Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/cgroup/cgroup-v1.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "cgroup-internal.h"
3
4
#include <linux/ctype.h>
5
#include <linux/kmod.h>
6
#include <linux/sort.h>
7
#include <linux/delay.h>
8
#include <linux/mm.h>
9
#include <linux/sched/signal.h>
10
#include <linux/sched/task.h>
11
#include <linux/magic.h>
12
#include <linux/slab.h>
13
#include <linux/string.h>
14
#include <linux/vmalloc.h>
15
#include <linux/delayacct.h>
16
#include <linux/pid_namespace.h>
17
#include <linux/cgroupstats.h>
18
#include <linux/fs_parser.h>
19
20
#include <trace/events/cgroup.h>
21
22
/*
23
* pidlists linger the following amount before being destroyed. The goal
24
* is avoiding frequent destruction in the middle of consecutive read calls
25
* Expiring in the middle is a performance problem not a correctness one.
26
* 1 sec should be enough.
27
*/
28
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
29
30
/* Controllers blocked by the commandline in v1 */
31
static u16 cgroup_no_v1_mask;
32
33
/* disable named v1 mounts */
34
static bool cgroup_no_v1_named;
35
36
/* Show unavailable controllers in /proc/cgroups */
37
static bool proc_show_all;
38
39
/*
40
* pidlist destructions need to be flushed on cgroup destruction. Use a
41
* separate workqueue as flush domain.
42
*/
43
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
44
45
/* protects cgroup_subsys->release_agent_path */
46
static DEFINE_SPINLOCK(release_agent_path_lock);
47
48
bool cgroup1_ssid_disabled(int ssid)
49
{
50
return cgroup_no_v1_mask & (1 << ssid);
51
}
52
53
static bool cgroup1_subsys_absent(struct cgroup_subsys *ss)
54
{
55
/* Check also dfl_cftypes for file-less controllers, i.e. perf_event */
56
return ss->legacy_cftypes == NULL && ss->dfl_cftypes;
57
}
58
59
/**
60
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
61
* @from: attach to all cgroups of a given task
62
* @tsk: the task to be attached
63
*
64
* Return: %0 on success or a negative errno code on failure
65
*/
66
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
67
{
68
struct cgroup_root *root;
69
int retval = 0;
70
71
cgroup_lock();
72
cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
73
for_each_root(root) {
74
struct cgroup *from_cgrp;
75
76
spin_lock_irq(&css_set_lock);
77
from_cgrp = task_cgroup_from_root(from, root);
78
spin_unlock_irq(&css_set_lock);
79
80
retval = cgroup_attach_task(from_cgrp, tsk, false);
81
if (retval)
82
break;
83
}
84
cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
85
cgroup_unlock();
86
87
return retval;
88
}
89
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
90
91
/**
92
* cgroup_transfer_tasks - move tasks from one cgroup to another
93
* @to: cgroup to which the tasks will be moved
94
* @from: cgroup in which the tasks currently reside
95
*
96
* Locking rules between cgroup_post_fork() and the migration path
97
* guarantee that, if a task is forking while being migrated, the new child
98
* is guaranteed to be either visible in the source cgroup after the
99
* parent's migration is complete or put into the target cgroup. No task
100
* can slip out of migration through forking.
101
*
102
* Return: %0 on success or a negative errno code on failure
103
*/
104
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
105
{
106
DEFINE_CGROUP_MGCTX(mgctx);
107
struct cgrp_cset_link *link;
108
struct css_task_iter it;
109
struct task_struct *task;
110
int ret;
111
112
if (cgroup_on_dfl(to))
113
return -EINVAL;
114
115
ret = cgroup_migrate_vet_dst(to);
116
if (ret)
117
return ret;
118
119
cgroup_lock();
120
121
cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
122
123
/* all tasks in @from are being moved, all csets are source */
124
spin_lock_irq(&css_set_lock);
125
list_for_each_entry(link, &from->cset_links, cset_link)
126
cgroup_migrate_add_src(link->cset, to, &mgctx);
127
spin_unlock_irq(&css_set_lock);
128
129
ret = cgroup_migrate_prepare_dst(&mgctx);
130
if (ret)
131
goto out_err;
132
133
/*
134
* Migrate tasks one-by-one until @from is empty. This fails iff
135
* ->can_attach() fails.
136
*/
137
do {
138
css_task_iter_start(&from->self, 0, &it);
139
140
do {
141
task = css_task_iter_next(&it);
142
} while (task && (task->flags & PF_EXITING));
143
144
if (task)
145
get_task_struct(task);
146
css_task_iter_end(&it);
147
148
if (task) {
149
ret = cgroup_migrate(task, false, &mgctx);
150
if (!ret)
151
TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
152
put_task_struct(task);
153
}
154
} while (task && !ret);
155
out_err:
156
cgroup_migrate_finish(&mgctx);
157
cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
158
cgroup_unlock();
159
return ret;
160
}
161
162
/*
163
* Stuff for reading the 'tasks'/'procs' files.
164
*
165
* Reading this file can return large amounts of data if a cgroup has
166
* *lots* of attached tasks. So it may need several calls to read(),
167
* but we cannot guarantee that the information we produce is correct
168
* unless we produce it entirely atomically.
