Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/cpumap.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* bpf/cpumap.c
3
*
4
* Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5
*/
6
7
/**
8
* DOC: cpu map
9
* The 'cpumap' is primarily used as a backend map for XDP BPF helper
10
* call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11
*
12
* Unlike devmap which redirects XDP frames out to another NIC device,
13
* this map type redirects raw XDP frames to another CPU. The remote
14
* CPU will do SKB-allocation and call the normal network stack.
15
*/
16
/*
17
* This is a scalability and isolation mechanism, that allow
18
* separating the early driver network XDP layer, from the rest of the
19
* netstack, and assigning dedicated CPUs for this stage. This
20
* basically allows for 10G wirespeed pre-filtering via bpf.
21
*/
22
#include <linux/bitops.h>
23
#include <linux/bpf.h>
24
#include <linux/filter.h>
25
#include <linux/ptr_ring.h>
26
#include <net/xdp.h>
27
#include <net/hotdata.h>
28
29
#include <linux/sched.h>
30
#include <linux/workqueue.h>
31
#include <linux/kthread.h>
32
#include <linux/completion.h>
33
#include <trace/events/xdp.h>
34
#include <linux/btf_ids.h>
35
36
#include <linux/netdevice.h>
37
#include <net/gro.h>
38
39
/* General idea: XDP packets getting XDP redirected to another CPU,
40
* will maximum be stored/queued for one driver ->poll() call. It is
41
* guaranteed that queueing the frame and the flush operation happen on
42
* same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
43
* which queue in bpf_cpu_map_entry contains packets.
44
*/
45
46
#define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
47
struct bpf_cpu_map_entry;
48
struct bpf_cpu_map;
49
50
struct xdp_bulk_queue {
51
void *q[CPU_MAP_BULK_SIZE];
52
struct list_head flush_node;
53
struct bpf_cpu_map_entry *obj;
54
unsigned int count;
55
};
56
57
/* Struct for every remote "destination" CPU in map */
58
struct bpf_cpu_map_entry {
59
u32 cpu; /* kthread CPU and map index */
60
int map_id; /* Back reference to map */
61
62
/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
63
struct xdp_bulk_queue __percpu *bulkq;
64
65
/* Queue with potential multi-producers, and single-consumer kthread */
66
struct ptr_ring *queue;
67
struct task_struct *kthread;
68
69
struct bpf_cpumap_val value;
70
struct bpf_prog *prog;
71
struct gro_node gro;
72
73
struct completion kthread_running;
74
struct rcu_work free_work;
75
};
76
77
struct bpf_cpu_map {
78
struct bpf_map map;
79
/* Below members specific for map type */
80
struct bpf_cpu_map_entry __rcu **cpu_map;
81
};
82
83
static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84
{
85
u32 value_size = attr->value_size;
86
struct bpf_cpu_map *cmap;
87
88
/* check sanity of attributes */
89
if (attr->max_entries == 0 || attr->key_size != 4 ||
90
(value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
91
value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
92
attr->map_flags & ~BPF_F_NUMA_NODE)
93
return ERR_PTR(-EINVAL);
94
95
/* Pre-limit array size based on NR_CPUS, not final CPU check */
96
if (attr->max_entries > NR_CPUS)
97
return ERR_PTR(-E2BIG);
98
99
cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
100
if (!cmap)
101
return ERR_PTR(-ENOMEM);
102
103
bpf_map_init_from_attr(&cmap->map, attr);
104
105
/* Alloc array for possible remote "destination" CPUs */
106
cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
107
sizeof(struct bpf_cpu_map_entry *),
108
cmap->map.numa_node);
109
if (!cmap->cpu_map) {
110
bpf_map_area_free(cmap);
111
return ERR_PTR(-ENOMEM);
112
}
113
114
return &cmap->map;
115
}
116
117
static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
118
{
119
/* The tear-down procedure should have made sure that queue is
120
* empty. See __cpu_map_entry_replace() and work-queue
121
* invoked cpu_map_kthread_stop(). Catch any broken behaviour
122
* gracefully and warn once.
