Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/cgroup/cgroup.c
29278 views
1
/*
2
* Generic process-grouping system.
3
*
4
* Based originally on the cpuset system, extracted by Paul Menage
5
* Copyright (C) 2006 Google, Inc
6
*
7
* Notifications support
8
* Copyright (C) 2009 Nokia Corporation
9
* Author: Kirill A. Shutemov
10
*
11
* Copyright notices from the original cpuset code:
12
* --------------------------------------------------
13
* Copyright (C) 2003 BULL SA.
14
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
15
*
16
* Portions derived from Patrick Mochel's sysfs code.
17
* sysfs is Copyright (c) 2001-3 Patrick Mochel
18
*
19
* 2003-10-10 Written by Simon Derr.
20
* 2003-10-22 Updates by Stephen Hemminger.
21
* 2004 May-July Rework by Paul Jackson.
22
* ---------------------------------------------------
23
*
24
* This file is subject to the terms and conditions of the GNU General Public
25
* License. See the file COPYING in the main directory of the Linux
26
* distribution for more details.
27
*/
28
29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31
#include "cgroup-internal.h"
32
33
#include <linux/bpf-cgroup.h>
34
#include <linux/cred.h>
35
#include <linux/errno.h>
36
#include <linux/init_task.h>
37
#include <linux/kernel.h>
38
#include <linux/magic.h>
39
#include <linux/mutex.h>
40
#include <linux/mount.h>
41
#include <linux/pagemap.h>
42
#include <linux/proc_fs.h>
43
#include <linux/rcupdate.h>
44
#include <linux/sched.h>
45
#include <linux/sched/task.h>
46
#include <linux/slab.h>
47
#include <linux/spinlock.h>
48
#include <linux/percpu-rwsem.h>
49
#include <linux/string.h>
50
#include <linux/hashtable.h>
51
#include <linux/idr.h>
52
#include <linux/kthread.h>
53
#include <linux/atomic.h>
54
#include <linux/cpuset.h>
55
#include <linux/proc_ns.h>
56
#include <linux/nsproxy.h>
57
#include <linux/file.h>
58
#include <linux/fs_parser.h>
59
#include <linux/sched/cputime.h>
60
#include <linux/sched/deadline.h>
61
#include <linux/psi.h>
62
#include <linux/nstree.h>
63
#include <net/sock.h>
64
65
#define CREATE_TRACE_POINTS
66
#include <trace/events/cgroup.h>
67
68
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69
MAX_CFTYPE_NAME + 2)
70
/* let's not notify more than 100 times per second */
71
#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
72
73
/*
74
* To avoid confusing the compiler (and generating warnings) with code
75
* that attempts to access what would be a 0-element array (i.e. sized
76
* to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
77
* constant expression can be added.
78
*/
79
#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
80
81
/*
82
* cgroup_mutex is the master lock. Any modification to cgroup or its
83
* hierarchy must be performed while holding it.
84
*
85
* css_set_lock protects task->cgroups pointer, the list of css_set
86
* objects, and the chain of tasks off each css_set.
87
*
88
* These locks are exported if CONFIG_PROVE_RCU so that accessors in
89
* cgroup.h can use them for lockdep annotations.
90
*/
91
DEFINE_MUTEX(cgroup_mutex);
92
DEFINE_SPINLOCK(css_set_lock);
93
94
#if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
95
EXPORT_SYMBOL_GPL(cgroup_mutex);
96
EXPORT_SYMBOL_GPL(css_set_lock);
97
#endif
98
99
struct blocking_notifier_head cgroup_lifetime_notifier =
100
BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
101
102
DEFINE_SPINLOCK(trace_cgroup_path_lock);
103
char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
104
static bool cgroup_debug __read_mostly;
105
106
/*
107
* Protects cgroup_idr and css_idr so that IDs can be released without
108
* grabbing cgroup_mutex.
109
*/
110
static DEFINE_SPINLOCK(cgroup_idr_lock);
111
112
/*
113
* Protects cgroup_file->kn for !self csses. It synchronizes notifications
114
* against file removal/re-creation across css hiding.
115
*/
116
static DEFINE_SPINLOCK(cgroup_file_kn_lock);
117
118
DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
119
120
#define cgroup_assert_mutex_or_rcu_locked() \
121
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
122
!lockdep_is_held(&cgroup_mutex), \
123
"cgroup_mutex or RCU read lock required");
124
125
/*
126
* cgroup destruction makes heavy use of work items and there can be a lot
127
* of concurrent destructions. Use a separate workqueue so that cgroup
128
* destruction work items don't end up filling up max_active of system_percpu_wq
129
* which may lead to deadlock.
130
*
131
* A cgroup destruction should enqueue work sequentially to:
132
* cgroup_offline_wq: use for css offline work
133
* cgroup_release_wq: use for css release work
134
* cgroup_free_wq: use for free work
135
*
136
* Rationale for using separate workqueues:
137
* The cgroup root free work may depend on completion of other css offline
138
* operations. If all tasks were enqueued to a single workqueue, this could
139
* create a deadlock scenario where:
140
* - Free work waits for other css offline work to complete.
141
* - But other css offline work is queued after free work in the same queue.
142
*
143
* Example deadlock scenario with single workqueue (cgroup_destroy_wq):
144
* 1. umount net_prio
145
* 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
146
* 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
147
* 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
148
* 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
149
* which can never complete as it's behind in the same queue and
150
* workqueue's max_active is 1.
151
*/
152
static struct workqueue_struct *cgroup_offline_wq;
153
static struct workqueue_struct *cgroup_release_wq;
154
static struct workqueue_struct *cgroup_free_wq;
155
156
/* generate an array of cgroup subsystem pointers */
157
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
158
struct cgroup_subsys *cgroup_subsys[] = {
159
#include <linux/cgroup_subsys.h>
160
};
161
#undef SUBSYS
162
163
/* array of cgroup subsystem names */
164
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
165
static const char *cgroup_subsys_name[] = {
166
#include <linux/cgroup_subsys.h>
167
};
168
#undef SUBSYS
169
170
/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
171
#define SUBSYS(_x) \
172
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
173
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
174
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
175
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
176
#include <linux/cgroup_subsys.h>
177
#undef SUBSYS
178
179
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
180
static struct static_key_true *cgroup_subsys_enabled_key[] = {
181
#include <linux/cgroup_subsys.h>
182
};
183
#undef SUBSYS
184
185
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
186
static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
187
#include <linux/cgroup_subsys.h>
188
};
189
#undef SUBSYS
190
191
static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
192
static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
193
194
/* the default hierarchy */
195
struct cgroup_root cgrp_dfl_root = {
196
.cgrp.self.rstat_cpu = &root_rstat_cpu,
197
.cgrp.rstat_base_cpu = &root_rstat_base_cpu,
198
};
199
EXPORT_SYMBOL_GPL(cgrp_dfl_root);
200
201
/*
202
* The default hierarchy always exists but is hidden until mounted for the
203
* first time. This is for backward compatibility.
204
*/
205
bool cgrp_dfl_visible;
206
207
/* some controllers are not supported in the default hierarchy */
208
static u16 cgrp_dfl_inhibit_ss_mask;
209
210
/* some controllers are implicitly enabled on the default hierarchy */
211
static u16 cgrp_dfl_implicit_ss_mask;
212
213
/* some controllers can be threaded on the default hierarchy */
214
static u16 cgrp_dfl_threaded_ss_mask;
215
216
/* The list of hierarchy roots */
217
LIST_HEAD(cgroup_roots);
218
static int cgroup_root_count;
219
220
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
221
static DEFINE_IDR(cgroup_hierarchy_idr);
222
223
/*
224
* Assign a monotonically increasing serial number to csses. It guarantees
225
* cgroups with bigger numbers are newer than those with smaller numbers.
226
* Also, as csses are always appended to the parent's ->children list, it
227
* guarantees that sibling csses are always sorted in the ascending serial
228
* number order on the list. Protected by cgroup_mutex.
229
*/
230
static u64 css_serial_nr_next = 1;
231
232
/*
233
* These bitmasks identify subsystems with specific features to avoid
234
* having to do iterative checks repeatedly.
235
*/
236
static u16 have_fork_callback __read_mostly;
237
static u16 have_exit_callback __read_mostly;
238
static u16 have_release_callback __read_mostly;
239
static u16 have_canfork_callback __read_mostly;
240
241
static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
242
243
/*
244
* Write protected by cgroup_mutex and write-lock of cgroup_threadgroup_rwsem,
245
* read protected by either.
246
*
247
* Can only be turned on, but not turned off.
248
*/
249
bool cgroup_enable_per_threadgroup_rwsem __read_mostly;
250
251
/* cgroup namespace for init task */
252
struct cgroup_namespace init_cgroup_ns = {
253
.ns.__ns_ref = REFCOUNT_INIT(2),
254
.user_ns = &init_user_ns,
255
.ns.ops = &cgroupns_operations,
256
.ns.inum = ns_init_inum(&init_cgroup_ns),
257
.root_cset = &init_css_set,
258
.ns.ns_type = ns_common_type(&init_cgroup_ns),
259
};
260
261
static struct file_system_type cgroup2_fs_type;
262
static struct cftype cgroup_base_files[];
263
static struct cftype cgroup_psi_files[];
264
265
/* cgroup optional features */
266
enum cgroup_opt_features {
267
#ifdef CONFIG_PSI
268
OPT_FEATURE_PRESSURE,
269
#endif
270
OPT_FEATURE_COUNT
271
};
272
273
static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
274
#ifdef CONFIG_PSI
275
"pressure",
276
#endif
277
};
278
279
static u16 cgroup_feature_disable_mask __read_mostly;
280
281
static int cgroup_apply_control(struct cgroup *cgrp);
282
static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
283
static void css_task_iter_skip(struct css_task_iter *it,
284
struct task_struct *task);
285
static int cgroup_destroy_locked(struct cgroup *cgrp);
286
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
287
struct cgroup_subsys *ss);
288
static void css_release(struct percpu_ref *ref);
289
static void kill_css(struct cgroup_subsys_state *css);
290
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
291
struct cgroup *cgrp, struct cftype cfts[],
292
bool is_add);
293
294
#ifdef CONFIG_DEBUG_CGROUP_REF
295
#define CGROUP_REF_FN_ATTRS noinline
296
#define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
297
#include <linux/cgroup_refcnt.h>
298
#endif
299
300
/**
301
* cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
302
* @ssid: subsys ID of interest
303
*
304
* cgroup_subsys_enabled() can only be used with literal subsys names which
305
* is fine for individual subsystems but unsuitable for cgroup core. This
306
* is slower static_key_enabled() based test indexed by @ssid.
307
*/
308
bool cgroup_ssid_enabled(int ssid)
309
{
310
if (!CGROUP_HAS_SUBSYS_CONFIG)
311
return false;
312
313
return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
314
}
315
316
/**
317
* cgroup_on_dfl - test whether a cgroup is on the default hierarchy
318
* @cgrp: the cgroup of interest
319
*
320
* The default hierarchy is the v2 interface of cgroup and this function
321
* can be used to test whether a cgroup is on the default hierarchy for
322
* cases where a subsystem should behave differently depending on the
323
* interface version.
324
*
325
* List of changed behaviors:
326
*
327
* - Mount options "noprefix", "xattr", "clone_children", "release_agent"
328
* and "name" are disallowed.
329
*
330
* - When mounting an existing superblock, mount options should match.
331
*
332
* - rename(2) is disallowed.
333
*
334
* - "tasks" is removed. Everything should be at process granularity. Use
335
* "cgroup.procs" instead.
336
*
337
* - "cgroup.procs" is not sorted. pids will be unique unless they got
338
* recycled in-between reads.
339
*
340
* - "release_agent" and "notify_on_release" are removed. Replacement
341
* notification mechanism will be implemented.
342
*
343
* - "cgroup.clone_children" is removed.
344
*
345
* - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
346
* and its descendants contain no task; otherwise, 1. The file also
347
* generates kernfs notification which can be monitored through poll and
348
* [di]notify when the value of the file changes.
349
*
350
* - cpuset: tasks will be kept in empty cpusets when hotplug happens and
351
* take masks of ancestors with non-empty cpus/mems, instead of being
352
* moved to an ancestor.
353
*
354
* - cpuset: a task can be moved into an empty cpuset, and again it takes
355
* masks of ancestors.
356
*
357
* - blkcg: blk-throttle becomes properly hierarchical.
358
*/
359
bool cgroup_on_dfl(const struct cgroup *cgrp)
360
{
361
return cgrp->root == &cgrp_dfl_root;
362
}
363
364
/* IDR wrappers which synchronize using cgroup_idr_lock */
365
static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
366
gfp_t gfp_mask)
367
{
368
int ret;
369
370
idr_preload(gfp_mask);
371
spin_lock_bh(&cgroup_idr_lock);
372
ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
373
spin_unlock_bh(&cgroup_idr_lock);
374
idr_preload_end();
375
return ret;
376
}
377
378
static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
379
{
380
void *ret;
381
382
spin_lock_bh(&cgroup_idr_lock);
383
ret = idr_replace(idr, ptr, id);
384
spin_unlock_bh(&cgroup_idr_lock);
385
return ret;
386
}
387
388
static void cgroup_idr_remove(struct idr *idr, int id)
389
{
390
spin_lock_bh(&cgroup_idr_lock);
391
idr_remove(idr, id);
392
spin_unlock_bh(&cgroup_idr_lock);
393
}
394
395
static bool cgroup_has_tasks(struct cgroup *cgrp)
396
{
397
return cgrp->nr_populated_csets;
398
}
399
400
static bool cgroup_is_threaded(struct cgroup *cgrp)
401
{
402
return cgrp->dom_cgrp != cgrp;
403
}
404
405
/* can @cgrp host both domain and threaded children? */
406
static bool cgroup_is_mixable(struct cgroup *cgrp)
407
{
408
/*
409
* Root isn't under domain level resource control exempting it from
410
* the no-internal-process constraint, so it can serve as a thread
411
* root and a parent of resource domains at the same time.
412
*/
413
return !cgroup_parent(cgrp);
414
}
415
416
/* can @cgrp become a thread root? Should always be true for a thread root */
417
static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
418
{
419
/* mixables don't care */
420
if (cgroup_is_mixable(cgrp))
421
return true;
422
423
/* domain roots can't be nested under threaded */
424
if (cgroup_is_threaded(cgrp))
425
return false;
426
427
/* can only have either domain or threaded children */
428
if (cgrp->nr_populated_domain_children)
429
return false;
430
431
/* and no domain controllers can be enabled */
432
if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
433
return false;
434
435
return true;
436
}
437
438
/* is @cgrp root of a threaded subtree? */
439
static bool cgroup_is_thread_root(struct cgroup *cgrp)
440
{
441
/* thread root should be a domain */
442
if (cgroup_is_threaded(cgrp))
443
return false;
444
445
/* a domain w/ threaded children is a thread root */
446
if (cgrp->nr_threaded_children)
447
return true;
448
449
/*
450
* A domain which has tasks and explicit threaded controllers
451
* enabled is a thread root.
452
*/
453
if (cgroup_has_tasks(cgrp) &&
454
(cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
455
return true;
456
457
return false;
458
}
459
460
/* a domain which isn't connected to the root w/o brekage can't be used */
461
static bool cgroup_is_valid_domain(struct cgroup *cgrp)
462
{
463
/* the cgroup itself can be a thread root */
464
if (cgroup_is_threaded(cgrp))
465
return false;
466
467
/* but the ancestors can't be unless mixable */
468
while ((cgrp = cgroup_parent(cgrp))) {
469
if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
470
return false;
471
if (cgroup_is_threaded(cgrp))
472
return false;
473
}
474
475
return true;
476
}
477
478
/* subsystems visibly enabled on a cgroup */
479
static u16 cgroup_control(struct cgroup *cgrp)
480
{
481
struct cgroup *parent = cgroup_parent(cgrp);
482
u16 root_ss_mask = cgrp->root->subsys_mask;
483
484
if (parent) {
485
u16 ss_mask = parent->subtree_control;
486
487
/* threaded cgroups can only have threaded controllers */
488
if (cgroup_is_threaded(cgrp))
489
ss_mask &= cgrp_dfl_threaded_ss_mask;
490
return ss_mask;
491
}
492
493
if (cgroup_on_dfl(cgrp))
494
root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
495
cgrp_dfl_implicit_ss_mask);
496
return root_ss_mask;
497
}
498
499
/* subsystems enabled on a cgroup */
500
static u16 cgroup_ss_mask(struct cgroup *cgrp)
501
{
502
struct cgroup *parent = cgroup_parent(cgrp);
503
504
if (parent) {
505
u16 ss_mask = parent->subtree_ss_mask;
506
507
/* threaded cgroups can only have threaded controllers */
508
if (cgroup_is_threaded(cgrp))
509
ss_mask &= cgrp_dfl_threaded_ss_mask;
510
return ss_mask;
511
}
512
513
return cgrp->root->subsys_mask;
514
}
515
516
/**
517
* cgroup_css - obtain a cgroup's css for the specified subsystem
518
* @cgrp: the cgroup of interest
519
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
520
*
521
* Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
522
* function must be called either under cgroup_mutex or rcu_read_lock() and
523
* the caller is responsible for pinning the returned css if it wants to
524
* keep accessing it outside the said locks. This function may return
525
* %NULL if @cgrp doesn't have @subsys_id enabled.
526
*/
527
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
528
struct cgroup_subsys *ss)
529
{
530
if (CGROUP_HAS_SUBSYS_CONFIG && ss)
531
return rcu_dereference_check(cgrp->subsys[ss->id],
532
lockdep_is_held(&cgroup_mutex));
533
else
534
return &cgrp->self;
535
}
536
537
/**
538
* cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
539
* @cgrp: the cgroup of interest
540
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
541
*
542
* Similar to cgroup_css() but returns the effective css, which is defined
543
* as the matching css of the nearest ancestor including self which has @ss
544
* enabled. If @ss is associated with the hierarchy @cgrp is on, this
545
* function is guaranteed to return non-NULL css.
546
*/
547
static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
548
struct cgroup_subsys *ss)
549
{
550
lockdep_assert_held(&cgroup_mutex);
551
552
if (!ss)
553
return &cgrp->self;
554
555
/*
556
* This function is used while updating css associations and thus
557
* can't test the csses directly. Test ss_mask.
558
*/
559
while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
560
cgrp = cgroup_parent(cgrp);
561
if (!cgrp)
562
return NULL;
563
}
564
565
return cgroup_css(cgrp, ss);
566
}
567
568
/**
569
* cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
570
* @cgrp: the cgroup of interest
571
* @ss: the subsystem of interest
572
*
573
* Find and get the effective css of @cgrp for @ss. The effective css is
574
* defined as the matching css of the nearest ancestor including self which
575
* has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
576
* the root css is returned, so this function always returns a valid css.
577
*
578
* The returned css is not guaranteed to be online, and therefore it is the
579
* callers responsibility to try get a reference for it.
580
*/
581
struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
582
struct cgroup_subsys *ss)
583
{
584
struct cgroup_subsys_state *css;
585
586
if (!CGROUP_HAS_SUBSYS_CONFIG)
587
return NULL;
588
589
do {
590
css = cgroup_css(cgrp, ss);
591
592
if (css)
593
return css;
594
cgrp = cgroup_parent(cgrp);
595
} while (cgrp);
596
597
return init_css_set.subsys[ss->id];
598
}
599
600
/**
601
* cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
602
* @cgrp: the cgroup of interest
603
* @ss: the subsystem of interest
604
*
605
* Find and get the effective css of @cgrp for @ss. The effective css is
606
* defined as the matching css of the nearest ancestor including self which
607
* has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
608
* the root css is returned, so this function always returns a valid css.
609
* The returned css must be put using css_put().
610
*/
611
struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
612
struct cgroup_subsys *ss)
613
{
614
struct cgroup_subsys_state *css;
615
616
if (!CGROUP_HAS_SUBSYS_CONFIG)
617
return NULL;
618
619
rcu_read_lock();
620
621
do {
622
css = cgroup_css(cgrp, ss);
623
624
if (css && css_tryget_online(css))
625
goto out_unlock;
626
cgrp = cgroup_parent(cgrp);
627
} while (cgrp);
628
629
css = init_css_set.subsys[ss->id];
630
css_get(css);
631
out_unlock:
632
rcu_read_unlock();
633
return css;
634
}
635
EXPORT_SYMBOL_GPL(cgroup_get_e_css);
636
637
static void cgroup_get_live(struct cgroup *cgrp)
638
{
639
WARN_ON_ONCE(cgroup_is_dead(cgrp));
640
cgroup_get(cgrp);
641
}
642
643
/**
644
* __cgroup_task_count - count the number of tasks in a cgroup. The caller
645
* is responsible for taking the css_set_lock.
646
* @cgrp: the cgroup in question
647
*/
648
int __cgroup_task_count(const struct cgroup *cgrp)
649
{
650
int count = 0;
651
struct cgrp_cset_link *link;
652
653
lockdep_assert_held(&css_set_lock);
654
655
list_for_each_entry(link, &cgrp->cset_links, cset_link)
656
count += link->cset->nr_tasks;
657
658
return count;
659
}
660
661
/**
662
* cgroup_task_count - count the number of tasks in a cgroup.
663
* @cgrp: the cgroup in question
664
*/
665
int cgroup_task_count(const struct cgroup *cgrp)
666
{
667
int count;
668
669
spin_lock_irq(&css_set_lock);
670
count = __cgroup_task_count(cgrp);
671
spin_unlock_irq(&css_set_lock);
672
673
return count;
674
}
675
676
static struct cgroup *kn_priv(struct kernfs_node *kn)
677
{
678
struct kernfs_node *parent;
679
/*
680
* The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
681
* Therefore it is always safe to dereference this pointer outside of a
682
* RCU section.
683
*/
684
parent = rcu_dereference_check(kn->__parent,
685
kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
686
return parent->priv;
687
}
688
689
struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
690
{
691
struct cgroup *cgrp = kn_priv(of->kn);
692
struct cftype *cft = of_cft(of);
693
694
/*
695
* This is open and unprotected implementation of cgroup_css().
696
* seq_css() is only called from a kernfs file operation which has
697
* an active reference on the file. Because all the subsystem
698
* files are drained before a css is disassociated with a cgroup,
699
* the matching css from the cgroup's subsys table is guaranteed to
700
* be and stay valid until the enclosing operation is complete.
701
*/
702
if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
703
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
704
else
705
return &cgrp->self;
706
}
707
EXPORT_SYMBOL_GPL(of_css);
708
709
/**
710
* for_each_css - iterate all css's of a cgroup
711
* @css: the iteration cursor
712
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
713
* @cgrp: the target cgroup to iterate css's of
714
*
715
* Should be called under cgroup_mutex.
716
*/
717
#define for_each_css(css, ssid, cgrp) \
718
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
719
if (!((css) = rcu_dereference_check( \
720
(cgrp)->subsys[(ssid)], \
721
lockdep_is_held(&cgroup_mutex)))) { } \
722
else
723
724
/**
725
* do_each_subsys_mask - filter for_each_subsys with a bitmask
726
* @ss: the iteration cursor
727
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
728
* @ss_mask: the bitmask
729
*
730
* The block will only run for cases where the ssid-th bit (1 << ssid) of
731
* @ss_mask is set.
732
*/
733
#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
734
unsigned long __ss_mask = (ss_mask); \
735
if (!CGROUP_HAS_SUBSYS_CONFIG) { \
736
(ssid) = 0; \
737
break; \
738
} \
739
for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
740
(ss) = cgroup_subsys[ssid]; \
741
{
742
743
#define while_each_subsys_mask() \
744
} \
745
} \
746
} while (false)
747
748
/* iterate over child cgrps, lock should be held throughout iteration */
749
#define cgroup_for_each_live_child(child, cgrp) \
750
list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
751
if (({ lockdep_assert_held(&cgroup_mutex); \
752
cgroup_is_dead(child); })) \
753
; \
754
else
755
756
/* walk live descendants in pre order */
757
#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
758
css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
759
if (({ lockdep_assert_held(&cgroup_mutex); \
760
(dsct) = (d_css)->cgroup; \
761
cgroup_is_dead(dsct); })) \
762
; \
763
else
764
765
/* walk live descendants in postorder */
766
#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
767
css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
768
if (({ lockdep_assert_held(&cgroup_mutex); \
769
(dsct) = (d_css)->cgroup; \
770
cgroup_is_dead(dsct); })) \
771
; \
772
else
773
774
/*
775
* The default css_set - used by init and its children prior to any
776
* hierarchies being mounted. It contains a pointer to the root state
777
* for each subsystem. Also used to anchor the list of css_sets. Not
778
* reference-counted, to improve performance when child cgroups
779
* haven't been created.
780
*/
781
struct css_set init_css_set = {
782
.refcount = REFCOUNT_INIT(1),
783
.dom_cset = &init_css_set,
784
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
785
.mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
786
.dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
787
.task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
788
.threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
789
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
790
.mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
791
.mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
792
.mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
793
794
/*
795
* The following field is re-initialized when this cset gets linked
796
* in cgroup_init(). However, let's initialize the field
797
* statically too so that the default cgroup can be accessed safely
798
* early during boot.
799
*/
800
.dfl_cgrp = &cgrp_dfl_root.cgrp,
801
};
802
803
static int css_set_count = 1; /* 1 for init_css_set */
804
805
static bool css_set_threaded(struct css_set *cset)
806
{
807
return cset->dom_cset != cset;
808
}
809
810
/**
811
* css_set_populated - does a css_set contain any tasks?
812
* @cset: target css_set
813
*
814
* css_set_populated() should be the same as !!cset->nr_tasks at steady
815
* state. However, css_set_populated() can be called while a task is being
816
* added to or removed from the linked list before the nr_tasks is
817
* properly updated. Hence, we can't just look at ->nr_tasks here.
818
*/
819
static bool css_set_populated(struct css_set *cset)
820
{
821
lockdep_assert_held(&css_set_lock);
822
823
return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
824
}
825
826
/**
827
* cgroup_update_populated - update the populated count of a cgroup
828
* @cgrp: the target cgroup
829
* @populated: inc or dec populated count
830
*
831
* One of the css_sets associated with @cgrp is either getting its first
832
* task or losing the last. Update @cgrp->nr_populated_* accordingly. The
833
* count is propagated towards root so that a given cgroup's
834
* nr_populated_children is zero iff none of its descendants contain any
835
* tasks.
836
*
837
* @cgrp's interface file "cgroup.populated" is zero if both
838
* @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
839
* 1 otherwise. When the sum changes from or to zero, userland is notified
840
* that the content of the interface file has changed. This can be used to
841
* detect when @cgrp and its descendants become populated or empty.
842
*/
843
static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
844
{
845
struct cgroup *child = NULL;
846
int adj = populated ? 1 : -1;
847
848
lockdep_assert_held(&css_set_lock);
849
850
do {
851
bool was_populated = cgroup_is_populated(cgrp);
852
853
if (!child) {
854
cgrp->nr_populated_csets += adj;
855
} else {
856
if (cgroup_is_threaded(child))
857
cgrp->nr_populated_threaded_children += adj;
858
else
859
cgrp->nr_populated_domain_children += adj;
860
}
861
862
if (was_populated == cgroup_is_populated(cgrp))
863
break;
864
865
cgroup1_check_for_release(cgrp);
866
TRACE_CGROUP_PATH(notify_populated, cgrp,
867
cgroup_is_populated(cgrp));
868
cgroup_file_notify(&cgrp->events_file);
869
870
child = cgrp;
871
cgrp = cgroup_parent(cgrp);
872
} while (cgrp);
873
}
874
875
/**
876
* css_set_update_populated - update populated state of a css_set
877
* @cset: target css_set
878
* @populated: whether @cset is populated or depopulated
879
*
880
* @cset is either getting the first task or losing the last. Update the
881
* populated counters of all associated cgroups accordingly.
882
*/
883
static void css_set_update_populated(struct css_set *cset, bool populated)
884
{
885
struct cgrp_cset_link *link;
886
887
lockdep_assert_held(&css_set_lock);
888
889
list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
890
cgroup_update_populated(link->cgrp, populated);
891
}
892
893
/*
894
* @task is leaving, advance task iterators which are pointing to it so
895
* that they can resume at the next position. Advancing an iterator might
896
* remove it from the list, use safe walk. See css_task_iter_skip() for
897
* details.
898
*/
899
static void css_set_skip_task_iters(struct css_set *cset,
900
struct task_struct *task)
901
{
902
struct css_task_iter *it, *pos;
903
904
list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
905
css_task_iter_skip(it, task);
906
}
907
908
/**
909
* css_set_move_task - move a task from one css_set to another
910
* @task: task being moved
911
* @from_cset: css_set @task currently belongs to (may be NULL)
912
* @to_cset: new css_set @task is being moved to (may be NULL)
913
* @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
914
*
915
* Move @task from @from_cset to @to_cset. If @task didn't belong to any
916
* css_set, @from_cset can be NULL. If @task is being disassociated
917
* instead of moved, @to_cset can be NULL.
918
*
919
* This function automatically handles populated counter updates and
920
* css_task_iter adjustments but the caller is responsible for managing
921
* @from_cset and @to_cset's reference counts.
