Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/cgroup/cpuset.c
29278 views
1
/*
2
* kernel/cpuset.c
3
*
4
* Processor and Memory placement constraints for sets of tasks.
5
*
6
* Copyright (C) 2003 BULL SA.
7
* Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
* Copyright (C) 2006 Google, Inc
9
*
10
* Portions derived from Patrick Mochel's sysfs code.
11
* sysfs is Copyright (c) 2001-3 Patrick Mochel
12
*
13
* 2003-10-10 Written by Simon Derr.
14
* 2003-10-22 Updates by Stephen Hemminger.
15
* 2004 May-July Rework by Paul Jackson.
16
* 2006 Rework by Paul Menage to use generic cgroups
17
* 2008 Rework of the scheduler domains and CPU hotplug handling
18
* by Max Krasnyansky
19
*
20
* This file is subject to the terms and conditions of the GNU General Public
21
* License. See the file COPYING in the main directory of the Linux
22
* distribution for more details.
23
*/
24
#include "cpuset-internal.h"
25
26
#include <linux/init.h>
27
#include <linux/interrupt.h>
28
#include <linux/kernel.h>
29
#include <linux/mempolicy.h>
30
#include <linux/mm.h>
31
#include <linux/memory.h>
32
#include <linux/export.h>
33
#include <linux/rcupdate.h>
34
#include <linux/sched.h>
35
#include <linux/sched/deadline.h>
36
#include <linux/sched/mm.h>
37
#include <linux/sched/task.h>
38
#include <linux/security.h>
39
#include <linux/oom.h>
40
#include <linux/sched/isolation.h>
41
#include <linux/wait.h>
42
#include <linux/workqueue.h>
43
#include <linux/task_work.h>
44
45
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47
48
/*
49
* There could be abnormal cpuset configurations for cpu or memory
50
* node binding, add this key to provide a quick low-cost judgment
51
* of the situation.
52
*/
53
DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54
55
static const char * const perr_strings[] = {
56
[PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
57
[PERR_INVPARENT] = "Parent is an invalid partition root",
58
[PERR_NOTPART] = "Parent is not a partition root",
59
[PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
60
[PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
61
[PERR_HOTPLUG] = "No cpu available due to hotplug",
62
[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63
[PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
64
[PERR_ACCESS] = "Enable partition not permitted",
65
[PERR_REMOTE] = "Have remote partition underneath",
66
};
67
68
/*
69
* For local partitions, update to subpartitions_cpus & isolated_cpus is done
70
* in update_parent_effective_cpumask(). For remote partitions, it is done in
71
* the remote_partition_*() and remote_cpus_update() helpers.
72
*/
73
/*
74
* Exclusive CPUs distributed out to local or remote sub-partitions of
75
* top_cpuset
76
*/
77
static cpumask_var_t subpartitions_cpus;
78
79
/*
80
* Exclusive CPUs in isolated partitions
81
*/
82
static cpumask_var_t isolated_cpus;
83
84
/*
85
* Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
86
*/
87
static cpumask_var_t boot_hk_cpus;
88
static bool have_boot_isolcpus;
89
90
/* List of remote partition root children */
91
static struct list_head remote_children;
92
93
/*
94
* A flag to force sched domain rebuild at the end of an operation.
95
* It can be set in
96
* - update_partition_sd_lb()
97
* - update_cpumasks_hier()
98
* - cpuset_update_flag()
99
* - cpuset_hotplug_update_tasks()
100
* - cpuset_handle_hotplug()
101
*
102
* Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
103
*
104
* Note that update_relax_domain_level() in cpuset-v1.c can still call
105
* rebuild_sched_domains_locked() directly without using this flag.
106
*/
107
static bool force_sd_rebuild;
108
109
/*
110
* Partition root states:
111
*
112
* 0 - member (not a partition root)
113
* 1 - partition root
114
* 2 - partition root without load balancing (isolated)
115
* -1 - invalid partition root
116
* -2 - invalid isolated partition root
117
*
118
* There are 2 types of partitions - local or remote. Local partitions are
119
* those whose parents are partition root themselves. Setting of
120
* cpuset.cpus.exclusive are optional in setting up local partitions.
121
* Remote partitions are those whose parents are not partition roots. Passing
122
* down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
123
* nodes are mandatory in creating a remote partition.
124
*
125
* For simplicity, a local partition can be created under a local or remote
126
* partition but a remote partition cannot have any partition root in its
127
* ancestor chain except the cgroup root.
128
*/
129
#define PRS_MEMBER 0
130
#define PRS_ROOT 1
131
#define PRS_ISOLATED 2
132
#define PRS_INVALID_ROOT -1
133
#define PRS_INVALID_ISOLATED -2
134
135
/*
136
* Temporary cpumasks for working with partitions that are passed among
137
* functions to avoid memory allocation in inner functions.
138
*/
139
struct tmpmasks {
140
cpumask_var_t addmask, delmask; /* For partition root */
141
cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
142
};
143
144
void inc_dl_tasks_cs(struct task_struct *p)
145
{
146
struct cpuset *cs = task_cs(p);
147
148
cs->nr_deadline_tasks++;
149
}
150
151
void dec_dl_tasks_cs(struct task_struct *p)
152
{
153
struct cpuset *cs = task_cs(p);
154
155
cs->nr_deadline_tasks--;
156
}
157
158
static inline bool is_partition_valid(const struct cpuset *cs)
159
{
160
return cs->partition_root_state > 0;
161
}
162
163
static inline bool is_partition_invalid(const struct cpuset *cs)
164
{
165
return cs->partition_root_state < 0;
166
}
167
168
static inline bool cs_is_member(const struct cpuset *cs)
169
{
170
return cs->partition_root_state == PRS_MEMBER;
171
}
172
173
/*
174
* Callers should hold callback_lock to modify partition_root_state.
175
*/
176
static inline void make_partition_invalid(struct cpuset *cs)
177
{
178
if (cs->partition_root_state > 0)
179
cs->partition_root_state = -cs->partition_root_state;
180
}
181
182
/*
183
* Send notification event of whenever partition_root_state changes.
184
*/
185
static inline void notify_partition_change(struct cpuset *cs, int old_prs)
186
{
187
if (old_prs == cs->partition_root_state)
188
return;
189
cgroup_file_notify(&cs->partition_file);
190
191
/* Reset prs_err if not invalid */
192
if (is_partition_valid(cs))
193
WRITE_ONCE(cs->prs_err, PERR_NONE);
194
}
195
196
/*
197
* The top_cpuset is always synchronized to cpu_active_mask and we should avoid
198
* using cpu_online_mask as much as possible. An active CPU is always an online
199
* CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
200
* during hotplug operations. A CPU is marked active at the last stage of CPU
201
* bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
202
* will be called to update the sched domains so that the scheduler can move
203
* a normal task to a newly active CPU or remove tasks away from a newly
204
* inactivated CPU. The online bit is set much earlier in the CPU bringup
205
* process and cleared much later in CPU teardown.
206
*
207
* If cpu_online_mask is used while a hotunplug operation is happening in
208
* parallel, we may leave an offline CPU in cpu_allowed or some other masks.
209
*/
210
static struct cpuset top_cpuset = {
211
.flags = BIT(CS_CPU_EXCLUSIVE) |
212
BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
213
.partition_root_state = PRS_ROOT,
214
.relax_domain_level = -1,
215
.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
216
};
217
218
/*
219
* There are two global locks guarding cpuset structures - cpuset_mutex and
220
* callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
221
* subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
222
* structures. Note that cpuset_mutex needs to be a mutex as it is used in
223
* paths that rely on priority inheritance (e.g. scheduler - on RT) for
224
* correctness.
225
*
226
* A task must hold both locks to modify cpusets. If a task holds
227
* cpuset_mutex, it blocks others, ensuring that it is the only task able to
228
* also acquire callback_lock and be able to modify cpusets. It can perform
229
* various checks on the cpuset structure first, knowing nothing will change.
230
* It can also allocate memory while just holding cpuset_mutex. While it is
231
* performing these checks, various callback routines can briefly acquire
232
* callback_lock to query cpusets. Once it is ready to make the changes, it
233
* takes callback_lock, blocking everyone else.
234
*
235
* Calls to the kernel memory allocator can not be made while holding
236
* callback_lock, as that would risk double tripping on callback_lock
237
* from one of the callbacks into the cpuset code from within
238
* __alloc_pages().
239
*
240
* If a task is only holding callback_lock, then it has read-only
241
* access to cpusets.
242
*
243
* Now, the task_struct fields mems_allowed and mempolicy may be changed
244
* by other task, we use alloc_lock in the task_struct fields to protect
245
* them.
246
*
247
* The cpuset_common_seq_show() handlers only hold callback_lock across
248
* small pieces of code, such as when reading out possibly multi-word
249
* cpumasks and nodemasks.
250
*/
251
252
static DEFINE_MUTEX(cpuset_mutex);
253
254
/**
255
* cpuset_lock - Acquire the global cpuset mutex
256
*
257
* This locks the global cpuset mutex to prevent modifications to cpuset
258
* hierarchy and configurations. This helper is not enough to make modification.
259
*/
260
void cpuset_lock(void)
261
{
262
mutex_lock(&cpuset_mutex);
263
}
264
265
void cpuset_unlock(void)
266
{
267
mutex_unlock(&cpuset_mutex);
268
}
269
270
/**
271
* cpuset_full_lock - Acquire full protection for cpuset modification
272
*
273
* Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
274
* to safely modify cpuset data.
