Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/lpm_trie.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Longest prefix match list implementation
4
*
5
* Copyright (c) 2016,2017 Daniel Mack
6
* Copyright (c) 2016 David Herrmann
7
*/
8
9
#include <linux/bpf.h>
10
#include <linux/btf.h>
11
#include <linux/err.h>
12
#include <linux/slab.h>
13
#include <linux/spinlock.h>
14
#include <linux/vmalloc.h>
15
#include <net/ipv6.h>
16
#include <uapi/linux/btf.h>
17
#include <linux/btf_ids.h>
18
#include <asm/rqspinlock.h>
19
#include <linux/bpf_mem_alloc.h>
20
21
/* Intermediate node */
22
#define LPM_TREE_NODE_FLAG_IM BIT(0)
23
24
struct lpm_trie_node;
25
26
struct lpm_trie_node {
27
struct lpm_trie_node __rcu *child[2];
28
u32 prefixlen;
29
u32 flags;
30
u8 data[];
31
};
32
33
struct lpm_trie {
34
struct bpf_map map;
35
struct lpm_trie_node __rcu *root;
36
struct bpf_mem_alloc ma;
37
size_t n_entries;
38
size_t max_prefixlen;
39
size_t data_size;
40
rqspinlock_t lock;
41
};
42
43
/* This trie implements a longest prefix match algorithm that can be used to
44
* match IP addresses to a stored set of ranges.
45
*
46
* Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
47
* interpreted as big endian, so data[0] stores the most significant byte.
48
*
49
* Match ranges are internally stored in instances of struct lpm_trie_node
50
* which each contain their prefix length as well as two pointers that may
51
* lead to more nodes containing more specific matches. Each node also stores
52
* a value that is defined by and returned to userspace via the update_elem
53
* and lookup functions.
54
*
55
* For instance, let's start with a trie that was created with a prefix length
56
* of 32, so it can be used for IPv4 addresses, and one single element that
57
* matches 192.168.0.0/16. The data array would hence contain
58
* [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
59
* stick to IP-address notation for readability though.
60
*
61
* As the trie is empty initially, the new node (1) will be places as root
62
* node, denoted as (R) in the example below. As there are no other node, both
63
* child pointers are %NULL.
64
*
65
* +----------------+
66
* | (1) (R) |
67
* | 192.168.0.0/16 |
68
* | value: 1 |
69
* | [0] [1] |
70
* +----------------+
71
*
72
* Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
73
* a node with the same data and a smaller prefix (ie, a less specific one),
74
* node (2) will become a child of (1). In child index depends on the next bit
75
* that is outside of what (1) matches, and that bit is 0, so (2) will be
76
* child[0] of (1):
77
*
78
* +----------------+
79
* | (1) (R) |
80
* | 192.168.0.0/16 |
81
* | value: 1 |
82
* | [0] [1] |
83
* +----------------+
84
* |
85
* +----------------+
86
* | (2) |
87
* | 192.168.0.0/24 |
88
* | value: 2 |
89
* | [0] [1] |
90
* +----------------+
91
*
92
* The child[1] slot of (1) could be filled with another node which has bit #17
93
* (the next bit after the ones that (1) matches on) set to 1. For instance,
94
* 192.168.128.0/24:
95
*
96
* +----------------+
97
* | (1) (R) |
98
* | 192.168.0.0/16 |
99
* | value: 1 |
100
* | [0] [1] |
101
* +----------------+
102
* | |
103
* +----------------+ +------------------+
104
* | (2) | | (3) |
105
* | 192.168.0.0/24 | | 192.168.128.0/24 |
106
* | value: 2 | | value: 3 |
107
* | [0] [1] | | [0] [1] |
108
* +----------------+ +------------------+
109
*
110
* Let's add another node (4) to the game for 192.168.1.0/24. In order to place
111
* it, node (1) is looked at first, and because (4) of the semantics laid out
112
* above (bit #17 is 0), it would normally be attached to (1) as child[0].
113
* However, that slot is already allocated, so a new node is needed in between.