922
*/
923
static void css_set_move_task(struct task_struct *task,
924
struct css_set *from_cset, struct css_set *to_cset,
925
bool use_mg_tasks)
926
{
927
lockdep_assert_held(&css_set_lock);
928
929
if (to_cset && !css_set_populated(to_cset))
930
css_set_update_populated(to_cset, true);
931
932
if (from_cset) {
933
WARN_ON_ONCE(list_empty(&task->cg_list));
934
935
css_set_skip_task_iters(from_cset, task);
936
list_del_init(&task->cg_list);
937
if (!css_set_populated(from_cset))
938
css_set_update_populated(from_cset, false);
939
} else {
940
WARN_ON_ONCE(!list_empty(&task->cg_list));
941
}
942
943
if (to_cset) {
944
/*
945
* We are synchronized through cgroup_threadgroup_rwsem
946
* against PF_EXITING setting such that we can't race
947
* against cgroup_exit()/cgroup_free() dropping the css_set.
948
*/
949
WARN_ON_ONCE(task->flags & PF_EXITING);
950
951
cgroup_move_task(task, to_cset);
952
list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
953
&to_cset->tasks);
954
}
955
}
956
957
/*
958
* hash table for cgroup groups. This improves the performance to find
959
* an existing css_set. This hash doesn't (currently) take into
960
* account cgroups in empty hierarchies.
961
*/
962
#define CSS_SET_HASH_BITS 7
963
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
964
965
static unsigned long css_set_hash(struct cgroup_subsys_state **css)
966
{
967
unsigned long key = 0UL;
968
struct cgroup_subsys *ss;
969
int i;
970
971
for_each_subsys(ss, i)
972
key += (unsigned long)css[i];
973
key = (key >> 16) ^ key;
974
975
return key;
976
}
977
978
void put_css_set_locked(struct css_set *cset)
979
{
980
struct cgrp_cset_link *link, *tmp_link;
981
struct cgroup_subsys *ss;
982
int ssid;
983
984
lockdep_assert_held(&css_set_lock);
985
986
if (!refcount_dec_and_test(&cset->refcount))
987
return;
988
989
WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
990
991
/* This css_set is dead. Unlink it and release cgroup and css refs */
992
for_each_subsys(ss, ssid) {
993
list_del(&cset->e_cset_node[ssid]);
994
css_put(cset->subsys[ssid]);
995
}
996
hash_del(&cset->hlist);
997
css_set_count--;
998
999
list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
1000
list_del(&link->cset_link);
1001
list_del(&link->cgrp_link);
1002
if (cgroup_parent(link->cgrp))
1003
cgroup_put(link->cgrp);
1004
kfree(link);
1005
}
1006
1007
if (css_set_threaded(cset)) {
1008
list_del(&cset->threaded_csets_node);
1009
put_css_set_locked(cset->dom_cset);
1010
}
1011
1012
kfree_rcu(cset, rcu_head);
1013
}
1014
1015
/**
1016
* compare_css_sets - helper function for find_existing_css_set().
1017
* @cset: candidate css_set being tested
1018
* @old_cset: existing css_set for a task
1019
* @new_cgrp: cgroup that's being entered by the task
1020
* @template: desired set of css pointers in css_set (pre-calculated)
1021
*
1022
* Returns true if "cset" matches "old_cset" except for the hierarchy
1023
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
1024
*/
1025
static bool compare_css_sets(struct css_set *cset,
1026
struct css_set *old_cset,
1027
struct cgroup *new_cgrp,
1028
struct cgroup_subsys_state *template[])
1029
{
1030
struct cgroup *new_dfl_cgrp;
1031
struct list_head *l1, *l2;
1032
1033
/*
1034
* On the default hierarchy, there can be csets which are
1035
* associated with the same set of cgroups but different csses.
1036
* Let's first ensure that csses match.
1037
*/
1038
if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1039
return false;
1040
1041
1042
/* @cset's domain should match the default cgroup's */
1043
if (cgroup_on_dfl(new_cgrp))
1044
new_dfl_cgrp = new_cgrp;
1045
else
1046
new_dfl_cgrp = old_cset->dfl_cgrp;
1047
1048
if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1049
return false;
1050
1051
/*
1052
* Compare cgroup pointers in order to distinguish between
1053
* different cgroups in hierarchies. As different cgroups may
1054
* share the same effective css, this comparison is always
1055
* necessary.
1056
*/
1057
l1 = &cset->cgrp_links;
1058
l2 = &old_cset->cgrp_links;
1059
while (1) {
1060
struct cgrp_cset_link *link1, *link2;
1061
struct cgroup *cgrp1, *cgrp2;
1062
1063
l1 = l1->next;
1064
l2 = l2->next;
1065
/* See if we reached the end - both lists are equal length. */
1066
if (l1 == &cset->cgrp_links) {
1067
BUG_ON(l2 != &old_cset->cgrp_links);
1068
break;
1069
} else {
1070
BUG_ON(l2 == &old_cset->cgrp_links);
1071
}
1072
/* Locate the cgroups associated with these links. */
1073
link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1074
link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1075
cgrp1 = link1->cgrp;
1076
cgrp2 = link2->cgrp;
1077
/* Hierarchies should be linked in the same order. */
1078
BUG_ON(cgrp1->root != cgrp2->root);
1079
1080
/*
1081
* If this hierarchy is the hierarchy of the cgroup
1082
* that's changing, then we need to check that this
1083
* css_set points to the new cgroup; if it's any other
1084
* hierarchy, then this css_set should point to the
1085
* same cgroup as the old css_set.
1086
*/
1087
if (cgrp1->root == new_cgrp->root) {
1088
if (cgrp1 != new_cgrp)
1089
return false;
1090
} else {
1091
if (cgrp1 != cgrp2)
1092
return false;
1093
}
1094
}
1095
return true;
1096
}
1097
1098
/**
1099
* find_existing_css_set - init css array and find the matching css_set
1100
* @old_cset: the css_set that we're using before the cgroup transition
1101
* @cgrp: the cgroup that we're moving into
1102
* @template: out param for the new set of csses, should be clear on entry
1103
*/
1104
static struct css_set *find_existing_css_set(struct css_set *old_cset,
1105
struct cgroup *cgrp,
1106
struct cgroup_subsys_state **template)
1107
{
1108
struct cgroup_root *root = cgrp->root;
1109
struct cgroup_subsys *ss;
1110
struct css_set *cset;
1111
unsigned long key;
1112
int i;
1113
1114
/*
1115
* Build the set of subsystem state objects that we want to see in the
1116
* new css_set. While subsystems can change globally, the entries here
1117
* won't change, so no need for locking.
1118
*/
1119
for_each_subsys(ss, i) {
1120
if (root->subsys_mask & (1UL << i)) {
1121
/*
1122
* @ss is in this hierarchy, so we want the
1123
* effective css from @cgrp.
1124
*/
1125
template[i] = cgroup_e_css_by_mask(cgrp, ss);
1126
} else {
1127
/*
1128
* @ss is not in this hierarchy, so we don't want
1129
* to change the css.
1130
*/
1131
template[i] = old_cset->subsys[i];
1132
}
1133
}
1134
1135
key = css_set_hash(template);
1136
hash_for_each_possible(css_set_table, cset, hlist, key) {
1137
if (!compare_css_sets(cset, old_cset, cgrp, template))
1138
continue;
1139
1140
/* This css_set matches what we need */
1141
return cset;
1142
}
1143
1144
/* No existing cgroup group matched */
1145
return NULL;
1146
}
1147
1148
static void free_cgrp_cset_links(struct list_head *links_to_free)
1149
{
1150
struct cgrp_cset_link *link, *tmp_link;
1151
1152
list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1153
list_del(&link->cset_link);
1154
kfree(link);
1155
}
1156
}
1157
1158
/**
1159
* allocate_cgrp_cset_links - allocate cgrp_cset_links
1160
* @count: the number of links to allocate
1161
* @tmp_links: list_head the allocated links are put on
1162
*
1163
* Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1164
* through ->cset_link. Returns 0 on success or -errno.
1165
*/
1166
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1167
{
1168
struct cgrp_cset_link *link;
1169
int i;
1170
1171
INIT_LIST_HEAD(tmp_links);
1172
1173
for (i = 0; i < count; i++) {
1174
link = kzalloc(sizeof(*link), GFP_KERNEL);
1175
if (!link) {
1176
free_cgrp_cset_links(tmp_links);
1177
return -ENOMEM;
1178
}
1179
list_add(&link->cset_link, tmp_links);
1180
}
1181
return 0;
1182
}
1183
1184
/**
1185
* link_css_set - a helper function to link a css_set to a cgroup
1186
* @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1187
* @cset: the css_set to be linked
1188
* @cgrp: the destination cgroup
1189
*/
1190
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1191
struct cgroup *cgrp)
1192
{
1193
struct cgrp_cset_link *link;
1194
1195
BUG_ON(list_empty(tmp_links));
1196
1197
if (cgroup_on_dfl(cgrp))
1198
cset->dfl_cgrp = cgrp;
1199
1200
link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1201
link->cset = cset;
1202
link->cgrp = cgrp;
1203
1204
/*
1205
* Always add links to the tail of the lists so that the lists are
1206
* in chronological order.
1207
*/
1208
list_move_tail(&link->cset_link, &cgrp->cset_links);
1209
list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1210
1211
if (cgroup_parent(cgrp))
1212
cgroup_get_live(cgrp);
1213
}
1214
1215
/**
1216
* find_css_set - return a new css_set with one cgroup updated
1217
* @old_cset: the baseline css_set
1218
* @cgrp: the cgroup to be updated
1219
*
1220
* Return a new css_set that's equivalent to @old_cset, but with @cgrp
1221
* substituted into the appropriate hierarchy.
1222
*/
1223
static struct css_set *find_css_set(struct css_set *old_cset,
1224
struct cgroup *cgrp)
1225
{
1226
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1227
struct css_set *cset;
1228
struct list_head tmp_links;
1229
struct cgrp_cset_link *link;
1230
struct cgroup_subsys *ss;
1231
unsigned long key;
1232
int ssid;
1233
1234
lockdep_assert_held(&cgroup_mutex);
1235
1236
/* First see if we already have a cgroup group that matches
1237
* the desired set */
1238
spin_lock_irq(&css_set_lock);
1239
cset = find_existing_css_set(old_cset, cgrp, template);
1240
if (cset)
1241
get_css_set(cset);
1242
spin_unlock_irq(&css_set_lock);
1243
1244
if (cset)
1245
return cset;
1246
1247
cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1248
if (!cset)
1249
return NULL;
1250
1251
/* Allocate all the cgrp_cset_link objects that we'll need */
1252
if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1253
kfree(cset);
1254
return NULL;
1255
}
1256
1257
refcount_set(&cset->refcount, 1);
1258
cset->dom_cset = cset;
1259
INIT_LIST_HEAD(&cset->tasks);
1260
INIT_LIST_HEAD(&cset->mg_tasks);
1261
INIT_LIST_HEAD(&cset->dying_tasks);
1262
INIT_LIST_HEAD(&cset->task_iters);
1263
INIT_LIST_HEAD(&cset->threaded_csets);
1264
INIT_HLIST_NODE(&cset->hlist);
1265
INIT_LIST_HEAD(&cset->cgrp_links);
1266
INIT_LIST_HEAD(&cset->mg_src_preload_node);
1267
INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1268
INIT_LIST_HEAD(&cset->mg_node);
1269
1270
/* Copy the set of subsystem state objects generated in
1271
* find_existing_css_set() */
1272
memcpy(cset->subsys, template, sizeof(cset->subsys));
1273
1274
spin_lock_irq(&css_set_lock);
1275
/* Add reference counts and links from the new css_set. */
1276
list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1277
struct cgroup *c = link->cgrp;
1278
1279
if (c->root == cgrp->root)
1280
c = cgrp;
1281
link_css_set(&tmp_links, cset, c);
1282
}
1283
1284
BUG_ON(!list_empty(&tmp_links));
1285
1286
css_set_count++;
1287
1288
/* Add @cset to the hash table */
1289
key = css_set_hash(cset->subsys);
1290
hash_add(css_set_table, &cset->hlist, key);
1291
1292
for_each_subsys(ss, ssid) {
1293
struct cgroup_subsys_state *css = cset->subsys[ssid];
1294
1295
list_add_tail(&cset->e_cset_node[ssid],
1296
&css->cgroup->e_csets[ssid]);
1297
css_get(css);
1298
}
1299
1300
spin_unlock_irq(&css_set_lock);
1301
1302
/*
1303
* If @cset should be threaded, look up the matching dom_cset and
1304
* link them up. We first fully initialize @cset then look for the
1305
* dom_cset. It's simpler this way and safe as @cset is guaranteed
1306
* to stay empty until we return.
1307
*/
1308
if (cgroup_is_threaded(cset->dfl_cgrp)) {
1309
struct css_set *dcset;
1310
1311
dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1312
if (!dcset) {
1313
put_css_set(cset);
1314
return NULL;
1315
}
1316
1317
spin_lock_irq(&css_set_lock);
1318
cset->dom_cset = dcset;
1319
list_add_tail(&cset->threaded_csets_node,
1320
&dcset->threaded_csets);
1321
spin_unlock_irq(&css_set_lock);
1322
}
1323
1324
return cset;
1325
}
1326
1327
struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1328
{
1329
struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1330
1331
return root_cgrp->root;
1332
}
1333
1334
void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1335
{
1336
bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1337
1338
/*
1339
* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition.
1340
* favordynmods can flip while task is between
1341
* cgroup_threadgroup_change_begin() and end(), so down_write global
1342
* cgroup_threadgroup_rwsem to synchronize them.
1343
*
1344
* Once cgroup_enable_per_threadgroup_rwsem is enabled, holding
1345
* cgroup_threadgroup_rwsem doesn't exlude tasks between
1346
* cgroup_thread_group_change_begin() and end() and thus it's unsafe to
1347
* turn off. As the scenario is unlikely, simply disallow disabling once
1348
* enabled and print out a warning.
1349
*/
1350
percpu_down_write(&cgroup_threadgroup_rwsem);
1351
if (favor && !favoring) {
1352
cgroup_enable_per_threadgroup_rwsem = true;
1353
rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1354
root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1355
} else if (!favor && favoring) {
1356
if (cgroup_enable_per_threadgroup_rwsem)
1357
pr_warn_once("cgroup favordynmods: per threadgroup rwsem mechanism can't be disabled\n");
1358
rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1359
root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1360
}
1361
percpu_up_write(&cgroup_threadgroup_rwsem);
1362
}
1363
1364
static int cgroup_init_root_id(struct cgroup_root *root)
1365
{
1366
int id;
1367
1368
lockdep_assert_held(&cgroup_mutex);
1369
1370
id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1371
if (id < 0)
1372
return id;
1373
1374
root->hierarchy_id = id;
1375
return 0;
1376
}
1377
1378
static void cgroup_exit_root_id(struct cgroup_root *root)
1379
{
1380
lockdep_assert_held(&cgroup_mutex);
1381
1382
idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1383
}
1384
1385
void cgroup_free_root(struct cgroup_root *root)
1386
{
1387
kfree_rcu(root, rcu);
1388
}
1389
1390
static void cgroup_destroy_root(struct cgroup_root *root)
1391
{
1392
struct cgroup *cgrp = &root->cgrp;
1393
struct cgrp_cset_link *link, *tmp_link;
1394
int ret;
1395
1396
trace_cgroup_destroy_root(root);
1397
1398
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1399
1400
BUG_ON(atomic_read(&root->nr_cgrps));
1401
BUG_ON(!list_empty(&cgrp->self.children));
1402
1403
ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
1404
CGROUP_LIFETIME_OFFLINE, cgrp);
1405
WARN_ON_ONCE(notifier_to_errno(ret));
1406
1407
/* Rebind all subsystems back to the default hierarchy */
1408
WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1409
1410
/*
1411
* Release all the links from cset_links to this hierarchy's
1412
* root cgroup
1413
*/
1414
spin_lock_irq(&css_set_lock);
1415
1416
list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1417
list_del(&link->cset_link);
1418
list_del(&link->cgrp_link);
1419
kfree(link);
1420
}
1421
1422
spin_unlock_irq(&css_set_lock);
1423
1424
WARN_ON_ONCE(list_empty(&root->root_list));
1425
list_del_rcu(&root->root_list);
1426
cgroup_root_count--;
1427
1428
if (!have_favordynmods)
1429
cgroup_favor_dynmods(root, false);
1430
1431
cgroup_exit_root_id(root);
1432
1433
cgroup_unlock();
1434
1435
kernfs_destroy_root(root->kf_root);
1436
cgroup_free_root(root);
1437
}
1438
1439
/*
1440
* Returned cgroup is without refcount but it's valid as long as cset pins it.
1441
*/
1442
static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1443
struct cgroup_root *root)
1444
{
1445
struct cgroup *res_cgroup = NULL;
1446
1447
if (cset == &init_css_set) {
1448
res_cgroup = &root->cgrp;
1449
} else if (root == &cgrp_dfl_root) {
1450
res_cgroup = cset->dfl_cgrp;
1451
} else {
1452
struct cgrp_cset_link *link;
1453
lockdep_assert_held(&css_set_lock);
1454
1455
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1456
struct cgroup *c = link->cgrp;
1457
1458
if (c->root == root) {
1459
res_cgroup = c;
1460
break;
1461
}
1462
}
1463
}
1464
1465
/*
1466
* If cgroup_mutex is not held, the cgrp_cset_link will be freed
1467
* before we remove the cgroup root from the root_list. Consequently,
1468
* when accessing a cgroup root, the cset_link may have already been
1469
* freed, resulting in a NULL res_cgroup. However, by holding the
1470
* cgroup_mutex, we ensure that res_cgroup can't be NULL.
1471
* If we don't hold cgroup_mutex in the caller, we must do the NULL
1472
* check.
1473
*/
1474
return res_cgroup;
1475
}
1476
1477
/*
1478
* look up cgroup associated with current task's cgroup namespace on the
1479
* specified hierarchy
1480
*/
1481
static struct cgroup *
1482
current_cgns_cgroup_from_root(struct cgroup_root *root)
1483
{
1484
struct cgroup *res = NULL;
1485
struct css_set *cset;
1486
1487
lockdep_assert_held(&css_set_lock);
1488
1489
rcu_read_lock();
1490
1491
cset = current->nsproxy->cgroup_ns->root_cset;
1492
res = __cset_cgroup_from_root(cset, root);
1493
1494
rcu_read_unlock();
1495
1496
/*
1497
* The namespace_sem is held by current, so the root cgroup can't
1498
* be umounted. Therefore, we can ensure that the res is non-NULL.
1499
*/
1500
WARN_ON_ONCE(!res);
1501
return res;
1502
}
1503
1504
/*
1505
* Look up cgroup associated with current task's cgroup namespace on the default
1506
* hierarchy.
1507
*
1508
* Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1509
* - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1510
* pointers.
1511
* - css_set_lock is not needed because we just read cset->dfl_cgrp.
1512
* - As a bonus returned cgrp is pinned with the current because it cannot
1513
* switch cgroup_ns asynchronously.
1514
*/
1515
static struct cgroup *current_cgns_cgroup_dfl(void)
1516
{
1517
struct css_set *cset;
1518
1519
if (current->nsproxy) {
1520
cset = current->nsproxy->cgroup_ns->root_cset;
1521
return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1522
} else {
1523
/*
1524
* NOTE: This function may be called from bpf_cgroup_from_id()
1525
* on a task which has already passed exit_task_namespaces() and
1526
* nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1527
* cgroups visible for lookups.
1528
*/
1529
return &cgrp_dfl_root.cgrp;
1530
}
1531
}
1532
1533
/* look up cgroup associated with given css_set on the specified hierarchy */
1534
static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1535
struct cgroup_root *root)
1536
{
1537
lockdep_assert_held(&css_set_lock);
1538
1539
return __cset_cgroup_from_root(cset, root);
1540
}
1541
1542
/*
1543
* Return the cgroup for "task" from the given hierarchy. Must be
1544
* called with css_set_lock held to prevent task's groups from being modified.
1545
* Must be called with either cgroup_mutex or rcu read lock to prevent the
1546
* cgroup root from being destroyed.
1547
*/
1548
struct cgroup *task_cgroup_from_root(struct task_struct *task,
1549
struct cgroup_root *root)
1550
{
1551
/*
1552
* No need to lock the task - since we hold css_set_lock the
1553
* task can't change groups.
1554
*/
1555
return cset_cgroup_from_root(task_css_set(task), root);
1556
}
1557
1558
/*
1559
* A task must hold cgroup_mutex to modify cgroups.
1560
*
1561
* Any task can increment and decrement the count field without lock.
1562
* So in general, code holding cgroup_mutex can't rely on the count
1563
* field not changing. However, if the count goes to zero, then only
1564
* cgroup_attach_task() can increment it again. Because a count of zero
1565
* means that no tasks are currently attached, therefore there is no
1566
* way a task attached to that cgroup can fork (the other way to
1567
* increment the count). So code holding cgroup_mutex can safely
1568
* assume that if the count is zero, it will stay zero. Similarly, if
1569
* a task holds cgroup_mutex on a cgroup with zero count, it
1570
* knows that the cgroup won't be removed, as cgroup_rmdir()
1571
* needs that mutex.
1572
*
1573
* A cgroup can only be deleted if both its 'count' of using tasks
1574
* is zero, and its list of 'children' cgroups is empty. Since all
1575
* tasks in the system use _some_ cgroup, and since there is always at
1576
* least one task in the system (init, pid == 1), therefore, root cgroup
1577
* always has either children cgroups and/or using tasks. So we don't
1578
* need a special hack to ensure that root cgroup cannot be deleted.
1579
*
1580
* P.S. One more locking exception. RCU is used to guard the
1581
* update of a tasks cgroup pointer by cgroup_attach_task()
1582
*/
1583
1584
static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1585
1586
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1587
char *buf)
1588
{
1589
struct cgroup_subsys *ss = cft->ss;
1590
1591
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1592
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1593
const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1594
1595
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1596
dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1597
cft->name);
1598
} else {
1599
strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1600
}
1601
return buf;
1602
}
1603
1604
/**
1605
* cgroup_file_mode - deduce file mode of a control file
1606
* @cft: the control file in question
1607
*
1608
* S_IRUGO for read, S_IWUSR for write.
1609
*/
1610
static umode_t cgroup_file_mode(const struct cftype *cft)
1611
{
1612
umode_t mode = 0;
1613
1614
if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1615
mode |= S_IRUGO;
1616
1617
if (cft->write_u64 || cft->write_s64 || cft->write) {
1618
if (cft->flags & CFTYPE_WORLD_WRITABLE)
1619
mode |= S_IWUGO;
1620
else
1621
mode |= S_IWUSR;
1622
}
1623
1624
return mode;
1625
}
1626
1627
/**
1628
* cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1629
* @subtree_control: the new subtree_control mask to consider
1630
* @this_ss_mask: available subsystems
1631
*
1632
* On the default hierarchy, a subsystem may request other subsystems to be
1633
* enabled together through its ->depends_on mask. In such cases, more
1634
* subsystems than specified in "cgroup.subtree_control" may be enabled.
1635
*
1636
* This function calculates which subsystems need to be enabled if
1637
* @subtree_control is to be applied while restricted to @this_ss_mask.
1638
*/
1639
static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1640
{
1641
u16 cur_ss_mask = subtree_control;
1642
struct cgroup_subsys *ss;
1643
int ssid;
1644
1645
lockdep_assert_held(&cgroup_mutex);
1646
1647
cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1648
1649
while (true) {
1650
u16 new_ss_mask = cur_ss_mask;
1651
1652
do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1653
new_ss_mask |= ss->depends_on;
1654
} while_each_subsys_mask();
1655
1656
/*
1657
* Mask out subsystems which aren't available. This can
1658
* happen only if some depended-upon subsystems were bound
1659
* to non-default hierarchies.
1660
*/
1661
new_ss_mask &= this_ss_mask;
1662
1663
if (new_ss_mask == cur_ss_mask)
1664
break;
1665
cur_ss_mask = new_ss_mask;
1666
}
1667
1668
return cur_ss_mask;
1669
}
1670
1671
/**
1672
* cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1673
* @kn: the kernfs_node being serviced
1674
*
1675
* This helper undoes cgroup_kn_lock_live() and should be invoked before
1676
* the method finishes if locking succeeded. Note that once this function
1677
* returns the cgroup returned by cgroup_kn_lock_live() may become
1678
* inaccessible any time. If the caller intends to continue to access the
1679
* cgroup, it should pin it before invoking this function.
1680
*/
1681
void cgroup_kn_unlock(struct kernfs_node *kn)
1682
{
1683
struct cgroup *cgrp;
1684
1685
if (kernfs_type(kn) == KERNFS_DIR)
1686
cgrp = kn->priv;
1687
else
1688
cgrp = kn_priv(kn);
1689
1690
cgroup_unlock();
1691
1692
kernfs_unbreak_active_protection(kn);
1693
cgroup_put(cgrp);
1694
}
1695
1696
/**
1697
* cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1698
* @kn: the kernfs_node being serviced
1699
* @drain_offline: perform offline draining on the cgroup
1700
*
1701
* This helper is to be used by a cgroup kernfs method currently servicing
1702
* @kn. It breaks the active protection, performs cgroup locking and
1703
* verifies that the associated cgroup is alive. Returns the cgroup if
1704
* alive; otherwise, %NULL. A successful return should be undone by a
1705
* matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1706
* cgroup is drained of offlining csses before return.
1707
*
1708
* Any cgroup kernfs method implementation which requires locking the
1709
* associated cgroup should use this helper. It avoids nesting cgroup
1710
* locking under kernfs active protection and allows all kernfs operations
1711
* including self-removal.
1712
*/
1713
struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1714
{
1715
struct cgroup *cgrp;
1716
1717
if (kernfs_type(kn) == KERNFS_DIR)
1718
cgrp = kn->priv;
1719
else
1720
cgrp = kn_priv(kn);
1721
1722
/*
1723
* We're gonna grab cgroup_mutex which nests outside kernfs
1724
* active_ref. cgroup liveliness check alone provides enough
1725
* protection against removal. Ensure @cgrp stays accessible and
1726
* break the active_ref protection.
1727
*/
1728
if (!cgroup_tryget(cgrp))
1729
return NULL;
1730
kernfs_break_active_protection(kn);
1731
1732
if (drain_offline)
1733
cgroup_lock_and_drain_offline(cgrp);
1734
else
1735
cgroup_lock();
1736
1737
if (!cgroup_is_dead(cgrp))
1738
return cgrp;
1739
1740
cgroup_kn_unlock(kn);
1741
return NULL;
1742
}
1743
1744
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1745
{
1746
char name[CGROUP_FILE_NAME_MAX];
1747
1748
lockdep_assert_held(&cgroup_mutex);
1749
1750
if (cft->file_offset) {
1751
struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1752
struct cgroup_file *cfile = (void *)css + cft->file_offset;
1753
1754
spin_lock_irq(&cgroup_file_kn_lock);
1755
cfile->kn = NULL;
1756
spin_unlock_irq(&cgroup_file_kn_lock);
1757
1758
timer_delete_sync(&cfile->notify_timer);
1759
}
1760
1761
kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1762
}
1763
1764
/**
1765
* css_clear_dir - remove subsys files in a cgroup directory
1766
* @css: target css
1767
*/
1768
static void css_clear_dir(struct cgroup_subsys_state *css)
1769
{
1770
struct cgroup *cgrp = css->cgroup;
1771
struct cftype *cfts;
1772
1773
if (!(css->flags & CSS_VISIBLE))
1774
return;
1775
1776
css->flags &= ~CSS_VISIBLE;
1777
1778
if (css_is_self(css)) {
1779
if (cgroup_on_dfl(cgrp)) {
1780
cgroup_addrm_files(css, cgrp,
1781
cgroup_base_files, false);
1782
if (cgroup_psi_enabled())
1783
cgroup_addrm_files(css, cgrp,
1784
cgroup_psi_files, false);
1785
} else {
1786
cgroup_addrm_files(css, cgrp,
1787
cgroup1_base_files, false);
1788
}
1789
} else {
1790
list_for_each_entry(cfts, &css->ss->cfts, node)
1791
cgroup_addrm_files(css, cgrp, cfts, false);
1792
}
1793
}
1794
1795
/**
1796
* css_populate_dir - create subsys files in a cgroup directory
1797
* @css: target css
1798
*
1799
* On failure, no file is added.