275
*/
276
void cpuset_full_lock(void)
277
{
278
cpus_read_lock();
279
mutex_lock(&cpuset_mutex);
280
}
281
282
void cpuset_full_unlock(void)
283
{
284
mutex_unlock(&cpuset_mutex);
285
cpus_read_unlock();
286
}
287
288
static DEFINE_SPINLOCK(callback_lock);
289
290
void cpuset_callback_lock_irq(void)
291
{
292
spin_lock_irq(&callback_lock);
293
}
294
295
void cpuset_callback_unlock_irq(void)
296
{
297
spin_unlock_irq(&callback_lock);
298
}
299
300
static struct workqueue_struct *cpuset_migrate_mm_wq;
301
302
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
303
304
static inline void check_insane_mems_config(nodemask_t *nodes)
305
{
306
if (!cpusets_insane_config() &&
307
movable_only_nodes(nodes)) {
308
static_branch_enable_cpuslocked(&cpusets_insane_config_key);
309
pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
310
"Cpuset allocations might fail even with a lot of memory available.\n",
311
nodemask_pr_args(nodes));
312
}
313
}
314
315
/*
316
* decrease cs->attach_in_progress.
317
* wake_up cpuset_attach_wq if cs->attach_in_progress==0.
318
*/
319
static inline void dec_attach_in_progress_locked(struct cpuset *cs)
320
{
321
lockdep_assert_held(&cpuset_mutex);
322
323
cs->attach_in_progress--;
324
if (!cs->attach_in_progress)
325
wake_up(&cpuset_attach_wq);
326
}
327
328
static inline void dec_attach_in_progress(struct cpuset *cs)
329
{
330
mutex_lock(&cpuset_mutex);
331
dec_attach_in_progress_locked(cs);
332
mutex_unlock(&cpuset_mutex);
333
}
334
335
static inline bool cpuset_v2(void)
336
{
337
return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
338
cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
339
}
340
341
/*
342
* Cgroup v2 behavior is used on the "cpus" and "mems" control files when
343
* on default hierarchy or when the cpuset_v2_mode flag is set by mounting
344
* the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
345
* With v2 behavior, "cpus" and "mems" are always what the users have
346
* requested and won't be changed by hotplug events. Only the effective
347
* cpus or mems will be affected.
348
*/
349
static inline bool is_in_v2_mode(void)
350
{
351
return cpuset_v2() ||
352
(cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
353
}
354
355
/**
356
* partition_is_populated - check if partition has tasks
357
* @cs: partition root to be checked
358
* @excluded_child: a child cpuset to be excluded in task checking
359
* Return: true if there are tasks, false otherwise
360
*
361
* It is assumed that @cs is a valid partition root. @excluded_child should
362
* be non-NULL when this cpuset is going to become a partition itself.
363
*/
364
static inline bool partition_is_populated(struct cpuset *cs,
365
struct cpuset *excluded_child)
366
{
367
struct cgroup_subsys_state *css;
368
struct cpuset *child;
369
370
if (cs->css.cgroup->nr_populated_csets)
371
return true;
372
if (!excluded_child && !cs->nr_subparts)
373
return cgroup_is_populated(cs->css.cgroup);
374
375
rcu_read_lock();
376
cpuset_for_each_child(child, css, cs) {
377
if (child == excluded_child)
378
continue;
379
if (is_partition_valid(child))
380
continue;
381
if (cgroup_is_populated(child->css.cgroup)) {
382
rcu_read_unlock();
383
return true;
384
}
385
}
386
rcu_read_unlock();
387
return false;
388
}
389
390
/*
391
* Return in pmask the portion of a task's cpusets's cpus_allowed that
392
* are online and are capable of running the task. If none are found,
393
* walk up the cpuset hierarchy until we find one that does have some
394
* appropriate cpus.
395
*
396
* One way or another, we guarantee to return some non-empty subset
397
* of cpu_active_mask.
398
*
399
* Call with callback_lock or cpuset_mutex held.
400
*/
401
static void guarantee_active_cpus(struct task_struct *tsk,
402
struct cpumask *pmask)
403
{
404
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
405
struct cpuset *cs;
406
407
if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
408
cpumask_copy(pmask, cpu_active_mask);
409
410
rcu_read_lock();
411
cs = task_cs(tsk);
412
413
while (!cpumask_intersects(cs->effective_cpus, pmask))
414
cs = parent_cs(cs);
415
416
cpumask_and(pmask, pmask, cs->effective_cpus);
417
rcu_read_unlock();
418
}
419
420
/*
421
* Return in *pmask the portion of a cpusets's mems_allowed that
422
* are online, with memory. If none are online with memory, walk
423
* up the cpuset hierarchy until we find one that does have some
424
* online mems. The top cpuset always has some mems online.
425
*
426
* One way or another, we guarantee to return some non-empty subset
427
* of node_states[N_MEMORY].
428
*
429
* Call with callback_lock or cpuset_mutex held.
430
*/
431
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
432
{
433
while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
434
cs = parent_cs(cs);
435
nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
436
}
437
438
/**
439
* alloc_cpumasks - Allocate an array of cpumask variables
440
* @pmasks: Pointer to array of cpumask_var_t pointers
441
* @size: Number of cpumasks to allocate
442
* Return: 0 if successful, -ENOMEM otherwise.
443
*
444
* Allocates @size cpumasks and initializes them to empty. Returns 0 on
445
* success, -ENOMEM on allocation failure. On failure, any previously
446
* allocated cpumasks are freed.
447
*/
448
static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
449
{
450
int i;
451
452
for (i = 0; i < size; i++) {
453
if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
454
while (--i >= 0)
455
free_cpumask_var(*pmasks[i]);
456
return -ENOMEM;
457
}
458
}
459
return 0;
460
}
461
462
/**
463
* alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
464
* @tmp: Pointer to tmpmasks structure to populate
465
* Return: 0 on success, -ENOMEM on allocation failure
466
*/
467
static inline int alloc_tmpmasks(struct tmpmasks *tmp)
468
{
469
/*
470
* Array of pointers to the three cpumask_var_t fields in tmpmasks.
471
* Note: Array size must match actual number of masks (3)
472
*/
473
cpumask_var_t *pmask[3] = {
474
&tmp->new_cpus,
475
&tmp->addmask,
476
&tmp->delmask
477
};
478
479
return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
480
}
481
482
/**
483
* free_tmpmasks - free cpumasks in a tmpmasks structure
484
* @tmp: the tmpmasks structure pointer
485
*/
486
static inline void free_tmpmasks(struct tmpmasks *tmp)
487
{
488
if (!tmp)
489
return;
490
491
free_cpumask_var(tmp->new_cpus);
492
free_cpumask_var(tmp->addmask);
493
free_cpumask_var(tmp->delmask);
494
}
495
496
/**
497
* dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
498
* @cs: Source cpuset to duplicate (NULL for a fresh allocation)
499
*
500
* Creates a new cpuset by either:
501
* 1. Duplicating an existing cpuset (if @cs is non-NULL), or
502
* 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
503
*
504
* Return: Pointer to newly allocated cpuset on success, NULL on failure
505
*/
506
static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
507
{
508
struct cpuset *trial;
509
510
/* Allocate base structure */
511
trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
512
kzalloc(sizeof(*cs), GFP_KERNEL);
513
if (!trial)
514
return NULL;
515
516
/* Setup cpumask pointer array */
517
cpumask_var_t *pmask[4] = {
518
&trial->cpus_allowed,
519
&trial->effective_cpus,
520
&trial->effective_xcpus,
521
&trial->exclusive_cpus
522
};
523
524
if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
525
kfree(trial);
526
return NULL;
527
}
528
529
/* Copy masks if duplicating */
530
if (cs) {
531
cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
532
cpumask_copy(trial->effective_cpus, cs->effective_cpus);
533
cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
534
cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
535
}
536
537
return trial;
538
}
539
540
/**
541
* free_cpuset - free the cpuset
542
* @cs: the cpuset to be freed
543
*/
544
static inline void free_cpuset(struct cpuset *cs)
545
{
546
free_cpumask_var(cs->cpus_allowed);
547
free_cpumask_var(cs->effective_cpus);
548
free_cpumask_var(cs->effective_xcpus);
549
free_cpumask_var(cs->exclusive_cpus);
550
kfree(cs);
551
}
552
553
/* Return user specified exclusive CPUs */
554
static inline struct cpumask *user_xcpus(struct cpuset *cs)
555
{
556
return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
557
: cs->exclusive_cpus;
558
}
559
560
static inline bool xcpus_empty(struct cpuset *cs)
561
{
562
return cpumask_empty(cs->cpus_allowed) &&
563
cpumask_empty(cs->exclusive_cpus);
564
}
565
566
/*
567
* cpusets_are_exclusive() - check if two cpusets are exclusive
568
*
569
* Return true if exclusive, false if not
570
*/
571
static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
572
{
573
struct cpumask *xcpus1 = user_xcpus(cs1);
574
struct cpumask *xcpus2 = user_xcpus(cs2);
575
576
if (cpumask_intersects(xcpus1, xcpus2))
577
return false;
578
return true;
579
}
580
581
/**
582
* cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
583
* @cs1: first cpuset to check
584
* @cs2: second cpuset to check
585
*
586
* Returns: true if CPU exclusivity conflict exists, false otherwise
587
*
588
* Conflict detection rules:
589
* 1. If either cpuset is CPU exclusive, they must be mutually exclusive
590
* 2. exclusive_cpus masks cannot intersect between cpusets
591
* 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
592
*/
593
static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
594
{
595
/* If either cpuset is exclusive, check if they are mutually exclusive */
596
if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
597
return !cpusets_are_exclusive(cs1, cs2);
598
599
/* Exclusive_cpus cannot intersect */
600
if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
601
return true;
602
603
/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
604
if (!cpumask_empty(cs1->cpus_allowed) &&
605
cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
606
return true;
607
608
if (!cpumask_empty(cs2->cpus_allowed) &&
609
cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
610
return true;
611
612
return false;
613
}
614
615
static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
616
{
617
if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
618
return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
619
return false;
620
}
621
622
/*
623
* validate_change() - Used to validate that any proposed cpuset change
624
* follows the structural rules for cpusets.