123
*/
124
void *ptr;
125
126
while ((ptr = ptr_ring_consume(ring))) {
127
WARN_ON_ONCE(1);
128
if (unlikely(__ptr_test_bit(0, &ptr))) {
129
__ptr_clear_bit(0, &ptr);
130
kfree_skb(ptr);
131
continue;
132
}
133
xdp_return_frame(ptr);
134
}
135
}
136
137
static u32 cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
138
void **skbs, u32 skb_n,
139
struct xdp_cpumap_stats *stats)
140
{
141
struct xdp_buff xdp;
142
u32 act, pass = 0;
143
int err;
144
145
for (u32 i = 0; i < skb_n; i++) {
146
struct sk_buff *skb = skbs[i];
147
148
act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
149
switch (act) {
150
case XDP_PASS:
151
skbs[pass++] = skb;
152
break;
153
case XDP_REDIRECT:
154
err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
155
rcpu->prog);
156
if (unlikely(err)) {
157
kfree_skb(skb);
158
stats->drop++;
159
} else {
160
stats->redirect++;
161
}
162
break;
163
default:
164
bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
165
fallthrough;
166
case XDP_ABORTED:
167
trace_xdp_exception(skb->dev, rcpu->prog, act);
168
fallthrough;
169
case XDP_DROP:
170
napi_consume_skb(skb, true);
171
stats->drop++;
172
break;
173
}
174
}
175
176
stats->pass += pass;
177
178
return pass;
179
}
180
181
static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
182
void **frames, int n,
183
struct xdp_cpumap_stats *stats)
184
{
185
struct xdp_rxq_info rxq = {};
186
struct xdp_buff xdp;
187
int i, nframes = 0;
188
189
xdp.rxq = &rxq;
190
191
for (i = 0; i < n; i++) {
192
struct xdp_frame *xdpf = frames[i];
193
u32 act;
194
int err;
195
196
rxq.dev = xdpf->dev_rx;
197
rxq.mem.type = xdpf->mem_type;
198
/* TODO: report queue_index to xdp_rxq_info */
199
200
xdp_convert_frame_to_buff(xdpf, &xdp);
201
202
act = bpf_prog_run_xdp(rcpu->prog, &xdp);
203
switch (act) {
204
case XDP_PASS:
205
err = xdp_update_frame_from_buff(&xdp, xdpf);
206
if (err < 0) {
207
xdp_return_frame(xdpf);
208
stats->drop++;
209
} else {
210
frames[nframes++] = xdpf;
211
}
212
break;
213
case XDP_REDIRECT:
214
err = xdp_do_redirect(xdpf->dev_rx, &xdp,
215
rcpu->prog);
216
if (unlikely(err)) {
217
xdp_return_frame(xdpf);
218
stats->drop++;
219
} else {
220
stats->redirect++;
221
}
222
break;
223
default:
224
bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
225
fallthrough;
226
case XDP_DROP:
227
xdp_return_frame(xdpf);
228
stats->drop++;
229
break;
230
}
231
}
232
233
stats->pass += nframes;
234
235
return nframes;
236
}
237
238
#define CPUMAP_BATCH 8
239
240
struct cpu_map_ret {
241
u32 xdp_n;
242
u32 skb_n;
243
};
244
245
static void cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
246
void **skbs, struct cpu_map_ret *ret,
247
struct xdp_cpumap_stats *stats)
248
{
249
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
250
251
if (!rcpu->prog)
252
goto out;
253
254
rcu_read_lock();
255
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
256
xdp_set_return_frame_no_direct();
257
258
ret->xdp_n = cpu_map_bpf_prog_run_xdp(rcpu, frames, ret->xdp_n, stats);
259
if (unlikely(ret->skb_n))
260
ret->skb_n = cpu_map_bpf_prog_run_skb(rcpu, skbs, ret->skb_n,
261
stats);
262
263
if (stats->redirect)
264
xdp_do_flush();
265
266
xdp_clear_return_frame_no_direct();
267
bpf_net_ctx_clear(bpf_net_ctx);
268
rcu_read_unlock();
269
270
out:
271
if (unlikely(ret->skb_n) && ret->xdp_n)
272
memmove(&skbs[ret->xdp_n], skbs, ret->skb_n * sizeof(*skbs));
273
}
274
275
static void cpu_map_gro_flush(struct bpf_cpu_map_entry *rcpu, bool empty)
276
{
277
/*
278
* If the ring is not empty, there'll be a new iteration soon, and we
279
* only need to do a full flush if a tick is long (> 1 ms).