1800
*/
1801
static int css_populate_dir(struct cgroup_subsys_state *css)
1802
{
1803
struct cgroup *cgrp = css->cgroup;
1804
struct cftype *cfts, *failed_cfts;
1805
int ret;
1806
1807
if (css->flags & CSS_VISIBLE)
1808
return 0;
1809
1810
if (css_is_self(css)) {
1811
if (cgroup_on_dfl(cgrp)) {
1812
ret = cgroup_addrm_files(css, cgrp,
1813
cgroup_base_files, true);
1814
if (ret < 0)
1815
return ret;
1816
1817
if (cgroup_psi_enabled()) {
1818
ret = cgroup_addrm_files(css, cgrp,
1819
cgroup_psi_files, true);
1820
if (ret < 0) {
1821
cgroup_addrm_files(css, cgrp,
1822
cgroup_base_files, false);
1823
return ret;
1824
}
1825
}
1826
} else {
1827
ret = cgroup_addrm_files(css, cgrp,
1828
cgroup1_base_files, true);
1829
if (ret < 0)
1830
return ret;
1831
}
1832
} else {
1833
list_for_each_entry(cfts, &css->ss->cfts, node) {
1834
ret = cgroup_addrm_files(css, cgrp, cfts, true);
1835
if (ret < 0) {
1836
failed_cfts = cfts;
1837
goto err;
1838
}
1839
}
1840
}
1841
1842
css->flags |= CSS_VISIBLE;
1843
1844
return 0;
1845
err:
1846
list_for_each_entry(cfts, &css->ss->cfts, node) {
1847
if (cfts == failed_cfts)
1848
break;
1849
cgroup_addrm_files(css, cgrp, cfts, false);
1850
}
1851
return ret;
1852
}
1853
1854
int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1855
{
1856
struct cgroup *dcgrp = &dst_root->cgrp;
1857
struct cgroup_subsys *ss;
1858
int ssid, ret;
1859
u16 dfl_disable_ss_mask = 0;
1860
1861
lockdep_assert_held(&cgroup_mutex);
1862
1863
do_each_subsys_mask(ss, ssid, ss_mask) {
1864
/*
1865
* If @ss has non-root csses attached to it, can't move.
1866
* If @ss is an implicit controller, it is exempt from this
1867
* rule and can be stolen.
1868
*/
1869
if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1870
!ss->implicit_on_dfl)
1871
return -EBUSY;
1872
1873
/* can't move between two non-dummy roots either */
1874
if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1875
return -EBUSY;
1876
1877
/*
1878
* Collect ssid's that need to be disabled from default
1879
* hierarchy.
1880
*/
1881
if (ss->root == &cgrp_dfl_root)
1882
dfl_disable_ss_mask |= 1 << ssid;
1883
1884
} while_each_subsys_mask();
1885
1886
if (dfl_disable_ss_mask) {
1887
struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1888
1889
/*
1890
* Controllers from default hierarchy that need to be rebound
1891
* are all disabled together in one go.
1892
*/
1893
cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1894
WARN_ON(cgroup_apply_control(scgrp));
1895
cgroup_finalize_control(scgrp, 0);
1896
}
1897
1898
do_each_subsys_mask(ss, ssid, ss_mask) {
1899
struct cgroup_root *src_root = ss->root;
1900
struct cgroup *scgrp = &src_root->cgrp;
1901
struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1902
struct css_set *cset, *cset_pos;
1903
struct css_task_iter *it;
1904
1905
WARN_ON(!css || cgroup_css(dcgrp, ss));
1906
1907
if (src_root != &cgrp_dfl_root) {
1908
/* disable from the source */
1909
src_root->subsys_mask &= ~(1 << ssid);
1910
WARN_ON(cgroup_apply_control(scgrp));
1911
cgroup_finalize_control(scgrp, 0);
1912
}
1913
1914
/* rebind */
1915
RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1916
rcu_assign_pointer(dcgrp->subsys[ssid], css);
1917
ss->root = dst_root;
1918
1919
spin_lock_irq(&css_set_lock);
1920
css->cgroup = dcgrp;
1921
WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1922
list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1923
e_cset_node[ss->id]) {
1924
list_move_tail(&cset->e_cset_node[ss->id],
1925
&dcgrp->e_csets[ss->id]);
1926
/*
1927
* all css_sets of scgrp together in same order to dcgrp,
1928
* patch in-flight iterators to preserve correct iteration.
1929
* since the iterator is always advanced right away and
1930
* finished when it->cset_pos meets it->cset_head, so only
1931
* update it->cset_head is enough here.
1932
*/
1933
list_for_each_entry(it, &cset->task_iters, iters_node)
1934
if (it->cset_head == &scgrp->e_csets[ss->id])
1935
it->cset_head = &dcgrp->e_csets[ss->id];
1936
}
1937
spin_unlock_irq(&css_set_lock);
1938
1939
/* default hierarchy doesn't enable controllers by default */
1940
dst_root->subsys_mask |= 1 << ssid;
1941
if (dst_root == &cgrp_dfl_root) {
1942
static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1943
} else {
1944
dcgrp->subtree_control |= 1 << ssid;
1945
static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1946
}
1947
1948
ret = cgroup_apply_control(dcgrp);
1949
if (ret)
1950
pr_warn("partial failure to rebind %s controller (err=%d)\n",
1951
ss->name, ret);
1952
1953
if (ss->bind)
1954
ss->bind(css);
1955
} while_each_subsys_mask();
1956
1957
kernfs_activate(dcgrp->kn);
1958
return 0;
1959
}
1960
1961
int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1962
struct kernfs_root *kf_root)
1963
{
1964
int len = 0;
1965
char *buf = NULL;
1966
struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1967
struct cgroup *ns_cgroup;
1968
1969
buf = kmalloc(PATH_MAX, GFP_KERNEL);
1970
if (!buf)
1971
return -ENOMEM;
1972
1973
spin_lock_irq(&css_set_lock);
1974
ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1975
len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1976
spin_unlock_irq(&css_set_lock);
1977
1978
if (len == -E2BIG)
1979
len = -ERANGE;
1980
else if (len > 0) {
1981
seq_escape(sf, buf, " \t\n\\");
1982
len = 0;
1983
}
1984
kfree(buf);
1985
return len;
1986
}
1987
1988
enum cgroup2_param {
1989
Opt_nsdelegate,
1990
Opt_favordynmods,
1991
Opt_memory_localevents,
1992
Opt_memory_recursiveprot,
1993
Opt_memory_hugetlb_accounting,
1994
Opt_pids_localevents,
1995
nr__cgroup2_params
1996
};
1997
1998
static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1999
fsparam_flag("nsdelegate", Opt_nsdelegate),
2000
fsparam_flag("favordynmods", Opt_favordynmods),
2001
fsparam_flag("memory_localevents", Opt_memory_localevents),
2002
fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
2003
fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
2004
fsparam_flag("pids_localevents", Opt_pids_localevents),
2005
{}
2006
};
2007
2008
static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
2009
{
2010
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2011
struct fs_parse_result result;
2012
int opt;
2013
2014
opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
2015
if (opt < 0)
2016
return opt;
2017
2018
switch (opt) {
2019
case Opt_nsdelegate:
2020
ctx->flags |= CGRP_ROOT_NS_DELEGATE;
2021
return 0;
2022
case Opt_favordynmods:
2023
ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2024
return 0;
2025
case Opt_memory_localevents:
2026
ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2027
return 0;
2028
case Opt_memory_recursiveprot:
2029
ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2030
return 0;
2031
case Opt_memory_hugetlb_accounting:
2032
ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2033
return 0;
2034
case Opt_pids_localevents:
2035
ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2036
return 0;
2037
}
2038
return -EINVAL;
2039
}
2040
2041
struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
2042
{
2043
struct cgroup_file_ctx *ctx = of->priv;
2044
2045
return &ctx->peak;
2046
}
2047
2048
static void apply_cgroup_root_flags(unsigned int root_flags)
2049
{
2050
if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2051
if (root_flags & CGRP_ROOT_NS_DELEGATE)
2052
cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2053
else
2054
cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2055
2056
cgroup_favor_dynmods(&cgrp_dfl_root,
2057
root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2058
2059
if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2060
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2061
else
2062
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2063
2064
if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2065
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2066
else
2067
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2068
2069
if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2070
cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2071
else
2072
cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2073
2074
if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2075
cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2076
else
2077
cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2078
}
2079
}
2080
2081
static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2082
{
2083
if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2084
seq_puts(seq, ",nsdelegate");
2085
if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2086
seq_puts(seq, ",favordynmods");
2087
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2088
seq_puts(seq, ",memory_localevents");
2089
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2090
seq_puts(seq, ",memory_recursiveprot");
2091
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2092
seq_puts(seq, ",memory_hugetlb_accounting");
2093
if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2094
seq_puts(seq, ",pids_localevents");
2095
return 0;
2096
}
2097
2098
static int cgroup_reconfigure(struct fs_context *fc)
2099
{
2100
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2101
2102
apply_cgroup_root_flags(ctx->flags);
2103
return 0;
2104
}
2105
2106
static void init_cgroup_housekeeping(struct cgroup *cgrp)
2107
{
2108
struct cgroup_subsys *ss;
2109
int ssid;
2110
2111
INIT_LIST_HEAD(&cgrp->self.sibling);
2112
INIT_LIST_HEAD(&cgrp->self.children);
2113
INIT_LIST_HEAD(&cgrp->cset_links);
2114
INIT_LIST_HEAD(&cgrp->pidlists);
2115
mutex_init(&cgrp->pidlist_mutex);
2116
cgrp->self.cgroup = cgrp;
2117
cgrp->self.flags |= CSS_ONLINE;
2118
cgrp->dom_cgrp = cgrp;
2119
cgrp->max_descendants = INT_MAX;
2120
cgrp->max_depth = INT_MAX;
2121
prev_cputime_init(&cgrp->prev_cputime);
2122
2123
for_each_subsys(ss, ssid)
2124
INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2125
2126
#ifdef CONFIG_CGROUP_BPF
2127
for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
2128
cgrp->bpf.revisions[i] = 1;
2129
#endif
2130
2131
init_waitqueue_head(&cgrp->offline_waitq);
2132
INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2133
}
2134
2135
void init_cgroup_root(struct cgroup_fs_context *ctx)
2136
{
2137
struct cgroup_root *root = ctx->root;
2138
struct cgroup *cgrp = &root->cgrp;
2139
2140
INIT_LIST_HEAD_RCU(&root->root_list);
2141
atomic_set(&root->nr_cgrps, 1);
2142
cgrp->root = root;
2143
init_cgroup_housekeeping(cgrp);
2144
2145
/* DYNMODS must be modified through cgroup_favor_dynmods() */
2146
root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2147
if (ctx->release_agent)
2148
strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2149
if (ctx->name)
2150
strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2151
if (ctx->cpuset_clone_children)
2152
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2153
}
2154
2155
int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2156
{
2157
LIST_HEAD(tmp_links);
2158
struct cgroup *root_cgrp = &root->cgrp;
2159
struct kernfs_syscall_ops *kf_sops;
2160
struct css_set *cset;
2161
int i, ret;
2162
2163
lockdep_assert_held(&cgroup_mutex);
2164
2165
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2166
0, GFP_KERNEL);
2167
if (ret)
2168
goto out;
2169
2170
/*
2171
* We're accessing css_set_count without locking css_set_lock here,
2172
* but that's OK - it can only be increased by someone holding
2173
* cgroup_lock, and that's us. Later rebinding may disable
2174
* controllers on the default hierarchy and thus create new csets,
2175
* which can't be more than the existing ones. Allocate 2x.
2176
*/
2177
ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2178
if (ret)
2179
goto cancel_ref;
2180
2181
ret = cgroup_init_root_id(root);
2182
if (ret)
2183
goto cancel_ref;
2184
2185
kf_sops = root == &cgrp_dfl_root ?
2186
&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2187
2188
root->kf_root = kernfs_create_root(kf_sops,
2189
KERNFS_ROOT_CREATE_DEACTIVATED |
2190
KERNFS_ROOT_SUPPORT_EXPORTOP |
2191
KERNFS_ROOT_SUPPORT_USER_XATTR |
2192
KERNFS_ROOT_INVARIANT_PARENT,
2193
root_cgrp);
2194
if (IS_ERR(root->kf_root)) {
2195
ret = PTR_ERR(root->kf_root);
2196
goto exit_root_id;
2197
}
2198
root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2199
WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2200
root_cgrp->ancestors[0] = root_cgrp;
2201
2202
ret = css_populate_dir(&root_cgrp->self);
2203
if (ret)
2204
goto destroy_root;
2205
2206
ret = css_rstat_init(&root_cgrp->self);
2207
if (ret)
2208
goto destroy_root;
2209
2210
ret = rebind_subsystems(root, ss_mask);
2211
if (ret)
2212
goto exit_stats;
2213
2214
ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
2215
CGROUP_LIFETIME_ONLINE, root_cgrp);
2216
WARN_ON_ONCE(notifier_to_errno(ret));
2217
2218
trace_cgroup_setup_root(root);
2219
2220
/*
2221
* There must be no failure case after here, since rebinding takes
2222
* care of subsystems' refcounts, which are explicitly dropped in
2223
* the failure exit path.
2224
*/
2225
list_add_rcu(&root->root_list, &cgroup_roots);
2226
cgroup_root_count++;
2227
2228
/*
2229
* Link the root cgroup in this hierarchy into all the css_set
2230
* objects.
2231
*/
2232
spin_lock_irq(&css_set_lock);
2233
hash_for_each(css_set_table, i, cset, hlist) {
2234
link_css_set(&tmp_links, cset, root_cgrp);
2235
if (css_set_populated(cset))
2236
cgroup_update_populated(root_cgrp, true);
2237
}
2238
spin_unlock_irq(&css_set_lock);
2239
2240
BUG_ON(!list_empty(&root_cgrp->self.children));
2241
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2242
2243
ret = 0;
2244
goto out;
2245
2246
exit_stats:
2247
css_rstat_exit(&root_cgrp->self);
2248
destroy_root:
2249
kernfs_destroy_root(root->kf_root);
2250
root->kf_root = NULL;
2251
exit_root_id:
2252
cgroup_exit_root_id(root);
2253
cancel_ref:
2254
percpu_ref_exit(&root_cgrp->self.refcnt);
2255
out:
2256
free_cgrp_cset_links(&tmp_links);
2257
return ret;
2258
}
2259
2260
int cgroup_do_get_tree(struct fs_context *fc)
2261
{
2262
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2263
int ret;
2264
2265
ctx->kfc.root = ctx->root->kf_root;
2266
if (fc->fs_type == &cgroup2_fs_type)
2267
ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2268
else
2269
ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2270
ret = kernfs_get_tree(fc);
2271
2272
/*
2273
* In non-init cgroup namespace, instead of root cgroup's dentry,
2274
* we return the dentry corresponding to the cgroupns->root_cgrp.
2275
*/
2276
if (!ret && ctx->ns != &init_cgroup_ns) {
2277
struct dentry *nsdentry;
2278
struct super_block *sb = fc->root->d_sb;
2279
struct cgroup *cgrp;
2280
2281
cgroup_lock();
2282
spin_lock_irq(&css_set_lock);
2283
2284
cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2285
2286
spin_unlock_irq(&css_set_lock);
2287
cgroup_unlock();
2288
2289
nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2290
dput(fc->root);
2291
if (IS_ERR(nsdentry)) {
2292
deactivate_locked_super(sb);
2293
ret = PTR_ERR(nsdentry);
2294
nsdentry = NULL;
2295
}
2296
fc->root = nsdentry;
2297
}
2298
2299
if (!ctx->kfc.new_sb_created)
2300
cgroup_put(&ctx->root->cgrp);
2301
2302
return ret;
2303
}
2304
2305
/*
2306
* Destroy a cgroup filesystem context.
2307
*/
2308
static void cgroup_fs_context_free(struct fs_context *fc)
2309
{
2310
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2311
2312
kfree(ctx->name);
2313
kfree(ctx->release_agent);
2314
put_cgroup_ns(ctx->ns);
2315
kernfs_free_fs_context(fc);
2316
kfree(ctx);
2317
}
2318
2319
static int cgroup_get_tree(struct fs_context *fc)
2320
{
2321
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2322
int ret;
2323
2324
WRITE_ONCE(cgrp_dfl_visible, true);
2325
cgroup_get_live(&cgrp_dfl_root.cgrp);
2326
ctx->root = &cgrp_dfl_root;
2327
2328
ret = cgroup_do_get_tree(fc);
2329
if (!ret)
2330
apply_cgroup_root_flags(ctx->flags);
2331
return ret;
2332
}
2333
2334
static const struct fs_context_operations cgroup_fs_context_ops = {
2335
.free = cgroup_fs_context_free,
2336
.parse_param = cgroup2_parse_param,
2337
.get_tree = cgroup_get_tree,
2338
.reconfigure = cgroup_reconfigure,
2339
};
2340
2341
static const struct fs_context_operations cgroup1_fs_context_ops = {
2342
.free = cgroup_fs_context_free,
2343
.parse_param = cgroup1_parse_param,
2344
.get_tree = cgroup1_get_tree,
2345
.reconfigure = cgroup1_reconfigure,
2346
};
2347
2348
/*
2349
* Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2350
* we select the namespace we're going to use.
2351
*/
2352
static int cgroup_init_fs_context(struct fs_context *fc)
2353
{
2354
struct cgroup_fs_context *ctx;
2355
2356
ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2357
if (!ctx)
2358
return -ENOMEM;
2359
2360
ctx->ns = current->nsproxy->cgroup_ns;
2361
get_cgroup_ns(ctx->ns);
2362
fc->fs_private = &ctx->kfc;
2363
if (fc->fs_type == &cgroup2_fs_type)
2364
fc->ops = &cgroup_fs_context_ops;
2365
else
2366
fc->ops = &cgroup1_fs_context_ops;
2367
put_user_ns(fc->user_ns);
2368
fc->user_ns = get_user_ns(ctx->ns->user_ns);
2369
fc->global = true;
2370
2371
if (have_favordynmods)
2372
ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2373
2374
return 0;
2375
}
2376
2377
static void cgroup_kill_sb(struct super_block *sb)
2378
{
2379
struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2380
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2381
2382
/*
2383
* If @root doesn't have any children, start killing it.
2384
* This prevents new mounts by disabling percpu_ref_tryget_live().
2385
*
2386
* And don't kill the default root.
2387
*/
2388
if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2389
!percpu_ref_is_dying(&root->cgrp.self.refcnt))
2390
percpu_ref_kill(&root->cgrp.self.refcnt);
2391
cgroup_put(&root->cgrp);
2392
kernfs_kill_sb(sb);
2393
}
2394
2395
struct file_system_type cgroup_fs_type = {
2396
.name = "cgroup",
2397
.init_fs_context = cgroup_init_fs_context,
2398
.parameters = cgroup1_fs_parameters,
2399
.kill_sb = cgroup_kill_sb,
2400
.fs_flags = FS_USERNS_MOUNT,
2401
};
2402
2403
static struct file_system_type cgroup2_fs_type = {
2404
.name = "cgroup2",
2405
.init_fs_context = cgroup_init_fs_context,
2406
.parameters = cgroup2_fs_parameters,
2407
.kill_sb = cgroup_kill_sb,
2408
.fs_flags = FS_USERNS_MOUNT,
2409
};
2410
2411
#ifdef CONFIG_CPUSETS_V1
2412
enum cpuset_param {
2413
Opt_cpuset_v2_mode,
2414
};
2415
2416
static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2417
fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2418
{}
2419
};
2420
2421
static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2422
{
2423
struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2424
struct fs_parse_result result;
2425
int opt;
2426
2427
opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2428
if (opt < 0)
2429
return opt;
2430
2431
switch (opt) {
2432
case Opt_cpuset_v2_mode:
2433
ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2434
return 0;
2435
}
2436
return -EINVAL;
2437
}
2438
2439
static const struct fs_context_operations cpuset_fs_context_ops = {
2440
.get_tree = cgroup1_get_tree,
2441
.free = cgroup_fs_context_free,
2442
.parse_param = cpuset_parse_param,
2443
};
2444
2445
/*
2446
* This is ugly, but preserves the userspace API for existing cpuset
2447
* users. If someone tries to mount the "cpuset" filesystem, we
2448
* silently switch it to mount "cgroup" instead
2449
*/
2450
static int cpuset_init_fs_context(struct fs_context *fc)
2451
{
2452
char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2453
struct cgroup_fs_context *ctx;
2454
int err;
2455
2456
err = cgroup_init_fs_context(fc);
2457
if (err) {
2458
kfree(agent);
2459
return err;
2460
}
2461
2462
fc->ops = &cpuset_fs_context_ops;
2463
2464
ctx = cgroup_fc2context(fc);
2465
ctx->subsys_mask = 1 << cpuset_cgrp_id;
2466
ctx->flags |= CGRP_ROOT_NOPREFIX;
2467
ctx->release_agent = agent;
2468
2469
get_filesystem(&cgroup_fs_type);
2470
put_filesystem(fc->fs_type);
2471
fc->fs_type = &cgroup_fs_type;
2472
2473
return 0;
2474
}
2475
2476
static struct file_system_type cpuset_fs_type = {
2477
.name = "cpuset",
2478
.init_fs_context = cpuset_init_fs_context,
2479
.parameters = cpuset_fs_parameters,
2480
.fs_flags = FS_USERNS_MOUNT,
2481
};
2482
#endif
2483
2484
int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2485
struct cgroup_namespace *ns)
2486
{
2487
struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2488
2489
return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2490
}
2491
2492
int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2493
struct cgroup_namespace *ns)
2494
{
2495
int ret;
2496
2497
cgroup_lock();
2498
spin_lock_irq(&css_set_lock);
2499
2500
ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2501
2502
spin_unlock_irq(&css_set_lock);
2503
cgroup_unlock();
2504
2505
return ret;
2506
}
2507
EXPORT_SYMBOL_GPL(cgroup_path_ns);
2508
2509
/**
2510
* cgroup_attach_lock - Lock for ->attach()
2511
* @lock_mode: whether acquire and acquire which rwsem
2512
* @tsk: thread group to lock
2513
*
2514
* cgroup migration sometimes needs to stabilize threadgroups against forks and
2515
* exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2516
* implementations (e.g. cpuset), also need to disable CPU hotplug.
2517
* Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2518
* lead to deadlocks.
2519
*
2520
* Bringing up a CPU may involve creating and destroying tasks which requires
2521
* read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2522
* cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2523
* write-locking threadgroup_rwsem, the locking order is reversed and we end up
2524
* waiting for an on-going CPU hotplug operation which in turn is waiting for
2525
* the threadgroup_rwsem to be released to create new tasks. For more details:
2526
*
2527
* http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2528
*
2529
* Resolve the situation by always acquiring cpus_read_lock() before optionally
2530
* write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2531
* CPU hotplug is disabled on entry.
2532
*
2533
* When favordynmods is enabled, take per threadgroup rwsem to reduce overhead
2534
* on dynamic cgroup modifications. see the comment above
2535
* CGRP_ROOT_FAVOR_DYNMODS definition.
2536
*
2537
* tsk is not NULL only when writing to cgroup.procs.
2538
*/
2539
void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode,
2540
struct task_struct *tsk)
2541
{
2542
cpus_read_lock();
2543
2544
switch (lock_mode) {
2545
case CGRP_ATTACH_LOCK_NONE:
2546
break;
2547
case CGRP_ATTACH_LOCK_GLOBAL:
2548
percpu_down_write(&cgroup_threadgroup_rwsem);
2549
break;
2550
case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2551
down_write(&tsk->signal->cgroup_threadgroup_rwsem);
2552
break;
2553
default:
2554
pr_warn("cgroup: Unexpected attach lock mode.");
2555
break;
2556
}
2557
}
2558
2559
/**
2560
* cgroup_attach_unlock - Undo cgroup_attach_lock()
2561
* @lock_mode: whether release and release which rwsem
2562
* @tsk: thread group to lock
2563
*/
2564
void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode,
2565
struct task_struct *tsk)
2566
{
2567
switch (lock_mode) {
2568
case CGRP_ATTACH_LOCK_NONE:
2569
break;
2570
case CGRP_ATTACH_LOCK_GLOBAL:
2571
percpu_up_write(&cgroup_threadgroup_rwsem);
2572
break;
2573
case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2574
up_write(&tsk->signal->cgroup_threadgroup_rwsem);
2575
break;
2576
default:
2577
pr_warn("cgroup: Unexpected attach lock mode.");
2578
break;
2579
}
2580
2581
cpus_read_unlock();
2582
}
2583
2584
/**
2585
* cgroup_migrate_add_task - add a migration target task to a migration context
2586
* @task: target task
2587
* @mgctx: target migration context
2588
*
2589
* Add @task, which is a migration target, to @mgctx->tset. This function
2590
* becomes noop if @task doesn't need to be migrated. @task's css_set
2591
* should have been added as a migration source and @task->cg_list will be
2592
* moved from the css_set's tasks list to mg_tasks one.
2593
*/
2594
static void cgroup_migrate_add_task(struct task_struct *task,
2595
struct cgroup_mgctx *mgctx)
2596
{
2597
struct css_set *cset;
2598
2599
lockdep_assert_held(&css_set_lock);
2600
2601
/* @task either already exited or can't exit until the end */
2602
if (task->flags & PF_EXITING)
2603
return;
2604
2605
/* cgroup_threadgroup_rwsem protects racing against forks */
2606
WARN_ON_ONCE(list_empty(&task->cg_list));
2607
2608
cset = task_css_set(task);
2609
if (!cset->mg_src_cgrp)
2610
return;
2611
2612
mgctx->tset.nr_tasks++;
2613
2614
list_move_tail(&task->cg_list, &cset->mg_tasks);
2615
if (list_empty(&cset->mg_node))
2616
list_add_tail(&cset->mg_node,
2617
&mgctx->tset.src_csets);
2618
if (list_empty(&cset->mg_dst_cset->mg_node))
2619
list_add_tail(&cset->mg_dst_cset->mg_node,
2620
&mgctx->tset.dst_csets);
2621
}
2622
2623
/**
2624
* cgroup_taskset_first - reset taskset and return the first task
2625
* @tset: taskset of interest
2626
* @dst_cssp: output variable for the destination css
2627
*
2628
* @tset iteration is initialized and the first task is returned.
2629
*/
2630
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2631
struct cgroup_subsys_state **dst_cssp)
2632
{
2633
tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2634
tset->cur_task = NULL;
2635
2636
return cgroup_taskset_next(tset, dst_cssp);
2637
}
2638
2639
/**
2640
* cgroup_taskset_next - iterate to the next task in taskset
2641
* @tset: taskset of interest
2642
* @dst_cssp: output variable for the destination css
2643
*
2644
* Return the next task in @tset. Iteration must have been initialized
2645
* with cgroup_taskset_first().
2646
*/
2647
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2648
struct cgroup_subsys_state **dst_cssp)
2649
{
2650
struct css_set *cset = tset->cur_cset;
2651
struct task_struct *task = tset->cur_task;
2652
2653
while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2654
if (!task)
2655
task = list_first_entry(&cset->mg_tasks,
2656
struct task_struct, cg_list);
2657
else
2658
task = list_next_entry(task, cg_list);
2659
2660
if (&task->cg_list != &cset->mg_tasks) {
2661
tset->cur_cset = cset;
2662
tset->cur_task = task;
2663
2664
/*
2665
* This function may be called both before and
2666
* after cgroup_migrate_execute(). The two cases
2667
* can be distinguished by looking at whether @cset
2668
* has its ->mg_dst_cset set.
2669
*/
2670
if (cset->mg_dst_cset)
2671
*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2672
else
2673
*dst_cssp = cset->subsys[tset->ssid];
2674
2675
return task;
2676
}
2677
2678
cset = list_next_entry(cset, mg_node);
2679
task = NULL;
2680
}
2681
2682
return NULL;
2683
}
2684
2685
/**
2686
* cgroup_migrate_execute - migrate a taskset
2687
* @mgctx: migration context
2688
*
2689
* Migrate tasks in @mgctx as setup by migration preparation functions.
2690
* This function fails iff one of the ->can_attach callbacks fails and
2691
* guarantees that either all or none of the tasks in @mgctx are migrated.
2692
* @mgctx is consumed regardless of success.
2693
*/
2694
static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2695
{
2696
struct cgroup_taskset *tset = &mgctx->tset;
2697
struct cgroup_subsys *ss;
2698
struct task_struct *task, *tmp_task;
2699
struct css_set *cset, *tmp_cset;
2700
int ssid, failed_ssid, ret;
2701
2702
/* check that we can legitimately attach to the cgroup */
2703
if (tset->nr_tasks) {
2704
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2705
if (ss->can_attach) {
2706
tset->ssid = ssid;
2707
ret = ss->can_attach(tset);
2708
if (ret) {
2709
failed_ssid = ssid;
2710
goto out_cancel_attach;
2711
}
2712
}
2713
} while_each_subsys_mask();
2714
}
2715
2716
/*
2717
* Now that we're guaranteed success, proceed to move all tasks to
2718
* the new cgroup. There are no failure cases after here, so this
2719
* is the commit point.
2720
*/
2721
spin_lock_irq(&css_set_lock);
2722
list_for_each_entry(cset, &tset->src_csets, mg_node) {
2723
list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2724
struct css_set *from_cset = task_css_set(task);
2725
struct css_set *to_cset = cset->mg_dst_cset;
2726
2727
get_css_set(to_cset);
2728
to_cset->nr_tasks++;
2729
css_set_move_task(task, from_cset, to_cset, true);
2730
from_cset->nr_tasks--;
2731
/*
2732
* If the source or destination cgroup is frozen,
2733
* the task might require to change its state.
2734
*/
2735
cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2736
to_cset->dfl_cgrp);
2737
put_css_set_locked(from_cset);
2738
2739
}
2740
}
2741
spin_unlock_irq(&css_set_lock);
2742
2743
/*
2744
* Migration is committed, all target tasks are now on dst_csets.
2745
* Nothing is sensitive to fork() after this point. Notify
2746
* controllers that migration is complete.