625
*
626
* If we replaced the flag and mask values of the current cpuset
627
* (cur) with those values in the trial cpuset (trial), would
628
* our various subset and exclusive rules still be valid? Presumes
629
* cpuset_mutex held.
630
*
631
* 'cur' is the address of an actual, in-use cpuset. Operations
632
* such as list traversal that depend on the actual address of the
633
* cpuset in the list must use cur below, not trial.
634
*
635
* 'trial' is the address of bulk structure copy of cur, with
636
* perhaps one or more of the fields cpus_allowed, mems_allowed,
637
* or flags changed to new, trial values.
638
*
639
* Return 0 if valid, -errno if not.
640
*/
641
642
static int validate_change(struct cpuset *cur, struct cpuset *trial)
643
{
644
struct cgroup_subsys_state *css;
645
struct cpuset *c, *par;
646
int ret = 0;
647
648
rcu_read_lock();
649
650
if (!is_in_v2_mode())
651
ret = cpuset1_validate_change(cur, trial);
652
if (ret)
653
goto out;
654
655
/* Remaining checks don't apply to root cpuset */
656
if (cur == &top_cpuset)
657
goto out;
658
659
par = parent_cs(cur);
660
661
/*
662
* Cpusets with tasks - existing or newly being attached - can't
663
* be changed to have empty cpus_allowed or mems_allowed.
664
*/
665
ret = -ENOSPC;
666
if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
667
if (!cpumask_empty(cur->cpus_allowed) &&
668
cpumask_empty(trial->cpus_allowed))
669
goto out;
670
if (!nodes_empty(cur->mems_allowed) &&
671
nodes_empty(trial->mems_allowed))
672
goto out;
673
}
674
675
/*
676
* We can't shrink if we won't have enough room for SCHED_DEADLINE
677
* tasks. This check is not done when scheduling is disabled as the
678
* users should know what they are doing.
679
*
680
* For v1, effective_cpus == cpus_allowed & user_xcpus() returns
681
* cpus_allowed.
682
*
683
* For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
684
* for non-isolated partition root. At this point, the target
685
* effective_cpus isn't computed yet. user_xcpus() is the best
686
* approximation.
687
*
688
* TBD: May need to precompute the real effective_cpus here in case
689
* incorrect scheduling of SCHED_DEADLINE tasks in a partition
690
* becomes an issue.
691
*/
692
ret = -EBUSY;
693
if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
694
!cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
695
goto out;
696
697
/*
698
* If either I or some sibling (!= me) is exclusive, we can't
699
* overlap. exclusive_cpus cannot overlap with each other if set.
700
*/
701
ret = -EINVAL;
702
cpuset_for_each_child(c, css, par) {
703
if (c == cur)
704
continue;
705
if (cpus_excl_conflict(trial, c))
706
goto out;
707
if (mems_excl_conflict(trial, c))
708
goto out;
709
}
710
711
ret = 0;
712
out:
713
rcu_read_unlock();
714
return ret;
715
}
716
717
#ifdef CONFIG_SMP
718
/*
719
* Helper routine for generate_sched_domains().
720
* Do cpusets a, b have overlapping effective cpus_allowed masks?
721
*/
722
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
723
{
724
return cpumask_intersects(a->effective_cpus, b->effective_cpus);
725
}
726
727
static void
728
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
729
{
730
if (dattr->relax_domain_level < c->relax_domain_level)
731
dattr->relax_domain_level = c->relax_domain_level;
732
return;
733
}
734
735
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
736
struct cpuset *root_cs)
737
{
738
struct cpuset *cp;
739
struct cgroup_subsys_state *pos_css;
740
741
rcu_read_lock();
742
cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
743
/* skip the whole subtree if @cp doesn't have any CPU */
744
if (cpumask_empty(cp->cpus_allowed)) {
745
pos_css = css_rightmost_descendant(pos_css);
746
continue;
747
}
748
749
if (is_sched_load_balance(cp))
750
update_domain_attr(dattr, cp);
751
}
752
rcu_read_unlock();
753
}
754
755
/* Must be called with cpuset_mutex held. */
756
static inline int nr_cpusets(void)
757
{
758
/* jump label reference count + the top-level cpuset */
759
return static_key_count(&cpusets_enabled_key.key) + 1;
760
}
761
762
/*
763
* generate_sched_domains()
764
*
765
* This function builds a partial partition of the systems CPUs
766
* A 'partial partition' is a set of non-overlapping subsets whose
767
* union is a subset of that set.
768
* The output of this function needs to be passed to kernel/sched/core.c
769
* partition_sched_domains() routine, which will rebuild the scheduler's
770
* load balancing domains (sched domains) as specified by that partial
771
* partition.
772
*
773
* See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
774
* for a background explanation of this.
775
*
776
* Does not return errors, on the theory that the callers of this
777
* routine would rather not worry about failures to rebuild sched
778
* domains when operating in the severe memory shortage situations
779
* that could cause allocation failures below.
780
*
781
* Must be called with cpuset_mutex held.
782
*
783
* The three key local variables below are:
784
* cp - cpuset pointer, used (together with pos_css) to perform a
785
* top-down scan of all cpusets. For our purposes, rebuilding
786
* the schedulers sched domains, we can ignore !is_sched_load_
787
* balance cpusets.
788
* csa - (for CpuSet Array) Array of pointers to all the cpusets
789
* that need to be load balanced, for convenient iterative
790
* access by the subsequent code that finds the best partition,
791
* i.e the set of domains (subsets) of CPUs such that the
792
* cpus_allowed of every cpuset marked is_sched_load_balance
793
* is a subset of one of these domains, while there are as
794
* many such domains as possible, each as small as possible.
795
* doms - Conversion of 'csa' to an array of cpumasks, for passing to
796
* the kernel/sched/core.c routine partition_sched_domains() in a
797
* convenient format, that can be easily compared to the prior
798
* value to determine what partition elements (sched domains)
799
* were changed (added or removed.)
800
*
801
* Finding the best partition (set of domains):
802
* The double nested loops below over i, j scan over the load
803
* balanced cpusets (using the array of cpuset pointers in csa[])
804
* looking for pairs of cpusets that have overlapping cpus_allowed
805
* and merging them using a union-find algorithm.
806
*
807
* The union of the cpus_allowed masks from the set of all cpusets
808
* having the same root then form the one element of the partition
809
* (one sched domain) to be passed to partition_sched_domains().
810
*
811
*/
812
static int generate_sched_domains(cpumask_var_t **domains,
813
struct sched_domain_attr **attributes)
814
{
815
struct cpuset *cp; /* top-down scan of cpusets */
816
struct cpuset **csa; /* array of all cpuset ptrs */
817
int csn; /* how many cpuset ptrs in csa so far */
818
int i, j; /* indices for partition finding loops */
819
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
820
struct sched_domain_attr *dattr; /* attributes for custom domains */
821
int ndoms = 0; /* number of sched domains in result */
822
int nslot; /* next empty doms[] struct cpumask slot */
823
struct cgroup_subsys_state *pos_css;
824
bool root_load_balance = is_sched_load_balance(&top_cpuset);
825
bool cgrpv2 = cpuset_v2();
826
int nslot_update;
827
828
doms = NULL;
829
dattr = NULL;
830
csa = NULL;
831
832
/* Special case for the 99% of systems with one, full, sched domain */
833
if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
834
single_root_domain:
835
ndoms = 1;
836
doms = alloc_sched_domains(ndoms);
837
if (!doms)
838
goto done;
839
840
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
841
if (dattr) {
842
*dattr = SD_ATTR_INIT;
843
update_domain_attr_tree(dattr, &top_cpuset);
844
}
845
cpumask_and(doms[0], top_cpuset.effective_cpus,
846
housekeeping_cpumask(HK_TYPE_DOMAIN));
847
848
goto done;
849
}
850
851
csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
852
if (!csa)
853
goto done;
854
csn = 0;
855
856
rcu_read_lock();
857
if (root_load_balance)
858
csa[csn++] = &top_cpuset;
859
cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
860
if (cp == &top_cpuset)
861
continue;
862
863
if (cgrpv2)
864
goto v2;
865
866
/*
867
* v1:
868
* Continue traversing beyond @cp iff @cp has some CPUs and
869
* isn't load balancing. The former is obvious. The
870
* latter: All child cpusets contain a subset of the
871
* parent's cpus, so just skip them, and then we call
872
* update_domain_attr_tree() to calc relax_domain_level of
873
* the corresponding sched domain.
874
*/
875
if (!cpumask_empty(cp->cpus_allowed) &&
876
!(is_sched_load_balance(cp) &&
877
cpumask_intersects(cp->cpus_allowed,
878
housekeeping_cpumask(HK_TYPE_DOMAIN))))
879
continue;
880
881
if (is_sched_load_balance(cp) &&
882
!cpumask_empty(cp->effective_cpus))
883
csa[csn++] = cp;
884
885
/* skip @cp's subtree */
886
pos_css = css_rightmost_descendant(pos_css);
887
continue;
888
889
v2:
890
/*
891
* Only valid partition roots that are not isolated and with
892
* non-empty effective_cpus will be saved into csn[].