114
* That node does not have a value attached to it and it will never be
115
* returned to users as result of a lookup. It is only there to differentiate
116
* the traversal further. It will get a prefix as wide as necessary to
117
* distinguish its two children:
118
*
119
* +----------------+
120
* | (1) (R) |
121
* | 192.168.0.0/16 |
122
* | value: 1 |
123
* | [0] [1] |
124
* +----------------+
125
* | |
126
* +----------------+ +------------------+
127
* | (4) (I) | | (3) |
128
* | 192.168.0.0/23 | | 192.168.128.0/24 |
129
* | value: --- | | value: 3 |
130
* | [0] [1] | | [0] [1] |
131
* +----------------+ +------------------+
132
* | |
133
* +----------------+ +----------------+
134
* | (2) | | (5) |
135
* | 192.168.0.0/24 | | 192.168.1.0/24 |
136
* | value: 2 | | value: 5 |
137
* | [0] [1] | | [0] [1] |
138
* +----------------+ +----------------+
139
*
140
* 192.168.1.1/32 would be a child of (5) etc.
141
*
142
* An intermediate node will be turned into a 'real' node on demand. In the
143
* example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
144
*
145
* A fully populated trie would have a height of 32 nodes, as the trie was
146
* created with a prefix length of 32.
147
*
148
* The lookup starts at the root node. If the current node matches and if there
149
* is a child that can be used to become more specific, the trie is traversed
150
* downwards. The last node in the traversal that is a non-intermediate one is
151
* returned.
152
*/
153
154
static inline int extract_bit(const u8 *data, size_t index)
155
{
156
return !!(data[index / 8] & (1 << (7 - (index % 8))));
157
}
158
159
/**
160
* __longest_prefix_match() - determine the longest prefix
161
* @trie: The trie to get internal sizes from
162
* @node: The node to operate on
163
* @key: The key to compare to @node
164
*
165
* Determine the longest prefix of @node that matches the bits in @key.
166
*/
167
static __always_inline
168
size_t __longest_prefix_match(const struct lpm_trie *trie,
169
const struct lpm_trie_node *node,
170
const struct bpf_lpm_trie_key_u8 *key)
171
{
172
u32 limit = min(node->prefixlen, key->prefixlen);
173
u32 prefixlen = 0, i = 0;
174
175
BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
176
BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
177
178
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
179
180
/* data_size >= 16 has very small probability.
181
* We do not use a loop for optimal code generation.
182
*/
183
if (trie->data_size >= 8) {
184
u64 diff = be64_to_cpu(*(__be64 *)node->data ^
185
*(__be64 *)key->data);
186
187
prefixlen = 64 - fls64(diff);
188
if (prefixlen >= limit)
189
return limit;
190
if (diff)
191
return prefixlen;
192
i = 8;
193
}
194
#endif
195
196
while (trie->data_size >= i + 4) {
197
u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
198
*(__be32 *)&key->data[i]);
199
200
prefixlen += 32 - fls(diff);
201
if (prefixlen >= limit)
202
return limit;
203
if (diff)
204
return prefixlen;
205
i += 4;
206
}
207
208
if (trie->data_size >= i + 2) {
209
u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
210
*(__be16 *)&key->data[i]);
211
212
prefixlen += 16 - fls(diff);
213
if (prefixlen >= limit)
214
return limit;
215
if (diff)
216
return prefixlen;
217
i += 2;
218
}
219
220
if (trie->data_size >= i + 1) {
221
prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
222
223
if (prefixlen >= limit)
224
return limit;
225
}
226
227
return prefixlen;
228
}
229
230
static size_t longest_prefix_match(const struct lpm_trie *trie,
231
const struct lpm_trie_node *node,
232
const struct bpf_lpm_trie_key_u8 *key)
233
{
234
return __longest_prefix_match(trie, node, key);
235
}
236
237
/* Called from syscall or from eBPF program */
238
static void *trie_lookup_elem(struct bpf_map *map, void *_key)
239
{
240
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
241
struct lpm_trie_node *node, *found = NULL;
242
struct bpf_lpm_trie_key_u8 *key = _key;
243
244
if (key->prefixlen > trie->max_prefixlen)
245
return NULL;
246
247
/* Start walking the trie from the root node ... */
248
249
for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
250
node;) {
251
unsigned int next_bit;
252
size_t matchlen;
253
254
/* Determine the longest prefix of @node that matches @key.
255
* If it's the maximum possible prefix for this trie, we have
256
* an exact match and can return it directly.