2747
*/
2748
tset->csets = &tset->dst_csets;
2749
2750
if (tset->nr_tasks) {
2751
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2752
if (ss->attach) {
2753
tset->ssid = ssid;
2754
ss->attach(tset);
2755
}
2756
} while_each_subsys_mask();
2757
}
2758
2759
ret = 0;
2760
goto out_release_tset;
2761
2762
out_cancel_attach:
2763
if (tset->nr_tasks) {
2764
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2765
if (ssid == failed_ssid)
2766
break;
2767
if (ss->cancel_attach) {
2768
tset->ssid = ssid;
2769
ss->cancel_attach(tset);
2770
}
2771
} while_each_subsys_mask();
2772
}
2773
out_release_tset:
2774
spin_lock_irq(&css_set_lock);
2775
list_splice_init(&tset->dst_csets, &tset->src_csets);
2776
list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2777
list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2778
list_del_init(&cset->mg_node);
2779
}
2780
spin_unlock_irq(&css_set_lock);
2781
2782
/*
2783
* Re-initialize the cgroup_taskset structure in case it is reused
2784
* again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2785
* iteration.
2786
*/
2787
tset->nr_tasks = 0;
2788
tset->csets = &tset->src_csets;
2789
return ret;
2790
}
2791
2792
/**
2793
* cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2794
* @dst_cgrp: destination cgroup to test
2795
*
2796
* On the default hierarchy, except for the mixable, (possible) thread root
2797
* and threaded cgroups, subtree_control must be zero for migration
2798
* destination cgroups with tasks so that child cgroups don't compete
2799
* against tasks.
2800
*/
2801
int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2802
{
2803
/* v1 doesn't have any restriction */
2804
if (!cgroup_on_dfl(dst_cgrp))
2805
return 0;
2806
2807
/* verify @dst_cgrp can host resources */
2808
if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2809
return -EOPNOTSUPP;
2810
2811
/*
2812
* If @dst_cgrp is already or can become a thread root or is
2813
* threaded, it doesn't matter.
2814
*/
2815
if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2816
return 0;
2817
2818
/* apply no-internal-process constraint */
2819
if (dst_cgrp->subtree_control)
2820
return -EBUSY;
2821
2822
return 0;
2823
}
2824
2825
/**
2826
* cgroup_migrate_finish - cleanup after attach
2827
* @mgctx: migration context
2828
*
2829
* Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2830
* those functions for details.
2831
*/
2832
void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2833
{
2834
struct css_set *cset, *tmp_cset;
2835
2836
lockdep_assert_held(&cgroup_mutex);
2837
2838
spin_lock_irq(&css_set_lock);
2839
2840
list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2841
mg_src_preload_node) {
2842
cset->mg_src_cgrp = NULL;
2843
cset->mg_dst_cgrp = NULL;
2844
cset->mg_dst_cset = NULL;
2845
list_del_init(&cset->mg_src_preload_node);
2846
put_css_set_locked(cset);
2847
}
2848
2849
list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2850
mg_dst_preload_node) {
2851
cset->mg_src_cgrp = NULL;
2852
cset->mg_dst_cgrp = NULL;
2853
cset->mg_dst_cset = NULL;
2854
list_del_init(&cset->mg_dst_preload_node);
2855
put_css_set_locked(cset);
2856
}
2857
2858
spin_unlock_irq(&css_set_lock);
2859
}
2860
2861
/**
2862
* cgroup_migrate_add_src - add a migration source css_set
2863
* @src_cset: the source css_set to add
2864
* @dst_cgrp: the destination cgroup
2865
* @mgctx: migration context
2866
*
2867
* Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2868
* @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2869
* up by cgroup_migrate_finish().
2870
*
2871
* This function may be called without holding cgroup_threadgroup_rwsem
2872
* even if the target is a process. Threads may be created and destroyed
2873
* but as long as cgroup_mutex is not dropped, no new css_set can be put
2874
* into play and the preloaded css_sets are guaranteed to cover all
2875
* migrations.
2876
*/
2877
void cgroup_migrate_add_src(struct css_set *src_cset,
2878
struct cgroup *dst_cgrp,
2879
struct cgroup_mgctx *mgctx)
2880
{
2881
struct cgroup *src_cgrp;
2882
2883
lockdep_assert_held(&cgroup_mutex);
2884
lockdep_assert_held(&css_set_lock);
2885
2886
/*
2887
* If ->dead, @src_set is associated with one or more dead cgroups
2888
* and doesn't contain any migratable tasks. Ignore it early so
2889
* that the rest of migration path doesn't get confused by it.
2890
*/
2891
if (src_cset->dead)
2892
return;
2893
2894
if (!list_empty(&src_cset->mg_src_preload_node))
2895
return;
2896
2897
src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2898
2899
WARN_ON(src_cset->mg_src_cgrp);
2900
WARN_ON(src_cset->mg_dst_cgrp);
2901
WARN_ON(!list_empty(&src_cset->mg_tasks));
2902
WARN_ON(!list_empty(&src_cset->mg_node));
2903
2904
src_cset->mg_src_cgrp = src_cgrp;
2905
src_cset->mg_dst_cgrp = dst_cgrp;
2906
get_css_set(src_cset);
2907
list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2908
}
2909
2910
/**
2911
* cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2912
* @mgctx: migration context
2913
*
2914
* Tasks are about to be moved and all the source css_sets have been
2915
* preloaded to @mgctx->preloaded_src_csets. This function looks up and
2916
* pins all destination css_sets, links each to its source, and append them
2917
* to @mgctx->preloaded_dst_csets.
2918
*
2919
* This function must be called after cgroup_migrate_add_src() has been
2920
* called on each migration source css_set. After migration is performed
2921
* using cgroup_migrate(), cgroup_migrate_finish() must be called on
2922
* @mgctx.
2923
*/
2924
int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2925
{
2926
struct css_set *src_cset, *tmp_cset;
2927
2928
lockdep_assert_held(&cgroup_mutex);
2929
2930
/* look up the dst cset for each src cset and link it to src */
2931
list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2932
mg_src_preload_node) {
2933
struct css_set *dst_cset;
2934
struct cgroup_subsys *ss;
2935
int ssid;
2936
2937
dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2938
if (!dst_cset)
2939
return -ENOMEM;
2940
2941
WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2942
2943
/*
2944
* If src cset equals dst, it's noop. Drop the src.
2945
* cgroup_migrate() will skip the cset too. Note that we
2946
* can't handle src == dst as some nodes are used by both.
2947
*/
2948
if (src_cset == dst_cset) {
2949
src_cset->mg_src_cgrp = NULL;
2950
src_cset->mg_dst_cgrp = NULL;
2951
list_del_init(&src_cset->mg_src_preload_node);
2952
put_css_set(src_cset);
2953
put_css_set(dst_cset);
2954
continue;
2955
}
2956
2957
src_cset->mg_dst_cset = dst_cset;
2958
2959
if (list_empty(&dst_cset->mg_dst_preload_node))
2960
list_add_tail(&dst_cset->mg_dst_preload_node,
2961
&mgctx->preloaded_dst_csets);
2962
else
2963
put_css_set(dst_cset);
2964
2965
for_each_subsys(ss, ssid)
2966
if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2967
mgctx->ss_mask |= 1 << ssid;
2968
}
2969
2970
return 0;
2971
}
2972
2973
/**
2974
* cgroup_migrate - migrate a process or task to a cgroup
2975
* @leader: the leader of the process or the task to migrate
2976
* @threadgroup: whether @leader points to the whole process or a single task
2977
* @mgctx: migration context
2978
*
2979
* Migrate a process or task denoted by @leader. If migrating a process,
2980
* the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2981
* responsible for invoking cgroup_migrate_add_src() and
2982
* cgroup_migrate_prepare_dst() on the targets before invoking this
2983
* function and following up with cgroup_migrate_finish().
2984
*
2985
* As long as a controller's ->can_attach() doesn't fail, this function is
2986
* guaranteed to succeed. This means that, excluding ->can_attach()
2987
* failure, when migrating multiple targets, the success or failure can be
2988
* decided for all targets by invoking group_migrate_prepare_dst() before
2989
* actually starting migrating.
2990
*/
2991
int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2992
struct cgroup_mgctx *mgctx)
2993
{
2994
struct task_struct *task;
2995
2996
/*
2997
* The following thread iteration should be inside an RCU critical
2998
* section to prevent tasks from being freed while taking the snapshot.
2999
* spin_lock_irq() implies RCU critical section here.
3000
*/
3001
spin_lock_irq(&css_set_lock);
3002
task = leader;
3003
do {
3004
cgroup_migrate_add_task(task, mgctx);
3005
if (!threadgroup)
3006
break;
3007
} while_each_thread(leader, task);
3008
spin_unlock_irq(&css_set_lock);
3009
3010
return cgroup_migrate_execute(mgctx);
3011
}
3012
3013
/**
3014
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
3015
* @dst_cgrp: the cgroup to attach to
3016
* @leader: the task or the leader of the threadgroup to be attached
3017
* @threadgroup: attach the whole threadgroup?
3018
*
3019
* Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
3020
*/
3021
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
3022
bool threadgroup)
3023
{
3024
DEFINE_CGROUP_MGCTX(mgctx);
3025
struct task_struct *task;
3026
int ret = 0;
3027
3028
/* look up all src csets */
3029
spin_lock_irq(&css_set_lock);
3030
task = leader;
3031
do {
3032
cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
3033
if (!threadgroup)
3034
break;
3035
} while_each_thread(leader, task);
3036
spin_unlock_irq(&css_set_lock);
3037
3038
/* prepare dst csets and commit */
3039
ret = cgroup_migrate_prepare_dst(&mgctx);
3040
if (!ret)
3041
ret = cgroup_migrate(leader, threadgroup, &mgctx);
3042
3043
cgroup_migrate_finish(&mgctx);
3044
3045
if (!ret)
3046
TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
3047
3048
return ret;
3049
}
3050
3051
struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
3052
enum cgroup_attach_lock_mode *lock_mode)
3053
{
3054
struct task_struct *tsk;
3055
pid_t pid;
3056
3057
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
3058
return ERR_PTR(-EINVAL);
3059
3060
retry_find_task:
3061
rcu_read_lock();
3062
if (pid) {
3063
tsk = find_task_by_vpid(pid);
3064
if (!tsk) {
3065
tsk = ERR_PTR(-ESRCH);
3066
goto out_unlock_rcu;
3067
}
3068
} else {
3069
tsk = current;
3070
}
3071
3072
if (threadgroup)
3073
tsk = tsk->group_leader;
3074
3075
/*
3076
* kthreads may acquire PF_NO_SETAFFINITY during initialization.
3077
* If userland migrates such a kthread to a non-root cgroup, it can
3078
* become trapped in a cpuset, or RT kthread may be born in a
3079
* cgroup with no rt_runtime allocated. Just say no.
3080
*/
3081
if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3082
tsk = ERR_PTR(-EINVAL);
3083
goto out_unlock_rcu;
3084
}
3085
get_task_struct(tsk);
3086
rcu_read_unlock();
3087
3088
/*
3089
* If we migrate a single thread, we don't care about threadgroup
3090
* stability. If the thread is `current`, it won't exit(2) under our
3091
* hands or change PID through exec(2). We exclude
3092
* cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write callers
3093
* by cgroup_mutex. Therefore, we can skip the global lock.
3094
*/
3095
lockdep_assert_held(&cgroup_mutex);
3096
3097
if (pid || threadgroup) {
3098
if (cgroup_enable_per_threadgroup_rwsem)
3099
*lock_mode = CGRP_ATTACH_LOCK_PER_THREADGROUP;
3100
else
3101
*lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3102
} else {
3103
*lock_mode = CGRP_ATTACH_LOCK_NONE;
3104
}
3105
3106
cgroup_attach_lock(*lock_mode, tsk);
3107
3108
if (threadgroup) {
3109
if (!thread_group_leader(tsk)) {
3110
/*
3111
* A race with de_thread from another thread's exec()
3112
* may strip us of our leadership. If this happens,
3113
* throw this task away and try again.
3114
*/
3115
cgroup_attach_unlock(*lock_mode, tsk);
3116
put_task_struct(tsk);
3117
goto retry_find_task;
3118
}
3119
}
3120
3121
return tsk;
3122
3123
out_unlock_rcu:
3124
rcu_read_unlock();
3125
return tsk;
3126
}
3127
3128
void cgroup_procs_write_finish(struct task_struct *task,
3129
enum cgroup_attach_lock_mode lock_mode)
3130
{
3131
cgroup_attach_unlock(lock_mode, task);
3132
3133
/* release reference from cgroup_procs_write_start() */
3134
put_task_struct(task);
3135
}
3136
3137
static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3138
{
3139
struct cgroup_subsys *ss;
3140
bool printed = false;
3141
int ssid;
3142
3143
do_each_subsys_mask(ss, ssid, ss_mask) {
3144
if (printed)
3145
seq_putc(seq, ' ');
3146
seq_puts(seq, ss->name);
3147
printed = true;
3148
} while_each_subsys_mask();
3149
if (printed)
3150
seq_putc(seq, '\n');
3151
}
3152
3153
/* show controllers which are enabled from the parent */
3154
static int cgroup_controllers_show(struct seq_file *seq, void *v)
3155
{
3156
struct cgroup *cgrp = seq_css(seq)->cgroup;
3157
3158
cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3159
return 0;
3160
}
3161
3162
/* show controllers which are enabled for a given cgroup's children */
3163
static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3164
{
3165
struct cgroup *cgrp = seq_css(seq)->cgroup;
3166
3167
cgroup_print_ss_mask(seq, cgrp->subtree_control);
3168
return 0;
3169
}
3170
3171
/**
3172
* cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3173
* @cgrp: root of the subtree to update csses for
3174
*
3175
* @cgrp's control masks have changed and its subtree's css associations
3176
* need to be updated accordingly. This function looks up all css_sets
3177
* which are attached to the subtree, creates the matching updated css_sets
3178
* and migrates the tasks to the new ones.
3179
*/
3180
static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3181
{
3182
DEFINE_CGROUP_MGCTX(mgctx);
3183
struct cgroup_subsys_state *d_css;
3184
struct cgroup *dsct;
3185
struct css_set *src_cset;
3186
enum cgroup_attach_lock_mode lock_mode;
3187
bool has_tasks;
3188
int ret;
3189
3190
lockdep_assert_held(&cgroup_mutex);
3191
3192
/* look up all csses currently attached to @cgrp's subtree */
3193
spin_lock_irq(&css_set_lock);
3194
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3195
struct cgrp_cset_link *link;
3196
3197
/*
3198
* As cgroup_update_dfl_csses() is only called by
3199
* cgroup_apply_control(). The csses associated with the
3200
* given cgrp will not be affected by changes made to
3201
* its subtree_control file. We can skip them.
3202
*/
3203
if (dsct == cgrp)
3204
continue;
3205
3206
list_for_each_entry(link, &dsct->cset_links, cset_link)
3207
cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3208
}
3209
spin_unlock_irq(&css_set_lock);
3210
3211
/*
3212
* We need to write-lock threadgroup_rwsem while migrating tasks.
3213
* However, if there are no source csets for @cgrp, changing its
3214
* controllers isn't gonna produce any task migrations and the
3215
* write-locking can be skipped safely.
3216
*/
3217
has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3218
3219
if (has_tasks)
3220
lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3221
else
3222
lock_mode = CGRP_ATTACH_LOCK_NONE;
3223
3224
cgroup_attach_lock(lock_mode, NULL);
3225
3226
/* NULL dst indicates self on default hierarchy */
3227
ret = cgroup_migrate_prepare_dst(&mgctx);
3228
if (ret)
3229
goto out_finish;
3230
3231
spin_lock_irq(&css_set_lock);
3232
list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3233
mg_src_preload_node) {
3234
struct task_struct *task, *ntask;
3235
3236
/* all tasks in src_csets need to be migrated */
3237
list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3238
cgroup_migrate_add_task(task, &mgctx);
3239
}
3240
spin_unlock_irq(&css_set_lock);
3241
3242
ret = cgroup_migrate_execute(&mgctx);
3243
out_finish:
3244
cgroup_migrate_finish(&mgctx);
3245
cgroup_attach_unlock(lock_mode, NULL);
3246
return ret;
3247
}
3248
3249
/**
3250
* cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3251
* @cgrp: root of the target subtree
3252
*
3253
* Because css offlining is asynchronous, userland may try to re-enable a
3254
* controller while the previous css is still around. This function grabs
3255
* cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3256
*/
3257
void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3258
__acquires(&cgroup_mutex)
3259
{
3260
struct cgroup *dsct;
3261
struct cgroup_subsys_state *d_css;
3262
struct cgroup_subsys *ss;
3263
int ssid;
3264
3265
restart:
3266
cgroup_lock();
3267
3268
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3269
for_each_subsys(ss, ssid) {
3270
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3271
DEFINE_WAIT(wait);
3272
3273
if (!css || !percpu_ref_is_dying(&css->refcnt))
3274
continue;
3275
3276
cgroup_get_live(dsct);
3277
prepare_to_wait(&dsct->offline_waitq, &wait,
3278
TASK_UNINTERRUPTIBLE);
3279
3280
cgroup_unlock();
3281
schedule();
3282
finish_wait(&dsct->offline_waitq, &wait);
3283
3284
cgroup_put(dsct);
3285
goto restart;
3286
}
3287
}
3288
}
3289
3290
/**
3291
* cgroup_save_control - save control masks and dom_cgrp of a subtree
3292
* @cgrp: root of the target subtree
3293
*
3294
* Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3295
* respective old_ prefixed fields for @cgrp's subtree including @cgrp
3296
* itself.
3297
*/
3298
static void cgroup_save_control(struct cgroup *cgrp)
3299
{
3300
struct cgroup *dsct;
3301
struct cgroup_subsys_state *d_css;
3302
3303
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3304
dsct->old_subtree_control = dsct->subtree_control;
3305
dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3306
dsct->old_dom_cgrp = dsct->dom_cgrp;
3307
}
3308
}
3309
3310
/**
3311
* cgroup_propagate_control - refresh control masks of a subtree
3312
* @cgrp: root of the target subtree
3313
*
3314
* For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3315
* ->subtree_control and propagate controller availability through the
3316
* subtree so that descendants don't have unavailable controllers enabled.
3317
*/
3318
static void cgroup_propagate_control(struct cgroup *cgrp)
3319
{
3320
struct cgroup *dsct;
3321
struct cgroup_subsys_state *d_css;
3322
3323
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3324
dsct->subtree_control &= cgroup_control(dsct);
3325
dsct->subtree_ss_mask =
3326
cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3327
cgroup_ss_mask(dsct));
3328
}
3329
}
3330
3331
/**
3332
* cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3333
* @cgrp: root of the target subtree
3334
*
3335
* Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3336
* respective old_ prefixed fields for @cgrp's subtree including @cgrp
3337
* itself.
3338
*/
3339
static void cgroup_restore_control(struct cgroup *cgrp)
3340
{
3341
struct cgroup *dsct;
3342
struct cgroup_subsys_state *d_css;
3343
3344
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3345
dsct->subtree_control = dsct->old_subtree_control;
3346
dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3347
dsct->dom_cgrp = dsct->old_dom_cgrp;
3348
}
3349
}
3350
3351
static bool css_visible(struct cgroup_subsys_state *css)
3352
{
3353
struct cgroup_subsys *ss = css->ss;
3354
struct cgroup *cgrp = css->cgroup;
3355
3356
if (cgroup_control(cgrp) & (1 << ss->id))
3357
return true;
3358
if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3359
return false;
3360
return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3361
}
3362
3363
/**
3364
* cgroup_apply_control_enable - enable or show csses according to control
3365
* @cgrp: root of the target subtree
3366
*
3367
* Walk @cgrp's subtree and create new csses or make the existing ones
3368
* visible. A css is created invisible if it's being implicitly enabled
3369
* through dependency. An invisible css is made visible when the userland
3370
* explicitly enables it.
3371
*
3372
* Returns 0 on success, -errno on failure. On failure, csses which have
3373
* been processed already aren't cleaned up. The caller is responsible for
3374
* cleaning up with cgroup_apply_control_disable().
3375
*/
3376
static int cgroup_apply_control_enable(struct cgroup *cgrp)
3377
{
3378
struct cgroup *dsct;
3379
struct cgroup_subsys_state *d_css;
3380
struct cgroup_subsys *ss;
3381
int ssid, ret;
3382
3383
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3384
for_each_subsys(ss, ssid) {
3385
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3386
3387
if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3388
continue;
3389
3390
if (!css) {
3391
css = css_create(dsct, ss);
3392
if (IS_ERR(css))
3393
return PTR_ERR(css);
3394
}
3395
3396
WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3397
3398
if (css_visible(css)) {
3399
ret = css_populate_dir(css);
3400
if (ret)
3401
return ret;
3402
}
3403
}
3404
}
3405
3406
return 0;
3407
}
3408
3409
/**
3410
* cgroup_apply_control_disable - kill or hide csses according to control
3411
* @cgrp: root of the target subtree
3412
*
3413
* Walk @cgrp's subtree and kill and hide csses so that they match
3414
* cgroup_ss_mask() and cgroup_visible_mask().
3415
*
3416
* A css is hidden when the userland requests it to be disabled while other
3417
* subsystems are still depending on it. The css must not actively control
3418
* resources and be in the vanilla state if it's made visible again later.
3419
* Controllers which may be depended upon should provide ->css_reset() for
3420
* this purpose.
3421
*/
3422
static void cgroup_apply_control_disable(struct cgroup *cgrp)
3423
{
3424
struct cgroup *dsct;
3425
struct cgroup_subsys_state *d_css;
3426
struct cgroup_subsys *ss;
3427
int ssid;
3428
3429
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3430
for_each_subsys(ss, ssid) {
3431
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3432
3433
if (!css)
3434
continue;
3435
3436
WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3437
3438
if (css->parent &&
3439
!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3440
kill_css(css);
3441
} else if (!css_visible(css)) {
3442
css_clear_dir(css);
3443
if (ss->css_reset)
3444
ss->css_reset(css);
3445
}
3446
}
3447
}
3448
}
3449
3450
/**
3451
* cgroup_apply_control - apply control mask updates to the subtree
3452
* @cgrp: root of the target subtree
3453
*
3454
* subsystems can be enabled and disabled in a subtree using the following
3455
* steps.
3456
*
3457
* 1. Call cgroup_save_control() to stash the current state.
3458
* 2. Update ->subtree_control masks in the subtree as desired.
3459
* 3. Call cgroup_apply_control() to apply the changes.
3460
* 4. Optionally perform other related operations.
3461
* 5. Call cgroup_finalize_control() to finish up.
3462
*
3463
* This function implements step 3 and propagates the mask changes
3464
* throughout @cgrp's subtree, updates csses accordingly and perform
3465
* process migrations.
3466
*/
3467
static int cgroup_apply_control(struct cgroup *cgrp)
3468
{
3469
int ret;
3470
3471
cgroup_propagate_control(cgrp);
3472
3473
ret = cgroup_apply_control_enable(cgrp);
3474
if (ret)
3475
return ret;
3476
3477
/*
3478
* At this point, cgroup_e_css_by_mask() results reflect the new csses
3479
* making the following cgroup_update_dfl_csses() properly update
3480
* css associations of all tasks in the subtree.
3481
*/
3482
return cgroup_update_dfl_csses(cgrp);
3483
}
3484
3485
/**
3486
* cgroup_finalize_control - finalize control mask update
3487
* @cgrp: root of the target subtree
3488
* @ret: the result of the update
3489
*
3490
* Finalize control mask update. See cgroup_apply_control() for more info.
3491
*/
3492
static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3493
{
3494
if (ret) {
3495
cgroup_restore_control(cgrp);
3496
cgroup_propagate_control(cgrp);
3497
}
3498
3499
cgroup_apply_control_disable(cgrp);
3500
}
3501
3502
static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3503
{
3504
u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3505
3506
/* if nothing is getting enabled, nothing to worry about */
3507
if (!enable)
3508
return 0;
3509
3510
/* can @cgrp host any resources? */
3511
if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3512
return -EOPNOTSUPP;
3513
3514
/* mixables don't care */
3515
if (cgroup_is_mixable(cgrp))
3516
return 0;
3517
3518
if (domain_enable) {
3519
/* can't enable domain controllers inside a thread subtree */
3520
if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3521
return -EOPNOTSUPP;
3522
} else {
3523
/*
3524
* Threaded controllers can handle internal competitions
3525
* and are always allowed inside a (prospective) thread
3526
* subtree.
3527
*/
3528
if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3529
return 0;
3530
}
3531
3532
/*
3533
* Controllers can't be enabled for a cgroup with tasks to avoid
3534
* child cgroups competing against tasks.
3535
*/
3536
if (cgroup_has_tasks(cgrp))
3537
return -EBUSY;
3538
3539
return 0;
3540
}
3541
3542
/* change the enabled child controllers for a cgroup in the default hierarchy */
3543
static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3544
char *buf, size_t nbytes,
3545
loff_t off)
3546
{
3547
u16 enable = 0, disable = 0;
3548
struct cgroup *cgrp, *child;
3549
struct cgroup_subsys *ss;
3550
char *tok;
3551
int ssid, ret;
3552
3553
/*
3554
* Parse input - space separated list of subsystem names prefixed
3555
* with either + or -.
3556
*/
3557
buf = strstrip(buf);
3558
while ((tok = strsep(&buf, " "))) {
3559
if (tok[0] == '\0')
3560
continue;
3561
do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3562
if (!cgroup_ssid_enabled(ssid) ||
3563
strcmp(tok + 1, ss->name))
3564
continue;
3565
3566
if (*tok == '+') {
3567
enable |= 1 << ssid;
3568
disable &= ~(1 << ssid);
3569
} else if (*tok == '-') {
3570
disable |= 1 << ssid;
3571
enable &= ~(1 << ssid);
3572
} else {
3573
return -EINVAL;
3574
}
3575
break;
3576
} while_each_subsys_mask();
3577
if (ssid == CGROUP_SUBSYS_COUNT)
3578
return -EINVAL;
3579
}
3580
3581
cgrp = cgroup_kn_lock_live(of->kn, true);
3582
if (!cgrp)
3583
return -ENODEV;
3584
3585
for_each_subsys(ss, ssid) {
3586
if (enable & (1 << ssid)) {
3587
if (cgrp->subtree_control & (1 << ssid)) {
3588
enable &= ~(1 << ssid);
3589
continue;
3590
}
3591
3592
if (!(cgroup_control(cgrp) & (1 << ssid))) {
3593
ret = -ENOENT;
3594
goto out_unlock;
3595
}
3596
} else if (disable & (1 << ssid)) {
3597
if (!(cgrp->subtree_control & (1 << ssid))) {
3598
disable &= ~(1 << ssid);
3599
continue;
3600
}
3601
3602
/* a child has it enabled? */
3603
cgroup_for_each_live_child(child, cgrp) {
3604
if (child->subtree_control & (1 << ssid)) {
3605
ret = -EBUSY;
3606
goto out_unlock;
3607
}
3608
}
3609
}
3610
}
3611
3612
if (!enable && !disable) {
3613
ret = 0;
3614
goto out_unlock;
3615
}
3616
3617
ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3618
if (ret)
3619
goto out_unlock;
3620
3621
/* save and update control masks and prepare csses */
3622
cgroup_save_control(cgrp);
3623
3624
cgrp->subtree_control |= enable;
3625
cgrp->subtree_control &= ~disable;
3626
3627
ret = cgroup_apply_control(cgrp);
3628
cgroup_finalize_control(cgrp, ret);
3629
if (ret)
3630
goto out_unlock;
3631
3632
kernfs_activate(cgrp->kn);
3633
out_unlock:
3634
cgroup_kn_unlock(of->kn);
3635
return ret ?: nbytes;
3636
}
3637
3638
/**
3639
* cgroup_enable_threaded - make @cgrp threaded
3640
* @cgrp: the target cgroup
3641
*
3642
* Called when "threaded" is written to the cgroup.type interface file and
3643
* tries to make @cgrp threaded and join the parent's resource domain.
3644
* This function is never called on the root cgroup as cgroup.type doesn't
3645
* exist on it.
3646
*/
3647
static int cgroup_enable_threaded(struct cgroup *cgrp)
3648
{
3649
struct cgroup *parent = cgroup_parent(cgrp);
3650
struct cgroup *dom_cgrp = parent->dom_cgrp;
3651
struct cgroup *dsct;
3652
struct cgroup_subsys_state *d_css;
3653
int ret;
3654
3655
lockdep_assert_held(&cgroup_mutex);
3656
3657
/* noop if already threaded */
3658
if (cgroup_is_threaded(cgrp))
3659
return 0;
3660
3661
/*
3662
* If @cgroup is populated or has domain controllers enabled, it
3663
* can't be switched. While the below cgroup_can_be_thread_root()
3664
* test can catch the same conditions, that's only when @parent is
3665
* not mixable, so let's check it explicitly.
3666
*/
3667
if (cgroup_is_populated(cgrp) ||
3668
cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3669
return -EOPNOTSUPP;
3670
3671
/* we're joining the parent's domain, ensure its validity */
3672
if (!cgroup_is_valid_domain(dom_cgrp) ||
3673
!cgroup_can_be_thread_root(dom_cgrp))
3674
return -EOPNOTSUPP;
3675
3676
/*
3677
* The following shouldn't cause actual migrations and should
3678
* always succeed.