169
*
170
*/
171
172
/* which pidlist file are we talking about? */
173
enum cgroup_filetype {
174
CGROUP_FILE_PROCS,
175
CGROUP_FILE_TASKS,
176
};
177
178
/*
179
* A pidlist is a list of pids that virtually represents the contents of one
180
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
181
* a pair (one each for procs, tasks) for each pid namespace that's relevant
182
* to the cgroup.
183
*/
184
struct cgroup_pidlist {
185
/*
186
* used to find which pidlist is wanted. doesn't change as long as
187
* this particular list stays in the list.
188
*/
189
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
190
/* array of xids */
191
pid_t *list;
192
/* how many elements the above list has */
193
int length;
194
/* each of these stored in a list by its cgroup */
195
struct list_head links;
196
/* pointer to the cgroup we belong to, for list removal purposes */
197
struct cgroup *owner;
198
/* for delayed destruction */
199
struct delayed_work destroy_dwork;
200
};
201
202
/*
203
* Used to destroy all pidlists lingering waiting for destroy timer. None
204
* should be left afterwards.
205
*/
206
void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
207
{
208
struct cgroup_pidlist *l, *tmp_l;
209
210
mutex_lock(&cgrp->pidlist_mutex);
211
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
212
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
213
mutex_unlock(&cgrp->pidlist_mutex);
214
215
flush_workqueue(cgroup_pidlist_destroy_wq);
216
BUG_ON(!list_empty(&cgrp->pidlists));
217
}
218
219
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
220
{
221
struct delayed_work *dwork = to_delayed_work(work);
222
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
223
destroy_dwork);
224
struct cgroup_pidlist *tofree = NULL;
225
226
mutex_lock(&l->owner->pidlist_mutex);
227
228
/*
229
* Destroy iff we didn't get queued again. The state won't change
230
* as destroy_dwork can only be queued while locked.
231
*/
232
if (!delayed_work_pending(dwork)) {
233
list_del(&l->links);
234
kvfree(l->list);
235
put_pid_ns(l->key.ns);
236
tofree = l;
237
}
238
239
mutex_unlock(&l->owner->pidlist_mutex);
240
kfree(tofree);
241
}
242
243
/*
244
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
245
* Returns the number of unique elements.
246
*/
247
static int pidlist_uniq(pid_t *list, int length)
248
{
249
int src, dest = 1;
250
251
/*
252
* we presume the 0th element is unique, so i starts at 1. trivial
253
* edge cases first; no work needs to be done for either
254
*/
255
if (length == 0 || length == 1)
256
return length;
257
/* src and dest walk down the list; dest counts unique elements */
258
for (src = 1; src < length; src++) {
259
/* find next unique element */
260
while (list[src] == list[src-1]) {
261
src++;
262
if (src == length)
263
goto after;
264
}
265
/* dest always points to where the next unique element goes */
266
list[dest] = list[src];
267
dest++;
268
}
269
after:
270
return dest;
271
}
272
273
/*
274
* The two pid files - task and cgroup.procs - guaranteed that the result
275
* is sorted, which forced this whole pidlist fiasco. As pid order is
276
* different per namespace, each namespace needs differently sorted list,
277
* making it impossible to use, for example, single rbtree of member tasks
278
* sorted by task pointer. As pidlists can be fairly large, allocating one
279
* per open file is dangerous, so cgroup had to implement shared pool of
280
* pidlists keyed by cgroup and namespace.
281
*/
282
static int cmppid(const void *a, const void *b)
283
{
284
return *(pid_t *)a - *(pid_t *)b;
285
}
286
287
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
288
enum cgroup_filetype type)
289
{
290
struct cgroup_pidlist *l;
291
/* don't need task_nsproxy() if we're looking at ourself */
292
struct pid_namespace *ns = task_active_pid_ns(current);
293
294
lockdep_assert_held(&cgrp->pidlist_mutex);
295
296
list_for_each_entry(l, &cgrp->pidlists, links)
297
if (l->key.type == type && l->key.ns == ns)
298
return l;
299
return NULL;
300
}
301
302
/*
303
* find the appropriate pidlist for our purpose (given procs vs tasks)
304
* returns with the lock on that pidlist already held, and takes care
305
* of the use count, or returns NULL with no locks held if we're out of
306
* memory.
307
*/
308
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
309
enum cgroup_filetype type)
310
{
311
struct cgroup_pidlist *l;
312
313
lockdep_assert_held(&cgrp->pidlist_mutex);
314
315
l = cgroup_pidlist_find(cgrp, type);
316
if (l)
317
return l;
318
319
/* entry not found; create a new one */
320
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
321
if (!l)
322
return l;
323
324
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
325
l->key.type = type;
326
/* don't need task_nsproxy() if we're looking at ourself */
327
l->key.ns = get_pid_ns(task_active_pid_ns(current));
328
l->owner = cgrp;
329
list_add(&l->links, &cgrp->pidlists);
330
return l;
331
}
332
333
/*
334
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
335
*/
336
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
337
struct cgroup_pidlist **lp)
338
{
339
pid_t *array;
340
int length;
341
int pid, n = 0; /* used for populating the array */
342
struct css_task_iter it;
343
struct task_struct *tsk;
344
struct cgroup_pidlist *l;
345
346
lockdep_assert_held(&cgrp->pidlist_mutex);
347
348
/*
349
* If cgroup gets more users after we read count, we won't have
350
* enough space - tough. This race is indistinguishable to the
351
* caller from the case that the additional cgroup users didn't
352
* show up until sometime later on.