280
* If the ring is empty, to not hold GRO packets in the stack for too
281
* long, do a full flush.
282
* This is equivalent to how NAPI decides whether to perform a full
283
* flush.
284
*/
285
gro_flush_normal(&rcpu->gro, !empty && HZ >= 1000);
286
}
287
288
static int cpu_map_kthread_run(void *data)
289
{
290
struct bpf_cpu_map_entry *rcpu = data;
291
unsigned long last_qs = jiffies;
292
u32 packets = 0;
293
294
complete(&rcpu->kthread_running);
295
set_current_state(TASK_INTERRUPTIBLE);
296
297
/* When kthread gives stop order, then rcpu have been disconnected
298
* from map, thus no new packets can enter. Remaining in-flight
299
* per CPU stored packets are flushed to this queue. Wait honoring
300
* kthread_stop signal until queue is empty.
301
*/
302
while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
303
struct xdp_cpumap_stats stats = {}; /* zero stats */
304
unsigned int kmem_alloc_drops = 0, sched = 0;
305
struct cpu_map_ret ret = { };
306
void *frames[CPUMAP_BATCH];
307
void *skbs[CPUMAP_BATCH];
308
u32 i, n, m;
309
bool empty;
310
311
/* Release CPU reschedule checks */
312
if (__ptr_ring_empty(rcpu->queue)) {
313
set_current_state(TASK_INTERRUPTIBLE);
314
/* Recheck to avoid lost wake-up */
315
if (__ptr_ring_empty(rcpu->queue)) {
316
schedule();
317
sched = 1;
318
last_qs = jiffies;
319
} else {
320
__set_current_state(TASK_RUNNING);
321
}
322
} else {
323
rcu_softirq_qs_periodic(last_qs);
324
sched = cond_resched();
325
}
326
327
/*
328
* The bpf_cpu_map_entry is single consumer, with this
329
* kthread CPU pinned. Lockless access to ptr_ring
330
* consume side valid as no-resize allowed of queue.
331
*/
332
n = __ptr_ring_consume_batched(rcpu->queue, frames,
333
CPUMAP_BATCH);
334
for (i = 0; i < n; i++) {
335
void *f = frames[i];
336
struct page *page;
337
338
if (unlikely(__ptr_test_bit(0, &f))) {
339
struct sk_buff *skb = f;
340
341
__ptr_clear_bit(0, &skb);
342
skbs[ret.skb_n++] = skb;
343
continue;
344
}
345
346
frames[ret.xdp_n++] = f;
347
page = virt_to_page(f);
348
349
/* Bring struct page memory area to curr CPU. Read by
350
* build_skb_around via page_is_pfmemalloc(), and when
351
* freed written by page_frag_free call.
352
*/
353
prefetchw(page);
354
}
355
356
local_bh_disable();
357
358
/* Support running another XDP prog on this CPU */
359
cpu_map_bpf_prog_run(rcpu, frames, skbs, &ret, &stats);
360
if (!ret.xdp_n)
361
goto stats;
362
363
m = napi_skb_cache_get_bulk(skbs, ret.xdp_n);
364
if (unlikely(m < ret.xdp_n)) {
365
for (i = m; i < ret.xdp_n; i++)
366
xdp_return_frame(frames[i]);
367
368
if (ret.skb_n)
369
memmove(&skbs[m], &skbs[ret.xdp_n],
370
ret.skb_n * sizeof(*skbs));
371
372
kmem_alloc_drops += ret.xdp_n - m;
373
ret.xdp_n = m;
374
}
375
376
for (i = 0; i < ret.xdp_n; i++) {
377
struct xdp_frame *xdpf = frames[i];
378
379
/* Can fail only when !skb -- already handled above */
380
__xdp_build_skb_from_frame(xdpf, skbs[i], xdpf->dev_rx);
381
}
382
383
stats:
384
/* Feedback loop via tracepoint.
385
* NB: keep before recv to allow measuring enqueue/dequeue latency.