3679
*/
3680
cgroup_save_control(cgrp);
3681
3682
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3683
if (dsct == cgrp || cgroup_is_threaded(dsct))
3684
dsct->dom_cgrp = dom_cgrp;
3685
3686
ret = cgroup_apply_control(cgrp);
3687
if (!ret)
3688
parent->nr_threaded_children++;
3689
3690
cgroup_finalize_control(cgrp, ret);
3691
return ret;
3692
}
3693
3694
static int cgroup_type_show(struct seq_file *seq, void *v)
3695
{
3696
struct cgroup *cgrp = seq_css(seq)->cgroup;
3697
3698
if (cgroup_is_threaded(cgrp))
3699
seq_puts(seq, "threaded\n");
3700
else if (!cgroup_is_valid_domain(cgrp))
3701
seq_puts(seq, "domain invalid\n");
3702
else if (cgroup_is_thread_root(cgrp))
3703
seq_puts(seq, "domain threaded\n");
3704
else
3705
seq_puts(seq, "domain\n");
3706
3707
return 0;
3708
}
3709
3710
static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3711
size_t nbytes, loff_t off)
3712
{
3713
struct cgroup *cgrp;
3714
int ret;
3715
3716
/* only switching to threaded mode is supported */
3717
if (strcmp(strstrip(buf), "threaded"))
3718
return -EINVAL;
3719
3720
/* drain dying csses before we re-apply (threaded) subtree control */
3721
cgrp = cgroup_kn_lock_live(of->kn, true);
3722
if (!cgrp)
3723
return -ENOENT;
3724
3725
/* threaded can only be enabled */
3726
ret = cgroup_enable_threaded(cgrp);
3727
3728
cgroup_kn_unlock(of->kn);
3729
return ret ?: nbytes;
3730
}
3731
3732
static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3733
{
3734
struct cgroup *cgrp = seq_css(seq)->cgroup;
3735
int descendants = READ_ONCE(cgrp->max_descendants);
3736
3737
if (descendants == INT_MAX)
3738
seq_puts(seq, "max\n");
3739
else
3740
seq_printf(seq, "%d\n", descendants);
3741
3742
return 0;
3743
}
3744
3745
static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3746
char *buf, size_t nbytes, loff_t off)
3747
{
3748
struct cgroup *cgrp;
3749
int descendants;
3750
ssize_t ret;
3751
3752
buf = strstrip(buf);
3753
if (!strcmp(buf, "max")) {
3754
descendants = INT_MAX;
3755
} else {
3756
ret = kstrtoint(buf, 0, &descendants);
3757
if (ret)
3758
return ret;
3759
}
3760
3761
if (descendants < 0)
3762
return -ERANGE;
3763
3764
cgrp = cgroup_kn_lock_live(of->kn, false);
3765
if (!cgrp)
3766
return -ENOENT;
3767
3768
cgrp->max_descendants = descendants;
3769
3770
cgroup_kn_unlock(of->kn);
3771
3772
return nbytes;
3773
}
3774
3775
static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3776
{
3777
struct cgroup *cgrp = seq_css(seq)->cgroup;
3778
int depth = READ_ONCE(cgrp->max_depth);
3779
3780
if (depth == INT_MAX)
3781
seq_puts(seq, "max\n");
3782
else
3783
seq_printf(seq, "%d\n", depth);
3784
3785
return 0;
3786
}
3787
3788
static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3789
char *buf, size_t nbytes, loff_t off)
3790
{
3791
struct cgroup *cgrp;
3792
ssize_t ret;
3793
int depth;
3794
3795
buf = strstrip(buf);
3796
if (!strcmp(buf, "max")) {
3797
depth = INT_MAX;
3798
} else {
3799
ret = kstrtoint(buf, 0, &depth);
3800
if (ret)
3801
return ret;
3802
}
3803
3804
if (depth < 0)
3805
return -ERANGE;
3806
3807
cgrp = cgroup_kn_lock_live(of->kn, false);
3808
if (!cgrp)
3809
return -ENOENT;
3810
3811
cgrp->max_depth = depth;
3812
3813
cgroup_kn_unlock(of->kn);
3814
3815
return nbytes;
3816
}
3817
3818
static int cgroup_events_show(struct seq_file *seq, void *v)
3819
{
3820
struct cgroup *cgrp = seq_css(seq)->cgroup;
3821
3822
seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3823
seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3824
3825
return 0;
3826
}
3827
3828
static int cgroup_stat_show(struct seq_file *seq, void *v)
3829
{
3830
struct cgroup *cgroup = seq_css(seq)->cgroup;
3831
struct cgroup_subsys_state *css;
3832
int dying_cnt[CGROUP_SUBSYS_COUNT];
3833
int ssid;
3834
3835
seq_printf(seq, "nr_descendants %d\n",
3836
cgroup->nr_descendants);
3837
3838
/*
3839
* Show the number of live and dying csses associated with each of
3840
* non-inhibited cgroup subsystems that is bound to cgroup v2.
3841
*
3842
* Without proper lock protection, racing is possible. So the
3843
* numbers may not be consistent when that happens.
3844
*/
3845
rcu_read_lock();
3846
for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3847
dying_cnt[ssid] = -1;
3848
if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3849
(cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3850
continue;
3851
css = rcu_dereference_raw(cgroup->subsys[ssid]);
3852
dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3853
seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3854
css ? (css->nr_descendants + 1) : 0);
3855
}
3856
3857
seq_printf(seq, "nr_dying_descendants %d\n",
3858
cgroup->nr_dying_descendants);
3859
for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3860
if (dying_cnt[ssid] >= 0)
3861
seq_printf(seq, "nr_dying_subsys_%s %d\n",
3862
cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3863
}
3864
rcu_read_unlock();
3865
return 0;
3866
}
3867
3868
static int cgroup_core_local_stat_show(struct seq_file *seq, void *v)
3869
{
3870
struct cgroup *cgrp = seq_css(seq)->cgroup;
3871
unsigned int sequence;
3872
u64 freeze_time;
3873
3874
do {
3875
sequence = read_seqcount_begin(&cgrp->freezer.freeze_seq);
3876
freeze_time = cgrp->freezer.frozen_nsec;
3877
/* Add in current freezer interval if the cgroup is freezing. */
3878
if (test_bit(CGRP_FREEZE, &cgrp->flags))
3879
freeze_time += (ktime_get_ns() -
3880
cgrp->freezer.freeze_start_nsec);
3881
} while (read_seqcount_retry(&cgrp->freezer.freeze_seq, sequence));
3882
3883
do_div(freeze_time, NSEC_PER_USEC);
3884
seq_printf(seq, "frozen_usec %llu\n", freeze_time);
3885
3886
return 0;
3887
}
3888
3889
#ifdef CONFIG_CGROUP_SCHED
3890
/**
3891
* cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3892
* @cgrp: the cgroup of interest
3893
* @ss: the subsystem of interest
3894
*
3895
* Find and get @cgrp's css associated with @ss. If the css doesn't exist
3896
* or is offline, %NULL is returned.
3897
*/
3898
static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3899
struct cgroup_subsys *ss)
3900
{
3901
struct cgroup_subsys_state *css;
3902
3903
rcu_read_lock();
3904
css = cgroup_css(cgrp, ss);
3905
if (css && !css_tryget_online(css))
3906
css = NULL;
3907
rcu_read_unlock();
3908
3909
return css;
3910
}
3911
3912
static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3913
{
3914
struct cgroup *cgrp = seq_css(seq)->cgroup;
3915
struct cgroup_subsys *ss = cgroup_subsys[ssid];
3916
struct cgroup_subsys_state *css;
3917
int ret;
3918
3919
if (!ss->css_extra_stat_show)
3920
return 0;
3921
3922
css = cgroup_tryget_css(cgrp, ss);
3923
if (!css)
3924
return 0;
3925
3926
ret = ss->css_extra_stat_show(seq, css);
3927
css_put(css);
3928
return ret;
3929
}
3930
3931
static int cgroup_local_stat_show(struct seq_file *seq,
3932
struct cgroup *cgrp, int ssid)
3933
{
3934
struct cgroup_subsys *ss = cgroup_subsys[ssid];
3935
struct cgroup_subsys_state *css;
3936
int ret;
3937
3938
if (!ss->css_local_stat_show)
3939
return 0;
3940
3941
css = cgroup_tryget_css(cgrp, ss);
3942
if (!css)
3943
return 0;
3944
3945
ret = ss->css_local_stat_show(seq, css);
3946
css_put(css);
3947
return ret;
3948
}
3949
#endif
3950
3951
static int cpu_stat_show(struct seq_file *seq, void *v)
3952
{
3953
int ret = 0;
3954
3955
cgroup_base_stat_cputime_show(seq);
3956
#ifdef CONFIG_CGROUP_SCHED
3957
ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3958
#endif
3959
return ret;
3960
}
3961
3962
static int cpu_local_stat_show(struct seq_file *seq, void *v)
3963
{
3964
struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3965
int ret = 0;
3966
3967
#ifdef CONFIG_CGROUP_SCHED
3968
ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3969
#endif
3970
return ret;
3971
}
3972
3973
#ifdef CONFIG_PSI
3974
static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3975
{
3976
struct cgroup *cgrp = seq_css(seq)->cgroup;
3977
struct psi_group *psi = cgroup_psi(cgrp);
3978
3979
return psi_show(seq, psi, PSI_IO);
3980
}
3981
static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3982
{
3983
struct cgroup *cgrp = seq_css(seq)->cgroup;
3984
struct psi_group *psi = cgroup_psi(cgrp);
3985
3986
return psi_show(seq, psi, PSI_MEM);
3987
}
3988
static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3989
{
3990
struct cgroup *cgrp = seq_css(seq)->cgroup;
3991
struct psi_group *psi = cgroup_psi(cgrp);
3992
3993
return psi_show(seq, psi, PSI_CPU);
3994
}
3995
3996
static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3997
size_t nbytes, enum psi_res res)
3998
{
3999
struct cgroup_file_ctx *ctx = of->priv;
4000
struct psi_trigger *new;
4001
struct cgroup *cgrp;
4002
struct psi_group *psi;
4003
4004
cgrp = cgroup_kn_lock_live(of->kn, false);
4005
if (!cgrp)
4006
return -ENODEV;
4007
4008
cgroup_get(cgrp);
4009
cgroup_kn_unlock(of->kn);
4010
4011
/* Allow only one trigger per file descriptor */
4012
if (ctx->psi.trigger) {
4013
cgroup_put(cgrp);
4014
return -EBUSY;
4015
}
4016
4017
psi = cgroup_psi(cgrp);
4018
new = psi_trigger_create(psi, buf, res, of->file, of);
4019
if (IS_ERR(new)) {
4020
cgroup_put(cgrp);
4021
return PTR_ERR(new);
4022
}
4023
4024
smp_store_release(&ctx->psi.trigger, new);
4025
cgroup_put(cgrp);
4026
4027
return nbytes;
4028
}
4029
4030
static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
4031
char *buf, size_t nbytes,
4032
loff_t off)
4033
{
4034
return pressure_write(of, buf, nbytes, PSI_IO);
4035
}
4036
4037
static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
4038
char *buf, size_t nbytes,
4039
loff_t off)
4040
{
4041
return pressure_write(of, buf, nbytes, PSI_MEM);
4042
}
4043
4044
static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
4045
char *buf, size_t nbytes,
4046
loff_t off)
4047
{
4048
return pressure_write(of, buf, nbytes, PSI_CPU);
4049
}
4050
4051
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4052
static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
4053
{
4054
struct cgroup *cgrp = seq_css(seq)->cgroup;
4055
struct psi_group *psi = cgroup_psi(cgrp);
4056
4057
return psi_show(seq, psi, PSI_IRQ);
4058
}
4059
4060
static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
4061
char *buf, size_t nbytes,
4062
loff_t off)
4063
{
4064
return pressure_write(of, buf, nbytes, PSI_IRQ);
4065
}
4066
#endif
4067
4068
static int cgroup_pressure_show(struct seq_file *seq, void *v)
4069
{
4070
struct cgroup *cgrp = seq_css(seq)->cgroup;
4071
struct psi_group *psi = cgroup_psi(cgrp);
4072
4073
seq_printf(seq, "%d\n", psi->enabled);
4074
4075
return 0;
4076
}
4077
4078
static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
4079
char *buf, size_t nbytes,
4080
loff_t off)
4081
{
4082
ssize_t ret;
4083
int enable;
4084
struct cgroup *cgrp;
4085
struct psi_group *psi;
4086
4087
ret = kstrtoint(strstrip(buf), 0, &enable);
4088
if (ret)
4089
return ret;
4090
4091
if (enable < 0 || enable > 1)
4092
return -ERANGE;
4093
4094
cgrp = cgroup_kn_lock_live(of->kn, false);
4095
if (!cgrp)
4096
return -ENOENT;
4097
4098
psi = cgroup_psi(cgrp);
4099
if (psi->enabled != enable) {
4100
int i;
4101
4102
/* show or hide {cpu,memory,io,irq}.pressure files */
4103
for (i = 0; i < NR_PSI_RESOURCES; i++)
4104
cgroup_file_show(&cgrp->psi_files[i], enable);
4105
4106
psi->enabled = enable;
4107
if (enable)
4108
psi_cgroup_restart(psi);
4109
}
4110
4111
cgroup_kn_unlock(of->kn);
4112
4113
return nbytes;
4114
}
4115
4116
static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
4117
poll_table *pt)
4118
{
4119
struct cgroup_file_ctx *ctx = of->priv;
4120
4121
return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
4122
}
4123
4124
static void cgroup_pressure_release(struct kernfs_open_file *of)
4125
{
4126
struct cgroup_file_ctx *ctx = of->priv;
4127
4128
psi_trigger_destroy(ctx->psi.trigger);
4129
}
4130
4131
bool cgroup_psi_enabled(void)
4132
{
4133
if (static_branch_likely(&psi_disabled))
4134
return false;
4135
4136
return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4137
}
4138
4139
#else /* CONFIG_PSI */
4140
bool cgroup_psi_enabled(void)
4141
{
4142
return false;
4143
}
4144
4145
#endif /* CONFIG_PSI */
4146
4147
static int cgroup_freeze_show(struct seq_file *seq, void *v)
4148
{
4149
struct cgroup *cgrp = seq_css(seq)->cgroup;
4150
4151
seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4152
4153
return 0;
4154
}
4155
4156
static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4157
char *buf, size_t nbytes, loff_t off)
4158
{
4159
struct cgroup *cgrp;
4160
ssize_t ret;
4161
int freeze;
4162
4163
ret = kstrtoint(strstrip(buf), 0, &freeze);
4164
if (ret)
4165
return ret;
4166
4167
if (freeze < 0 || freeze > 1)
4168
return -ERANGE;
4169
4170
cgrp = cgroup_kn_lock_live(of->kn, false);
4171
if (!cgrp)
4172
return -ENOENT;
4173
4174
cgroup_freeze(cgrp, freeze);
4175
4176
cgroup_kn_unlock(of->kn);
4177
4178
return nbytes;
4179
}
4180
4181
static void __cgroup_kill(struct cgroup *cgrp)
4182
{
4183
struct css_task_iter it;
4184
struct task_struct *task;
4185
4186
lockdep_assert_held(&cgroup_mutex);
4187
4188
spin_lock_irq(&css_set_lock);
4189
cgrp->kill_seq++;
4190
spin_unlock_irq(&css_set_lock);
4191
4192
css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4193
while ((task = css_task_iter_next(&it))) {
4194
/* Ignore kernel threads here. */
4195
if (task->flags & PF_KTHREAD)
4196
continue;
4197
4198
/* Skip tasks that are already dying. */
4199
if (__fatal_signal_pending(task))
4200
continue;
4201
4202
send_sig(SIGKILL, task, 0);
4203
}
4204
css_task_iter_end(&it);
4205
}
4206
4207
static void cgroup_kill(struct cgroup *cgrp)
4208
{
4209
struct cgroup_subsys_state *css;
4210
struct cgroup *dsct;
4211
4212
lockdep_assert_held(&cgroup_mutex);
4213
4214
cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4215
__cgroup_kill(dsct);
4216
}
4217
4218
static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4219
size_t nbytes, loff_t off)
4220
{
4221
ssize_t ret = 0;
4222
int kill;
4223
struct cgroup *cgrp;
4224
4225
ret = kstrtoint(strstrip(buf), 0, &kill);
4226
if (ret)
4227
return ret;
4228
4229
if (kill != 1)
4230
return -ERANGE;
4231
4232
cgrp = cgroup_kn_lock_live(of->kn, false);
4233
if (!cgrp)
4234
return -ENOENT;
4235
4236
/*
4237
* Killing is a process directed operation, i.e. the whole thread-group
4238
* is taken down so act like we do for cgroup.procs and only make this
4239
* writable in non-threaded cgroups.
4240
*/
4241
if (cgroup_is_threaded(cgrp))
4242
ret = -EOPNOTSUPP;
4243
else
4244
cgroup_kill(cgrp);
4245
4246
cgroup_kn_unlock(of->kn);
4247
4248
return ret ?: nbytes;
4249
}
4250
4251
static int cgroup_file_open(struct kernfs_open_file *of)
4252
{
4253
struct cftype *cft = of_cft(of);
4254
struct cgroup_file_ctx *ctx;
4255
int ret;
4256
4257
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4258
if (!ctx)
4259
return -ENOMEM;
4260
4261
ctx->ns = current->nsproxy->cgroup_ns;
4262
get_cgroup_ns(ctx->ns);
4263
of->priv = ctx;
4264
4265
if (!cft->open)
4266
return 0;
4267
4268
ret = cft->open(of);
4269
if (ret) {
4270
put_cgroup_ns(ctx->ns);
4271
kfree(ctx);
4272
}
4273
return ret;
4274
}
4275
4276
static void cgroup_file_release(struct kernfs_open_file *of)
4277
{
4278
struct cftype *cft = of_cft(of);
4279
struct cgroup_file_ctx *ctx = of->priv;
4280
4281
if (cft->release)
4282
cft->release(of);
4283
put_cgroup_ns(ctx->ns);
4284
kfree(ctx);
4285
of->priv = NULL;
4286
}
4287
4288
static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4289
size_t nbytes, loff_t off)
4290
{
4291
struct cgroup_file_ctx *ctx = of->priv;
4292
struct cgroup *cgrp = kn_priv(of->kn);
4293
struct cftype *cft = of_cft(of);
4294
struct cgroup_subsys_state *css;
4295
int ret;
4296
4297
if (!nbytes)
4298
return 0;
4299
4300
/*
4301
* If namespaces are delegation boundaries, disallow writes to
4302
* files in an non-init namespace root from inside the namespace
4303
* except for the files explicitly marked delegatable -
4304
* eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4305
*/
4306
if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4307
!(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4308
ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4309
return -EPERM;
4310
4311
if (cft->write)
4312
return cft->write(of, buf, nbytes, off);
4313
4314
/*
4315
* kernfs guarantees that a file isn't deleted with operations in
4316
* flight, which means that the matching css is and stays alive and
4317
* doesn't need to be pinned. The RCU locking is not necessary
4318
* either. It's just for the convenience of using cgroup_css().
4319
*/
4320
rcu_read_lock();
4321
css = cgroup_css(cgrp, cft->ss);
4322
rcu_read_unlock();
4323
4324
if (cft->write_u64) {
4325
unsigned long long v;
4326
ret = kstrtoull(buf, 0, &v);
4327
if (!ret)
4328
ret = cft->write_u64(css, cft, v);
4329
} else if (cft->write_s64) {
4330
long long v;
4331
ret = kstrtoll(buf, 0, &v);
4332
if (!ret)
4333
ret = cft->write_s64(css, cft, v);
4334
} else {
4335
ret = -EINVAL;
4336
}
4337
4338
return ret ?: nbytes;
4339
}
4340
4341
static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4342
{
4343
struct cftype *cft = of_cft(of);
4344
4345
if (cft->poll)
4346
return cft->poll(of, pt);
4347
4348
return kernfs_generic_poll(of, pt);
4349
}
4350
4351
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4352
{
4353
return seq_cft(seq)->seq_start(seq, ppos);
4354
}
4355
4356
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4357
{
4358
return seq_cft(seq)->seq_next(seq, v, ppos);
4359
}
4360
4361
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4362
{
4363
if (seq_cft(seq)->seq_stop)
4364
seq_cft(seq)->seq_stop(seq, v);
4365
}
4366
4367
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4368
{
4369
struct cftype *cft = seq_cft(m);
4370
struct cgroup_subsys_state *css = seq_css(m);
4371
4372
if (cft->seq_show)
4373
return cft->seq_show(m, arg);
4374
4375
if (cft->read_u64)
4376
seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4377
else if (cft->read_s64)
4378
seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4379
else
4380
return -EINVAL;
4381
return 0;
4382
}
4383
4384
static struct kernfs_ops cgroup_kf_single_ops = {
4385
.atomic_write_len = PAGE_SIZE,
4386
.open = cgroup_file_open,
4387
.release = cgroup_file_release,
4388
.write = cgroup_file_write,
4389
.poll = cgroup_file_poll,
4390
.seq_show = cgroup_seqfile_show,
4391
};
4392
4393
static struct kernfs_ops cgroup_kf_ops = {
4394
.atomic_write_len = PAGE_SIZE,
4395
.open = cgroup_file_open,
4396
.release = cgroup_file_release,
4397
.write = cgroup_file_write,
4398
.poll = cgroup_file_poll,
4399
.seq_start = cgroup_seqfile_start,
4400
.seq_next = cgroup_seqfile_next,
4401
.seq_stop = cgroup_seqfile_stop,
4402
.seq_show = cgroup_seqfile_show,
4403
};
4404
4405
static void cgroup_file_notify_timer(struct timer_list *timer)
4406
{
4407
cgroup_file_notify(container_of(timer, struct cgroup_file,
4408
notify_timer));
4409
}
4410
4411
static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4412
struct cftype *cft)
4413
{
4414
char name[CGROUP_FILE_NAME_MAX];
4415
struct kernfs_node *kn;
4416
struct lock_class_key *key = NULL;
4417
4418
#ifdef CONFIG_DEBUG_LOCK_ALLOC
4419
key = &cft->lockdep_key;
4420
#endif
4421
kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4422
cgroup_file_mode(cft),
4423
current_fsuid(), current_fsgid(),
4424
0, cft->kf_ops, cft,
4425
NULL, key);
4426
if (IS_ERR(kn))
4427
return PTR_ERR(kn);
4428
4429
if (cft->file_offset) {
4430
struct cgroup_file *cfile = (void *)css + cft->file_offset;
4431
4432
timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4433
4434
spin_lock_irq(&cgroup_file_kn_lock);
4435
cfile->kn = kn;
4436
spin_unlock_irq(&cgroup_file_kn_lock);
4437
}
4438
4439
return 0;
4440
}
4441
4442
/**
4443
* cgroup_addrm_files - add or remove files to a cgroup directory
4444
* @css: the target css
4445
* @cgrp: the target cgroup (usually css->cgroup)
4446
* @cfts: array of cftypes to be added
4447
* @is_add: whether to add or remove
4448
*
4449
* Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4450
* For removals, this function never fails.
4451
*/
4452
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4453
struct cgroup *cgrp, struct cftype cfts[],
4454
bool is_add)
4455
{
4456
struct cftype *cft, *cft_end = NULL;
4457
int ret = 0;
4458
4459
lockdep_assert_held(&cgroup_mutex);
4460
4461
restart:
4462
for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4463
/* does cft->flags tell us to skip this file on @cgrp? */
4464
if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4465
continue;
4466
if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4467
continue;
4468
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4469
continue;
4470
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4471
continue;
4472
if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4473
continue;
4474
if (is_add) {
4475
ret = cgroup_add_file(css, cgrp, cft);
4476
if (ret) {
4477
pr_warn("%s: failed to add %s, err=%d\n",
4478
__func__, cft->name, ret);
4479
cft_end = cft;
4480
is_add = false;
4481
goto restart;
4482
}
4483
} else {
4484
cgroup_rm_file(cgrp, cft);
4485
}
4486
}
4487
return ret;
4488
}
4489
4490
static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4491
{
4492
struct cgroup_subsys *ss = cfts[0].ss;
4493
struct cgroup *root = &ss->root->cgrp;
4494
struct cgroup_subsys_state *css;
4495
int ret = 0;
4496
4497
lockdep_assert_held(&cgroup_mutex);
4498
4499
/* add/rm files for all cgroups created before */
4500
css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4501
struct cgroup *cgrp = css->cgroup;
4502
4503
if (!(css->flags & CSS_VISIBLE))
4504
continue;
4505
4506
ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4507
if (ret)
4508
break;
4509
}
4510
4511
if (is_add && !ret)
4512
kernfs_activate(root->kn);
4513
return ret;
4514
}
4515
4516
static void cgroup_exit_cftypes(struct cftype *cfts)
4517
{
4518
struct cftype *cft;
4519
4520
for (cft = cfts; cft->name[0] != '\0'; cft++) {
4521
/* free copy for custom atomic_write_len, see init_cftypes() */
4522
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4523
kfree(cft->kf_ops);
4524
cft->kf_ops = NULL;
4525
cft->ss = NULL;
4526
4527
/* revert flags set by cgroup core while adding @cfts */
4528
cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4529
__CFTYPE_ADDED);
4530
}
4531
}
4532
4533
static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4534
{
4535
struct cftype *cft;
4536
int ret = 0;
4537
4538
for (cft = cfts; cft->name[0] != '\0'; cft++) {
4539
struct kernfs_ops *kf_ops;
4540
4541
WARN_ON(cft->ss || cft->kf_ops);
4542
4543
if (cft->flags & __CFTYPE_ADDED) {
4544
ret = -EBUSY;
4545
break;
4546
}
4547
4548
if (cft->seq_start)
4549
kf_ops = &cgroup_kf_ops;
4550
else
4551
kf_ops = &cgroup_kf_single_ops;
4552
4553
/*
4554
* Ugh... if @cft wants a custom max_write_len, we need to
4555
* make a copy of kf_ops to set its atomic_write_len.
4556
*/
4557
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4558
kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4559
if (!kf_ops) {
4560
ret = -ENOMEM;
4561
break;
4562
}
4563
kf_ops->atomic_write_len = cft->max_write_len;
4564
}
4565
4566
cft->kf_ops = kf_ops;
4567
cft->ss = ss;
4568
cft->flags |= __CFTYPE_ADDED;
4569
}
4570
4571
if (ret)
4572
cgroup_exit_cftypes(cfts);
4573
return ret;
4574
}
4575
4576
static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4577
{
4578
lockdep_assert_held(&cgroup_mutex);
4579
4580
list_del(&cfts->node);
4581
cgroup_apply_cftypes(cfts, false);
4582
cgroup_exit_cftypes(cfts);
4583
}
4584
4585
/**
4586
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4587
* @cfts: zero-length name terminated array of cftypes
4588
*
4589
* Unregister @cfts. Files described by @cfts are removed from all
4590
* existing cgroups and all future cgroups won't have them either. This
4591
* function can be called anytime whether @cfts' subsys is attached or not.
4592
*
4593
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
4594
* registered.
4595
*/
4596
int cgroup_rm_cftypes(struct cftype *cfts)
4597
{
4598
if (!cfts || cfts[0].name[0] == '\0')
4599
return 0;
4600
4601
if (!(cfts[0].flags & __CFTYPE_ADDED))
4602
return -ENOENT;
4603
4604
cgroup_lock();
4605
cgroup_rm_cftypes_locked(cfts);
4606
cgroup_unlock();
4607
return 0;
4608
}
4609
4610
/**
4611
* cgroup_add_cftypes - add an array of cftypes to a subsystem
4612
* @ss: target cgroup subsystem
4613
* @cfts: zero-length name terminated array of cftypes
4614
*
4615
* Register @cfts to @ss. Files described by @cfts are created for all
4616
* existing cgroups to which @ss is attached and all future cgroups will
4617
* have them too. This function can be called anytime whether @ss is
4618
* attached or not.
4619
*
4620
* Returns 0 on successful registration, -errno on failure. Note that this
4621
* function currently returns 0 as long as @cfts registration is successful
4622
* even if some file creation attempts on existing cgroups fail.
4623
*/
4624
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4625
{
4626
int ret;
4627
4628
if (!cgroup_ssid_enabled(ss->id))
4629
return 0;
4630
4631
if (!cfts || cfts[0].name[0] == '\0')
4632
return 0;
4633
4634
ret = cgroup_init_cftypes(ss, cfts);
4635
if (ret)
4636
return ret;
4637
4638
cgroup_lock();
4639
4640
list_add_tail(&cfts->node, &ss->cfts);
4641
ret = cgroup_apply_cftypes(cfts, true);
4642
if (ret)
4643
cgroup_rm_cftypes_locked(cfts);
4644
4645
cgroup_unlock();
4646
return ret;
4647
}
4648
4649
/**
4650
* cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4651
* @ss: target cgroup subsystem
4652
* @cfts: zero-length name terminated array of cftypes
4653
*
4654
* Similar to cgroup_add_cftypes() but the added files are only used for
4655
* the default hierarchy.
4656
*/
4657
int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4658
{
4659
struct cftype *cft;
4660
4661
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4662
cft->flags |= __CFTYPE_ONLY_ON_DFL;
4663
return cgroup_add_cftypes(ss, cfts);
4664
}
4665
4666
/**
4667
* cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4668
* @ss: target cgroup subsystem
4669
* @cfts: zero-length name terminated array of cftypes
4670
*
4671
* Similar to cgroup_add_cftypes() but the added files are only used for
4672
* the legacy hierarchies.
