
9118
}
9119
9120
static void purge_cand_cache(struct btf *btf)
9121
{
9122
mutex_lock(&cand_cache_mutex);
9123
__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9124
mutex_unlock(&cand_cache_mutex);
9125
}
9126
#endif
9127
9128
static struct bpf_cand_cache *
9129
bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
9130
int targ_start_id)
9131
{
9132
struct bpf_cand_cache *new_cands;
9133
const struct btf_type *t;
9134
const char *targ_name;
9135
size_t targ_essent_len;
9136
int n, i;
9137
9138
n = btf_nr_types(targ_btf);
9139
for (i = targ_start_id; i < n; i++) {
9140
t = btf_type_by_id(targ_btf, i);
9141
if (btf_kind(t) != cands->kind)
9142
continue;
9143
9144
targ_name = btf_name_by_offset(targ_btf, t->name_off);
9145
if (!targ_name)
9146
continue;
9147
9148
/* the resched point is before strncmp to make sure that search
9149
* for non-existing name will have a chance to schedule().
9150
*/
9151
cond_resched();
9152
9153
if (strncmp(cands->name, targ_name, cands->name_len) != 0)
9154
continue;
9155
9156
targ_essent_len = bpf_core_essential_name_len(targ_name);
9157
if (targ_essent_len != cands->name_len)
9158
continue;
9159
9160
/* most of the time there is only one candidate for a given kind+name pair */
9161
new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT);
9162
if (!new_cands) {
9163
bpf_free_cands(cands);
9164
return ERR_PTR(-ENOMEM);
9165
}
9166
9167
memcpy(new_cands, cands, sizeof_cands(cands->cnt));
9168
bpf_free_cands(cands);
9169
cands = new_cands;
9170
cands->cands[cands->cnt].btf = targ_btf;
9171
cands->cands[cands->cnt].id = i;
9172
cands->cnt++;
9173
}
9174
return cands;
9175
}
9176
9177
static struct bpf_cand_cache *
9178
bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
9179
{
9180
struct bpf_cand_cache *cands, *cc, local_cand = {};
9181
const struct btf *local_btf = ctx->btf;
9182
const struct btf_type *local_type;
9183
const struct btf *main_btf;
9184
size_t local_essent_len;
9185
struct btf *mod_btf;
9186
const char *name;
9187
int id;
9188
9189
main_btf = bpf_get_btf_vmlinux();
9190
if (IS_ERR(main_btf))
9191
return ERR_CAST(main_btf);
9192
if (!main_btf)
9193
return ERR_PTR(-EINVAL);
9194
9195
local_type = btf_type_by_id(local_btf, local_type_id);
9196
if (!local_type)
9197
return ERR_PTR(-EINVAL);
9198
9199
name = btf_name_by_offset(local_btf, local_type->name_off);
9200
if (str_is_empty(name))
9201
return ERR_PTR(-EINVAL);
9202
local_essent_len = bpf_core_essential_name_len(name);
9203
9204
cands = &local_cand;
9205
cands->name = name;
9206
cands->kind = btf_kind(local_type);
9207
cands->name_len = local_essent_len;
9208
9209
cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9210
/* cands is a pointer to stack here */
9211
if (cc) {
9212
if (cc->cnt)
9213
return cc;
9214
goto check_modules;
9215
}
9216
9217
/* Attempt to find target candidates in vmlinux BTF first */
9218
cands = bpf_core_add_cands(cands, main_btf, 1);
9219
if (IS_ERR(cands))
9220
return ERR_CAST(cands);
9221
9222
/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
9223
9224
/* populate cache even when cands->cnt == 0 */
9225
cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
9226
if (IS_ERR(cc))
9227
return ERR_CAST(cc);
9228
9229
/* if vmlinux BTF has any candidate, don't go for module BTFs */
9230
if (cc->cnt)
9231
return cc;
9232
9233
check_modules:
9234
/* cands is a pointer to stack here and cands->cnt == 0 */
9235
cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9236
if (cc)
9237
/* if cache has it return it even if cc->cnt == 0 */
9238
return cc;
9239
9240
/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
9241
spin_lock_bh(&btf_idr_lock);
9242
idr_for_each_entry(&btf_idr, mod_btf, id) {
9243
if (!btf_is_module(mod_btf))
9244
continue;
9245
/* linear search could be slow hence unlock/lock
9246
* the IDR to avoiding holding it for too long
9247
*/
9248
btf_get(mod_btf);
9249
spin_unlock_bh(&btf_idr_lock);
9250
cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
9251
btf_put(mod_btf);
9252
if (IS_ERR(cands))
9253
return ERR_CAST(cands);
9254
spin_lock_bh(&btf_idr_lock);
9255
}
9256
spin_unlock_bh(&btf_idr_lock);
9257
/* cands is a pointer to kmalloced memory here if cands->cnt > 0
9258
* or pointer to stack if cands->cnd == 0.
9259
* Copy it into the cache even when cands->cnt == 0 and
9260
* return the result.