353
*/
354
length = cgroup_task_count(cgrp);
355
array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
356
if (!array)
357
return -ENOMEM;
358
/* now, populate the array */
359
css_task_iter_start(&cgrp->self, 0, &it);
360
while ((tsk = css_task_iter_next(&it))) {
361
if (unlikely(n == length))
362
break;
363
/* get tgid or pid for procs or tasks file respectively */
364
if (type == CGROUP_FILE_PROCS)
365
pid = task_tgid_vnr(tsk);
366
else
367
pid = task_pid_vnr(tsk);
368
if (pid > 0) /* make sure to only use valid results */
369
array[n++] = pid;
370
}
371
css_task_iter_end(&it);
372
length = n;
373
/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
374
sort(array, length, sizeof(pid_t), cmppid, NULL);
375
length = pidlist_uniq(array, length);
376
377
l = cgroup_pidlist_find_create(cgrp, type);
378
if (!l) {
379
kvfree(array);
380
return -ENOMEM;
381
}
382
383
/* store array, freeing old if necessary */
384
kvfree(l->list);
385
l->list = array;
386
l->length = length;
387
*lp = l;
388
return 0;
389
}
390
391
/*
392
* seq_file methods for the tasks/procs files. The seq_file position is the
393
* next pid to display; the seq_file iterator is a pointer to the pid
394
* in the cgroup->l->list array.
395
*/
396
397
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
398
{
399
/*
400
* Initially we receive a position value that corresponds to
401
* one more than the last pid shown (or 0 on the first call or
402
* after a seek to the start). Use a binary-search to find the
403
* next pid to display, if any
404
*/
405
struct kernfs_open_file *of = s->private;
406
struct cgroup_file_ctx *ctx = of->priv;
407
struct cgroup *cgrp = seq_css(s)->cgroup;
408
struct cgroup_pidlist *l;
409
enum cgroup_filetype type = seq_cft(s)->private;
410
int index = 0, pid = *pos;
411
int *iter, ret;
412
413
mutex_lock(&cgrp->pidlist_mutex);
414
415
/*
416
* !NULL @ctx->procs1.pidlist indicates that this isn't the first
417
* start() after open. If the matching pidlist is around, we can use
418
* that. Look for it. Note that @ctx->procs1.pidlist can't be used
419
* directly. It could already have been destroyed.
420
*/
421
if (ctx->procs1.pidlist)
422
ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
423
424
/*
425
* Either this is the first start() after open or the matching
426
* pidlist has been destroyed inbetween. Create a new one.
427
*/
428
if (!ctx->procs1.pidlist) {
429
ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
430
if (ret)
431
return ERR_PTR(ret);
432
}
433
l = ctx->procs1.pidlist;
434
435
if (pid) {
436
int end = l->length;
437
438
while (index < end) {
439
int mid = (index + end) / 2;
440
if (l->list[mid] == pid) {
441
index = mid;
442
break;
443
} else if (l->list[mid] < pid)
444
index = mid + 1;
445
else
446
end = mid;
447
}
448
}
449
/* If we're off the end of the array, we're done */
450
if (index >= l->length)
451
return NULL;
452
/* Update the abstract position to be the actual pid that we found */
453
iter = l->list + index;
454
*pos = *iter;
455
return iter;
456
}
457
458
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
459
{
460
struct kernfs_open_file *of = s->private;
461
struct cgroup_file_ctx *ctx = of->priv;
462
struct cgroup_pidlist *l = ctx->procs1.pidlist;
463
464
if (l)
465
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
466
CGROUP_PIDLIST_DESTROY_DELAY);
467
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
468
}
469
470
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
471
{
472
struct kernfs_open_file *of = s->private;
473
struct cgroup_file_ctx *ctx = of->priv;
474
struct cgroup_pidlist *l = ctx->procs1.pidlist;
475
pid_t *p = v;
476
pid_t *end = l->list + l->length;
477
/*
478
* Advance to the next pid in the array. If this goes off the
479
* end, we're done
480
*/
481
p++;
482
if (p >= end) {
483
(*pos)++;
484
return NULL;
485
} else {
486
*pos = *p;
487
return p;
488
}
489
}
490
491
static int cgroup_pidlist_show(struct seq_file *s, void *v)
492
{
493
seq_printf(s, "%d\n", *(int *)v);
494
495
return 0;
496
}
497
498
static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
499
char *buf, size_t nbytes, loff_t off,
500
bool threadgroup)
501
{
502
struct cgroup *cgrp;
503
struct task_struct *task;
504
const struct cred *cred, *tcred;
505
ssize_t ret;
506
enum cgroup_attach_lock_mode lock_mode;
507
508
cgrp = cgroup_kn_lock_live(of->kn, false);
509
if (!cgrp)
510
return -ENODEV;
511
512
task = cgroup_procs_write_start(buf, threadgroup, &lock_mode);
513
ret = PTR_ERR_OR_ZERO(task);
514
if (ret)
515
goto out_unlock;
516
517
/*
518
* Even if we're attaching all tasks in the thread group, we only need
519
* to check permissions on one of them. Check permissions using the
520
* credentials from file open to protect against inherited fd attacks.