4673
*/
4674
int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4675
{
4676
struct cftype *cft;
4677
4678
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4679
cft->flags |= __CFTYPE_NOT_ON_DFL;
4680
return cgroup_add_cftypes(ss, cfts);
4681
}
4682
4683
/**
4684
* cgroup_file_notify - generate a file modified event for a cgroup_file
4685
* @cfile: target cgroup_file
4686
*
4687
* @cfile must have been obtained by setting cftype->file_offset.
4688
*/
4689
void cgroup_file_notify(struct cgroup_file *cfile)
4690
{
4691
unsigned long flags;
4692
4693
spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4694
if (cfile->kn) {
4695
unsigned long last = cfile->notified_at;
4696
unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4697
4698
if (time_in_range(jiffies, last, next)) {
4699
timer_reduce(&cfile->notify_timer, next);
4700
} else {
4701
kernfs_notify(cfile->kn);
4702
cfile->notified_at = jiffies;
4703
}
4704
}
4705
spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4706
}
4707
4708
/**
4709
* cgroup_file_show - show or hide a hidden cgroup file
4710
* @cfile: target cgroup_file obtained by setting cftype->file_offset
4711
* @show: whether to show or hide
4712
*/
4713
void cgroup_file_show(struct cgroup_file *cfile, bool show)
4714
{
4715
struct kernfs_node *kn;
4716
4717
spin_lock_irq(&cgroup_file_kn_lock);
4718
kn = cfile->kn;
4719
kernfs_get(kn);
4720
spin_unlock_irq(&cgroup_file_kn_lock);
4721
4722
if (kn)
4723
kernfs_show(kn, show);
4724
4725
kernfs_put(kn);
4726
}
4727
4728
/**
4729
* css_next_child - find the next child of a given css
4730
* @pos: the current position (%NULL to initiate traversal)
4731
* @parent: css whose children to walk
4732
*
4733
* This function returns the next child of @parent and should be called
4734
* under either cgroup_mutex or RCU read lock. The only requirement is
4735
* that @parent and @pos are accessible. The next sibling is guaranteed to
4736
* be returned regardless of their states.
4737
*
4738
* If a subsystem synchronizes ->css_online() and the start of iteration, a
4739
* css which finished ->css_online() is guaranteed to be visible in the
4740
* future iterations and will stay visible until the last reference is put.
4741
* A css which hasn't finished ->css_online() or already finished
4742
* ->css_offline() may show up during traversal. It's each subsystem's
4743
* responsibility to synchronize against on/offlining.
4744
*/
4745
struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4746
struct cgroup_subsys_state *parent)
4747
{
4748
struct cgroup_subsys_state *next;
4749
4750
cgroup_assert_mutex_or_rcu_locked();
4751
4752
/*
4753
* @pos could already have been unlinked from the sibling list.
4754
* Once a cgroup is removed, its ->sibling.next is no longer
4755
* updated when its next sibling changes. CSS_RELEASED is set when
4756
* @pos is taken off list, at which time its next pointer is valid,
4757
* and, as releases are serialized, the one pointed to by the next
4758
* pointer is guaranteed to not have started release yet. This
4759
* implies that if we observe !CSS_RELEASED on @pos in this RCU
4760
* critical section, the one pointed to by its next pointer is
4761
* guaranteed to not have finished its RCU grace period even if we
4762
* have dropped rcu_read_lock() in-between iterations.
4763
*
4764
* If @pos has CSS_RELEASED set, its next pointer can't be
4765
* dereferenced; however, as each css is given a monotonically
4766
* increasing unique serial number and always appended to the
4767
* sibling list, the next one can be found by walking the parent's
4768
* children until the first css with higher serial number than
4769
* @pos's. While this path can be slower, it happens iff iteration
4770
* races against release and the race window is very small.
4771
*/
4772
if (!pos) {
4773
next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4774
} else if (likely(!(pos->flags & CSS_RELEASED))) {
4775
next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4776
} else {
4777
list_for_each_entry_rcu(next, &parent->children, sibling,
4778
lockdep_is_held(&cgroup_mutex))
4779
if (next->serial_nr > pos->serial_nr)
4780
break;
4781
}
4782
4783
/*
4784
* @next, if not pointing to the head, can be dereferenced and is
4785
* the next sibling.
4786
*/
4787
if (&next->sibling != &parent->children)
4788
return next;
4789
return NULL;
4790
}
4791
4792
/**
4793
* css_next_descendant_pre - find the next descendant for pre-order walk
4794
* @pos: the current position (%NULL to initiate traversal)
4795
* @root: css whose descendants to walk
4796
*
4797
* To be used by css_for_each_descendant_pre(). Find the next descendant
4798
* to visit for pre-order traversal of @root's descendants. @root is
4799
* included in the iteration and the first node to be visited.
4800
*
4801
* While this function requires cgroup_mutex or RCU read locking, it
4802
* doesn't require the whole traversal to be contained in a single critical
4803
* section. Additionally, it isn't necessary to hold onto a reference to @pos.
4804
* This function will return the correct next descendant as long as both @pos
4805
* and @root are accessible and @pos is a descendant of @root.
4806
*
4807
* If a subsystem synchronizes ->css_online() and the start of iteration, a
4808
* css which finished ->css_online() is guaranteed to be visible in the
4809
* future iterations and will stay visible until the last reference is put.
4810
* A css which hasn't finished ->css_online() or already finished
4811
* ->css_offline() may show up during traversal. It's each subsystem's
4812
* responsibility to synchronize against on/offlining.
4813
*/
4814
struct cgroup_subsys_state *
4815
css_next_descendant_pre(struct cgroup_subsys_state *pos,
4816
struct cgroup_subsys_state *root)
4817
{
4818
struct cgroup_subsys_state *next;
4819
4820
cgroup_assert_mutex_or_rcu_locked();
4821
4822
/* if first iteration, visit @root */
4823
if (!pos)
4824
return root;
4825
4826
/* visit the first child if exists */
4827
next = css_next_child(NULL, pos);
4828
if (next)
4829
return next;
4830
4831
/* no child, visit my or the closest ancestor's next sibling */
4832
while (pos != root) {
4833
next = css_next_child(pos, pos->parent);
4834
if (next)
4835
return next;
4836
pos = pos->parent;
4837
}
4838
4839
return NULL;
4840
}
4841
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4842
4843
/**
4844
* css_rightmost_descendant - return the rightmost descendant of a css
4845
* @pos: css of interest
4846
*
4847
* Return the rightmost descendant of @pos. If there's no descendant, @pos
4848
* is returned. This can be used during pre-order traversal to skip
4849
* subtree of @pos.
4850
*
4851
* While this function requires cgroup_mutex or RCU read locking, it
4852
* doesn't require the whole traversal to be contained in a single critical
4853
* section. Additionally, it isn't necessary to hold onto a reference to @pos.
4854
* This function will return the correct rightmost descendant as long as @pos
4855
* is accessible.
4856
*/
4857
struct cgroup_subsys_state *
4858
css_rightmost_descendant(struct cgroup_subsys_state *pos)
4859
{
4860
struct cgroup_subsys_state *last, *tmp;
4861
4862
cgroup_assert_mutex_or_rcu_locked();
4863
4864
do {
4865
last = pos;
4866
/* ->prev isn't RCU safe, walk ->next till the end */
4867
pos = NULL;
4868
css_for_each_child(tmp, last)
4869
pos = tmp;
4870
} while (pos);
4871
4872
return last;
4873
}
4874
4875
static struct cgroup_subsys_state *
4876
css_leftmost_descendant(struct cgroup_subsys_state *pos)
4877
{
4878
struct cgroup_subsys_state *last;
4879
4880
do {
4881
last = pos;
4882
pos = css_next_child(NULL, pos);
4883
} while (pos);
4884
4885
return last;
4886
}
4887
4888
/**
4889
* css_next_descendant_post - find the next descendant for post-order walk
4890
* @pos: the current position (%NULL to initiate traversal)
4891
* @root: css whose descendants to walk
4892
*
4893
* To be used by css_for_each_descendant_post(). Find the next descendant
4894
* to visit for post-order traversal of @root's descendants. @root is
4895
* included in the iteration and the last node to be visited.
4896
*
4897
* While this function requires cgroup_mutex or RCU read locking, it
4898
* doesn't require the whole traversal to be contained in a single critical
4899
* section. Additionally, it isn't necessary to hold onto a reference to @pos.
4900
* This function will return the correct next descendant as long as both @pos
4901
* and @cgroup are accessible and @pos is a descendant of @cgroup.
4902
*
4903
* If a subsystem synchronizes ->css_online() and the start of iteration, a
4904
* css which finished ->css_online() is guaranteed to be visible in the
4905
* future iterations and will stay visible until the last reference is put.
4906
* A css which hasn't finished ->css_online() or already finished
4907
* ->css_offline() may show up during traversal. It's each subsystem's
4908
* responsibility to synchronize against on/offlining.
4909
*/
4910
struct cgroup_subsys_state *
4911
css_next_descendant_post(struct cgroup_subsys_state *pos,
4912
struct cgroup_subsys_state *root)
4913
{
4914
struct cgroup_subsys_state *next;
4915
4916
cgroup_assert_mutex_or_rcu_locked();
4917
4918
/* if first iteration, visit leftmost descendant which may be @root */
4919
if (!pos)
4920
return css_leftmost_descendant(root);
4921
4922
/* if we visited @root, we're done */
4923
if (pos == root)
4924
return NULL;
4925
4926
/* if there's an unvisited sibling, visit its leftmost descendant */
4927
next = css_next_child(pos, pos->parent);
4928
if (next)
4929
return css_leftmost_descendant(next);
4930
4931
/* no sibling left, visit parent */
4932
return pos->parent;
4933
}
4934
4935
/**
4936
* css_has_online_children - does a css have online children
4937
* @css: the target css
4938
*
4939
* Returns %true if @css has any online children; otherwise, %false. This
4940
* function can be called from any context but the caller is responsible
4941
* for synchronizing against on/offlining as necessary.
4942
*/
4943
bool css_has_online_children(struct cgroup_subsys_state *css)
4944
{
4945
struct cgroup_subsys_state *child;
4946
bool ret = false;
4947
4948
rcu_read_lock();
4949
css_for_each_child(child, css) {
4950
if (child->flags & CSS_ONLINE) {
4951
ret = true;
4952
break;
4953
}
4954
}
4955
rcu_read_unlock();
4956
return ret;
4957
}
4958
4959
static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4960
{
4961
struct list_head *l;
4962
struct cgrp_cset_link *link;
4963
struct css_set *cset;
4964
4965
lockdep_assert_held(&css_set_lock);
4966
4967
/* find the next threaded cset */
4968
if (it->tcset_pos) {
4969
l = it->tcset_pos->next;
4970
4971
if (l != it->tcset_head) {
4972
it->tcset_pos = l;
4973
return container_of(l, struct css_set,
4974
threaded_csets_node);
4975
}
4976
4977
it->tcset_pos = NULL;
4978
}
4979
4980
/* find the next cset */
4981
l = it->cset_pos;
4982
l = l->next;
4983
if (l == it->cset_head) {
4984
it->cset_pos = NULL;
4985
return NULL;
4986
}
4987
4988
if (it->ss) {
4989
cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4990
} else {
4991
link = list_entry(l, struct cgrp_cset_link, cset_link);
4992
cset = link->cset;
4993
}
4994
4995
it->cset_pos = l;
4996
4997
/* initialize threaded css_set walking */
4998
if (it->flags & CSS_TASK_ITER_THREADED) {
4999
if (it->cur_dcset)
5000
put_css_set_locked(it->cur_dcset);
5001
it->cur_dcset = cset;
5002
get_css_set(cset);
5003
5004
it->tcset_head = &cset->threaded_csets;
5005
it->tcset_pos = &cset->threaded_csets;
5006
}
5007
5008
return cset;
5009
}
5010
5011
/**
5012
* css_task_iter_advance_css_set - advance a task iterator to the next css_set
5013
* @it: the iterator to advance
5014
*
5015
* Advance @it to the next css_set to walk.
5016
*/
5017
static void css_task_iter_advance_css_set(struct css_task_iter *it)
5018
{
5019
struct css_set *cset;
5020
5021
lockdep_assert_held(&css_set_lock);
5022
5023
/* Advance to the next non-empty css_set and find first non-empty tasks list*/
5024
while ((cset = css_task_iter_next_css_set(it))) {
5025
if (!list_empty(&cset->tasks)) {
5026
it->cur_tasks_head = &cset->tasks;
5027
break;
5028
} else if (!list_empty(&cset->mg_tasks)) {
5029
it->cur_tasks_head = &cset->mg_tasks;
5030
break;
5031
} else if (!list_empty(&cset->dying_tasks)) {
5032
it->cur_tasks_head = &cset->dying_tasks;
5033
break;
5034
}
5035
}
5036
if (!cset) {
5037
it->task_pos = NULL;
5038
return;
5039
}
5040
it->task_pos = it->cur_tasks_head->next;
5041
5042
/*
5043
* We don't keep css_sets locked across iteration steps and thus
5044
* need to take steps to ensure that iteration can be resumed after
5045
* the lock is re-acquired. Iteration is performed at two levels -
5046
* css_sets and tasks in them.
5047
*
5048
* Once created, a css_set never leaves its cgroup lists, so a
5049
* pinned css_set is guaranteed to stay put and we can resume
5050
* iteration afterwards.
5051
*
5052
* Tasks may leave @cset across iteration steps. This is resolved
5053
* by registering each iterator with the css_set currently being
5054
* walked and making css_set_move_task() advance iterators whose
5055
* next task is leaving.
5056
*/
5057
if (it->cur_cset) {
5058
list_del(&it->iters_node);
5059
put_css_set_locked(it->cur_cset);
5060
}
5061
get_css_set(cset);
5062
it->cur_cset = cset;
5063
list_add(&it->iters_node, &cset->task_iters);
5064
}
5065
5066
static void css_task_iter_skip(struct css_task_iter *it,
5067
struct task_struct *task)
5068
{
5069
lockdep_assert_held(&css_set_lock);
5070
5071
if (it->task_pos == &task->cg_list) {
5072
it->task_pos = it->task_pos->next;
5073
it->flags |= CSS_TASK_ITER_SKIPPED;
5074
}
5075
}
5076
5077
static void css_task_iter_advance(struct css_task_iter *it)
5078
{
5079
struct task_struct *task;
5080
5081
lockdep_assert_held(&css_set_lock);
5082
repeat:
5083
if (it->task_pos) {
5084
/*
5085
* Advance iterator to find next entry. We go through cset
5086
* tasks, mg_tasks and dying_tasks, when consumed we move onto
5087
* the next cset.
5088
*/
5089
if (it->flags & CSS_TASK_ITER_SKIPPED)
5090
it->flags &= ~CSS_TASK_ITER_SKIPPED;
5091
else
5092
it->task_pos = it->task_pos->next;
5093
5094
if (it->task_pos == &it->cur_cset->tasks) {
5095
it->cur_tasks_head = &it->cur_cset->mg_tasks;
5096
it->task_pos = it->cur_tasks_head->next;
5097
}
5098
if (it->task_pos == &it->cur_cset->mg_tasks) {
5099
it->cur_tasks_head = &it->cur_cset->dying_tasks;
5100
it->task_pos = it->cur_tasks_head->next;
5101
}
5102
if (it->task_pos == &it->cur_cset->dying_tasks)
5103
css_task_iter_advance_css_set(it);
5104
} else {
5105
/* called from start, proceed to the first cset */
5106
css_task_iter_advance_css_set(it);
5107
}
5108
5109
if (!it->task_pos)
5110
return;
5111
5112
task = list_entry(it->task_pos, struct task_struct, cg_list);
5113
5114
if (it->flags & CSS_TASK_ITER_PROCS) {
5115
/* if PROCS, skip over tasks which aren't group leaders */
5116
if (!thread_group_leader(task))
5117
goto repeat;
5118
5119
/* and dying leaders w/o live member threads */
5120
if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
5121
!atomic_read(&task->signal->live))
5122
goto repeat;
5123
} else {
5124
/* skip all dying ones */
5125
if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5126
goto repeat;
5127
}
5128
}
5129
5130
/**
5131
* css_task_iter_start - initiate task iteration
5132
* @css: the css to walk tasks of
5133
* @flags: CSS_TASK_ITER_* flags
5134
* @it: the task iterator to use
5135
*
5136
* Initiate iteration through the tasks of @css. The caller can call
5137
* css_task_iter_next() to walk through the tasks until the function
5138
* returns NULL. On completion of iteration, css_task_iter_end() must be
5139
* called.
5140
*/
5141
void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5142
struct css_task_iter *it)
5143
{
5144
unsigned long irqflags;
5145
5146
memset(it, 0, sizeof(*it));
5147
5148
spin_lock_irqsave(&css_set_lock, irqflags);
5149
5150
it->ss = css->ss;
5151
it->flags = flags;
5152
5153
if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5154
it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5155
else
5156
it->cset_pos = &css->cgroup->cset_links;
5157
5158
it->cset_head = it->cset_pos;
5159
5160
css_task_iter_advance(it);
5161
5162
spin_unlock_irqrestore(&css_set_lock, irqflags);
5163
}
5164
5165
/**
5166
* css_task_iter_next - return the next task for the iterator
5167
* @it: the task iterator being iterated
5168
*
5169
* The "next" function for task iteration. @it should have been
5170
* initialized via css_task_iter_start(). Returns NULL when the iteration
5171
* reaches the end.
5172
*/
5173
struct task_struct *css_task_iter_next(struct css_task_iter *it)
5174
{
5175
unsigned long irqflags;
5176
5177
if (it->cur_task) {
5178
put_task_struct(it->cur_task);
5179
it->cur_task = NULL;
5180
}
5181
5182
spin_lock_irqsave(&css_set_lock, irqflags);
5183
5184
/* @it may be half-advanced by skips, finish advancing */
5185
if (it->flags & CSS_TASK_ITER_SKIPPED)
5186
css_task_iter_advance(it);
5187
5188
if (it->task_pos) {
5189
it->cur_task = list_entry(it->task_pos, struct task_struct,
5190
cg_list);
5191
get_task_struct(it->cur_task);
5192
css_task_iter_advance(it);
5193
}
5194
5195
spin_unlock_irqrestore(&css_set_lock, irqflags);
5196
5197
return it->cur_task;
5198
}
5199
5200
/**
5201
* css_task_iter_end - finish task iteration
5202
* @it: the task iterator to finish
5203
*
5204
* Finish task iteration started by css_task_iter_start().
5205
*/
5206
void css_task_iter_end(struct css_task_iter *it)
5207
{
5208
unsigned long irqflags;
5209
5210
if (it->cur_cset) {
5211
spin_lock_irqsave(&css_set_lock, irqflags);
5212
list_del(&it->iters_node);
5213
put_css_set_locked(it->cur_cset);
5214
spin_unlock_irqrestore(&css_set_lock, irqflags);
5215
}
5216
5217
if (it->cur_dcset)
5218
put_css_set(it->cur_dcset);
5219
5220
if (it->cur_task)
5221
put_task_struct(it->cur_task);
5222
}
5223
5224
static void cgroup_procs_release(struct kernfs_open_file *of)
5225
{
5226
struct cgroup_file_ctx *ctx = of->priv;
5227
5228
if (ctx->procs.started)
5229
css_task_iter_end(&ctx->procs.iter);
5230
}
5231
5232
static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5233
{
5234
struct kernfs_open_file *of = s->private;
5235
struct cgroup_file_ctx *ctx = of->priv;
5236
5237
if (pos)
5238
(*pos)++;
5239
5240
return css_task_iter_next(&ctx->procs.iter);
5241
}
5242
5243
static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5244
unsigned int iter_flags)
5245
{
5246
struct kernfs_open_file *of = s->private;
5247
struct cgroup *cgrp = seq_css(s)->cgroup;
5248
struct cgroup_file_ctx *ctx = of->priv;
5249
struct css_task_iter *it = &ctx->procs.iter;
5250
5251
/*
5252
* When a seq_file is seeked, it's always traversed sequentially
5253
* from position 0, so we can simply keep iterating on !0 *pos.
5254
*/
5255
if (!ctx->procs.started) {
5256
if (WARN_ON_ONCE((*pos)))
5257
return ERR_PTR(-EINVAL);
5258
css_task_iter_start(&cgrp->self, iter_flags, it);
5259
ctx->procs.started = true;
5260
} else if (!(*pos)) {
5261
css_task_iter_end(it);
5262
css_task_iter_start(&cgrp->self, iter_flags, it);
5263
} else
5264
return it->cur_task;
5265
5266
return cgroup_procs_next(s, NULL, NULL);
5267
}
5268
5269
static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5270
{
5271
struct cgroup *cgrp = seq_css(s)->cgroup;
5272
5273
/*
5274
* All processes of a threaded subtree belong to the domain cgroup
5275
* of the subtree. Only threads can be distributed across the
5276
* subtree. Reject reads on cgroup.procs in the subtree proper.
5277
* They're always empty anyway.
5278
*/
5279
if (cgroup_is_threaded(cgrp))
5280
return ERR_PTR(-EOPNOTSUPP);
5281
5282
return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5283
CSS_TASK_ITER_THREADED);
5284
}
5285
5286
static int cgroup_procs_show(struct seq_file *s, void *v)
5287
{
5288
seq_printf(s, "%d\n", task_pid_vnr(v));
5289
return 0;
5290
}
5291
5292
static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5293
{
5294
int ret;
5295
struct inode *inode;
5296
5297
lockdep_assert_held(&cgroup_mutex);
5298
5299
inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5300
if (!inode)
5301
return -ENOMEM;
5302
5303
ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5304
iput(inode);
5305
return ret;
5306
}
5307
5308
static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5309
struct cgroup *dst_cgrp,
5310
struct super_block *sb,
5311
struct cgroup_namespace *ns)
5312
{
5313
struct cgroup *com_cgrp = src_cgrp;
5314
int ret;
5315
5316
lockdep_assert_held(&cgroup_mutex);
5317
5318
/* find the common ancestor */
5319
while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5320
com_cgrp = cgroup_parent(com_cgrp);
5321
5322
/* %current should be authorized to migrate to the common ancestor */
5323
ret = cgroup_may_write(com_cgrp, sb);
5324
if (ret)
5325
return ret;
5326
5327
/*
5328
* If namespaces are delegation boundaries, %current must be able
5329
* to see both source and destination cgroups from its namespace.
5330
*/
5331
if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5332
(!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5333
!cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5334
return -ENOENT;
5335
5336
return 0;
5337
}
5338
5339
static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5340
struct cgroup *dst_cgrp,
5341
struct super_block *sb, bool threadgroup,
5342
struct cgroup_namespace *ns)
5343
{
5344
int ret = 0;
5345
5346
ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5347
if (ret)
5348
return ret;
5349
5350
ret = cgroup_migrate_vet_dst(dst_cgrp);
5351
if (ret)
5352
return ret;
5353
5354
if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5355
ret = -EOPNOTSUPP;
5356
5357
return ret;
5358
}
5359
5360
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5361
bool threadgroup)
5362
{
5363
struct cgroup_file_ctx *ctx = of->priv;
5364
struct cgroup *src_cgrp, *dst_cgrp;
5365
struct task_struct *task;
5366
const struct cred *saved_cred;
5367
ssize_t ret;
5368
enum cgroup_attach_lock_mode lock_mode;
5369
5370
dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5371
if (!dst_cgrp)
5372
return -ENODEV;
5373
5374
task = cgroup_procs_write_start(buf, threadgroup, &lock_mode);
5375
ret = PTR_ERR_OR_ZERO(task);
5376
if (ret)
5377
goto out_unlock;
5378
5379
/* find the source cgroup */
5380
spin_lock_irq(&css_set_lock);
5381
src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5382
spin_unlock_irq(&css_set_lock);
5383
5384
/*
5385
* Process and thread migrations follow same delegation rule. Check
5386
* permissions using the credentials from file open to protect against
5387
* inherited fd attacks.
5388
*/
5389
saved_cred = override_creds(of->file->f_cred);
5390
ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5391
of->file->f_path.dentry->d_sb,
5392
threadgroup, ctx->ns);
5393
revert_creds(saved_cred);
5394
if (ret)
5395
goto out_finish;
5396
5397
ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5398
5399
out_finish:
5400
cgroup_procs_write_finish(task, lock_mode);
5401
out_unlock:
5402
cgroup_kn_unlock(of->kn);
5403
5404
return ret;
5405
}
5406
5407
static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5408
char *buf, size_t nbytes, loff_t off)
5409
{
5410
return __cgroup_procs_write(of, buf, true) ?: nbytes;
5411
}
5412
5413
static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5414
{
5415
return __cgroup_procs_start(s, pos, 0);
5416
}
5417
5418
static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5419
char *buf, size_t nbytes, loff_t off)
5420
{
5421
return __cgroup_procs_write(of, buf, false) ?: nbytes;
5422
}
5423
5424
/* cgroup core interface files for the default hierarchy */
5425
static struct cftype cgroup_base_files[] = {
5426
{
5427
.name = "cgroup.type",
5428
.flags = CFTYPE_NOT_ON_ROOT,
5429
.seq_show = cgroup_type_show,
5430
.write = cgroup_type_write,
5431
},
5432
{
5433
.name = "cgroup.procs",
5434
.flags = CFTYPE_NS_DELEGATABLE,
5435
.file_offset = offsetof(struct cgroup, procs_file),
5436
.release = cgroup_procs_release,
5437
.seq_start = cgroup_procs_start,
5438
.seq_next = cgroup_procs_next,
5439
.seq_show = cgroup_procs_show,
5440
.write = cgroup_procs_write,
5441
},
5442
{
5443
.name = "cgroup.threads",
5444
.flags = CFTYPE_NS_DELEGATABLE,
5445
.release = cgroup_procs_release,
5446
.seq_start = cgroup_threads_start,
5447
.seq_next = cgroup_procs_next,
5448
.seq_show = cgroup_procs_show,
5449
.write = cgroup_threads_write,
5450
},
5451
{
5452
.name = "cgroup.controllers",
5453
.seq_show = cgroup_controllers_show,
5454
},
5455
{
5456
.name = "cgroup.subtree_control",
5457
.flags = CFTYPE_NS_DELEGATABLE,
5458
.seq_show = cgroup_subtree_control_show,
5459
.write = cgroup_subtree_control_write,
5460
},
5461
{
5462
.name = "cgroup.events",
5463
.flags = CFTYPE_NOT_ON_ROOT,
5464
.file_offset = offsetof(struct cgroup, events_file),
5465
.seq_show = cgroup_events_show,
5466
},
5467
{
5468
.name = "cgroup.max.descendants",
5469
.seq_show = cgroup_max_descendants_show,
5470
.write = cgroup_max_descendants_write,
5471
},
5472
{
5473
.name = "cgroup.max.depth",
5474
.seq_show = cgroup_max_depth_show,
5475
.write = cgroup_max_depth_write,
5476
},
5477
{
5478
.name = "cgroup.stat",
5479
.seq_show = cgroup_stat_show,
5480
},
5481
{
5482
.name = "cgroup.stat.local",
5483
.flags = CFTYPE_NOT_ON_ROOT,
5484
.seq_show = cgroup_core_local_stat_show,
5485
},
5486
{
5487
.name = "cgroup.freeze",
5488
.flags = CFTYPE_NOT_ON_ROOT,
5489
.seq_show = cgroup_freeze_show,
5490
.write = cgroup_freeze_write,
5491
},
5492
{
5493
.name = "cgroup.kill",
5494
.flags = CFTYPE_NOT_ON_ROOT,
5495
.write = cgroup_kill_write,
5496
},
5497
{
5498
.name = "cpu.stat",
5499
.seq_show = cpu_stat_show,
5500
},
5501
{
5502
.name = "cpu.stat.local",
5503
.seq_show = cpu_local_stat_show,
5504
},
5505
{ } /* terminate */
5506
};
5507
5508
static struct cftype cgroup_psi_files[] = {
5509
#ifdef CONFIG_PSI
5510
{
5511
.name = "io.pressure",
5512
.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5513
.seq_show = cgroup_io_pressure_show,
5514
.write = cgroup_io_pressure_write,
5515
.poll = cgroup_pressure_poll,
5516
.release = cgroup_pressure_release,
5517
},
5518
{
5519
.name = "memory.pressure",
5520
.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5521
.seq_show = cgroup_memory_pressure_show,
5522
.write = cgroup_memory_pressure_write,
5523
.poll = cgroup_pressure_poll,
5524
.release = cgroup_pressure_release,
5525
},
5526
{
5527
.name = "cpu.pressure",
5528
.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5529
.seq_show = cgroup_cpu_pressure_show,
5530
.write = cgroup_cpu_pressure_write,
5531
.poll = cgroup_pressure_poll,
5532
.release = cgroup_pressure_release,
5533
},
5534
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
5535
{
5536
.name = "irq.pressure",
5537
.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5538
.seq_show = cgroup_irq_pressure_show,
5539
.write = cgroup_irq_pressure_write,
5540
.poll = cgroup_pressure_poll,
5541
.release = cgroup_pressure_release,
5542
},
5543
#endif
5544
{
5545
.name = "cgroup.pressure",
5546
.seq_show = cgroup_pressure_show,
5547
.write = cgroup_pressure_write,
5548
},
5549
#endif /* CONFIG_PSI */
5550
{ } /* terminate */
5551
};
5552
5553
/*
5554
* css destruction is four-stage process.