257
*/
258
matchlen = __longest_prefix_match(trie, node, key);
259
if (matchlen == trie->max_prefixlen) {
260
found = node;
261
break;
262
}
263
264
/* If the number of bits that match is smaller than the prefix
265
* length of @node, bail out and return the node we have seen
266
* last in the traversal (ie, the parent).
267
*/
268
if (matchlen < node->prefixlen)
269
break;
270
271
/* Consider this node as return candidate unless it is an
272
* artificially added intermediate one.
273
*/
274
if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
275
found = node;
276
277
/* If the node match is fully satisfied, let's see if we can
278
* become more specific. Determine the next bit in the key and
279
* traverse down.
280
*/
281
next_bit = extract_bit(key->data, node->prefixlen);
282
node = rcu_dereference_check(node->child[next_bit],
283
rcu_read_lock_bh_held());
284
}
285
286
if (!found)
287
return NULL;
288
289
return found->data + trie->data_size;
290
}
291
292
static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie,
293
const void *value)
294
{
295
struct lpm_trie_node *node;
296
297
node = bpf_mem_cache_alloc(&trie->ma);
298
299
if (!node)
300
return NULL;
301
302
node->flags = 0;
303
304
if (value)
305
memcpy(node->data + trie->data_size, value,
306
trie->map.value_size);
307
308
return node;
309
}
310
311
static int trie_check_add_elem(struct lpm_trie *trie, u64 flags)
312
{
313
if (flags == BPF_EXIST)
314
return -ENOENT;
315
if (trie->n_entries == trie->map.max_entries)
316
return -ENOSPC;
317
trie->n_entries++;
318
return 0;
319
}
320
321
/* Called from syscall or from eBPF program */
322
static long trie_update_elem(struct bpf_map *map,
323
void *_key, void *value, u64 flags)
324
{
325
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
326
struct lpm_trie_node *node, *im_node, *new_node;
327
struct lpm_trie_node *free_node = NULL;
328
struct lpm_trie_node __rcu **slot;
329
struct bpf_lpm_trie_key_u8 *key = _key;
330
unsigned long irq_flags;
331
unsigned int next_bit;
332
size_t matchlen = 0;
333
int ret = 0;
334
335
if (unlikely(flags > BPF_EXIST))
336
return -EINVAL;
337
338
if (key->prefixlen > trie->max_prefixlen)
339
return -EINVAL;
340
341
/* Allocate and fill a new node */
342
new_node = lpm_trie_node_alloc(trie, value);
343
if (!new_node)
344
return -ENOMEM;
345
346
ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags);
347
if (ret)
348
goto out_free;
349
350
new_node->prefixlen = key->prefixlen;
351
RCU_INIT_POINTER(new_node->child[0], NULL);
352
RCU_INIT_POINTER(new_node->child[1], NULL);
353
memcpy(new_node->data, key->data, trie->data_size);
354
355
/* Now find a slot to attach the new node. To do that, walk the tree
356
* from the root and match as many bits as possible for each node until
357
* we either find an empty slot or a slot that needs to be replaced by
358
* an intermediate node.
359
*/
360
slot = &trie->root;
361
362
while ((node = rcu_dereference(*slot))) {
363
matchlen = longest_prefix_match(trie, node, key);
364
365
if (node->prefixlen != matchlen ||
366
node->prefixlen == key->prefixlen)
367
break;
368
369
next_bit = extract_bit(key->data, node->prefixlen);
370
slot = &node->child[next_bit];
371
}
372
373
/* If the slot is empty (a free child pointer or an empty root),
374
* simply assign the @new_node to that slot and be done.
375
*/
376
if (!node) {
377
ret = trie_check_add_elem(trie, flags);
378
if (ret)
379
goto out;
380
381
rcu_assign_pointer(*slot, new_node);
382
goto out;
383
}
384
385
/* If the slot we picked already exists, replace it with @new_node
386
* which already has the correct data array set.