386
*/
387
trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
388
sched, &stats);
389
390
for (i = 0; i < ret.xdp_n + ret.skb_n; i++)
391
gro_receive_skb(&rcpu->gro, skbs[i]);
392
393
/* Flush either every 64 packets or in case of empty ring */
394
packets += n;
395
empty = __ptr_ring_empty(rcpu->queue);
396
if (packets >= NAPI_POLL_WEIGHT || empty) {
397
cpu_map_gro_flush(rcpu, empty);
398
packets = 0;
399
}
400
401
local_bh_enable(); /* resched point, may call do_softirq() */
402
}
403
__set_current_state(TASK_RUNNING);
404
405
return 0;
406
}
407
408
static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
409
struct bpf_map *map, int fd)
410
{
411
struct bpf_prog *prog;
412
413
prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
414
if (IS_ERR(prog))
415
return PTR_ERR(prog);
416
417
if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
418
!bpf_prog_map_compatible(map, prog)) {
419
bpf_prog_put(prog);
420
return -EINVAL;
421
}
422
423
rcpu->value.bpf_prog.id = prog->aux->id;
424
rcpu->prog = prog;
425
426
return 0;
427
}
428
429
static struct bpf_cpu_map_entry *
430
__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
431
u32 cpu)
432
{
433
int numa, err, i, fd = value->bpf_prog.fd;
434
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
435
struct bpf_cpu_map_entry *rcpu;
436
struct xdp_bulk_queue *bq;
437
438
/* Have map->numa_node, but choose node of redirect target CPU */
439
numa = cpu_to_node(cpu);
440
441
rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
442
if (!rcpu)
443
return NULL;
444
445
/* Alloc percpu bulkq */
446
rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
447
sizeof(void *), gfp);
448
if (!rcpu->bulkq)
449
goto free_rcu;
450
451
for_each_possible_cpu(i) {
452
bq = per_cpu_ptr(rcpu->bulkq, i);
453
bq->obj = rcpu;
454
}
455
456
/* Alloc queue */
457
rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
458
numa);
459
if (!rcpu->queue)
460
goto free_bulkq;
461
462
err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
463
if (err)
464
goto free_queue;
465
466
rcpu->cpu = cpu;
467
rcpu->map_id = map->id;
468
rcpu->value.qsize = value->qsize;
469
gro_init(&rcpu->gro);
470
471
if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
472
goto free_ptr_ring;
473
474
/* Setup kthread */
475
init_completion(&rcpu->kthread_running);
476
rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
477
"cpumap/%d/map:%d", cpu,
478
map->id);
479
if (IS_ERR(rcpu->kthread))
480
goto free_prog;
481
482
/* Make sure kthread runs on a single CPU */
483
kthread_bind(rcpu->kthread, cpu);
484
wake_up_process(rcpu->kthread);
485
486
/* Make sure kthread has been running, so kthread_stop() will not
487
* stop the kthread prematurely and all pending frames or skbs
488
* will be handled by the kthread before kthread_stop() returns.
489
*/
490
wait_for_completion(&rcpu->kthread_running);
491
492
return rcpu;
493
494
free_prog:
495
if (rcpu->prog)
496
bpf_prog_put(rcpu->prog);
497
free_ptr_ring:
498
gro_cleanup(&rcpu->gro);
499
ptr_ring_cleanup(rcpu->queue, NULL);
500
free_queue:
501
kfree(rcpu->queue);
502
free_bulkq:
503
free_percpu(rcpu->bulkq);
504
free_rcu:
505
kfree(rcpu);
506
return NULL;
507
}
508
509
static void __cpu_map_entry_free(struct work_struct *work)
510
{
511
struct bpf_cpu_map_entry *rcpu;
512
513
/* This cpu_map_entry have been disconnected from map and one
514
* RCU grace-period have elapsed. Thus, XDP cannot queue any
515
* new packets and cannot change/set flush_needed that can
516
* find this entry.
517
*/
518
rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
519
520
/* kthread_stop will wake_up_process and wait for it to complete.
521
* cpu_map_kthread_run() makes sure the pointer ring is empty
522
* before exiting.