893
*/
894
if ((cp->partition_root_state == PRS_ROOT) &&
895
!cpumask_empty(cp->effective_cpus))
896
csa[csn++] = cp;
897
898
/*
899
* Skip @cp's subtree if not a partition root and has no
900
* exclusive CPUs to be granted to child cpusets.
901
*/
902
if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
903
pos_css = css_rightmost_descendant(pos_css);
904
}
905
rcu_read_unlock();
906
907
/*
908
* If there are only isolated partitions underneath the cgroup root,
909
* we can optimize out unneeded sched domains scanning.
910
*/
911
if (root_load_balance && (csn == 1))
912
goto single_root_domain;
913
914
for (i = 0; i < csn; i++)
915
uf_node_init(&csa[i]->node);
916
917
/* Merge overlapping cpusets */
918
for (i = 0; i < csn; i++) {
919
for (j = i + 1; j < csn; j++) {
920
if (cpusets_overlap(csa[i], csa[j])) {
921
/*
922
* Cgroup v2 shouldn't pass down overlapping
923
* partition root cpusets.
924
*/
925
WARN_ON_ONCE(cgrpv2);
926
uf_union(&csa[i]->node, &csa[j]->node);
927
}
928
}
929
}
930
931
/* Count the total number of domains */
932
for (i = 0; i < csn; i++) {
933
if (uf_find(&csa[i]->node) == &csa[i]->node)
934
ndoms++;
935
}
936
937
/*
938
* Now we know how many domains to create.
939
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
940
*/
941
doms = alloc_sched_domains(ndoms);
942
if (!doms)
943
goto done;
944
945
/*
946
* The rest of the code, including the scheduler, can deal with
947
* dattr==NULL case. No need to abort if alloc fails.
948
*/
949
dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
950
GFP_KERNEL);
951
952
/*
953
* Cgroup v2 doesn't support domain attributes, just set all of them
954
* to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
955
* subset of HK_TYPE_DOMAIN housekeeping CPUs.
956
*/
957
if (cgrpv2) {
958
for (i = 0; i < ndoms; i++) {
959
/*
960
* The top cpuset may contain some boot time isolated
961
* CPUs that need to be excluded from the sched domain.
962
*/
963
if (csa[i] == &top_cpuset)
964
cpumask_and(doms[i], csa[i]->effective_cpus,
965
housekeeping_cpumask(HK_TYPE_DOMAIN));
966
else
967
cpumask_copy(doms[i], csa[i]->effective_cpus);
968
if (dattr)
969
dattr[i] = SD_ATTR_INIT;
970
}
971
goto done;
972
}
973
974
for (nslot = 0, i = 0; i < csn; i++) {
975
nslot_update = 0;
976
for (j = i; j < csn; j++) {
977
if (uf_find(&csa[j]->node) == &csa[i]->node) {
978
struct cpumask *dp = doms[nslot];
979
980
if (i == j) {
981
nslot_update = 1;
982
cpumask_clear(dp);
983
if (dattr)
984
*(dattr + nslot) = SD_ATTR_INIT;
985
}
986
cpumask_or(dp, dp, csa[j]->effective_cpus);
987
cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
988
if (dattr)
989
update_domain_attr_tree(dattr + nslot, csa[j]);
990
}
991
}
992
if (nslot_update)
993
nslot++;
994
}
995
BUG_ON(nslot != ndoms);
996
997
done:
998
kfree(csa);
999
1000
/*
1001
* Fallback to the default domain if kmalloc() failed.
1002
* See comments in partition_sched_domains().
1003
*/
1004
if (doms == NULL)
1005
ndoms = 1;
1006
1007
*domains = doms;
1008
*attributes = dattr;
1009
return ndoms;
1010
}
1011
1012
static void dl_update_tasks_root_domain(struct cpuset *cs)
1013
{
1014
struct css_task_iter it;
1015
struct task_struct *task;
1016
1017
if (cs->nr_deadline_tasks == 0)
1018
return;
1019
1020
css_task_iter_start(&cs->css, 0, &it);
1021
1022
while ((task = css_task_iter_next(&it)))
1023
dl_add_task_root_domain(task);
1024
1025
css_task_iter_end(&it);
1026
}
1027
1028
void dl_rebuild_rd_accounting(void)
1029
{
1030
struct cpuset *cs = NULL;
1031
struct cgroup_subsys_state *pos_css;
1032
int cpu;
1033
u64 cookie = ++dl_cookie;
1034
1035
lockdep_assert_held(&cpuset_mutex);
1036
lockdep_assert_cpus_held();
1037
lockdep_assert_held(&sched_domains_mutex);
1038
1039
rcu_read_lock();
1040
1041
for_each_possible_cpu(cpu) {
1042
if (dl_bw_visited(cpu, cookie))
1043
continue;
1044
1045
dl_clear_root_domain_cpu(cpu);
1046
}
1047
1048
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1049
1050
if (cpumask_empty(cs->effective_cpus)) {
1051
pos_css = css_rightmost_descendant(pos_css);
1052
continue;
1053
}
1054
1055
css_get(&cs->css);
1056
1057
rcu_read_unlock();
1058
1059
dl_update_tasks_root_domain(cs);
1060
1061
rcu_read_lock();
1062
css_put(&cs->css);
1063
}
1064
rcu_read_unlock();
1065
}
1066
1067
/*
1068
* Rebuild scheduler domains.
1069
*
1070
* If the flag 'sched_load_balance' of any cpuset with non-empty
1071
* 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1072
* which has that flag enabled, or if any cpuset with a non-empty
1073
* 'cpus' is removed, then call this routine to rebuild the
1074
* scheduler's dynamic sched domains.
1075
*
1076
* Call with cpuset_mutex held. Takes cpus_read_lock().
1077
*/
1078
void rebuild_sched_domains_locked(void)
1079
{
1080
struct cgroup_subsys_state *pos_css;
1081
struct sched_domain_attr *attr;
1082
cpumask_var_t *doms;
1083
struct cpuset *cs;
1084
int ndoms;
1085
1086
lockdep_assert_cpus_held();
1087
lockdep_assert_held(&cpuset_mutex);
1088
force_sd_rebuild = false;
1089
1090
/*
1091
* If we have raced with CPU hotplug, return early to avoid
1092
* passing doms with offlined cpu to partition_sched_domains().
1093
* Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1094
*
1095
* With no CPUs in any subpartitions, top_cpuset's effective CPUs
1096
* should be the same as the active CPUs, so checking only top_cpuset
1097
* is enough to detect racing CPU offlines.
1098
*/
1099
if (cpumask_empty(subpartitions_cpus) &&
1100
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1101
return;
1102
1103
/*
1104
* With subpartition CPUs, however, the effective CPUs of a partition
1105
* root should be only a subset of the active CPUs. Since a CPU in any
1106
* partition root could be offlined, all must be checked.
1107
*/
1108
if (!cpumask_empty(subpartitions_cpus)) {
1109
rcu_read_lock();
1110
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1111
if (!is_partition_valid(cs)) {
1112
pos_css = css_rightmost_descendant(pos_css);
1113
continue;
1114
}
1115
if (!cpumask_subset(cs->effective_cpus,
1116
cpu_active_mask)) {
1117
rcu_read_unlock();
1118
return;
1119
}
1120
}
1121
rcu_read_unlock();
1122
}
1123
1124
/* Generate domain masks and attrs */
1125
ndoms = generate_sched_domains(&doms, &attr);
1126
1127
/* Have scheduler rebuild the domains */
1128
partition_sched_domains(ndoms, doms, attr);
1129
}
1130
#else /* !CONFIG_SMP */
1131
void rebuild_sched_domains_locked(void)
1132
{
1133
}
1134
#endif /* CONFIG_SMP */
1135
1136
static void rebuild_sched_domains_cpuslocked(void)
1137
{
1138
mutex_lock(&cpuset_mutex);
1139
rebuild_sched_domains_locked();
1140
mutex_unlock(&cpuset_mutex);
1141
}
1142
1143
void rebuild_sched_domains(void)
1144
{
1145
cpus_read_lock();
1146
rebuild_sched_domains_cpuslocked();
1147
cpus_read_unlock();
1148
}
1149
1150
void cpuset_reset_sched_domains(void)
1151
{
1152
mutex_lock(&cpuset_mutex);
1153
partition_sched_domains(1, NULL, NULL);
1154
mutex_unlock(&cpuset_mutex);
1155
}
1156
1157
/**
1158
* cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1159
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1160
* @new_cpus: the temp variable for the new effective_cpus mask
1161
*
1162
* Iterate through each task of @cs updating its cpus_allowed to the
1163
* effective cpuset's. As this function is called with cpuset_mutex held,
1164
* cpuset membership stays stable.
1165
*
1166
* For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1167
* to make sure all offline CPUs are also included as hotplug code won't
1168
* update cpumasks for tasks in top_cpuset.
1169
*
1170
* As task_cpu_possible_mask() can be task dependent in arm64, we have to
1171
* do cpu masking per task instead of doing it once for all.
1172
*/
1173
void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1174
{
1175
struct css_task_iter it;
1176
struct task_struct *task;
1177
bool top_cs = cs == &top_cpuset;
1178
1179
css_task_iter_start(&cs->css, 0, &it);
1180
while ((task = css_task_iter_next(&it))) {
1181
const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1182
1183
if (top_cs) {
1184
/*
1185
* PF_NO_SETAFFINITY tasks are ignored.