521
*/
522
cred = of->file->f_cred;
523
tcred = get_task_cred(task);
524
if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
525
!uid_eq(cred->euid, tcred->uid) &&
526
!uid_eq(cred->euid, tcred->suid))
527
ret = -EACCES;
528
put_cred(tcred);
529
if (ret)
530
goto out_finish;
531
532
ret = cgroup_attach_task(cgrp, task, threadgroup);
533
534
out_finish:
535
cgroup_procs_write_finish(task, lock_mode);
536
out_unlock:
537
cgroup_kn_unlock(of->kn);
538
539
return ret ?: nbytes;
540
}
541
542
static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
543
char *buf, size_t nbytes, loff_t off)
544
{
545
return __cgroup1_procs_write(of, buf, nbytes, off, true);
546
}
547
548
static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
549
char *buf, size_t nbytes, loff_t off)
550
{
551
return __cgroup1_procs_write(of, buf, nbytes, off, false);
552
}
553
554
static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
555
char *buf, size_t nbytes, loff_t off)
556
{
557
struct cgroup *cgrp;
558
struct cgroup_file_ctx *ctx;
559
560
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
561
562
/*
563
* Release agent gets called with all capabilities,
564
* require capabilities to set release agent.
565
*/
566
ctx = of->priv;
567
if ((ctx->ns->user_ns != &init_user_ns) ||
568
!file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
569
return -EPERM;
570
571
cgrp = cgroup_kn_lock_live(of->kn, false);
572
if (!cgrp)
573
return -ENODEV;
574
spin_lock(&release_agent_path_lock);
575
strscpy(cgrp->root->release_agent_path, strstrip(buf),
576
sizeof(cgrp->root->release_agent_path));
577
spin_unlock(&release_agent_path_lock);
578
cgroup_kn_unlock(of->kn);
579
return nbytes;
580
}
581
582
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
583
{
584
struct cgroup *cgrp = seq_css(seq)->cgroup;
585
586
spin_lock(&release_agent_path_lock);
587
seq_puts(seq, cgrp->root->release_agent_path);
588
spin_unlock(&release_agent_path_lock);
589
seq_putc(seq, '\n');
590
return 0;
591
}
592
593
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
594
{
595
seq_puts(seq, "0\n");
596
return 0;
597
}
598
599
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
600
struct cftype *cft)
601
{
602
return notify_on_release(css->cgroup);
603
}
604
605
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
606
struct cftype *cft, u64 val)
607
{
608
if (val)
609
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
610
else
611
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
612
return 0;
613
}
614
615
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
616
struct cftype *cft)
617
{
618
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619
}
620
621
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
622
struct cftype *cft, u64 val)
623
{
624
if (val)
625
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
626
else
627
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
628
return 0;
629
}
630
631
/* cgroup core interface files for the legacy hierarchies */
632
struct cftype cgroup1_base_files[] = {
633
{
634
.name = "cgroup.procs",
635
.seq_start = cgroup_pidlist_start,
636
.seq_next = cgroup_pidlist_next,
637
.seq_stop = cgroup_pidlist_stop,
638
.seq_show = cgroup_pidlist_show,
639
.private = CGROUP_FILE_PROCS,
640
.write = cgroup1_procs_write,
641
},
642
{
643
.name = "cgroup.clone_children",
644
.read_u64 = cgroup_clone_children_read,
645
.write_u64 = cgroup_clone_children_write,
646
},
647
{
648
.name = "cgroup.sane_behavior",
649
.flags = CFTYPE_ONLY_ON_ROOT,
650
.seq_show = cgroup_sane_behavior_show,
651
},
652
{
653
.name = "tasks",
654
.seq_start = cgroup_pidlist_start,
655
.seq_next = cgroup_pidlist_next,
656
.seq_stop = cgroup_pidlist_stop,
657
.seq_show = cgroup_pidlist_show,
658
.private = CGROUP_FILE_TASKS,
659
.write = cgroup1_tasks_write,
660
},
661
{
662
.name = "notify_on_release",
663
.read_u64 = cgroup_read_notify_on_release,
664
.write_u64 = cgroup_write_notify_on_release,
665
},
666
{
667
.name = "release_agent",
668
.flags = CFTYPE_ONLY_ON_ROOT,
669
.seq_show = cgroup_release_agent_show,
670
.write = cgroup_release_agent_write,
671
.max_write_len = PATH_MAX - 1,
672
},
673
{ } /* terminate */
674
};
675
676
/* Display information about each subsystem and each hierarchy */
677
int proc_cgroupstats_show(struct seq_file *m, void *v)
678
{
679
struct cgroup_subsys *ss;
680
bool cgrp_v1_visible = false;
681
int i;
682
683
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
684
/*
685
* Grab the subsystems state racily. No need to add avenue to
686
* cgroup_mutex contention.
687
*/
688
689
for_each_subsys(ss, i) {
690
cgrp_v1_visible |= ss->root != &cgrp_dfl_root;
691
692
if (!proc_show_all && cgroup1_subsys_absent(ss))
693
continue;
694
695
seq_printf(m, "%s\t%d\t%d\t%d\n",
696
ss->legacy_name, ss->root->hierarchy_id,
697
atomic_read(&ss->root->nr_cgrps),
698
cgroup_ssid_enabled(i));
699
}
700
701
if (cgrp_dfl_visible && !cgrp_v1_visible)
702
pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n");
703
704
705
return 0;
706
}
707
708
/**
709
* cgroupstats_build - build and fill cgroupstats
710
* @stats: cgroupstats to fill information into
711
* @dentry: A dentry entry belonging to the cgroup for which stats have
712
* been requested.