9261
*/
9262
return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
9263
}
9264
9265
int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
9266
int relo_idx, void *insn)
9267
{
9268
bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
9269
struct bpf_core_cand_list cands = {};
9270
struct bpf_core_relo_res targ_res;
9271
struct bpf_core_spec *specs;
9272
const struct btf_type *type;
9273
int err;
9274
9275
/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
9276
* into arrays of btf_ids of struct fields and array indices.
9277
*/
9278
specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT);
9279
if (!specs)
9280
return -ENOMEM;
9281
9282
type = btf_type_by_id(ctx->btf, relo->type_id);
9283
if (!type) {
9284
bpf_log(ctx->log, "relo #%u: bad type id %u\n",
9285
relo_idx, relo->type_id);
9286
kfree(specs);
9287
return -EINVAL;
9288
}
9289
9290
if (need_cands) {
9291
struct bpf_cand_cache *cc;
9292
int i;
9293
9294
mutex_lock(&cand_cache_mutex);
9295
cc = bpf_core_find_cands(ctx, relo->type_id);
9296
if (IS_ERR(cc)) {
9297
bpf_log(ctx->log, "target candidate search failed for %d\n",
9298
relo->type_id);
9299
err = PTR_ERR(cc);
9300
goto out;
9301
}
9302
if (cc->cnt) {
9303
cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT);
9304
if (!cands.cands) {
9305
err = -ENOMEM;
9306
goto out;
9307
}
9308
}
9309
for (i = 0; i < cc->cnt; i++) {
9310
bpf_log(ctx->log,
9311
"CO-RE relocating %s %s: found target candidate [%d]\n",
9312
btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
9313
cands.cands[i].btf = cc->cands[i].btf;
9314
cands.cands[i].id = cc->cands[i].id;
9315
}
9316
cands.len = cc->cnt;
9317
/* cand_cache_mutex needs to span the cache lookup and
9318
* copy of btf pointer into bpf_core_cand_list,
9319
* since module can be unloaded while bpf_core_calc_relo_insn
9320
* is working with module's btf.
9321
*/
9322
}
9323
9324
err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
9325
&targ_res);
9326
if (err)
9327
goto out;
9328
9329
err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
9330
&targ_res);
9331
9332
out:
9333
kfree(specs);
9334
if (need_cands) {
9335
kfree(cands.cands);
9336
mutex_unlock(&cand_cache_mutex);
9337
if (ctx->log->level & BPF_LOG_LEVEL2)
9338
print_cand_cache(ctx->log);
9339
}
9340
return err;
9341
}
9342
9343
bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
9344
const struct bpf_reg_state *reg,
9345
const char *field_name, u32 btf_id, const char *suffix)
9346
{
9347
struct btf *btf = reg->btf;
9348
const struct btf_type *walk_type, *safe_type;
9349
const char *tname;
9350
char safe_tname[64];
9351
long ret, safe_id;
9352
const struct btf_member *member;
9353
u32 i;
9354
9355
walk_type = btf_type_by_id(btf, reg->btf_id);
9356
if (!walk_type)
9357
return false;
9358
9359
tname = btf_name_by_offset(btf, walk_type->name_off);
9360
9361
ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
9362
if (ret >= sizeof(safe_tname))
9363
return false;
9364
9365
safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
9366
if (safe_id < 0)
9367
return false;
9368
9369
safe_type = btf_type_by_id(btf, safe_id);
9370
if (!safe_type)
9371
return false;
9372
9373
for_each_member(i, safe_type, member) {
9374
const char *m_name = __btf_name_by_offset(btf, member->name_off);
9375
const struct btf_type *mtype = btf_type_by_id(btf, member->type);
9376
u32 id;
9377
9378
if (!btf_type_is_ptr(mtype))
9379
continue;
9380
9381
btf_type_skip_modifiers(btf, mtype->type, &id);
9382
/* If we match on both type and name, the field is considered trusted. */
9383
if (btf_id == id && !strcmp(field_name, m_name))
9384
return true;
9385
}
9386
9387
return false;
9388
}
9389
9390
bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9391
const struct btf *reg_btf, u32 reg_id,
9392
const struct btf *arg_btf, u32 arg_id)
9393
{
9394
const char *reg_name, *arg_name, *search_needle;
9395
const struct btf_type *reg_type, *arg_type;
9396
int reg_len, arg_len, cmp_len;
9397
size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9398
9399
reg_type = btf_type_by_id(reg_btf, reg_id);
9400
if (!reg_type)
9401
return false;
9402
9403
arg_type = btf_type_by_id(arg_btf, arg_id);
9404
if (!arg_type)
9405
return false;
9406
9407
reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9408
arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9409
9410
reg_len = strlen(reg_name);
9411
arg_len = strlen(arg_name);
9412
9413
/* Exactly one of the two type names may be suffixed with ___init, so
9414
* if the strings are the same size, they can't possibly be no-cast
9415
* aliases of one another. If you have two of the same type names, e.g.