1186
* All per cpu kthreads should have PF_NO_SETAFFINITY
1187
* flag set, see kthread_set_per_cpu().
1188
*/
1189
if (task->flags & PF_NO_SETAFFINITY)
1190
continue;
1191
cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1192
} else {
1193
cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1194
}
1195
set_cpus_allowed_ptr(task, new_cpus);
1196
}
1197
css_task_iter_end(&it);
1198
}
1199
1200
/**
1201
* compute_effective_cpumask - Compute the effective cpumask of the cpuset
1202
* @new_cpus: the temp variable for the new effective_cpus mask
1203
* @cs: the cpuset the need to recompute the new effective_cpus mask
1204
* @parent: the parent cpuset
1205
*
1206
* The result is valid only if the given cpuset isn't a partition root.
1207
*/
1208
static void compute_effective_cpumask(struct cpumask *new_cpus,
1209
struct cpuset *cs, struct cpuset *parent)
1210
{
1211
cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1212
}
1213
1214
/*
1215
* Commands for update_parent_effective_cpumask
1216
*/
1217
enum partition_cmd {
1218
partcmd_enable, /* Enable partition root */
1219
partcmd_enablei, /* Enable isolated partition root */
1220
partcmd_disable, /* Disable partition root */
1221
partcmd_update, /* Update parent's effective_cpus */
1222
partcmd_invalidate, /* Make partition invalid */
1223
};
1224
1225
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1226
struct tmpmasks *tmp);
1227
1228
/*
1229
* Update partition exclusive flag
1230
*
1231
* Return: 0 if successful, an error code otherwise
1232
*/
1233
static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1234
{
1235
bool exclusive = (new_prs > PRS_MEMBER);
1236
1237
if (exclusive && !is_cpu_exclusive(cs)) {
1238
if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1239
return PERR_NOTEXCL;
1240
} else if (!exclusive && is_cpu_exclusive(cs)) {
1241
/* Turning off CS_CPU_EXCLUSIVE will not return error */
1242
cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1243
}
1244
return 0;
1245
}
1246
1247
/*
1248
* Update partition load balance flag and/or rebuild sched domain
1249
*
1250
* Changing load balance flag will automatically call
1251
* rebuild_sched_domains_locked().
1252
* This function is for cgroup v2 only.
1253
*/
1254
static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1255
{
1256
int new_prs = cs->partition_root_state;
1257
bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1258
bool new_lb;
1259
1260
/*
1261
* If cs is not a valid partition root, the load balance state
1262
* will follow its parent.
1263
*/
1264
if (new_prs > 0) {
1265
new_lb = (new_prs != PRS_ISOLATED);
1266
} else {
1267
new_lb = is_sched_load_balance(parent_cs(cs));
1268
}
1269
if (new_lb != !!is_sched_load_balance(cs)) {
1270
rebuild_domains = true;
1271
if (new_lb)
1272
set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1273
else
1274
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1275
}
1276
1277
if (rebuild_domains)
1278
cpuset_force_rebuild();
1279
}
1280
1281
/*
1282
* tasks_nocpu_error - Return true if tasks will have no effective_cpus
1283
*/
1284
static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1285
struct cpumask *xcpus)
1286
{
1287
/*
1288
* A populated partition (cs or parent) can't have empty effective_cpus
1289
*/
1290
return (cpumask_subset(parent->effective_cpus, xcpus) &&
1291
partition_is_populated(parent, cs)) ||
1292
(!cpumask_intersects(xcpus, cpu_active_mask) &&
1293
partition_is_populated(cs, NULL));
1294
}
1295
1296
static void reset_partition_data(struct cpuset *cs)
1297
{
1298
struct cpuset *parent = parent_cs(cs);
1299
1300
if (!cpuset_v2())
1301
return;
1302
1303
lockdep_assert_held(&callback_lock);
1304
1305
cs->nr_subparts = 0;
1306
if (cpumask_empty(cs->exclusive_cpus)) {
1307
cpumask_clear(cs->effective_xcpus);
1308
if (is_cpu_exclusive(cs))
1309
clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1310
}
1311
if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1312
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1313
}
1314
1315
/*
1316
* isolated_cpus_update - Update the isolated_cpus mask
1317
* @old_prs: old partition_root_state
1318
* @new_prs: new partition_root_state
1319
* @xcpus: exclusive CPUs with state change
1320
*/
1321
static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1322
{
1323
WARN_ON_ONCE(old_prs == new_prs);
1324
if (new_prs == PRS_ISOLATED)
1325
cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1326
else
1327
cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1328
}
1329
1330
/*
1331
* partition_xcpus_add - Add new exclusive CPUs to partition
1332
* @new_prs: new partition_root_state
1333
* @parent: parent cpuset
1334
* @xcpus: exclusive CPUs to be added
1335
* Return: true if isolated_cpus modified, false otherwise
1336
*
1337
* Remote partition if parent == NULL
1338
*/
1339
static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1340
struct cpumask *xcpus)
1341
{
1342
bool isolcpus_updated;
1343
1344
WARN_ON_ONCE(new_prs < 0);
1345
lockdep_assert_held(&callback_lock);
1346
if (!parent)
1347
parent = &top_cpuset;
1348
1349
1350
if (parent == &top_cpuset)
1351
cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1352
1353
isolcpus_updated = (new_prs != parent->partition_root_state);
1354
if (isolcpus_updated)
1355
isolated_cpus_update(parent->partition_root_state, new_prs,
1356
xcpus);
1357
1358
cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1359
return isolcpus_updated;
1360
}
1361
1362
/*
1363
* partition_xcpus_del - Remove exclusive CPUs from partition
1364
* @old_prs: old partition_root_state
1365
* @parent: parent cpuset
1366
* @xcpus: exclusive CPUs to be removed
1367
* Return: true if isolated_cpus modified, false otherwise
1368
*
1369
* Remote partition if parent == NULL
1370
*/
1371
static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1372
struct cpumask *xcpus)
1373
{
1374
bool isolcpus_updated;
1375
1376
WARN_ON_ONCE(old_prs < 0);
1377
lockdep_assert_held(&callback_lock);
1378
if (!parent)
1379
parent = &top_cpuset;
1380
1381
if (parent == &top_cpuset)
1382
cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1383
1384
isolcpus_updated = (old_prs != parent->partition_root_state);
1385
if (isolcpus_updated)
1386
isolated_cpus_update(old_prs, parent->partition_root_state,
1387
xcpus);
1388
1389
cpumask_and(xcpus, xcpus, cpu_active_mask);
1390
cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1391
return isolcpus_updated;
1392
}
1393
1394
static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1395
{
1396
int ret;
1397
1398
lockdep_assert_cpus_held();
1399
1400
if (!isolcpus_updated)
1401
return;
1402
1403
ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1404
WARN_ON_ONCE(ret < 0);
1405
}
1406
1407
/**
1408
* cpuset_cpu_is_isolated - Check if the given CPU is isolated
1409
* @cpu: the CPU number to be checked
1410
* Return: true if CPU is used in an isolated partition, false otherwise
1411
*/
1412
bool cpuset_cpu_is_isolated(int cpu)
1413
{
1414
return cpumask_test_cpu(cpu, isolated_cpus);
1415
}
1416
EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1417
1418
/**
1419
* rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1420
* @parent: Parent cpuset containing all siblings
1421
* @cs: Current cpuset (will be skipped)
1422
* @excpus: exclusive effective CPU mask to modify
1423
*
1424
* This function ensures the given @excpus mask doesn't include any CPUs that
1425
* are exclusively allocated to sibling cpusets. It walks through all siblings
1426
* of @cs under @parent and removes their exclusive CPUs from @excpus.
1427
*/
1428
static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1429
struct cpumask *excpus)
1430
{
1431
struct cgroup_subsys_state *css;
1432
struct cpuset *sibling;
1433
int retval = 0;
1434
1435
if (cpumask_empty(excpus))
1436
return retval;
1437
1438
/*
1439
* Exclude exclusive CPUs from siblings
1440
*/
1441
rcu_read_lock();
1442
cpuset_for_each_child(sibling, css, parent) {
1443
if (sibling == cs)
1444
continue;
1445
1446
if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1447
cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1448
retval++;
1449
continue;
1450
}
1451
if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1452
cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1453
retval++;
1454
}
1455
}
1456
rcu_read_unlock();
1457
1458
return retval;
1459
}
1460
1461
/*
1462
* compute_excpus - compute effective exclusive CPUs
1463
* @cs: cpuset
1464
* @xcpus: effective exclusive CPUs value to be set
1465
* Return: 0 if there is no sibling conflict, > 0 otherwise
1466
*
1467
* If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1468
* and exclude their exclusive_cpus or effective_xcpus as well.
1469
*/
1470
static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1471
{
1472
struct cpuset *parent = parent_cs(cs);
1473
1474
cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1475
1476
if (!cpumask_empty(cs->exclusive_cpus))
1477
return 0;
1478
1479
return rm_siblings_excl_cpus(parent, cs, excpus);
1480
}
1481
1482
/*
1483
* compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1484
* @trialcs: The trial cpuset containing the proposed new configuration
1485
* @cs: The original cpuset that the trial configuration is based on
1486
* Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1487
*
1488
* Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1489
* the real cs.