713
*
714
* Build and fill cgroupstats so that taskstats can export it to user
715
* space.
716
*
717
* Return: %0 on success or a negative errno code on failure
718
*/
719
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
720
{
721
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
722
struct cgroup *cgrp;
723
struct css_task_iter it;
724
struct task_struct *tsk;
725
726
/* it should be kernfs_node belonging to cgroupfs and is a directory */
727
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
728
kernfs_type(kn) != KERNFS_DIR)
729
return -EINVAL;
730
731
/*
732
* We aren't being called from kernfs and there's no guarantee on
733
* @kn->priv's validity. For this and css_tryget_online_from_dir(),
734
* @kn->priv is RCU safe. Let's do the RCU dancing.
735
*/
736
rcu_read_lock();
737
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
738
if (!cgrp || !cgroup_tryget(cgrp)) {
739
rcu_read_unlock();
740
return -ENOENT;
741
}
742
rcu_read_unlock();
743
744
css_task_iter_start(&cgrp->self, 0, &it);
745
while ((tsk = css_task_iter_next(&it))) {
746
switch (READ_ONCE(tsk->__state)) {
747
case TASK_RUNNING:
748
stats->nr_running++;
749
break;
750
case TASK_INTERRUPTIBLE:
751
stats->nr_sleeping++;
752
break;
753
case TASK_UNINTERRUPTIBLE:
754
stats->nr_uninterruptible++;
755
break;
756
case TASK_STOPPED:
757
stats->nr_stopped++;
758
break;
759
default:
760
if (tsk->in_iowait)
761
stats->nr_io_wait++;
762
break;
763
}
764
}
765
css_task_iter_end(&it);
766
767
cgroup_put(cgrp);
768
return 0;
769
}
770
771
void cgroup1_check_for_release(struct cgroup *cgrp)
772
{
773
if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
774
!css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
775
schedule_work(&cgrp->release_agent_work);
776
}
777
778
/*
779
* Notify userspace when a cgroup is released, by running the
780
* configured release agent with the name of the cgroup (path
781
* relative to the root of cgroup file system) as the argument.
782
*
783
* Most likely, this user command will try to rmdir this cgroup.
784
*
785
* This races with the possibility that some other task will be
786
* attached to this cgroup before it is removed, or that some other
787
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
788
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
789
* unused, and this cgroup will be reprieved from its death sentence,
790
* to continue to serve a useful existence. Next time it's released,
791
* we will get notified again, if it still has 'notify_on_release' set.
792
*
793
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
794
* means only wait until the task is successfully execve()'d. The
795
* separate release agent task is forked by call_usermodehelper(),
796
* then control in this thread returns here, without waiting for the
797
* release agent task. We don't bother to wait because the caller of
798
* this routine has no use for the exit status of the release agent
799
* task, so no sense holding our caller up for that.
800
*/
801
void cgroup1_release_agent(struct work_struct *work)
802
{
803
struct cgroup *cgrp =
804
container_of(work, struct cgroup, release_agent_work);
805
char *pathbuf, *agentbuf;
806
char *argv[3], *envp[3];
807
int ret;
808
809
/* snoop agent path and exit early if empty */
810
if (!cgrp->root->release_agent_path[0])
811
return;
812
813
/* prepare argument buffers */
814
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
815
agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
816
if (!pathbuf || !agentbuf)
817
goto out_free;
818
819
spin_lock(&release_agent_path_lock);
820
strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
821
spin_unlock(&release_agent_path_lock);
822
if (!agentbuf[0])
823
goto out_free;
824
825
ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
826
if (ret < 0)
827
goto out_free;
828
829
argv[0] = agentbuf;
830
argv[1] = pathbuf;
831
argv[2] = NULL;
832
833
/* minimal command environment */
834
envp[0] = "HOME=/";
835
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
836
envp[2] = NULL;
837
838
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
839
out_free:
840
kfree(agentbuf);
841
kfree(pathbuf);
842
}
843
844
/*
845
* cgroup_rename - Only allow simple rename of directories in place.
846
*/
847
static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
848
const char *new_name_str)
849
{
850
struct cgroup *cgrp = kn->priv;
851
int ret;
852
853
/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
854
if (strchr(new_name_str, '\n'))
855
return -EINVAL;
856
857
if (kernfs_type(kn) != KERNFS_DIR)
858
return -ENOTDIR;
859
if (rcu_access_pointer(kn->__parent) != new_parent)
860
return -EIO;
861
862
/*
863
* We're gonna grab cgroup_mutex which nests outside kernfs
864
* active_ref. kernfs_rename() doesn't require active_ref
865
* protection. Break them before grabbing cgroup_mutex.