523
*/
524
kthread_stop(rcpu->kthread);
525
526
if (rcpu->prog)
527
bpf_prog_put(rcpu->prog);
528
gro_cleanup(&rcpu->gro);
529
/* The queue should be empty at this point */
530
__cpu_map_ring_cleanup(rcpu->queue);
531
ptr_ring_cleanup(rcpu->queue, NULL);
532
kfree(rcpu->queue);
533
free_percpu(rcpu->bulkq);
534
kfree(rcpu);
535
}
536
537
/* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
538
* entry is no longer in use before freeing. We use queue_rcu_work() to call
539
* __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
540
* period. This means that (a) all pending enqueue and flush operations have
541
* completed (because of the RCU callback), and (b) we are in a workqueue
542
* context where we can stop the kthread and wait for it to exit before freeing
543
* everything.
544
*/
545
static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
546
u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
547
{
548
struct bpf_cpu_map_entry *old_rcpu;
549
550
old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
551
if (old_rcpu) {
552
INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
553
queue_rcu_work(system_percpu_wq, &old_rcpu->free_work);
554
}
555
}
556
557
static long cpu_map_delete_elem(struct bpf_map *map, void *key)
558
{
559
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
560
u32 key_cpu = *(u32 *)key;
561
562
if (key_cpu >= map->max_entries)
563
return -EINVAL;
564
565
/* notice caller map_delete_elem() uses rcu_read_lock() */
566
__cpu_map_entry_replace(cmap, key_cpu, NULL);
567
return 0;
568
}
569
570
static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
571
u64 map_flags)
572
{
573
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
574
struct bpf_cpumap_val cpumap_value = {};
575
struct bpf_cpu_map_entry *rcpu;
576
/* Array index key correspond to CPU number */
577
u32 key_cpu = *(u32 *)key;
578
579
memcpy(&cpumap_value, value, map->value_size);
580
581
if (unlikely(map_flags > BPF_EXIST))
582
return -EINVAL;
583
if (unlikely(key_cpu >= cmap->map.max_entries))
584
return -E2BIG;
585
if (unlikely(map_flags == BPF_NOEXIST))
586
return -EEXIST;
587
if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
588
return -EOVERFLOW;
589
590
/* Make sure CPU is a valid possible cpu */
591
if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
592
return -ENODEV;
593
594
if (cpumap_value.qsize == 0) {
595
rcpu = NULL; /* Same as deleting */
596
} else {
597
/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
598
rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
599
if (!rcpu)
600
return -ENOMEM;
601
}
602
rcu_read_lock();
603
__cpu_map_entry_replace(cmap, key_cpu, rcpu);
604
rcu_read_unlock();
605
return 0;
606
}
607
608
static void cpu_map_free(struct bpf_map *map)
609
{
610
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
611
u32 i;
612
613
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
614
* so the bpf programs (can be more than one that used this map) were
615
* disconnected from events. Wait for outstanding critical sections in
616
* these programs to complete. synchronize_rcu() below not only
617
* guarantees no further "XDP/bpf-side" reads against
618
* bpf_cpu_map->cpu_map, but also ensure pending flush operations
619
* (if any) are completed.
620
*/
621
synchronize_rcu();
622
623
/* The only possible user of bpf_cpu_map_entry is
624
* cpu_map_kthread_run().
625
*/
626
for (i = 0; i < cmap->map.max_entries; i++) {
627
struct bpf_cpu_map_entry *rcpu;
628
629
rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
630
if (!rcpu)
631
continue;
632
633
/* Stop kthread and cleanup entry directly */
634
__cpu_map_entry_free(&rcpu->free_work.work);
635
}
636
bpf_map_area_free(cmap->cpu_map);
637
bpf_map_area_free(cmap);
638
}
639
640
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
641
* by local_bh_disable() (from XDP calls inside NAPI). The
642
* rcu_read_lock_bh_held() below makes lockdep accept both.