1490
*/
1491
static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1492
{
1493
struct cpuset *parent = parent_cs(trialcs);
1494
struct cpumask *excpus = trialcs->effective_xcpus;
1495
1496
/* trialcs is member, cpuset.cpus has no impact to excpus */
1497
if (cs_is_member(cs))
1498
cpumask_and(excpus, trialcs->exclusive_cpus,
1499
parent->effective_xcpus);
1500
else
1501
cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1502
1503
return rm_siblings_excl_cpus(parent, cs, excpus);
1504
}
1505
1506
static inline bool is_remote_partition(struct cpuset *cs)
1507
{
1508
return !list_empty(&cs->remote_sibling);
1509
}
1510
1511
static inline bool is_local_partition(struct cpuset *cs)
1512
{
1513
return is_partition_valid(cs) && !is_remote_partition(cs);
1514
}
1515
1516
/*
1517
* remote_partition_enable - Enable current cpuset as a remote partition root
1518
* @cs: the cpuset to update
1519
* @new_prs: new partition_root_state
1520
* @tmp: temporary masks
1521
* Return: 0 if successful, errcode if error
1522
*
1523
* Enable the current cpuset to become a remote partition root taking CPUs
1524
* directly from the top cpuset. cpuset_mutex must be held by the caller.
1525
*/
1526
static int remote_partition_enable(struct cpuset *cs, int new_prs,
1527
struct tmpmasks *tmp)
1528
{
1529
bool isolcpus_updated;
1530
1531
/*
1532
* The user must have sysadmin privilege.
1533
*/
1534
if (!capable(CAP_SYS_ADMIN))
1535
return PERR_ACCESS;
1536
1537
/*
1538
* The requested exclusive_cpus must not be allocated to other
1539
* partitions and it can't use up all the root's effective_cpus.
1540
*
1541
* The effective_xcpus mask can contain offline CPUs, but there must
1542
* be at least one or more online CPUs present before it can be enabled.
1543
*
1544
* Note that creating a remote partition with any local partition root
1545
* above it or remote partition root underneath it is not allowed.
1546
*/
1547
compute_excpus(cs, tmp->new_cpus);
1548
WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1549
if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1550
cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1551
return PERR_INVCPUS;
1552
1553
spin_lock_irq(&callback_lock);
1554
isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1555
list_add(&cs->remote_sibling, &remote_children);
1556
cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1557
spin_unlock_irq(&callback_lock);
1558
update_unbound_workqueue_cpumask(isolcpus_updated);
1559
cpuset_force_rebuild();
1560
cs->prs_err = 0;
1561
1562
/*
1563
* Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1564
*/
1565
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1566
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1567
return 0;
1568
}
1569
1570
/*
1571
* remote_partition_disable - Remove current cpuset from remote partition list
1572
* @cs: the cpuset to update
1573
* @tmp: temporary masks
1574
*
1575
* The effective_cpus is also updated.
1576
*
1577
* cpuset_mutex must be held by the caller.
1578
*/
1579
static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1580
{
1581
bool isolcpus_updated;
1582
1583
WARN_ON_ONCE(!is_remote_partition(cs));
1584
WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1585
1586
spin_lock_irq(&callback_lock);
1587
list_del_init(&cs->remote_sibling);
1588
isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1589
NULL, cs->effective_xcpus);
1590
if (cs->prs_err)
1591
cs->partition_root_state = -cs->partition_root_state;
1592
else
1593
cs->partition_root_state = PRS_MEMBER;
1594
1595
/* effective_xcpus may need to be changed */
1596
compute_excpus(cs, cs->effective_xcpus);
1597
reset_partition_data(cs);
1598
spin_unlock_irq(&callback_lock);
1599
update_unbound_workqueue_cpumask(isolcpus_updated);
1600
cpuset_force_rebuild();
1601
1602
/*
1603
* Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1604
*/
1605
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1606
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1607
}
1608
1609
/*
1610
* remote_cpus_update - cpus_exclusive change of remote partition
1611
* @cs: the cpuset to be updated
1612
* @xcpus: the new exclusive_cpus mask, if non-NULL
1613
* @excpus: the new effective_xcpus mask
1614
* @tmp: temporary masks
1615
*
1616
* top_cpuset and subpartitions_cpus will be updated or partition can be
1617
* invalidated.
1618
*/
1619
static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1620
struct cpumask *excpus, struct tmpmasks *tmp)
1621
{
1622
bool adding, deleting;
1623
int prs = cs->partition_root_state;
1624
int isolcpus_updated = 0;
1625
1626
if (WARN_ON_ONCE(!is_remote_partition(cs)))
1627
return;
1628
1629
WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1630
1631
if (cpumask_empty(excpus)) {
1632
cs->prs_err = PERR_CPUSEMPTY;
1633
goto invalidate;
1634
}
1635
1636
adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1637
deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1638
1639
/*
1640
* Additions of remote CPUs is only allowed if those CPUs are
1641
* not allocated to other partitions and there are effective_cpus
1642
* left in the top cpuset.
1643
*/
1644
if (adding) {
1645
WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1646
if (!capable(CAP_SYS_ADMIN))
1647
cs->prs_err = PERR_ACCESS;
1648
else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1649
cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1650
cs->prs_err = PERR_NOCPUS;
1651
if (cs->prs_err)
1652
goto invalidate;
1653
}
1654
1655
spin_lock_irq(&callback_lock);
1656
if (adding)
1657
isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1658
if (deleting)
1659
isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1660
/*
1661
* Need to update effective_xcpus and exclusive_cpus now as
1662
* update_sibling_cpumasks() below may iterate back to the same cs.
1663
*/
1664
cpumask_copy(cs->effective_xcpus, excpus);
1665
if (xcpus)
1666
cpumask_copy(cs->exclusive_cpus, xcpus);
1667
spin_unlock_irq(&callback_lock);
1668
update_unbound_workqueue_cpumask(isolcpus_updated);
1669
if (adding || deleting)
1670
cpuset_force_rebuild();
1671
1672
/*
1673
* Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1674
*/
1675
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1676
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1677
return;
1678
1679
invalidate:
1680
remote_partition_disable(cs, tmp);
1681
}
1682
1683
/*
1684
* prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1685
* @prstate: partition root state to be checked
1686
* @new_cpus: cpu mask
1687
* Return: true if there is conflict, false otherwise
1688
*
1689
* CPUs outside of boot_hk_cpus, if defined, can only be used in an
1690
* isolated partition.
1691
*/
1692
static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1693
{
1694
if (!have_boot_isolcpus)
1695
return false;
1696
1697
if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1698
return true;
1699
1700
return false;
1701
}
1702
1703
/**
1704
* update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1705
* @cs: The cpuset that requests change in partition root state
1706
* @cmd: Partition root state change command
1707
* @newmask: Optional new cpumask for partcmd_update
1708
* @tmp: Temporary addmask and delmask
1709
* Return: 0 or a partition root state error code
1710
*
1711
* For partcmd_enable*, the cpuset is being transformed from a non-partition
1712
* root to a partition root. The effective_xcpus (cpus_allowed if
1713
* effective_xcpus not set) mask of the given cpuset will be taken away from
1714
* parent's effective_cpus. The function will return 0 if all the CPUs listed
1715
* in effective_xcpus can be granted or an error code will be returned.
1716
*
1717
* For partcmd_disable, the cpuset is being transformed from a partition
1718
* root back to a non-partition root. Any CPUs in effective_xcpus will be
1719
* given back to parent's effective_cpus. 0 will always be returned.
1720
*
1721
* For partcmd_update, if the optional newmask is specified, the cpu list is
1722
* to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1723
* assumed to remain the same. The cpuset should either be a valid or invalid
1724
* partition root. The partition root state may change from valid to invalid
1725
* or vice versa. An error code will be returned if transitioning from
1726
* invalid to valid violates the exclusivity rule.
1727
*
1728
* For partcmd_invalidate, the current partition will be made invalid.
1729
*
1730
* The partcmd_enable* and partcmd_disable commands are used by
1731
* update_prstate(). An error code may be returned and the caller will check
1732
* for error.
1733
*
1734
* The partcmd_update command is used by update_cpumasks_hier() with newmask
1735
* NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1736
* by update_cpumask() with NULL newmask. In both cases, the callers won't
1737
* check for error and so partition_root_state and prs_err will be updated
1738
* directly.
1739
*/
1740
static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1741
struct cpumask *newmask,
1742
struct tmpmasks *tmp)
1743
{
1744
struct cpuset *parent = parent_cs(cs);
1745
int adding; /* Adding cpus to parent's effective_cpus */
1746
int deleting; /* Deleting cpus from parent's effective_cpus */
1747
int old_prs, new_prs;
1748
int part_error = PERR_NONE; /* Partition error? */
1749
int subparts_delta = 0;
1750
int isolcpus_updated = 0;
1751
struct cpumask *xcpus = user_xcpus(cs);
1752
bool nocpu;
1753
1754
lockdep_assert_held(&cpuset_mutex);
1755
WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */
1756
1757
/*
1758
* new_prs will only be changed for the partcmd_update and
1759
* partcmd_invalidate commands.
1760
*/
1761
adding = deleting = false;
1762
old_prs = new_prs = cs->partition_root_state;
1763
1764
if (cmd == partcmd_invalidate) {
1765
if (is_partition_invalid(cs))
1766
return 0;
1767
1768
/*
1769
* Make the current partition invalid.
1770
*/
1771
if (is_partition_valid(parent))
1772
adding = cpumask_and(tmp->addmask,
1773
xcpus, parent->effective_xcpus);
1774
if (old_prs > 0) {
1775
new_prs = -old_prs;
1776
subparts_delta--;
1777
}
1778
goto write_error;
1779
}
1780
1781
/*
1782
* The parent must be a partition root.