5555
*
5556
* 1. Destruction starts. Killing of the percpu_ref is initiated.
5557
* Implemented in kill_css().
5558
*
5559
* 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5560
* and thus css_tryget_online() is guaranteed to fail, the css can be
5561
* offlined by invoking offline_css(). After offlining, the base ref is
5562
* put. Implemented in css_killed_work_fn().
5563
*
5564
* 3. When the percpu_ref reaches zero, the only possible remaining
5565
* accessors are inside RCU read sections. css_release() schedules the
5566
* RCU callback.
5567
*
5568
* 4. After the grace period, the css can be freed. Implemented in
5569
* css_free_rwork_fn().
5570
*
5571
* It is actually hairier because both step 2 and 4 require process context
5572
* and thus involve punting to css->destroy_work adding two additional
5573
* steps to the already complex sequence.
5574
*/
5575
static void css_free_rwork_fn(struct work_struct *work)
5576
{
5577
struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5578
struct cgroup_subsys_state, destroy_rwork);
5579
struct cgroup_subsys *ss = css->ss;
5580
struct cgroup *cgrp = css->cgroup;
5581
5582
percpu_ref_exit(&css->refcnt);
5583
css_rstat_exit(css);
5584
5585
if (!css_is_self(css)) {
5586
/* css free path */
5587
struct cgroup_subsys_state *parent = css->parent;
5588
int id = css->id;
5589
5590
ss->css_free(css);
5591
cgroup_idr_remove(&ss->css_idr, id);
5592
cgroup_put(cgrp);
5593
5594
if (parent)
5595
css_put(parent);
5596
} else {
5597
/* cgroup free path */
5598
atomic_dec(&cgrp->root->nr_cgrps);
5599
if (!cgroup_on_dfl(cgrp))
5600
cgroup1_pidlist_destroy_all(cgrp);
5601
cancel_work_sync(&cgrp->release_agent_work);
5602
bpf_cgrp_storage_free(cgrp);
5603
5604
if (cgroup_parent(cgrp)) {
5605
/*
5606
* We get a ref to the parent, and put the ref when
5607
* this cgroup is being freed, so it's guaranteed
5608
* that the parent won't be destroyed before its
5609
* children.
5610
*/
5611
cgroup_put(cgroup_parent(cgrp));
5612
kernfs_put(cgrp->kn);
5613
psi_cgroup_free(cgrp);
5614
kfree(cgrp);
5615
} else {
5616
/*
5617
* This is root cgroup's refcnt reaching zero,
5618
* which indicates that the root should be
5619
* released.
5620
*/
5621
cgroup_destroy_root(cgrp->root);
5622
}
5623
}
5624
}
5625
5626
static void css_release_work_fn(struct work_struct *work)
5627
{
5628
struct cgroup_subsys_state *css =
5629
container_of(work, struct cgroup_subsys_state, destroy_work);
5630
struct cgroup_subsys *ss = css->ss;
5631
struct cgroup *cgrp = css->cgroup;
5632
5633
cgroup_lock();
5634
5635
css->flags |= CSS_RELEASED;
5636
list_del_rcu(&css->sibling);
5637
5638
if (!css_is_self(css)) {
5639
struct cgroup *parent_cgrp;
5640
5641
css_rstat_flush(css);
5642
5643
cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5644
if (ss->css_released)
5645
ss->css_released(css);
5646
5647
cgrp->nr_dying_subsys[ss->id]--;
5648
/*
5649
* When a css is released and ready to be freed, its
5650
* nr_descendants must be zero. However, the corresponding
5651
* cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5652
* is activated and deactivated multiple times with one or
5653
* more of its previous activation leaving behind dying csses.
5654
*/
5655
WARN_ON_ONCE(css->nr_descendants);
5656
parent_cgrp = cgroup_parent(cgrp);
5657
while (parent_cgrp) {
5658
parent_cgrp->nr_dying_subsys[ss->id]--;
5659
parent_cgrp = cgroup_parent(parent_cgrp);
5660
}
5661
} else {
5662
struct cgroup *tcgrp;
5663
5664
/* cgroup release path */
5665
TRACE_CGROUP_PATH(release, cgrp);
5666
5667
css_rstat_flush(&cgrp->self);
5668
5669
spin_lock_irq(&css_set_lock);
5670
for (tcgrp = cgroup_parent(cgrp); tcgrp;
5671
tcgrp = cgroup_parent(tcgrp))
5672
tcgrp->nr_dying_descendants--;
5673
spin_unlock_irq(&css_set_lock);
5674
5675
/*
5676
* There are two control paths which try to determine
5677
* cgroup from dentry without going through kernfs -
5678
* cgroupstats_build() and css_tryget_online_from_dir().
5679
* Those are supported by RCU protecting clearing of
5680
* cgrp->kn->priv backpointer.
5681
*/
5682
if (cgrp->kn)
5683
RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5684
NULL);
5685
}
5686
5687
cgroup_unlock();
5688
5689
INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5690
queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5691
}
5692
5693
static void css_release(struct percpu_ref *ref)
5694
{
5695
struct cgroup_subsys_state *css =
5696
container_of(ref, struct cgroup_subsys_state, refcnt);
5697
5698
INIT_WORK(&css->destroy_work, css_release_work_fn);
5699
queue_work(cgroup_release_wq, &css->destroy_work);
5700
}
5701
5702
static void init_and_link_css(struct cgroup_subsys_state *css,
5703
struct cgroup_subsys *ss, struct cgroup *cgrp)
5704
{
5705
lockdep_assert_held(&cgroup_mutex);
5706
5707
cgroup_get_live(cgrp);
5708
5709
memset(css, 0, sizeof(*css));
5710
css->cgroup = cgrp;
5711
css->ss = ss;
5712
css->id = -1;
5713
INIT_LIST_HEAD(&css->sibling);
5714
INIT_LIST_HEAD(&css->children);
5715
css->serial_nr = css_serial_nr_next++;
5716
atomic_set(&css->online_cnt, 0);
5717
5718
if (cgroup_parent(cgrp)) {
5719
css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5720
css_get(css->parent);
5721
}
5722
5723
BUG_ON(cgroup_css(cgrp, ss));
5724
}
5725
5726
/* invoke ->css_online() on a new CSS and mark it online if successful */
5727
static int online_css(struct cgroup_subsys_state *css)
5728
{
5729
struct cgroup_subsys *ss = css->ss;
5730
int ret = 0;
5731
5732
lockdep_assert_held(&cgroup_mutex);
5733
5734
if (ss->css_online)
5735
ret = ss->css_online(css);
5736
if (!ret) {
5737
css->flags |= CSS_ONLINE;
5738
rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5739
5740
atomic_inc(&css->online_cnt);
5741
if (css->parent) {
5742
atomic_inc(&css->parent->online_cnt);
5743
while ((css = css->parent))
5744
css->nr_descendants++;
5745
}
5746
}
5747
return ret;
5748
}
5749
5750
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5751
static void offline_css(struct cgroup_subsys_state *css)
5752
{
5753
struct cgroup_subsys *ss = css->ss;
5754
5755
lockdep_assert_held(&cgroup_mutex);
5756
5757
if (!(css->flags & CSS_ONLINE))
5758
return;
5759
5760
if (ss->css_offline)
5761
ss->css_offline(css);
5762
5763
css->flags &= ~CSS_ONLINE;
5764
RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5765
5766
wake_up_all(&css->cgroup->offline_waitq);
5767
5768
css->cgroup->nr_dying_subsys[ss->id]++;
5769
/*
5770
* Parent css and cgroup cannot be freed until after the freeing
5771
* of child css, see css_free_rwork_fn().
5772
*/
5773
while ((css = css->parent)) {
5774
css->nr_descendants--;
5775
css->cgroup->nr_dying_subsys[ss->id]++;
5776
}
5777
}
5778
5779
/**
5780
* css_create - create a cgroup_subsys_state
5781
* @cgrp: the cgroup new css will be associated with
5782
* @ss: the subsys of new css
5783
*
5784
* Create a new css associated with @cgrp - @ss pair. On success, the new
5785
* css is online and installed in @cgrp. This function doesn't create the
5786
* interface files. Returns 0 on success, -errno on failure.
5787
*/
5788
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5789
struct cgroup_subsys *ss)
5790
{
5791
struct cgroup *parent = cgroup_parent(cgrp);
5792
struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5793
struct cgroup_subsys_state *css;
5794
int err;
5795
5796
lockdep_assert_held(&cgroup_mutex);
5797
5798
css = ss->css_alloc(parent_css);
5799
if (!css)
5800
css = ERR_PTR(-ENOMEM);
5801
if (IS_ERR(css))
5802
return css;
5803
5804
init_and_link_css(css, ss, cgrp);
5805
5806
err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5807
if (err)
5808
goto err_free_css;
5809
5810
err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5811
if (err < 0)
5812
goto err_free_css;
5813
css->id = err;
5814
5815
err = css_rstat_init(css);
5816
if (err)
5817
goto err_free_css;
5818
5819
/* @css is ready to be brought online now, make it visible */
5820
list_add_tail_rcu(&css->sibling, &parent_css->children);
5821
cgroup_idr_replace(&ss->css_idr, css, css->id);
5822
5823
err = online_css(css);
5824
if (err)
5825
goto err_list_del;
5826
5827
return css;
5828
5829
err_list_del:
5830
list_del_rcu(&css->sibling);
5831
err_free_css:
5832
INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5833
queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5834
return ERR_PTR(err);
5835
}
5836
5837
/*
5838
* The returned cgroup is fully initialized including its control mask, but
5839
* it doesn't have the control mask applied.
5840
*/
5841
static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5842
umode_t mode)
5843
{
5844
struct cgroup_root *root = parent->root;
5845
struct cgroup *cgrp, *tcgrp;
5846
struct kernfs_node *kn;
5847
int i, level = parent->level + 1;
5848
int ret;
5849
5850
/* allocate the cgroup and its ID, 0 is reserved for the root */
5851
cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5852
if (!cgrp)
5853
return ERR_PTR(-ENOMEM);
5854
5855
ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5856
if (ret)
5857
goto out_free_cgrp;
5858
5859
/* create the directory */
5860
kn = kernfs_create_dir_ns(parent->kn, name, mode,
5861
current_fsuid(), current_fsgid(),
5862
cgrp, NULL);
5863
if (IS_ERR(kn)) {
5864
ret = PTR_ERR(kn);
5865
goto out_cancel_ref;
5866
}
5867
cgrp->kn = kn;
5868
5869
init_cgroup_housekeeping(cgrp);
5870
5871
cgrp->self.parent = &parent->self;
5872
cgrp->root = root;
5873
cgrp->level = level;
5874
5875
/*
5876
* Now that init_cgroup_housekeeping() has been called and cgrp->self
5877
* is setup, it is safe to perform rstat initialization on it.
5878
*/
5879
ret = css_rstat_init(&cgrp->self);
5880
if (ret)
5881
goto out_kernfs_remove;
5882
5883
ret = psi_cgroup_alloc(cgrp);
5884
if (ret)
5885
goto out_stat_exit;
5886
5887
for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5888
cgrp->ancestors[tcgrp->level] = tcgrp;
5889
5890
/*
5891
* New cgroup inherits effective freeze counter, and
5892
* if the parent has to be frozen, the child has too.
5893
*/
5894
cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5895
seqcount_init(&cgrp->freezer.freeze_seq);
5896
if (cgrp->freezer.e_freeze) {
5897
/*
5898
* Set the CGRP_FREEZE flag, so when a process will be
5899
* attached to the child cgroup, it will become frozen.
5900
* At this point the new cgroup is unpopulated, so we can
5901
* consider it frozen immediately.
5902
*/
5903
set_bit(CGRP_FREEZE, &cgrp->flags);
5904
cgrp->freezer.freeze_start_nsec = ktime_get_ns();
5905
set_bit(CGRP_FROZEN, &cgrp->flags);
5906
}
5907
5908
if (notify_on_release(parent))
5909
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5910
5911
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5912
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5913
5914
cgrp->self.serial_nr = css_serial_nr_next++;
5915
5916
ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
5917
CGROUP_LIFETIME_ONLINE,
5918
CGROUP_LIFETIME_OFFLINE, cgrp);
5919
ret = notifier_to_errno(ret);
5920
if (ret)
5921
goto out_psi_free;
5922
5923
/* allocation complete, commit to creation */
5924
spin_lock_irq(&css_set_lock);
5925
for (i = 0; i < level; i++) {
5926
tcgrp = cgrp->ancestors[i];
5927
tcgrp->nr_descendants++;
5928
5929
/*
5930
* If the new cgroup is frozen, all ancestor cgroups get a new
5931
* frozen descendant, but their state can't change because of
5932
* this.
5933
*/
5934
if (cgrp->freezer.e_freeze)
5935
tcgrp->freezer.nr_frozen_descendants++;
5936
}
5937
spin_unlock_irq(&css_set_lock);
5938
5939
list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5940
atomic_inc(&root->nr_cgrps);
5941
cgroup_get_live(parent);
5942
5943
/*
5944
* On the default hierarchy, a child doesn't automatically inherit
5945
* subtree_control from the parent. Each is configured manually.
5946
*/
5947
if (!cgroup_on_dfl(cgrp))
5948
cgrp->subtree_control = cgroup_control(cgrp);
5949
5950
cgroup_propagate_control(cgrp);
5951
5952
return cgrp;
5953
5954
out_psi_free:
5955
psi_cgroup_free(cgrp);
5956
out_stat_exit:
5957
css_rstat_exit(&cgrp->self);
5958
out_kernfs_remove:
5959
kernfs_remove(cgrp->kn);
5960
out_cancel_ref:
5961
percpu_ref_exit(&cgrp->self.refcnt);
5962
out_free_cgrp:
5963
kfree(cgrp);
5964
return ERR_PTR(ret);
5965
}
5966
5967
static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5968
{
5969
struct cgroup *cgroup;
5970
int ret = false;
5971
int level = 0;
5972
5973
lockdep_assert_held(&cgroup_mutex);
5974
5975
for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5976
if (cgroup->nr_descendants >= cgroup->max_descendants)
5977
goto fail;
5978
5979
if (level >= cgroup->max_depth)
5980
goto fail;
5981
5982
level++;
5983
}
5984
5985
ret = true;
5986
fail:
5987
return ret;
5988
}
5989
5990
int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5991
{
5992
struct cgroup *parent, *cgrp;
5993
int ret;
5994
5995
/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5996
if (strchr(name, '\n'))
5997
return -EINVAL;
5998
5999
parent = cgroup_kn_lock_live(parent_kn, false);
6000
if (!parent)
6001
return -ENODEV;
6002
6003
if (!cgroup_check_hierarchy_limits(parent)) {
6004
ret = -EAGAIN;
6005
goto out_unlock;
6006
}
6007
6008
cgrp = cgroup_create(parent, name, mode);
6009
if (IS_ERR(cgrp)) {
6010
ret = PTR_ERR(cgrp);
6011
goto out_unlock;
6012
}
6013
6014
/*
6015
* This extra ref will be put in css_free_rwork_fn() and guarantees
6016
* that @cgrp->kn is always accessible.
6017
*/
6018
kernfs_get(cgrp->kn);
6019
6020
ret = css_populate_dir(&cgrp->self);
6021
if (ret)
6022
goto out_destroy;
6023
6024
ret = cgroup_apply_control_enable(cgrp);
6025
if (ret)
6026
goto out_destroy;
6027
6028
TRACE_CGROUP_PATH(mkdir, cgrp);
6029
6030
/* let's create and online css's */
6031
kernfs_activate(cgrp->kn);
6032
6033
ret = 0;
6034
goto out_unlock;
6035
6036
out_destroy:
6037
cgroup_destroy_locked(cgrp);
6038
out_unlock:
6039
cgroup_kn_unlock(parent_kn);
6040
return ret;
6041
}
6042
6043
/*
6044
* This is called when the refcnt of a css is confirmed to be killed.
6045
* css_tryget_online() is now guaranteed to fail. Tell the subsystem to
6046
* initiate destruction and put the css ref from kill_css().
6047
*/
6048
static void css_killed_work_fn(struct work_struct *work)
6049
{
6050
struct cgroup_subsys_state *css =
6051
container_of(work, struct cgroup_subsys_state, destroy_work);
6052
6053
cgroup_lock();
6054
6055
do {
6056
offline_css(css);
6057
css_put(css);
6058
/* @css can't go away while we're holding cgroup_mutex */
6059
css = css->parent;
6060
} while (css && atomic_dec_and_test(&css->online_cnt));
6061
6062
cgroup_unlock();
6063
}
6064
6065
/* css kill confirmation processing requires process context, bounce */
6066
static void css_killed_ref_fn(struct percpu_ref *ref)
6067
{
6068
struct cgroup_subsys_state *css =
6069
container_of(ref, struct cgroup_subsys_state, refcnt);
6070
6071
if (atomic_dec_and_test(&css->online_cnt)) {
6072
INIT_WORK(&css->destroy_work, css_killed_work_fn);
6073
queue_work(cgroup_offline_wq, &css->destroy_work);
6074
}
6075
}
6076
6077
/**
6078
* kill_css - destroy a css
6079
* @css: css to destroy
6080
*
6081
* This function initiates destruction of @css by removing cgroup interface
6082
* files and putting its base reference. ->css_offline() will be invoked
6083
* asynchronously once css_tryget_online() is guaranteed to fail and when
6084
* the reference count reaches zero, @css will be released.
6085
*/
6086
static void kill_css(struct cgroup_subsys_state *css)
6087
{
6088
lockdep_assert_held(&cgroup_mutex);
6089
6090
if (css->flags & CSS_DYING)
6091
return;
6092
6093
/*
6094
* Call css_killed(), if defined, before setting the CSS_DYING flag
6095
*/
6096
if (css->ss->css_killed)
6097
css->ss->css_killed(css);
6098
6099
css->flags |= CSS_DYING;
6100
6101
/*
6102
* This must happen before css is disassociated with its cgroup.
6103
* See seq_css() for details.
6104
*/
6105
css_clear_dir(css);
6106
6107
/*
6108
* Killing would put the base ref, but we need to keep it alive
6109
* until after ->css_offline().
6110
*/
6111
css_get(css);
6112
6113
/*
6114
* cgroup core guarantees that, by the time ->css_offline() is
6115
* invoked, no new css reference will be given out via
6116
* css_tryget_online(). We can't simply call percpu_ref_kill() and
6117
* proceed to offlining css's because percpu_ref_kill() doesn't
6118
* guarantee that the ref is seen as killed on all CPUs on return.
6119
*
6120
* Use percpu_ref_kill_and_confirm() to get notifications as each
6121
* css is confirmed to be seen as killed on all CPUs.
6122
*/
6123
percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
6124
}
6125
6126
/**
6127
* cgroup_destroy_locked - the first stage of cgroup destruction
6128
* @cgrp: cgroup to be destroyed
6129
*
6130
* css's make use of percpu refcnts whose killing latency shouldn't be
6131
* exposed to userland and are RCU protected. Also, cgroup core needs to
6132
* guarantee that css_tryget_online() won't succeed by the time
6133
* ->css_offline() is invoked. To satisfy all the requirements,
6134
* destruction is implemented in the following two steps.
6135
*
6136
* s1. Verify @cgrp can be destroyed and mark it dying. Remove all
6137
* userland visible parts and start killing the percpu refcnts of
6138
* css's. Set up so that the next stage will be kicked off once all
6139
* the percpu refcnts are confirmed to be killed.
6140
*
6141
* s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6142
* rest of destruction. Once all cgroup references are gone, the
6143
* cgroup is RCU-freed.
6144
*
6145
* This function implements s1. After this step, @cgrp is gone as far as
6146
* the userland is concerned and a new cgroup with the same name may be
6147
* created. As cgroup doesn't care about the names internally, this
6148
* doesn't cause any problem.
6149
*/
6150
static int cgroup_destroy_locked(struct cgroup *cgrp)
6151
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6152
{
6153
struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6154
struct cgroup_subsys_state *css;
6155
struct cgrp_cset_link *link;
6156
int ssid, ret;
6157
6158
lockdep_assert_held(&cgroup_mutex);
6159
6160
/*
6161
* Only migration can raise populated from zero and we're already
6162
* holding cgroup_mutex.
6163
*/
6164
if (cgroup_is_populated(cgrp))
6165
return -EBUSY;
6166
6167
/*
6168
* Make sure there's no live children. We can't test emptiness of
6169
* ->self.children as dead children linger on it while being
6170
* drained; otherwise, "rmdir parent/child parent" may fail.
6171
*/
6172
if (css_has_online_children(&cgrp->self))
6173
return -EBUSY;
6174
6175
/*
6176
* Mark @cgrp and the associated csets dead. The former prevents
6177
* further task migration and child creation by disabling
6178
* cgroup_kn_lock_live(). The latter makes the csets ignored by
6179
* the migration path.
6180
*/
6181
cgrp->self.flags &= ~CSS_ONLINE;
6182
6183
spin_lock_irq(&css_set_lock);
6184
list_for_each_entry(link, &cgrp->cset_links, cset_link)
6185
link->cset->dead = true;
6186
spin_unlock_irq(&css_set_lock);
6187
6188
/* initiate massacre of all css's */
6189
for_each_css(css, ssid, cgrp)
6190
kill_css(css);
6191
6192
/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6193
css_clear_dir(&cgrp->self);
6194
kernfs_remove(cgrp->kn);
6195
6196
if (cgroup_is_threaded(cgrp))
6197
parent->nr_threaded_children--;
6198
6199
spin_lock_irq(&css_set_lock);
6200
for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6201
tcgrp->nr_descendants--;
6202
tcgrp->nr_dying_descendants++;
6203
/*
6204
* If the dying cgroup is frozen, decrease frozen descendants
6205
* counters of ancestor cgroups.
6206
*/
6207
if (test_bit(CGRP_FROZEN, &cgrp->flags))
6208
tcgrp->freezer.nr_frozen_descendants--;
6209
}
6210
spin_unlock_irq(&css_set_lock);
6211
6212
cgroup1_check_for_release(parent);
6213
6214
ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
6215
CGROUP_LIFETIME_OFFLINE, cgrp);
6216
WARN_ON_ONCE(notifier_to_errno(ret));
6217
6218
/* put the base reference */
6219
percpu_ref_kill(&cgrp->self.refcnt);
6220
6221
return 0;
6222
};
6223
6224
int cgroup_rmdir(struct kernfs_node *kn)
6225
{
6226
struct cgroup *cgrp;
6227
int ret = 0;
6228
6229
cgrp = cgroup_kn_lock_live(kn, false);
6230
if (!cgrp)
6231
return 0;
6232
6233
ret = cgroup_destroy_locked(cgrp);
6234
if (!ret)
6235
TRACE_CGROUP_PATH(rmdir, cgrp);
6236
6237
cgroup_kn_unlock(kn);
6238
return ret;
6239
}
6240
6241
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6242
.show_options = cgroup_show_options,
6243
.mkdir = cgroup_mkdir,
6244
.rmdir = cgroup_rmdir,
6245
.show_path = cgroup_show_path,
6246
};
6247
6248
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6249
{
6250
struct cgroup_subsys_state *css;
6251
6252
pr_debug("Initializing cgroup subsys %s\n", ss->name);
6253
6254
cgroup_lock();
6255
6256
idr_init(&ss->css_idr);
6257
INIT_LIST_HEAD(&ss->cfts);
6258
6259
/* Create the root cgroup state for this subsystem */
6260
ss->root = &cgrp_dfl_root;
6261
css = ss->css_alloc(NULL);
6262
/* We don't handle early failures gracefully */
6263
BUG_ON(IS_ERR(css));
6264
init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6265
6266
/*
6267
* Root csses are never destroyed and we can't initialize
6268
* percpu_ref during early init. Disable refcnting.
6269
*/
6270
css->flags |= CSS_NO_REF;
6271
6272
if (early) {
6273
/* allocation can't be done safely during early init */
6274
css->id = 1;
6275
} else {
6276
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6277
BUG_ON(css->id < 0);
6278
6279
BUG_ON(ss_rstat_init(ss));
6280
BUG_ON(css_rstat_init(css));
6281
}
6282
6283
/* Update the init_css_set to contain a subsys
6284
* pointer to this state - since the subsystem is
6285
* newly registered, all tasks and hence the
6286
* init_css_set is in the subsystem's root cgroup. */
6287
init_css_set.subsys[ss->id] = css;
6288
6289
have_fork_callback |= (bool)ss->fork << ss->id;
6290
have_exit_callback |= (bool)ss->exit << ss->id;
6291
have_release_callback |= (bool)ss->release << ss->id;
6292
have_canfork_callback |= (bool)ss->can_fork << ss->id;
6293
6294
/* At system boot, before all subsystems have been
6295
* registered, no tasks have been forked, so we don't
6296
* need to invoke fork callbacks here. */
6297
BUG_ON(!list_empty(&init_task.tasks));
6298
6299
BUG_ON(online_css(css));
6300
6301
cgroup_unlock();
6302
}
6303
6304
/**
6305
* cgroup_init_early - cgroup initialization at system boot
6306
*
6307
* Initialize cgroups at system boot, and initialize any
6308
* subsystems that request early init.
6309
*/
6310
int __init cgroup_init_early(void)
6311
{
6312
static struct cgroup_fs_context __initdata ctx;
6313
struct cgroup_subsys *ss;
6314
int i;
6315
6316
ctx.root = &cgrp_dfl_root;
6317
init_cgroup_root(&ctx);
6318
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6319
6320
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6321
6322
for_each_subsys(ss, i) {
6323
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6324
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6325
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6326
ss->id, ss->name);
6327
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6328
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6329
WARN(ss->early_init && ss->css_rstat_flush,
6330
"cgroup rstat cannot be used with early init subsystem\n");
6331
6332
ss->id = i;
6333
ss->name = cgroup_subsys_name[i];
6334
if (!ss->legacy_name)
6335
ss->legacy_name = cgroup_subsys_name[i];
6336
6337
if (ss->early_init)
6338
cgroup_init_subsys(ss, true);
6339
}
6340
return 0;
6341
}
6342
6343
/**
6344
* cgroup_init - cgroup initialization
6345
*
6346
* Register cgroup filesystem and /proc file, and initialize
6347
* any subsystems that didn't request early init.
6348
*/
6349
int __init cgroup_init(void)
6350
{
6351
struct cgroup_subsys *ss;
6352
int ssid;
6353
6354
BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6355
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6356
BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6357
BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6358
6359
BUG_ON(ss_rstat_init(NULL));
6360
6361
get_user_ns(init_cgroup_ns.user_ns);
6362
6363
cgroup_lock();
6364
6365
/*
6366
* Add init_css_set to the hash table so that dfl_root can link to
6367
* it during init.
6368
*/
6369
hash_add(css_set_table, &init_css_set.hlist,
6370
css_set_hash(init_css_set.subsys));
6371
6372
cgroup_bpf_lifetime_notifier_init();
6373
6374
BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6375
6376
cgroup_unlock();
6377
6378
for_each_subsys(ss, ssid) {
6379
if (ss->early_init) {
6380
struct cgroup_subsys_state *css =
6381
init_css_set.subsys[ss->id];
6382
6383
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6384
GFP_KERNEL);
6385
BUG_ON(css->id < 0);
6386
} else {
6387
cgroup_init_subsys(ss, false);
6388
}
6389
6390
list_add_tail(&init_css_set.e_cset_node[ssid],
6391
&cgrp_dfl_root.cgrp.e_csets[ssid]);
6392
6393
/*
6394
* Setting dfl_root subsys_mask needs to consider the
6395
* disabled flag and cftype registration needs kmalloc,
6396
* both of which aren't available during early_init.
6397
*/
6398
if (!cgroup_ssid_enabled(ssid))
6399
continue;
6400
6401
if (cgroup1_ssid_disabled(ssid))
6402
pr_info("Disabling %s control group subsystem in v1 mounts\n",
6403
ss->legacy_name);
6404
6405
cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6406
6407
/* implicit controllers must be threaded too */
6408
WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6409
6410
if (ss->implicit_on_dfl)
6411
cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6412
else if (!ss->dfl_cftypes)
6413
cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6414
6415
if (ss->threaded)
6416
cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6417
6418
if (ss->dfl_cftypes == ss->legacy_cftypes) {
6419
WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6420
} else {
6421
WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6422
WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6423
}
6424
6425
if (ss->bind)
6426
ss->bind(init_css_set.subsys[ssid]);
6427
6428
cgroup_lock();
6429
css_populate_dir(init_css_set.subsys[ssid]);
6430
cgroup_unlock();
6431
}
6432
6433
/* init_css_set.subsys[] has been updated, re-hash */
6434
hash_del(&init_css_set.hlist);
6435
hash_add(css_set_table, &init_css_set.hlist,
6436
css_set_hash(init_css_set.subsys));
6437
6438
WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6439
WARN_ON(register_filesystem(&cgroup_fs_type));
6440
WARN_ON(register_filesystem(&cgroup2_fs_type));
6441
WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6442
#ifdef CONFIG_CPUSETS_V1
6443
WARN_ON(register_filesystem(&cpuset_fs_type));
6444
#endif
6445
6446
ns_tree_add(&init_cgroup_ns);
6447
return 0;
6448
}
6449
6450
static int __init cgroup_wq_init(void)
6451
{
6452
/*
6453
* There isn't much point in executing destruction path in
6454
* parallel. Good chunk is serialized with cgroup_mutex anyway.