866
*/
867
kernfs_break_active_protection(new_parent);
868
kernfs_break_active_protection(kn);
869
870
cgroup_lock();
871
872
ret = kernfs_rename(kn, new_parent, new_name_str);
873
if (!ret)
874
TRACE_CGROUP_PATH(rename, cgrp);
875
876
cgroup_unlock();
877
878
kernfs_unbreak_active_protection(kn);
879
kernfs_unbreak_active_protection(new_parent);
880
return ret;
881
}
882
883
static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
884
{
885
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
886
struct cgroup_subsys *ss;
887
int ssid;
888
889
for_each_subsys(ss, ssid)
890
if (root->subsys_mask & (1 << ssid))
891
seq_show_option(seq, ss->legacy_name, NULL);
892
if (root->flags & CGRP_ROOT_NOPREFIX)
893
seq_puts(seq, ",noprefix");
894
if (root->flags & CGRP_ROOT_XATTR)
895
seq_puts(seq, ",xattr");
896
if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
897
seq_puts(seq, ",cpuset_v2_mode");
898
if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
899
seq_puts(seq, ",favordynmods");
900
901
spin_lock(&release_agent_path_lock);
902
if (strlen(root->release_agent_path))
903
seq_show_option(seq, "release_agent",
904
root->release_agent_path);
905
spin_unlock(&release_agent_path_lock);
906
907
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
908
seq_puts(seq, ",clone_children");
909
if (strlen(root->name))
910
seq_show_option(seq, "name", root->name);
911
return 0;
912
}
913
914
enum cgroup1_param {
915
Opt_all,
916
Opt_clone_children,
917
Opt_cpuset_v2_mode,
918
Opt_name,
919
Opt_none,
920
Opt_noprefix,
921
Opt_release_agent,
922
Opt_xattr,
923
Opt_favordynmods,
924
Opt_nofavordynmods,
925
};
926
927
const struct fs_parameter_spec cgroup1_fs_parameters[] = {
928
fsparam_flag ("all", Opt_all),
929
fsparam_flag ("clone_children", Opt_clone_children),
930
fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
931
fsparam_string("name", Opt_name),
932
fsparam_flag ("none", Opt_none),
933
fsparam_flag ("noprefix", Opt_noprefix),
934
fsparam_string("release_agent", Opt_release_agent),
935
fsparam_flag ("xattr", Opt_xattr),
936
fsparam_flag ("favordynmods", Opt_favordynmods),
937
fsparam_flag ("nofavordynmods", Opt_nofavordynmods),
938
{}
939
};
940
941
int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
942
{
943
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
944
struct cgroup_subsys *ss;
945
struct fs_parse_result result;
946
int opt, i;
947
948
opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
949
if (opt == -ENOPARAM) {
950
int ret;
951
952
ret = vfs_parse_fs_param_source(fc, param);
953
if (ret != -ENOPARAM)
954
return ret;
955
for_each_subsys(ss, i) {
956
if (strcmp(param->key, ss->legacy_name) ||
957
cgroup1_subsys_absent(ss))
958
continue;
959
if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
960
return invalfc(fc, "Disabled controller '%s'",
961
param->key);
962
ctx->subsys_mask |= (1 << i);
963
return 0;
964
}
965
return invalfc(fc, "Unknown subsys name '%s'", param->key);
966
}
967
if (opt < 0)
968
return opt;
969
970
switch (opt) {
971
case Opt_none:
972
/* Explicitly have no subsystems */
973
ctx->none = true;
974
break;
975
case Opt_all:
976
ctx->all_ss = true;
977
break;
978
case Opt_noprefix:
979
ctx->flags |= CGRP_ROOT_NOPREFIX;
980
break;
981
case Opt_clone_children:
982
ctx->cpuset_clone_children = true;
983
break;
984
case Opt_cpuset_v2_mode:
985
ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
986
break;
987
case Opt_xattr:
988
ctx->flags |= CGRP_ROOT_XATTR;
989
break;
990
case Opt_favordynmods:
991
ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
992
break;
993
case Opt_nofavordynmods:
994
ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
995
break;
996
case Opt_release_agent:
997
/* Specifying two release agents is forbidden */
998
if (ctx->release_agent)
999
return invalfc(fc, "release_agent respecified");
1000
/*
1001
* Release agent gets called with all capabilities,
1002
* require capabilities to set release agent.
1003
*/
1004
if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
1005
return invalfc(fc, "Setting release_agent not allowed");
1006
ctx->release_agent = param->string;
1007
param->string = NULL;
1008
break;
1009
case Opt_name:
1010
/* blocked by boot param? */
1011
if (cgroup_no_v1_named)
1012
return -ENOENT;
1013
/* Can't specify an empty name */
1014
if (!param->size)
1015
return invalfc(fc, "Empty name");
1016
if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1017
return invalfc(fc, "Name too long");
1018
/* Must match [\w.-]+ */
1019
for (i = 0; i < param->size; i++) {
1020
char c = param->string[i];
1021
if (isalnum(c))
1022
continue;
1023
if ((c == '.') || (c == '-') || (c == '_'))
1024
continue;
1025
return invalfc(fc, "Invalid name");
1026
}
1027
/* Specifying two names is forbidden */
1028
if (ctx->name)
1029
return invalfc(fc, "name respecified");
1030
ctx->name = param->string;
1031
param->string = NULL;
1032
break;
1033
}
1034
return 0;
1035
}
1036
1037
static int check_cgroupfs_options(struct fs_context *fc)
1038
{
1039
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1040
u16 mask = U16_MAX;
1041
u16 enabled = 0;
1042
struct cgroup_subsys *ss;
1043
int i;
1044
1045
#ifdef CONFIG_CPUSETS
1046
mask = ~((u16)1 << cpuset_cgrp_id);
1047
#endif
1048
for_each_subsys(ss, i)
1049
if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) &&
1050
!cgroup1_subsys_absent(ss))
1051
enabled |= 1 << i;
1052
1053
ctx->subsys_mask &= enabled;
1054
1055
/*
1056
* In absence of 'none', 'name=' and subsystem name options,
1057
* let's default to 'all'.