1783
* The new cpumask, if present, or the current cpus_allowed must
1784
* not be empty.
1785
*/
1786
if (!is_partition_valid(parent)) {
1787
return is_partition_invalid(parent)
1788
? PERR_INVPARENT : PERR_NOTPART;
1789
}
1790
if (!newmask && xcpus_empty(cs))
1791
return PERR_CPUSEMPTY;
1792
1793
nocpu = tasks_nocpu_error(parent, cs, xcpus);
1794
1795
if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1796
/*
1797
* Need to call compute_excpus() in case
1798
* exclusive_cpus not set. Sibling conflict should only happen
1799
* if exclusive_cpus isn't set.
1800
*/
1801
xcpus = tmp->delmask;
1802
if (compute_excpus(cs, xcpus))
1803
WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1804
new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1805
1806
/*
1807
* Enabling partition root is not allowed if its
1808
* effective_xcpus is empty.
1809
*/
1810
if (cpumask_empty(xcpus))
1811
return PERR_INVCPUS;
1812
1813
if (prstate_housekeeping_conflict(new_prs, xcpus))
1814
return PERR_HKEEPING;
1815
1816
if (tasks_nocpu_error(parent, cs, xcpus))
1817
return PERR_NOCPUS;
1818
1819
/*
1820
* This function will only be called when all the preliminary
1821
* checks have passed. At this point, the following condition
1822
* should hold.
1823
*
1824
* (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1825
*
1826
* Warn if it is not the case.
1827
*/
1828
cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1829
WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1830
1831
deleting = true;
1832
subparts_delta++;
1833
} else if (cmd == partcmd_disable) {
1834
/*
1835
* May need to add cpus back to parent's effective_cpus
1836
* (and maybe removed from subpartitions_cpus/isolated_cpus)
1837
* for valid partition root. xcpus may contain CPUs that
1838
* shouldn't be removed from the two global cpumasks.
1839
*/
1840
if (is_partition_valid(cs)) {
1841
cpumask_copy(tmp->addmask, cs->effective_xcpus);
1842
adding = true;
1843
subparts_delta--;
1844
}
1845
new_prs = PRS_MEMBER;
1846
} else if (newmask) {
1847
/*
1848
* Empty cpumask is not allowed
1849
*/
1850
if (cpumask_empty(newmask)) {
1851
part_error = PERR_CPUSEMPTY;
1852
goto write_error;
1853
}
1854
1855
/* Check newmask again, whether cpus are available for parent/cs */
1856
nocpu |= tasks_nocpu_error(parent, cs, newmask);
1857
1858
/*
1859
* partcmd_update with newmask:
1860
*
1861
* Compute add/delete mask to/from effective_cpus
1862
*
1863
* For valid partition:
1864
* addmask = exclusive_cpus & ~newmask
1865
* & parent->effective_xcpus
1866
* delmask = newmask & ~exclusive_cpus
1867
* & parent->effective_xcpus
1868
*
1869
* For invalid partition:
1870
* delmask = newmask & parent->effective_xcpus
1871
*/
1872
if (is_partition_invalid(cs)) {
1873
adding = false;
1874
deleting = cpumask_and(tmp->delmask,
1875
newmask, parent->effective_xcpus);
1876
} else {
1877
cpumask_andnot(tmp->addmask, xcpus, newmask);
1878
adding = cpumask_and(tmp->addmask, tmp->addmask,
1879
parent->effective_xcpus);
1880
1881
cpumask_andnot(tmp->delmask, newmask, xcpus);
1882
deleting = cpumask_and(tmp->delmask, tmp->delmask,
1883
parent->effective_xcpus);
1884
}
1885
/*
1886
* The new CPUs to be removed from parent's effective CPUs
1887
* must be present.
1888
*/
1889
if (deleting) {
1890
cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1891
WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1892
}
1893
1894
/*
1895
* Make partition invalid if parent's effective_cpus could
1896
* become empty and there are tasks in the parent.
1897
*/
1898
if (nocpu && (!adding ||
1899
!cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1900
part_error = PERR_NOCPUS;
1901
deleting = false;
1902
adding = cpumask_and(tmp->addmask,
1903
xcpus, parent->effective_xcpus);
1904
}
1905
} else {
1906
/*
1907
* partcmd_update w/o newmask
1908
*
1909
* delmask = effective_xcpus & parent->effective_cpus
1910
*
1911
* This can be called from:
1912
* 1) update_cpumasks_hier()
1913
* 2) cpuset_hotplug_update_tasks()
1914
*
1915
* Check to see if it can be transitioned from valid to
1916
* invalid partition or vice versa.
1917
*
1918
* A partition error happens when parent has tasks and all
1919
* its effective CPUs will have to be distributed out.
1920
*/
1921
if (nocpu) {
1922
part_error = PERR_NOCPUS;
1923
if (is_partition_valid(cs))
1924
adding = cpumask_and(tmp->addmask,
1925
xcpus, parent->effective_xcpus);
1926
} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
1927
cpumask_subset(xcpus, parent->effective_xcpus)) {
1928
struct cgroup_subsys_state *css;
1929
struct cpuset *child;
1930
bool exclusive = true;
1931
1932
/*
1933
* Convert invalid partition to valid has to
1934
* pass the cpu exclusivity test.
1935
*/
1936
rcu_read_lock();
1937
cpuset_for_each_child(child, css, parent) {
1938
if (child == cs)
1939
continue;
1940
if (!cpusets_are_exclusive(cs, child)) {
1941
exclusive = false;
1942
break;
1943
}
1944
}
1945
rcu_read_unlock();
1946
if (exclusive)
1947
deleting = cpumask_and(tmp->delmask,
1948
xcpus, parent->effective_cpus);
1949
else
1950
part_error = PERR_NOTEXCL;
1951
}
1952
}
1953
1954
write_error:
1955
if (part_error)
1956
WRITE_ONCE(cs->prs_err, part_error);
1957
1958
if (cmd == partcmd_update) {
1959
/*
1960
* Check for possible transition between valid and invalid
1961
* partition root.
1962
*/
1963
switch (cs->partition_root_state) {
1964
case PRS_ROOT:
1965
case PRS_ISOLATED:
1966
if (part_error) {
1967
new_prs = -old_prs;
1968
subparts_delta--;
1969
}
1970
break;
1971
case PRS_INVALID_ROOT:
1972
case PRS_INVALID_ISOLATED:
1973
if (!part_error) {
1974
new_prs = -old_prs;
1975
subparts_delta++;
1976
}
1977
break;
1978
}
1979
}
1980
1981
if (!adding && !deleting && (new_prs == old_prs))
1982
return 0;
1983
1984
/*
1985
* Transitioning between invalid to valid or vice versa may require
1986
* changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1987
* validate_change() has already been successfully called and
1988
* CPU lists in cs haven't been updated yet. So defer it to later.
1989
*/
1990
if ((old_prs != new_prs) && (cmd != partcmd_update)) {
1991
int err = update_partition_exclusive_flag(cs, new_prs);
1992
1993
if (err)
1994
return err;
1995
}
1996
1997
/*
1998
* Change the parent's effective_cpus & effective_xcpus (top cpuset
1999
* only).
2000
*
2001
* Newly added CPUs will be removed from effective_cpus and
2002
* newly deleted ones will be added back to effective_cpus.
2003
*/
2004
spin_lock_irq(&callback_lock);
2005
if (old_prs != new_prs) {
2006
cs->partition_root_state = new_prs;
2007
if (new_prs <= 0)
2008
cs->nr_subparts = 0;
2009
}
2010
/*
2011
* Adding to parent's effective_cpus means deletion CPUs from cs
2012
* and vice versa.
2013
*/
2014
if (adding)
2015
isolcpus_updated += partition_xcpus_del(old_prs, parent,
2016
tmp->addmask);
2017
if (deleting)
2018
isolcpus_updated += partition_xcpus_add(new_prs, parent,
2019
tmp->delmask);
2020
2021
if (is_partition_valid(parent)) {
2022
parent->nr_subparts += subparts_delta;
2023
WARN_ON_ONCE(parent->nr_subparts < 0);
2024
}
2025
spin_unlock_irq(&callback_lock);
2026
update_unbound_workqueue_cpumask(isolcpus_updated);
2027
2028
if ((old_prs != new_prs) && (cmd == partcmd_update))
2029
update_partition_exclusive_flag(cs, new_prs);
2030
2031
if (adding || deleting) {
2032
cpuset_update_tasks_cpumask(parent, tmp->addmask);
2033
update_sibling_cpumasks(parent, cs, tmp);
2034
}
2035
2036
/*
2037
* For partcmd_update without newmask, it is being called from
2038
* cpuset_handle_hotplug(). Update the load balance flag and
2039
* scheduling domain accordingly.
2040
*/
2041
if ((cmd == partcmd_update) && !newmask)
2042
update_partition_sd_lb(cs, old_prs);
2043
2044
notify_partition_change(cs, old_prs);
2045
return 0;
2046
}
2047
2048
/**
2049
* compute_partition_effective_cpumask - compute effective_cpus for partition
2050
* @cs: partition root cpuset
2051
* @new_ecpus: previously computed effective_cpus to be updated
2052
*
2053
* Compute the effective_cpus of a partition root by scanning effective_xcpus
2054
* of child partition roots and excluding their effective_xcpus.