6455
* Use 1 for @max_active.
6456
*
6457
* We would prefer to do this in cgroup_init() above, but that
6458
* is called before init_workqueues(): so leave this until after.
6459
*/
6460
cgroup_offline_wq = alloc_workqueue("cgroup_offline", WQ_PERCPU, 1);
6461
BUG_ON(!cgroup_offline_wq);
6462
6463
cgroup_release_wq = alloc_workqueue("cgroup_release", WQ_PERCPU, 1);
6464
BUG_ON(!cgroup_release_wq);
6465
6466
cgroup_free_wq = alloc_workqueue("cgroup_free", WQ_PERCPU, 1);
6467
BUG_ON(!cgroup_free_wq);
6468
return 0;
6469
}
6470
core_initcall(cgroup_wq_init);
6471
6472
void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6473
{
6474
struct kernfs_node *kn;
6475
6476
kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6477
if (!kn)
6478
return;
6479
kernfs_path(kn, buf, buflen);
6480
kernfs_put(kn);
6481
}
6482
6483
/*
6484
* __cgroup_get_from_id : get the cgroup associated with cgroup id
6485
* @id: cgroup id
6486
* On success return the cgrp or ERR_PTR on failure
6487
* There are no cgroup NS restrictions.
6488
*/
6489
struct cgroup *__cgroup_get_from_id(u64 id)
6490
{
6491
struct kernfs_node *kn;
6492
struct cgroup *cgrp;
6493
6494
kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6495
if (!kn)
6496
return ERR_PTR(-ENOENT);
6497
6498
if (kernfs_type(kn) != KERNFS_DIR) {
6499
kernfs_put(kn);
6500
return ERR_PTR(-ENOENT);
6501
}
6502
6503
rcu_read_lock();
6504
6505
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6506
if (cgrp && !cgroup_tryget(cgrp))
6507
cgrp = NULL;
6508
6509
rcu_read_unlock();
6510
kernfs_put(kn);
6511
6512
if (!cgrp)
6513
return ERR_PTR(-ENOENT);
6514
return cgrp;
6515
}
6516
6517
/*
6518
* cgroup_get_from_id : get the cgroup associated with cgroup id
6519
* @id: cgroup id
6520
* On success return the cgrp or ERR_PTR on failure
6521
* Only cgroups within current task's cgroup NS are valid.
6522
*/
6523
struct cgroup *cgroup_get_from_id(u64 id)
6524
{
6525
struct cgroup *cgrp, *root_cgrp;
6526
6527
cgrp = __cgroup_get_from_id(id);
6528
if (IS_ERR(cgrp))
6529
return cgrp;
6530
6531
root_cgrp = current_cgns_cgroup_dfl();
6532
if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6533
cgroup_put(cgrp);
6534
return ERR_PTR(-ENOENT);
6535
}
6536
6537
return cgrp;
6538
}
6539
EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6540
6541
/*
6542
* proc_cgroup_show()
6543
* - Print task's cgroup paths into seq_file, one line for each hierarchy
6544
* - Used for /proc/<pid>/cgroup.
6545
*/
6546
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6547
struct pid *pid, struct task_struct *tsk)
6548
{
6549
char *buf;
6550
int retval;
6551
struct cgroup_root *root;
6552
6553
retval = -ENOMEM;
6554
buf = kmalloc(PATH_MAX, GFP_KERNEL);
6555
if (!buf)
6556
goto out;
6557
6558
rcu_read_lock();
6559
spin_lock_irq(&css_set_lock);
6560
6561
for_each_root(root) {
6562
struct cgroup_subsys *ss;
6563
struct cgroup *cgrp;
6564
int ssid, count = 0;
6565
6566
if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6567
continue;
6568
6569
cgrp = task_cgroup_from_root(tsk, root);
6570
/* The root has already been unmounted. */
6571
if (!cgrp)
6572
continue;
6573
6574
seq_printf(m, "%d:", root->hierarchy_id);
6575
if (root != &cgrp_dfl_root)
6576
for_each_subsys(ss, ssid)
6577
if (root->subsys_mask & (1 << ssid))
6578
seq_printf(m, "%s%s", count++ ? "," : "",
6579
ss->legacy_name);
6580
if (strlen(root->name))
6581
seq_printf(m, "%sname=%s", count ? "," : "",
6582
root->name);
6583
seq_putc(m, ':');
6584
/*
6585
* On traditional hierarchies, all zombie tasks show up as
6586
* belonging to the root cgroup. On the default hierarchy,
6587
* while a zombie doesn't show up in "cgroup.procs" and
6588
* thus can't be migrated, its /proc/PID/cgroup keeps
6589
* reporting the cgroup it belonged to before exiting. If
6590
* the cgroup is removed before the zombie is reaped,
6591
* " (deleted)" is appended to the cgroup path.
6592
*/
6593
if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6594
retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6595
current->nsproxy->cgroup_ns);
6596
if (retval == -E2BIG)
6597
retval = -ENAMETOOLONG;
6598
if (retval < 0)
6599
goto out_unlock;
6600
6601
seq_puts(m, buf);
6602
} else {
6603
seq_puts(m, "/");
6604
}
6605
6606
if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6607
seq_puts(m, " (deleted)\n");
6608
else
6609
seq_putc(m, '\n');
6610
}
6611
6612
retval = 0;
6613
out_unlock:
6614
spin_unlock_irq(&css_set_lock);
6615
rcu_read_unlock();
6616
kfree(buf);
6617
out:
6618
return retval;
6619
}
6620
6621
/**
6622
* cgroup_fork - initialize cgroup related fields during copy_process()
6623
* @child: pointer to task_struct of forking parent process.
6624
*
6625
* A task is associated with the init_css_set until cgroup_post_fork()
6626
* attaches it to the target css_set.
6627
*/
6628
void cgroup_fork(struct task_struct *child)
6629
{
6630
RCU_INIT_POINTER(child->cgroups, &init_css_set);
6631
INIT_LIST_HEAD(&child->cg_list);
6632
}
6633
6634
/**
6635
* cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6636
* @f: file corresponding to cgroup_dir
6637
*
6638
* Find the cgroup from a file pointer associated with a cgroup directory.
6639
* Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6640
* cgroup cannot be found.
6641
*/
6642
static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6643
{
6644
struct cgroup_subsys_state *css;
6645
6646
css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6647
if (IS_ERR(css))
6648
return ERR_CAST(css);
6649
6650
return css->cgroup;
6651
}
6652
6653
/**
6654
* cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6655
* cgroup2.
6656
* @f: file corresponding to cgroup2_dir
6657
*/
6658
static struct cgroup *cgroup_get_from_file(struct file *f)
6659
{
6660
struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6661
6662
if (IS_ERR(cgrp))
6663
return ERR_CAST(cgrp);
6664
6665
if (!cgroup_on_dfl(cgrp)) {
6666
cgroup_put(cgrp);
6667
return ERR_PTR(-EBADF);
6668
}
6669
6670
return cgrp;
6671
}
6672
6673
/**
6674
* cgroup_css_set_fork - find or create a css_set for a child process
6675
* @kargs: the arguments passed to create the child process
6676
*
6677
* This functions finds or creates a new css_set which the child
6678
* process will be attached to in cgroup_post_fork(). By default,
6679
* the child process will be given the same css_set as its parent.
6680
*
6681
* If CLONE_INTO_CGROUP is specified this function will try to find an
6682
* existing css_set which includes the requested cgroup and if not create
6683
* a new css_set that the child will be attached to later. If this function
6684
* succeeds it will hold cgroup_threadgroup_rwsem on return. If
6685
* CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6686
* before grabbing cgroup_threadgroup_rwsem and will hold a reference
6687
* to the target cgroup.
6688
*/
6689
static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6690
__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6691
{
6692
int ret;
6693
struct cgroup *dst_cgrp = NULL;
6694
struct css_set *cset;
6695
struct super_block *sb;
6696
6697
if (kargs->flags & CLONE_INTO_CGROUP)
6698
cgroup_lock();
6699
6700
cgroup_threadgroup_change_begin(current);
6701
6702
spin_lock_irq(&css_set_lock);
6703
cset = task_css_set(current);
6704
get_css_set(cset);
6705
if (kargs->cgrp)
6706
kargs->kill_seq = kargs->cgrp->kill_seq;
6707
else
6708
kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6709
spin_unlock_irq(&css_set_lock);
6710
6711
if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6712
kargs->cset = cset;
6713
return 0;
6714
}
6715
6716
CLASS(fd_raw, f)(kargs->cgroup);
6717
if (fd_empty(f)) {
6718
ret = -EBADF;
6719
goto err;
6720
}
6721
sb = fd_file(f)->f_path.dentry->d_sb;
6722
6723
dst_cgrp = cgroup_get_from_file(fd_file(f));
6724
if (IS_ERR(dst_cgrp)) {
6725
ret = PTR_ERR(dst_cgrp);
6726
dst_cgrp = NULL;
6727
goto err;
6728
}
6729
6730
if (cgroup_is_dead(dst_cgrp)) {
6731
ret = -ENODEV;
6732
goto err;
6733
}
6734
6735
/*
6736
* Verify that we the target cgroup is writable for us. This is
6737
* usually done by the vfs layer but since we're not going through
6738
* the vfs layer here we need to do it "manually".
6739
*/
6740
ret = cgroup_may_write(dst_cgrp, sb);
6741
if (ret)
6742
goto err;
6743
6744
/*
6745
* Spawning a task directly into a cgroup works by passing a file
6746
* descriptor to the target cgroup directory. This can even be an O_PATH
6747
* file descriptor. But it can never be a cgroup.procs file descriptor.
6748
* This was done on purpose so spawning into a cgroup could be
6749
* conceptualized as an atomic
6750
*
6751
* fd = openat(dfd_cgroup, "cgroup.procs", ...);
6752
* write(fd, <child-pid>, ...);
6753
*
6754
* sequence, i.e. it's a shorthand for the caller opening and writing
6755
* cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6756
* to always use the caller's credentials.
6757
*/
6758
ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6759
!(kargs->flags & CLONE_THREAD),
6760
current->nsproxy->cgroup_ns);
6761
if (ret)
6762
goto err;
6763
6764
kargs->cset = find_css_set(cset, dst_cgrp);
6765
if (!kargs->cset) {
6766
ret = -ENOMEM;
6767
goto err;
6768
}
6769
6770
put_css_set(cset);
6771
kargs->cgrp = dst_cgrp;
6772
return ret;
6773
6774
err:
6775
cgroup_threadgroup_change_end(current);
6776
cgroup_unlock();
6777
if (dst_cgrp)
6778
cgroup_put(dst_cgrp);
6779
put_css_set(cset);
6780
if (kargs->cset)
6781
put_css_set(kargs->cset);
6782
return ret;
6783
}
6784
6785
/**
6786
* cgroup_css_set_put_fork - drop references we took during fork
6787
* @kargs: the arguments passed to create the child process
6788
*
6789
* Drop references to the prepared css_set and target cgroup if
6790
* CLONE_INTO_CGROUP was requested.
6791
*/
6792
static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6793
__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6794
{
6795
struct cgroup *cgrp = kargs->cgrp;
6796
struct css_set *cset = kargs->cset;
6797
6798
cgroup_threadgroup_change_end(current);
6799
6800
if (cset) {
6801
put_css_set(cset);
6802
kargs->cset = NULL;
6803
}
6804
6805
if (kargs->flags & CLONE_INTO_CGROUP) {
6806
cgroup_unlock();
6807
if (cgrp) {
6808
cgroup_put(cgrp);
6809
kargs->cgrp = NULL;
6810
}
6811
}
6812
}
6813
6814
/**
6815
* cgroup_can_fork - called on a new task before the process is exposed
6816
* @child: the child process
6817
* @kargs: the arguments passed to create the child process
6818
*
6819
* This prepares a new css_set for the child process which the child will
6820
* be attached to in cgroup_post_fork().
6821
* This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6822
* callback returns an error, the fork aborts with that error code. This
6823
* allows for a cgroup subsystem to conditionally allow or deny new forks.
6824
*/
6825
int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6826
{
6827
struct cgroup_subsys *ss;
6828
int i, j, ret;
6829
6830
ret = cgroup_css_set_fork(kargs);
6831
if (ret)
6832
return ret;
6833
6834
do_each_subsys_mask(ss, i, have_canfork_callback) {
6835
ret = ss->can_fork(child, kargs->cset);
6836
if (ret)
6837
goto out_revert;
6838
} while_each_subsys_mask();
6839
6840
return 0;
6841
6842
out_revert:
6843
for_each_subsys(ss, j) {
6844
if (j >= i)
6845
break;
6846
if (ss->cancel_fork)
6847
ss->cancel_fork(child, kargs->cset);
6848
}
6849
6850
cgroup_css_set_put_fork(kargs);
6851
6852
return ret;
6853
}
6854
6855
/**
6856
* cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6857
* @child: the child process
6858
* @kargs: the arguments passed to create the child process
6859
*
6860
* This calls the cancel_fork() callbacks if a fork failed *after*
6861
* cgroup_can_fork() succeeded and cleans up references we took to
6862
* prepare a new css_set for the child process in cgroup_can_fork().
6863
*/
6864
void cgroup_cancel_fork(struct task_struct *child,
6865
struct kernel_clone_args *kargs)
6866
{
6867
struct cgroup_subsys *ss;
6868
int i;
6869
6870
for_each_subsys(ss, i)
6871
if (ss->cancel_fork)
6872
ss->cancel_fork(child, kargs->cset);
6873
6874
cgroup_css_set_put_fork(kargs);
6875
}
6876
6877
/**
6878
* cgroup_post_fork - finalize cgroup setup for the child process
6879
* @child: the child process
6880
* @kargs: the arguments passed to create the child process
6881
*
6882
* Attach the child process to its css_set calling the subsystem fork()
6883
* callbacks.
6884
*/
6885
void cgroup_post_fork(struct task_struct *child,
6886
struct kernel_clone_args *kargs)
6887
__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6888
{
6889
unsigned int cgrp_kill_seq = 0;
6890
unsigned long cgrp_flags = 0;
6891
bool kill = false;
6892
struct cgroup_subsys *ss;
6893
struct css_set *cset;
6894
int i;
6895
6896
cset = kargs->cset;
6897
kargs->cset = NULL;
6898
6899
spin_lock_irq(&css_set_lock);
6900
6901
/* init tasks are special, only link regular threads */
6902
if (likely(child->pid)) {
6903
if (kargs->cgrp) {
6904
cgrp_flags = kargs->cgrp->flags;
6905
cgrp_kill_seq = kargs->cgrp->kill_seq;
6906
} else {
6907
cgrp_flags = cset->dfl_cgrp->flags;
6908
cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6909
}
6910
6911
WARN_ON_ONCE(!list_empty(&child->cg_list));
6912
cset->nr_tasks++;
6913
css_set_move_task(child, NULL, cset, false);
6914
} else {
6915
put_css_set(cset);
6916
cset = NULL;
6917
}
6918
6919
if (!(child->flags & PF_KTHREAD)) {
6920
if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6921
/*
6922
* If the cgroup has to be frozen, the new task has
6923
* too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6924
* get the task into the frozen state.
6925
*/
6926
spin_lock(&child->sighand->siglock);
6927
WARN_ON_ONCE(child->frozen);
6928
child->jobctl |= JOBCTL_TRAP_FREEZE;
6929
spin_unlock(&child->sighand->siglock);
6930
6931
/*
6932
* Calling cgroup_update_frozen() isn't required here,
6933
* because it will be called anyway a bit later from
6934
* do_freezer_trap(). So we avoid cgroup's transient
6935
* switch from the frozen state and back.
6936
*/
6937
}
6938
6939
/*
6940
* If the cgroup is to be killed notice it now and take the
6941
* child down right after we finished preparing it for
6942
* userspace.
6943
*/
6944
kill = kargs->kill_seq != cgrp_kill_seq;
6945
}
6946
6947
spin_unlock_irq(&css_set_lock);
6948
6949
/*
6950
* Call ss->fork(). This must happen after @child is linked on
6951
* css_set; otherwise, @child might change state between ->fork()
6952
* and addition to css_set.
6953
*/
6954
do_each_subsys_mask(ss, i, have_fork_callback) {
6955
ss->fork(child);
6956
} while_each_subsys_mask();
6957
6958
/* Make the new cset the root_cset of the new cgroup namespace. */
6959
if (kargs->flags & CLONE_NEWCGROUP) {
6960
struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6961
6962
get_css_set(cset);
6963
child->nsproxy->cgroup_ns->root_cset = cset;
6964
put_css_set(rcset);
6965
}
6966
6967
/* Cgroup has to be killed so take down child immediately. */
6968
if (unlikely(kill))
6969
do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6970
6971
cgroup_css_set_put_fork(kargs);
6972
}
6973
6974
/**
6975
* cgroup_exit - detach cgroup from exiting task
6976
* @tsk: pointer to task_struct of exiting process
6977
*
6978
* Description: Detach cgroup from @tsk.
6979
*
6980
*/
6981
void cgroup_exit(struct task_struct *tsk)
6982
{
6983
struct cgroup_subsys *ss;
6984
struct css_set *cset;
6985
int i;
6986
6987
spin_lock_irq(&css_set_lock);
6988
6989
WARN_ON_ONCE(list_empty(&tsk->cg_list));
6990
cset = task_css_set(tsk);
6991
css_set_move_task(tsk, cset, NULL, false);
6992
cset->nr_tasks--;
6993
/* matches the signal->live check in css_task_iter_advance() */
6994
if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6995
list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6996
6997
if (dl_task(tsk))
6998
dec_dl_tasks_cs(tsk);
6999
7000
WARN_ON_ONCE(cgroup_task_frozen(tsk));
7001
if (unlikely(!(tsk->flags & PF_KTHREAD) &&
7002
test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
7003
cgroup_update_frozen(task_dfl_cgroup(tsk));
7004
7005
spin_unlock_irq(&css_set_lock);
7006
7007
/* see cgroup_post_fork() for details */
7008
do_each_subsys_mask(ss, i, have_exit_callback) {
7009
ss->exit(tsk);
7010
} while_each_subsys_mask();
7011
}
7012
7013
void cgroup_release(struct task_struct *task)
7014
{
7015
struct cgroup_subsys *ss;
7016
int ssid;
7017
7018
do_each_subsys_mask(ss, ssid, have_release_callback) {
7019
ss->release(task);
7020
} while_each_subsys_mask();
7021
7022
if (!list_empty(&task->cg_list)) {
7023
spin_lock_irq(&css_set_lock);
7024
css_set_skip_task_iters(task_css_set(task), task);
7025
list_del_init(&task->cg_list);
7026
spin_unlock_irq(&css_set_lock);
7027
}
7028
}
7029
7030
void cgroup_free(struct task_struct *task)
7031
{
7032
struct css_set *cset = task_css_set(task);
7033
put_css_set(cset);
7034
}
7035
7036
static int __init cgroup_disable(char *str)
7037
{
7038
struct cgroup_subsys *ss;
7039
char *token;
7040
int i;
7041
7042
while ((token = strsep(&str, ",")) != NULL) {
7043
if (!*token)
7044
continue;
7045
7046
for_each_subsys(ss, i) {
7047
if (strcmp(token, ss->name) &&
7048
strcmp(token, ss->legacy_name))
7049
continue;
7050
7051
static_branch_disable(cgroup_subsys_enabled_key[i]);
7052
pr_info("Disabling %s control group subsystem\n",
7053
ss->name);
7054
}
7055
7056
for (i = 0; i < OPT_FEATURE_COUNT; i++) {
7057
if (strcmp(token, cgroup_opt_feature_names[i]))
7058
continue;
7059
cgroup_feature_disable_mask |= 1 << i;
7060
pr_info("Disabling %s control group feature\n",
7061
cgroup_opt_feature_names[i]);
7062
break;
7063
}
7064
}
7065
return 1;
7066
}
7067
__setup("cgroup_disable=", cgroup_disable);
7068
7069
void __init __weak enable_debug_cgroup(void) { }
7070
7071
static int __init enable_cgroup_debug(char *str)
7072
{
7073
cgroup_debug = true;
7074
enable_debug_cgroup();
7075
return 1;
7076
}
7077
__setup("cgroup_debug", enable_cgroup_debug);
7078
7079
static int __init cgroup_favordynmods_setup(char *str)
7080
{
7081
return (kstrtobool(str, &have_favordynmods) == 0);
7082
}
7083
__setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
7084
7085
/**
7086
* css_tryget_online_from_dir - get corresponding css from a cgroup dentry
7087
* @dentry: directory dentry of interest
7088
* @ss: subsystem of interest
7089
*
7090
* If @dentry is a directory for a cgroup which has @ss enabled on it, try
7091
* to get the corresponding css and return it. If such css doesn't exist
7092
* or can't be pinned, an ERR_PTR value is returned.
7093
*/
7094
struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
7095
struct cgroup_subsys *ss)
7096
{
7097
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
7098
struct file_system_type *s_type = dentry->d_sb->s_type;
7099
struct cgroup_subsys_state *css = NULL;
7100
struct cgroup *cgrp;
7101
7102
/* is @dentry a cgroup dir? */
7103
if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
7104
!kn || kernfs_type(kn) != KERNFS_DIR)
7105
return ERR_PTR(-EBADF);
7106
7107
rcu_read_lock();
7108
7109
/*
7110
* This path doesn't originate from kernfs and @kn could already
7111
* have been or be removed at any point. @kn->priv is RCU
7112
* protected for this access. See css_release_work_fn() for details.
7113
*/
7114
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7115
if (cgrp)
7116
css = cgroup_css(cgrp, ss);
7117
7118
if (!css || !css_tryget_online(css))
7119
css = ERR_PTR(-ENOENT);
7120
7121
rcu_read_unlock();
7122
return css;
7123
}
7124
7125
/**
7126
* css_from_id - lookup css by id
7127
* @id: the cgroup id
7128
* @ss: cgroup subsys to be looked into
7129
*
7130
* Returns the css if there's valid one with @id, otherwise returns NULL.
7131
* Should be called under rcu_read_lock().
7132
*/
7133
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
7134
{
7135
WARN_ON_ONCE(!rcu_read_lock_held());
7136
return idr_find(&ss->css_idr, id);
7137
}
7138
7139
/**
7140
* cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
7141
* @path: path on the default hierarchy
7142
*
7143
* Find the cgroup at @path on the default hierarchy, increment its
7144
* reference count and return it. Returns pointer to the found cgroup on
7145
* success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
7146
* been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
7147
*/
7148
struct cgroup *cgroup_get_from_path(const char *path)
7149
{
7150
struct kernfs_node *kn;
7151
struct cgroup *cgrp = ERR_PTR(-ENOENT);
7152
struct cgroup *root_cgrp;
7153
7154
root_cgrp = current_cgns_cgroup_dfl();
7155
kn = kernfs_walk_and_get(root_cgrp->kn, path);
7156
if (!kn)
7157
goto out;
7158
7159
if (kernfs_type(kn) != KERNFS_DIR) {
7160
cgrp = ERR_PTR(-ENOTDIR);
7161
goto out_kernfs;
7162
}
7163
7164
rcu_read_lock();
7165
7166
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7167
if (!cgrp || !cgroup_tryget(cgrp))
7168
cgrp = ERR_PTR(-ENOENT);
7169
7170
rcu_read_unlock();
7171
7172
out_kernfs:
7173
kernfs_put(kn);
7174
out:
7175
return cgrp;
7176
}
7177
EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7178
7179
/**
7180
* cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7181
* @fd: fd obtained by open(cgroup_dir)
7182
*
7183
* Find the cgroup from a fd which should be obtained
7184
* by opening a cgroup directory. Returns a pointer to the
7185
* cgroup on success. ERR_PTR is returned if the cgroup
7186
* cannot be found.
7187
*/
7188
struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7189
{
7190
CLASS(fd_raw, f)(fd);
7191
if (fd_empty(f))
7192
return ERR_PTR(-EBADF);
7193
7194
return cgroup_v1v2_get_from_file(fd_file(f));
7195
}
7196
7197
/**
7198
* cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7199
* cgroup2.
7200
* @fd: fd obtained by open(cgroup2_dir)
7201
*/
7202
struct cgroup *cgroup_get_from_fd(int fd)
7203
{
7204
struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7205
7206
if (IS_ERR(cgrp))
7207
return ERR_CAST(cgrp);
7208
7209
if (!cgroup_on_dfl(cgrp)) {
7210
cgroup_put(cgrp);
7211
return ERR_PTR(-EBADF);
7212
}
7213
return cgrp;
7214
}
7215
EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7216
7217
static u64 power_of_ten(int power)
7218
{
7219
u64 v = 1;
7220
while (power--)
7221
v *= 10;
7222
return v;
7223
}
7224
7225
/**
7226
* cgroup_parse_float - parse a floating number
7227
* @input: input string
7228
* @dec_shift: number of decimal digits to shift
7229
* @v: output
7230
*
7231
* Parse a decimal floating point number in @input and store the result in
7232
* @v with decimal point right shifted @dec_shift times. For example, if
7233
* @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7234
* Returns 0 on success, -errno otherwise.
7235
*
7236
* There's nothing cgroup specific about this function except that it's
7237
* currently the only user.
7238
*/
7239
int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7240
{
7241
s64 whole, frac = 0;
7242
int fstart = 0, fend = 0, flen;
7243
7244
if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7245
return -EINVAL;
7246
if (frac < 0)
7247
return -EINVAL;
7248
7249
flen = fend > fstart ? fend - fstart : 0;
7250
if (flen < dec_shift)
7251
frac *= power_of_ten(dec_shift - flen);
7252
else
7253
frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7254
7255
*v = whole * power_of_ten(dec_shift) + frac;
7256
return 0;
7257
}
7258
7259
/*
7260
* sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7261
* definition in cgroup-defs.h.
7262
*/
7263
#ifdef CONFIG_SOCK_CGROUP_DATA
7264
7265
void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7266
{
7267
struct cgroup *cgroup;
7268
7269
rcu_read_lock();
7270
/* Don't associate the sock with unrelated interrupted task's cgroup. */
7271
if (in_interrupt()) {
7272
cgroup = &cgrp_dfl_root.cgrp;
7273
cgroup_get(cgroup);
7274
goto out;
7275
}
7276
7277
while (true) {
7278
struct css_set *cset;
7279
7280
cset = task_css_set(current);
7281
if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7282
cgroup = cset->dfl_cgrp;
7283
break;
7284
}
7285
cpu_relax();
7286
}
7287
out:
7288
skcd->cgroup = cgroup;
7289
cgroup_bpf_get(cgroup);
7290
rcu_read_unlock();
7291
}
7292
7293
void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7294
{
7295
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7296
7297
/*
7298
* We might be cloning a socket which is left in an empty
7299
* cgroup and the cgroup might have already been rmdir'd.
7300
* Don't use cgroup_get_live().
7301
*/
7302
cgroup_get(cgrp);
7303
cgroup_bpf_get(cgrp);
7304
}
7305
7306
void cgroup_sk_free(struct sock_cgroup_data *skcd)
7307
{
7308
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7309
7310
cgroup_bpf_put(cgrp);
7311
cgroup_put(cgrp);
7312
}
7313
7314
#endif /* CONFIG_SOCK_CGROUP_DATA */
7315
7316
#ifdef CONFIG_SYSFS
7317
static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7318
ssize_t size, const char *prefix)
7319
{
7320
struct cftype *cft;
7321
ssize_t ret = 0;
7322
7323
for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7324
if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7325
continue;
7326
7327
if (prefix)
7328
ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7329
7330
ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7331
7332
if (WARN_ON(ret >= size))
7333
break;
7334
}
7335
7336
return ret;
7337
}
7338
7339
static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7340
char *buf)
7341
{
7342
struct cgroup_subsys *ss;
7343
int ssid;
7344
ssize_t ret = 0;
7345
7346
ret = show_delegatable_files(cgroup_base_files, buf + ret,
7347
PAGE_SIZE - ret, NULL);
7348
if (cgroup_psi_enabled())
7349
ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7350
PAGE_SIZE - ret, NULL);
7351
7352
for_each_subsys(ss, ssid)
7353
ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7354
PAGE_SIZE - ret,
7355
cgroup_subsys_name[ssid]);
7356
7357
return ret;
7358
}
7359
static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7360
7361
static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7362
char *buf)
7363
{
7364
return snprintf(buf, PAGE_SIZE,
7365
"nsdelegate\n"
7366
"favordynmods\n"
7367
"memory_localevents\n"
7368
"memory_recursiveprot\n"
7369
"memory_hugetlb_accounting\n"
7370
"pids_localevents\n");
7371
}
7372
static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7373
7374
static struct attribute *cgroup_sysfs_attrs[] = {
7375
&cgroup_delegate_attr.attr,
7376
&cgroup_features_attr.attr,
7377
NULL,
7378
};
7379
7380
static const struct attribute_group cgroup_sysfs_attr_group = {
7381
.attrs = cgroup_sysfs_attrs,
7382
.name = "cgroup",
7383
};
7384
7385
static int __init cgroup_sysfs_init(void)
7386
{
7387
return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7388
}
7389
subsys_initcall(cgroup_sysfs_init);
7390
7391
#endif /* CONFIG_SYSFS */
7392
7393