1058
*/
1059
if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1060
ctx->all_ss = true;
1061
1062
if (ctx->all_ss) {
1063
/* Mutually exclusive option 'all' + subsystem name */
1064
if (ctx->subsys_mask)
1065
return invalfc(fc, "subsys name conflicts with all");
1066
/* 'all' => select all the subsystems */
1067
ctx->subsys_mask = enabled;
1068
}
1069
1070
/*
1071
* We either have to specify by name or by subsystems. (So all
1072
* empty hierarchies must have a name).
1073
*/
1074
if (!ctx->subsys_mask && !ctx->name)
1075
return invalfc(fc, "Need name or subsystem set");
1076
1077
/*
1078
* Option noprefix was introduced just for backward compatibility
1079
* with the old cpuset, so we allow noprefix only if mounting just
1080
* the cpuset subsystem.
1081
*/
1082
if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1083
return invalfc(fc, "noprefix used incorrectly");
1084
1085
/* Can't specify "none" and some subsystems */
1086
if (ctx->subsys_mask && ctx->none)
1087
return invalfc(fc, "none used incorrectly");
1088
1089
return 0;
1090
}
1091
1092
int cgroup1_reconfigure(struct fs_context *fc)
1093
{
1094
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1095
struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1096
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1097
int ret = 0;
1098
u16 added_mask, removed_mask;
1099
1100
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1101
1102
/* See what subsystems are wanted */
1103
ret = check_cgroupfs_options(fc);
1104
if (ret)
1105
goto out_unlock;
1106
1107
if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1108
pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1109
task_tgid_nr(current), current->comm);
1110
1111
added_mask = ctx->subsys_mask & ~root->subsys_mask;
1112
removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1113
1114
/* Don't allow flags or name to change at remount */
1115
if ((ctx->flags ^ root->flags) ||
1116
(ctx->name && strcmp(ctx->name, root->name))) {
1117
errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1118
ctx->flags, ctx->name ?: "", root->flags, root->name);
1119
ret = -EINVAL;
1120
goto out_unlock;
1121
}
1122
1123
/* remounting is not allowed for populated hierarchies */
1124
if (!list_empty(&root->cgrp.self.children)) {
1125
ret = -EBUSY;
1126
goto out_unlock;
1127
}
1128
1129
ret = rebind_subsystems(root, added_mask);
1130
if (ret)
1131
goto out_unlock;
1132
1133
WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1134
1135
if (ctx->release_agent) {
1136
spin_lock(&release_agent_path_lock);
1137
strscpy(root->release_agent_path, ctx->release_agent);
1138
spin_unlock(&release_agent_path_lock);
1139
}
1140
1141
trace_cgroup_remount(root);
1142
1143
out_unlock:
1144
cgroup_unlock();
1145
return ret;
1146
}
1147
1148
struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1149
.rename = cgroup1_rename,
1150
.show_options = cgroup1_show_options,
1151
.mkdir = cgroup_mkdir,
1152
.rmdir = cgroup_rmdir,
1153
.show_path = cgroup_show_path,
1154
};
1155
1156
/*
1157
* The guts of cgroup1 mount - find or create cgroup_root to use.
1158
* Called with cgroup_mutex held; returns 0 on success, -E... on
1159
* error and positive - in case when the candidate is busy dying.
1160
* On success it stashes a reference to cgroup_root into given
1161
* cgroup_fs_context; that reference is *NOT* counting towards the
1162
* cgroup_root refcount.
1163
*/
1164
static int cgroup1_root_to_use(struct fs_context *fc)
1165
{
1166
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1167
struct cgroup_root *root;
1168
struct cgroup_subsys *ss;
1169
int i, ret;
1170
1171
/* First find the desired set of subsystems */
1172
ret = check_cgroupfs_options(fc);
1173
if (ret)
1174
return ret;
1175
1176
/*
1177
* Destruction of cgroup root is asynchronous, so subsystems may
1178
* still be dying after the previous unmount. Let's drain the
1179
* dying subsystems. We just need to ensure that the ones
1180
* unmounted previously finish dying and don't care about new ones
1181
* starting. Testing ref liveliness is good enough.
1182
*/
1183
for_each_subsys(ss, i) {
1184
if (!(ctx->subsys_mask & (1 << i)) ||
1185
ss->root == &cgrp_dfl_root)
1186
continue;
1187
1188
if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1189
return 1; /* restart */
1190
cgroup_put(&ss->root->cgrp);
1191
}
1192
1193
for_each_root(root) {
1194
bool name_match = false;
1195
1196
if (root == &cgrp_dfl_root)
1197
continue;
1198
1199
/*
1200
* If we asked for a name then it must match. Also, if
1201
* name matches but sybsys_mask doesn't, we should fail.