387
*/
388
if (node->prefixlen == matchlen) {
389
if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) {
390
if (flags == BPF_NOEXIST) {
391
ret = -EEXIST;
392
goto out;
393
}
394
} else {
395
ret = trie_check_add_elem(trie, flags);
396
if (ret)
397
goto out;
398
}
399
400
new_node->child[0] = node->child[0];
401
new_node->child[1] = node->child[1];
402
403
rcu_assign_pointer(*slot, new_node);
404
free_node = node;
405
406
goto out;
407
}
408
409
ret = trie_check_add_elem(trie, flags);
410
if (ret)
411
goto out;
412
413
/* If the new node matches the prefix completely, it must be inserted
414
* as an ancestor. Simply insert it between @node and *@slot.
415
*/
416
if (matchlen == key->prefixlen) {
417
next_bit = extract_bit(node->data, matchlen);
418
rcu_assign_pointer(new_node->child[next_bit], node);
419
rcu_assign_pointer(*slot, new_node);
420
goto out;
421
}
422
423
im_node = lpm_trie_node_alloc(trie, NULL);
424
if (!im_node) {
425
trie->n_entries--;
426
ret = -ENOMEM;
427
goto out;
428
}
429
430
im_node->prefixlen = matchlen;
431
im_node->flags |= LPM_TREE_NODE_FLAG_IM;
432
memcpy(im_node->data, node->data, trie->data_size);
433
434
/* Now determine which child to install in which slot */
435
if (extract_bit(key->data, matchlen)) {
436
rcu_assign_pointer(im_node->child[0], node);
437
rcu_assign_pointer(im_node->child[1], new_node);
438
} else {
439
rcu_assign_pointer(im_node->child[0], new_node);
440
rcu_assign_pointer(im_node->child[1], node);
441
}
442
443
/* Finally, assign the intermediate node to the determined slot */
444
rcu_assign_pointer(*slot, im_node);
445
446
out:
447
raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags);
448
out_free:
449
if (ret)
450
bpf_mem_cache_free(&trie->ma, new_node);
451
bpf_mem_cache_free_rcu(&trie->ma, free_node);
452
453
return ret;
454
}
455
456
/* Called from syscall or from eBPF program */
457
static long trie_delete_elem(struct bpf_map *map, void *_key)
458
{
459
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
460
struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
461
struct bpf_lpm_trie_key_u8 *key = _key;
462
struct lpm_trie_node __rcu **trim, **trim2;
463
struct lpm_trie_node *node, *parent;
464
unsigned long irq_flags;
465
unsigned int next_bit;
466
size_t matchlen = 0;
467
int ret = 0;
468
469
if (key->prefixlen > trie->max_prefixlen)
470
return -EINVAL;
471
472
ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags);
473
if (ret)
474
return ret;
475
476
/* Walk the tree looking for an exact key/length match and keeping
477
* track of the path we traverse. We will need to know the node
478
* we wish to delete, and the slot that points to the node we want
479
* to delete. We may also need to know the nodes parent and the
480
* slot that contains it.
481
*/
482
trim = &trie->root;
483
trim2 = trim;
484
parent = NULL;
485
while ((node = rcu_dereference(*trim))) {
486
matchlen = longest_prefix_match(trie, node, key);
487
488
if (node->prefixlen != matchlen ||
489
node->prefixlen == key->prefixlen)
490
break;
491
492
parent = node;
493
trim2 = trim;
494
next_bit = extract_bit(key->data, node->prefixlen);
495
trim = &node->child[next_bit];
496
}
497
498
if (!node || node->prefixlen != key->prefixlen ||
499
node->prefixlen != matchlen ||
500
(node->flags & LPM_TREE_NODE_FLAG_IM)) {
501
ret = -ENOENT;
502
goto out;
503
}
504
505
trie->n_entries--;
506
507
/* If the node we are removing has two children, simply mark it
508
* as intermediate and we are done.
509
*/
510
if (rcu_access_pointer(node->child[0]) &&
511
rcu_access_pointer(node->child[1])) {
512
node->flags |= LPM_TREE_NODE_FLAG_IM;
513
goto out;
514
}
515
516
/* If the parent of the node we are about to delete is an intermediate
517
* node, and the deleted node doesn't have any children, we can delete
518
* the intermediate parent as well and promote its other child
519
* up the tree. Doing this maintains the invariant that all
520
* intermediate nodes have exactly 2 children and that there are no
521
* unnecessary intermediate nodes in the tree.