643
*/
644
static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
645
{
646
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
647
struct bpf_cpu_map_entry *rcpu;
648
649
if (key >= map->max_entries)
650
return NULL;
651
652
rcpu = rcu_dereference_check(cmap->cpu_map[key],
653
rcu_read_lock_bh_held());
654
return rcpu;
655
}
656
657
static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
658
{
659
struct bpf_cpu_map_entry *rcpu =
660
__cpu_map_lookup_elem(map, *(u32 *)key);
661
662
return rcpu ? &rcpu->value : NULL;
663
}
664
665
static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
666
{
667
struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
668
u32 index = key ? *(u32 *)key : U32_MAX;
669
u32 *next = next_key;
670
671
if (index >= cmap->map.max_entries) {
672
*next = 0;
673
return 0;
674
}
675
676
if (index == cmap->map.max_entries - 1)
677
return -ENOENT;
678
*next = index + 1;
679
return 0;
680
}
681
682
static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
683
{
684
return __bpf_xdp_redirect_map(map, index, flags, 0,
685
__cpu_map_lookup_elem);
686
}
687
688
static u64 cpu_map_mem_usage(const struct bpf_map *map)
689
{
690
u64 usage = sizeof(struct bpf_cpu_map);
691
692
/* Currently the dynamically allocated elements are not counted */
693
usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
694
return usage;
695
}
696
697
BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
698
const struct bpf_map_ops cpu_map_ops = {
699
.map_meta_equal = bpf_map_meta_equal,
700
.map_alloc = cpu_map_alloc,
701
.map_free = cpu_map_free,
702
.map_delete_elem = cpu_map_delete_elem,
703
.map_update_elem = cpu_map_update_elem,
704
.map_lookup_elem = cpu_map_lookup_elem,
705
.map_get_next_key = cpu_map_get_next_key,
706
.map_check_btf = map_check_no_btf,
707
.map_mem_usage = cpu_map_mem_usage,
708
.map_btf_id = &cpu_map_btf_ids[0],
709
.map_redirect = cpu_map_redirect,
710
};
711
712
static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
713
{
714
struct bpf_cpu_map_entry *rcpu = bq->obj;
715
unsigned int processed = 0, drops = 0;
716
const int to_cpu = rcpu->cpu;
717
struct ptr_ring *q;
718
int i;
719
720
if (unlikely(!bq->count))
721
return;
722
723
q = rcpu->queue;
724
spin_lock(&q->producer_lock);
725
726
for (i = 0; i < bq->count; i++) {
727
struct xdp_frame *xdpf = bq->q[i];
728
int err;
729
730
err = __ptr_ring_produce(q, xdpf);
731
if (err) {
732
drops++;
733
xdp_return_frame_rx_napi(xdpf);
734
}
735
processed++;
736
}
737
bq->count = 0;
738
spin_unlock(&q->producer_lock);
739
740
__list_del_clearprev(&bq->flush_node);
741
742
/* Feedback loop via tracepoints */
743
trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
744
}
745
746
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
747
* Thus, safe percpu variable access.
748
*/
749
static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
750
{
751
struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
752
753
if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
754
bq_flush_to_queue(bq);
755
756
/* Notice, xdp_buff/page MUST be queued here, long enough for
757
* driver to code invoking us to finished, due to driver
758
* (e.g. ixgbe) recycle tricks based on page-refcnt.
759
*
760
* Thus, incoming xdp_frame is always queued here (else we race
761
* with another CPU on page-refcnt and remaining driver code).
762
* Queue time is very short, as driver will invoke flush
763
* operation, when completing napi->poll call.
764
*/
765
bq->q[bq->count++] = xdpf;
766
767
if (!bq->flush_node.prev) {
768
struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list();
769
770
list_add(&bq->flush_node, flush_list);
771
}
772
}
773
774
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
775
struct net_device *dev_rx)
776
{
777
/* Info needed when constructing SKB on remote CPU */
778
xdpf->dev_rx = dev_rx;
779
780
bq_enqueue(rcpu, xdpf);
781
return 0;
782
}
783
784
int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
785
struct sk_buff *skb)
786
{
787
int ret;
788
789
__skb_pull(skb, skb->mac_len);
790
skb_set_redirected(skb, false);
791
__ptr_set_bit(0, &skb);
792
793
ret = ptr_ring_produce(rcpu->queue, skb);
794
if (ret < 0)
795
goto trace;
796
797
wake_up_process(rcpu->kthread);
798
trace:
799
trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
800
return ret;
801
}
802
803
void __cpu_map_flush(struct list_head *flush_list)
804
{
805
struct xdp_bulk_queue *bq, *tmp;
806
807
list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
808
bq_flush_to_queue(bq);
809
810
/* If already running, costs spin_lock_irqsave + smb_mb */
811
wake_up_process(bq->obj->kthread);
812
}
813
}
814
815