9416
* they're both nf_conn___init, it would be improper to return true
9417
* because they are _not_ no-cast aliases, they are the same type.
9418
*/
9419
if (reg_len == arg_len)
9420
return false;
9421
9422
/* Either of the two names must be the other name, suffixed with ___init. */
9423
if ((reg_len != arg_len + pattern_len) &&
9424
(arg_len != reg_len + pattern_len))
9425
return false;
9426
9427
if (reg_len < arg_len) {
9428
search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9429
cmp_len = reg_len;
9430
} else {
9431
search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9432
cmp_len = arg_len;
9433
}
9434
9435
if (!search_needle)
9436
return false;
9437
9438
/* ___init suffix must come at the end of the name */
9439
if (*(search_needle + pattern_len) != '\0')
9440
return false;
9441
9442
return !strncmp(reg_name, arg_name, cmp_len);
9443
}
9444
9445
#ifdef CONFIG_BPF_JIT
9446
static int
9447
btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9448
struct bpf_verifier_log *log)
9449
{
9450
struct btf_struct_ops_tab *tab, *new_tab;
9451
int i, err;
9452
9453
tab = btf->struct_ops_tab;
9454
if (!tab) {
9455
tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL);
9456
if (!tab)
9457
return -ENOMEM;
9458
tab->capacity = 4;
9459
btf->struct_ops_tab = tab;
9460
}
9461
9462
for (i = 0; i < tab->cnt; i++)
9463
if (tab->ops[i].st_ops == st_ops)
9464
return -EEXIST;
9465
9466
if (tab->cnt == tab->capacity) {
9467
new_tab = krealloc(tab,
9468
struct_size(tab, ops, tab->capacity * 2),
9469
GFP_KERNEL);
9470
if (!new_tab)
9471
return -ENOMEM;
9472
tab = new_tab;
9473
tab->capacity *= 2;
9474
btf->struct_ops_tab = tab;
9475
}
9476
9477
tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9478
9479
err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9480
if (err)
9481
return err;
9482
9483
btf->struct_ops_tab->cnt++;
9484
9485
return 0;
9486
}
9487
9488
const struct bpf_struct_ops_desc *
9489
bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9490
{
9491
const struct bpf_struct_ops_desc *st_ops_list;
9492
unsigned int i;
9493
u32 cnt;
9494
9495
if (!value_id)
9496
return NULL;
9497
if (!btf->struct_ops_tab)
9498
return NULL;
9499
9500
cnt = btf->struct_ops_tab->cnt;
9501
st_ops_list = btf->struct_ops_tab->ops;
9502
for (i = 0; i < cnt; i++) {
9503
if (st_ops_list[i].value_id == value_id)
9504
return &st_ops_list[i];
9505
}
9506
9507
return NULL;
9508
}
9509
9510
const struct bpf_struct_ops_desc *
9511
bpf_struct_ops_find(struct btf *btf, u32 type_id)
9512
{
9513
const struct bpf_struct_ops_desc *st_ops_list;
9514
unsigned int i;
9515
u32 cnt;
9516
9517
if (!type_id)
9518
return NULL;
9519
if (!btf->struct_ops_tab)
9520
return NULL;
9521
9522
cnt = btf->struct_ops_tab->cnt;
9523
st_ops_list = btf->struct_ops_tab->ops;
9524
for (i = 0; i < cnt; i++) {
9525
if (st_ops_list[i].type_id == type_id)
9526
return &st_ops_list[i];
9527
}
9528
9529
return NULL;
9530
}
9531
9532
int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9533
{
9534
struct bpf_verifier_log *log;
9535
struct btf *btf;
9536
int err = 0;
9537
9538
btf = btf_get_module_btf(st_ops->owner);
9539
if (!btf)
9540
return check_btf_kconfigs(st_ops->owner, "struct_ops");
9541
if (IS_ERR(btf))
9542
return PTR_ERR(btf);
9543
9544
log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9545
if (!log) {
9546
err = -ENOMEM;
9547
goto errout;
9548
}
9549
9550
log->level = BPF_LOG_KERNEL;
9551
9552
err = btf_add_struct_ops(btf, st_ops, log);
9553
9554
errout:
9555
kfree(log);
9556
btf_put(btf);
9557
9558
return err;
9559
}
9560
EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9561
#endif
9562
9563
bool btf_param_match_suffix(const struct btf *btf,
9564
const struct btf_param *arg,
9565
const char *suffix)
9566
{
9567
int suffix_len = strlen(suffix), len;
9568
const char *param_name;
9569
9570
/* In the future, this can be ported to use BTF tagging */
9571
param_name = btf_name_by_offset(btf, arg->name_off);
9572
if (str_is_empty(param_name))
9573
return false;
9574
len = strlen(param_name);
9575
if (len <= suffix_len)
9576
return false;
9577
param_name += len - suffix_len;
9578
return !strncmp(param_name, suffix, suffix_len);
9579
}
9580
9581