522
*/
523
if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
524
!node->child[0] && !node->child[1]) {
525
if (node == rcu_access_pointer(parent->child[0]))
526
rcu_assign_pointer(
527
*trim2, rcu_access_pointer(parent->child[1]));
528
else
529
rcu_assign_pointer(
530
*trim2, rcu_access_pointer(parent->child[0]));
531
free_parent = parent;
532
free_node = node;
533
goto out;
534
}
535
536
/* The node we are removing has either zero or one child. If there
537
* is a child, move it into the removed node's slot then delete
538
* the node. Otherwise just clear the slot and delete the node.
539
*/
540
if (node->child[0])
541
rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
542
else if (node->child[1])
543
rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
544
else
545
RCU_INIT_POINTER(*trim, NULL);
546
free_node = node;
547
548
out:
549
raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags);
550
551
bpf_mem_cache_free_rcu(&trie->ma, free_parent);
552
bpf_mem_cache_free_rcu(&trie->ma, free_node);
553
554
return ret;
555
}
556
557
#define LPM_DATA_SIZE_MAX 256
558
#define LPM_DATA_SIZE_MIN 1
559
560
#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
561
sizeof(struct lpm_trie_node))
562
#define LPM_VAL_SIZE_MIN 1
563
564
#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key_u8) + (X))
565
#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
566
#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
567
568
#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
569
BPF_F_ACCESS_MASK)
570
571
static struct bpf_map *trie_alloc(union bpf_attr *attr)
572
{
573
struct lpm_trie *trie;
574
size_t leaf_size;
575
int err;
576
577
/* check sanity of attributes */
578
if (attr->max_entries == 0 ||
579
!(attr->map_flags & BPF_F_NO_PREALLOC) ||
580
attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
581
!bpf_map_flags_access_ok(attr->map_flags) ||
582
attr->key_size < LPM_KEY_SIZE_MIN ||
583
attr->key_size > LPM_KEY_SIZE_MAX ||
584
attr->value_size < LPM_VAL_SIZE_MIN ||
585
attr->value_size > LPM_VAL_SIZE_MAX)
586
return ERR_PTR(-EINVAL);
587
588
trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
589
if (!trie)
590
return ERR_PTR(-ENOMEM);
591
592
/* copy mandatory map attributes */
593
bpf_map_init_from_attr(&trie->map, attr);
594
trie->data_size = attr->key_size -
595
offsetof(struct bpf_lpm_trie_key_u8, data);
596
trie->max_prefixlen = trie->data_size * 8;
597
598
raw_res_spin_lock_init(&trie->lock);
599
600
/* Allocate intermediate and leaf nodes from the same allocator */
601
leaf_size = sizeof(struct lpm_trie_node) + trie->data_size +
602
trie->map.value_size;
603
err = bpf_mem_alloc_init(&trie->ma, leaf_size, false);
604
if (err)
605
goto free_out;
606
return &trie->map;
607
608
free_out:
609
bpf_map_area_free(trie);
610
return ERR_PTR(err);
611
}
612
613
static void trie_free(struct bpf_map *map)
614
{
615
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
616
struct lpm_trie_node __rcu **slot;
617
struct lpm_trie_node *node;
618
619
/* Always start at the root and walk down to a node that has no
620
* children. Then free that node, nullify its reference in the parent
621
* and start over.
622
*/
623
624
for (;;) {
625
slot = &trie->root;
626
627
for (;;) {
628
node = rcu_dereference_protected(*slot, 1);
629
if (!node)
630
goto out;
631
632
if (rcu_access_pointer(node->child[0])) {
633
slot = &node->child[0];
634
continue;
635
}
636
637
if (rcu_access_pointer(node->child[1])) {
638
slot = &node->child[1];
639
continue;
640
}
641
642
/* No bpf program may access the map, so freeing the
643
* node without waiting for the extra RCU GP.
644
*/
645
bpf_mem_cache_raw_free(node);
646
RCU_INIT_POINTER(*slot, NULL);
647
break;
648
}
649
}
650
651
out:
652
bpf_mem_alloc_destroy(&trie->ma);
653
bpf_map_area_free(trie);
654
}
655
656
static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
657
{
658
struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
659
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
660
struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
661
struct lpm_trie_node **node_stack = NULL;
662
int err = 0, stack_ptr = -1;
663
unsigned int next_bit;
664
size_t matchlen = 0;
665
666
/* The get_next_key follows postorder. For the 4 node example in
667
* the top of this file, the trie_get_next_key() returns the following
668
* one after another:
669
* 192.168.0.0/24
670
* 192.168.1.0/24
671
* 192.168.128.0/24
672
* 192.168.0.0/16
673
*
674
* The idea is to return more specific keys before less specific ones.