1202
* Remember whether name matched.
1203
*/
1204
if (ctx->name) {
1205
if (strcmp(ctx->name, root->name))
1206
continue;
1207
name_match = true;
1208
}
1209
1210
/*
1211
* If we asked for subsystems (or explicitly for no
1212
* subsystems) then they must match.
1213
*/
1214
if ((ctx->subsys_mask || ctx->none) &&
1215
(ctx->subsys_mask != root->subsys_mask)) {
1216
if (!name_match)
1217
continue;
1218
return -EBUSY;
1219
}
1220
1221
if (root->flags ^ ctx->flags)
1222
pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1223
1224
ctx->root = root;
1225
return 0;
1226
}
1227
1228
/*
1229
* No such thing, create a new one. name= matching without subsys
1230
* specification is allowed for already existing hierarchies but we
1231
* can't create new one without subsys specification.
1232
*/
1233
if (!ctx->subsys_mask && !ctx->none)
1234
return invalfc(fc, "No subsys list or none specified");
1235
1236
/* Hierarchies may only be created in the initial cgroup namespace. */
1237
if (ctx->ns != &init_cgroup_ns)
1238
return -EPERM;
1239
1240
root = kzalloc(sizeof(*root), GFP_KERNEL);
1241
if (!root)
1242
return -ENOMEM;
1243
1244
ctx->root = root;
1245
init_cgroup_root(ctx);
1246
1247
ret = cgroup_setup_root(root, ctx->subsys_mask);
1248
if (!ret)
1249
cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1250
else
1251
cgroup_free_root(root);
1252
1253
return ret;
1254
}
1255
1256
int cgroup1_get_tree(struct fs_context *fc)
1257
{
1258
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1259
int ret;
1260
1261
/* Check if the caller has permission to mount. */
1262
if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1263
return -EPERM;
1264
1265
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1266
1267
ret = cgroup1_root_to_use(fc);
1268
if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1269
ret = 1; /* restart */
1270
1271
cgroup_unlock();
1272
1273
if (!ret)
1274
ret = cgroup_do_get_tree(fc);
1275
1276
if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1277
fc_drop_locked(fc);
1278
ret = 1;
1279
}
1280
1281
if (unlikely(ret > 0)) {
1282
msleep(10);
1283
return restart_syscall();
1284
}
1285
return ret;
1286
}
1287
1288
/**
1289
* task_get_cgroup1 - Acquires the associated cgroup of a task within a
1290
* specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1291
* hierarchy ID.
1292
* @tsk: The target task
1293
* @hierarchy_id: The ID of a cgroup1 hierarchy
1294
*
1295
* On success, the cgroup is returned. On failure, ERR_PTR is returned.
1296
* We limit it to cgroup1 only.
1297
*/
1298
struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1299
{
1300
struct cgroup *cgrp = ERR_PTR(-ENOENT);
1301
struct cgroup_root *root;
1302
unsigned long flags;
1303
1304
rcu_read_lock();
1305
for_each_root(root) {
1306
/* cgroup1 only*/
1307
if (root == &cgrp_dfl_root)
1308
continue;
1309
if (root->hierarchy_id != hierarchy_id)
1310
continue;
1311
spin_lock_irqsave(&css_set_lock, flags);
1312
cgrp = task_cgroup_from_root(tsk, root);
1313
if (!cgrp || !cgroup_tryget(cgrp))
1314
cgrp = ERR_PTR(-ENOENT);
1315
spin_unlock_irqrestore(&css_set_lock, flags);
1316
break;
1317
}
1318
rcu_read_unlock();
1319
return cgrp;
1320
}
1321
1322
static int __init cgroup1_wq_init(void)
1323
{
1324
/*
1325
* Used to destroy pidlists and separate to serve as flush domain.
1326
* Cap @max_active to 1 too.
1327
*/
1328
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1329
WQ_PERCPU, 1);
1330
BUG_ON(!cgroup_pidlist_destroy_wq);
1331
return 0;
1332
}
1333
core_initcall(cgroup1_wq_init);
1334
1335
static int __init cgroup_no_v1(char *str)
1336
{
1337
struct cgroup_subsys *ss;
1338
char *token;
1339
int i;
1340
1341
while ((token = strsep(&str, ",")) != NULL) {
1342
if (!*token)
1343
continue;
1344
1345
if (!strcmp(token, "all")) {
1346
cgroup_no_v1_mask = U16_MAX;
1347
continue;
1348
}
1349
1350
if (!strcmp(token, "named")) {
1351
cgroup_no_v1_named = true;
1352
continue;
1353
}
1354
1355
for_each_subsys(ss, i) {
1356
if (strcmp(token, ss->name) &&
1357
strcmp(token, ss->legacy_name))
1358
continue;
1359
1360
cgroup_no_v1_mask |= 1 << i;
1361
break;
1362
}
1363
}
1364
return 1;
1365
}
1366
__setup("cgroup_no_v1=", cgroup_no_v1);
1367
1368
static int __init cgroup_v1_proc(char *str)
1369
{
1370
return (kstrtobool(str, &proc_show_all) == 0);
1371
}
1372
__setup("cgroup_v1_proc=", cgroup_v1_proc);
1373
1374