675
*/
676
677
/* Empty trie */
678
search_root = rcu_dereference(trie->root);
679
if (!search_root)
680
return -ENOENT;
681
682
/* For invalid key, find the leftmost node in the trie */
683
if (!key || key->prefixlen > trie->max_prefixlen)
684
goto find_leftmost;
685
686
node_stack = kmalloc_array(trie->max_prefixlen + 1,
687
sizeof(struct lpm_trie_node *),
688
GFP_ATOMIC | __GFP_NOWARN);
689
if (!node_stack)
690
return -ENOMEM;
691
692
/* Try to find the exact node for the given key */
693
for (node = search_root; node;) {
694
node_stack[++stack_ptr] = node;
695
matchlen = longest_prefix_match(trie, node, key);
696
if (node->prefixlen != matchlen ||
697
node->prefixlen == key->prefixlen)
698
break;
699
700
next_bit = extract_bit(key->data, node->prefixlen);
701
node = rcu_dereference(node->child[next_bit]);
702
}
703
if (!node || node->prefixlen != matchlen ||
704
(node->flags & LPM_TREE_NODE_FLAG_IM))
705
goto find_leftmost;
706
707
/* The node with the exactly-matching key has been found,
708
* find the first node in postorder after the matched node.
709
*/
710
node = node_stack[stack_ptr];
711
while (stack_ptr > 0) {
712
parent = node_stack[stack_ptr - 1];
713
if (rcu_dereference(parent->child[0]) == node) {
714
search_root = rcu_dereference(parent->child[1]);
715
if (search_root)
716
goto find_leftmost;
717
}
718
if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
719
next_node = parent;
720
goto do_copy;
721
}
722
723
node = parent;
724
stack_ptr--;
725
}
726
727
/* did not find anything */
728
err = -ENOENT;
729
goto free_stack;
730
731
find_leftmost:
732
/* Find the leftmost non-intermediate node, all intermediate nodes
733
* have exact two children, so this function will never return NULL.
734
*/
735
for (node = search_root; node;) {
736
if (node->flags & LPM_TREE_NODE_FLAG_IM) {
737
node = rcu_dereference(node->child[0]);
738
} else {
739
next_node = node;
740
node = rcu_dereference(node->child[0]);
741
if (!node)
742
node = rcu_dereference(next_node->child[1]);
743
}
744
}
745
do_copy:
746
next_key->prefixlen = next_node->prefixlen;
747
memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
748
next_node->data, trie->data_size);
749
free_stack:
750
kfree(node_stack);
751
return err;
752
}
753
754
static int trie_check_btf(const struct bpf_map *map,
755
const struct btf *btf,
756
const struct btf_type *key_type,
757
const struct btf_type *value_type)
758
{
759
/* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
760
return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
761
-EINVAL : 0;
762
}
763
764
static u64 trie_mem_usage(const struct bpf_map *map)
765
{
766
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
767
u64 elem_size;
768
769
elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
770
trie->map.value_size;
771
return elem_size * READ_ONCE(trie->n_entries);
772
}
773
774
BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
775
const struct bpf_map_ops trie_map_ops = {
776
.map_meta_equal = bpf_map_meta_equal,
777
.map_alloc = trie_alloc,
778
.map_free = trie_free,
779
.map_get_next_key = trie_get_next_key,
780
.map_lookup_elem = trie_lookup_elem,
781
.map_update_elem = trie_update_elem,
782
.map_delete_elem = trie_delete_elem,
783
.map_lookup_batch = generic_map_lookup_batch,
784
.map_update_batch = generic_map_update_batch,
785
.map_delete_batch = generic_map_delete_batch,
786
.map_check_btf = trie_check_btf,
787
.map_mem_usage = trie_mem_usage,
788
.map_btf_id = &trie_map_btf_ids[0],
789
};
790
791