2055
*
2056
* This has the side effect of invalidating valid child partition roots,
2057
* if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2058
* or update_cpumasks_hier() where parent and children are modified
2059
* successively, we don't need to call update_parent_effective_cpumask()
2060
* and the child's effective_cpus will be updated in later iterations.
2061
*
2062
* Note that rcu_read_lock() is assumed to be held.
2063
*/
2064
static void compute_partition_effective_cpumask(struct cpuset *cs,
2065
struct cpumask *new_ecpus)
2066
{
2067
struct cgroup_subsys_state *css;
2068
struct cpuset *child;
2069
bool populated = partition_is_populated(cs, NULL);
2070
2071
/*
2072
* Check child partition roots to see if they should be
2073
* invalidated when
2074
* 1) child effective_xcpus not a subset of new
2075
* excluisve_cpus
2076
* 2) All the effective_cpus will be used up and cp
2077
* has tasks
2078
*/
2079
compute_excpus(cs, new_ecpus);
2080
cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2081
2082
rcu_read_lock();
2083
cpuset_for_each_child(child, css, cs) {
2084
if (!is_partition_valid(child))
2085
continue;
2086
2087
/*
2088
* There shouldn't be a remote partition underneath another
2089
* partition root.
2090
*/
2091
WARN_ON_ONCE(is_remote_partition(child));
2092
child->prs_err = 0;
2093
if (!cpumask_subset(child->effective_xcpus,
2094
cs->effective_xcpus))
2095
child->prs_err = PERR_INVCPUS;
2096
else if (populated &&
2097
cpumask_subset(new_ecpus, child->effective_xcpus))
2098
child->prs_err = PERR_NOCPUS;
2099
2100
if (child->prs_err) {
2101
int old_prs = child->partition_root_state;
2102
2103
/*
2104
* Invalidate child partition
2105
*/
2106
spin_lock_irq(&callback_lock);
2107
make_partition_invalid(child);
2108
cs->nr_subparts--;
2109
child->nr_subparts = 0;
2110
spin_unlock_irq(&callback_lock);
2111
notify_partition_change(child, old_prs);
2112
continue;
2113
}
2114
cpumask_andnot(new_ecpus, new_ecpus,
2115
child->effective_xcpus);
2116
}
2117
rcu_read_unlock();
2118
}
2119
2120
/*
2121
* update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2122
* @cs: the cpuset to consider
2123
* @tmp: temp variables for calculating effective_cpus & partition setup
2124
* @force: don't skip any descendant cpusets if set
2125
*
2126
* When configured cpumask is changed, the effective cpumasks of this cpuset
2127
* and all its descendants need to be updated.
2128
*
2129
* On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2130
*
2131
* Called with cpuset_mutex held
2132
*/
2133
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2134
bool force)
2135
{
2136
struct cpuset *cp;
2137
struct cgroup_subsys_state *pos_css;
2138
bool need_rebuild_sched_domains = false;
2139
int old_prs, new_prs;
2140
2141
rcu_read_lock();
2142
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2143
struct cpuset *parent = parent_cs(cp);
2144
bool remote = is_remote_partition(cp);
2145
bool update_parent = false;
2146
2147
old_prs = new_prs = cp->partition_root_state;
2148
2149
/*
2150
* For child remote partition root (!= cs), we need to call
2151
* remote_cpus_update() if effective_xcpus will be changed.
2152
* Otherwise, we can skip the whole subtree.
2153
*
2154
* remote_cpus_update() will reuse tmp->new_cpus only after
2155
* its value is being processed.
2156
*/
2157
if (remote && (cp != cs)) {
2158
compute_excpus(cp, tmp->new_cpus);
2159
if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2160
pos_css = css_rightmost_descendant(pos_css);
2161
continue;
2162
}
2163
rcu_read_unlock();
2164
remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2165
rcu_read_lock();
2166
2167
/* Remote partition may be invalidated */
2168
new_prs = cp->partition_root_state;
2169
remote = (new_prs == old_prs);
2170
}
2171
2172
if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2173
compute_partition_effective_cpumask(cp, tmp->new_cpus);
2174
else
2175
compute_effective_cpumask(tmp->new_cpus, cp, parent);
2176
2177
if (remote)
2178
goto get_css; /* Ready to update cpuset data */
2179
2180
/*
2181
* A partition with no effective_cpus is allowed as long as
2182
* there is no task associated with it. Call
2183
* update_parent_effective_cpumask() to check it.
2184
*/
2185
if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2186
update_parent = true;
2187
goto update_parent_effective;
2188
}
2189
2190
/*
2191
* If it becomes empty, inherit the effective mask of the
2192
* parent, which is guaranteed to have some CPUs unless
2193
* it is a partition root that has explicitly distributed
2194
* out all its CPUs.
2195
*/
2196
if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2197
cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2198
2199
/*
2200
* Skip the whole subtree if
2201
* 1) the cpumask remains the same,
2202
* 2) has no partition root state,
2203
* 3) force flag not set, and
2204
* 4) for v2 load balance state same as its parent.
2205
*/
2206
if (!cp->partition_root_state && !force &&
2207
cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2208
(!cpuset_v2() ||
2209
(is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2210
pos_css = css_rightmost_descendant(pos_css);
2211
continue;
2212
}
2213
2214
update_parent_effective:
2215
/*
2216
* update_parent_effective_cpumask() should have been called
2217
* for cs already in update_cpumask(). We should also call
2218
* cpuset_update_tasks_cpumask() again for tasks in the parent
2219
* cpuset if the parent's effective_cpus changes.
2220
*/
2221
if ((cp != cs) && old_prs) {
2222
switch (parent->partition_root_state) {
2223
case PRS_ROOT:
2224
case PRS_ISOLATED:
2225
update_parent = true;
2226
break;
2227
2228
default:
2229
/*
2230
* When parent is not a partition root or is
2231
* invalid, child partition roots become
2232
* invalid too.
2233
*/
2234
if (is_partition_valid(cp))
2235
new_prs = -cp->partition_root_state;
2236
WRITE_ONCE(cp->prs_err,
2237
is_partition_invalid(parent)
2238
? PERR_INVPARENT : PERR_NOTPART);
2239
break;
2240
}
2241
}
2242
get_css:
2243
if (!css_tryget_online(&cp->css))
2244
continue;
2245
rcu_read_unlock();
2246
2247
if (update_parent) {
2248
update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2249
/*
2250
* The cpuset partition_root_state may become
2251
* invalid. Capture it.
2252
*/
2253
new_prs = cp->partition_root_state;
2254
}
2255
2256
spin_lock_irq(&callback_lock);
2257
cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2258
cp->partition_root_state = new_prs;
2259
if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2260
compute_excpus(cp, cp->effective_xcpus);
2261
2262
/*
2263
* Make sure effective_xcpus is properly set for a valid
2264
* partition root.
2265
*/
2266
if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2267
cpumask_and(cp->effective_xcpus,
2268
cp->cpus_allowed, parent->effective_xcpus);
2269
else if (new_prs < 0)
2270
reset_partition_data(cp);
2271
spin_unlock_irq(&callback_lock);
2272
2273
notify_partition_change(cp, old_prs);
2274
2275
WARN_ON(!is_in_v2_mode() &&
2276
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2277
2278
cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2279
2280
/*
2281
* On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2282
* from parent if current cpuset isn't a valid partition root
2283
* and their load balance states differ.
2284
*/
2285
if (cpuset_v2() && !is_partition_valid(cp) &&
2286
(is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2287
if (is_sched_load_balance(parent))
2288
set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2289
else
2290
clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2291
}
2292
2293
/*
2294
* On legacy hierarchy, if the effective cpumask of any non-
2295
* empty cpuset is changed, we need to rebuild sched domains.
2296
* On default hierarchy, the cpuset needs to be a partition
2297
* root as well.
2298
*/
2299
if (!cpumask_empty(cp->cpus_allowed) &&
2300
is_sched_load_balance(cp) &&
2301
(!cpuset_v2() || is_partition_valid(cp)))
2302
need_rebuild_sched_domains = true;
2303
2304
rcu_read_lock();
2305
css_put(&cp->css);
2306
}
2307
rcu_read_unlock();
2308
2309
if (need_rebuild_sched_domains)
2310
cpuset_force_rebuild();
2311
}
2312
2313
/**
2314
* update_sibling_cpumasks - Update siblings cpumasks
2315
* @parent: Parent cpuset
2316
* @cs: Current cpuset
2317
* @tmp: Temp variables
2318
*/
2319
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2320
struct tmpmasks *tmp)
2321
{
2322
struct cpuset *sibling;
2323
struct cgroup_subsys_state *pos_css;
2324
2325
lockdep_assert_held(&cpuset_mutex);
2326
2327
/*
2328
* Check all its siblings and call update_cpumasks_hier()
2329
* if their effective_cpus will need to be changed.
2330
*
2331
* It is possible a change in parent's effective_cpus
2332
* due to a change in a child partition's effective_xcpus will impact
2333
* its siblings even if they do not inherit parent's effective_cpus
2334
* directly.
2335
*
2336
* The update_cpumasks_hier() function may sleep. So we have to
2337
* release the RCU read lock before calling it.
2338
*/
2339
rcu_read_lock();
2340
cpuset_for_each_child(sibling, pos_css, parent) {
2341
if (sibling == cs)
2342
continue;
2343
if (!is_partition_valid(sibling)) {
2344
compute_effective_cpumask(tmp->new_cpus, sibling,
2345
parent);
2346
if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2347
continue;
2348
} else if (is_remote_partition(sibling)) {
2349
/*
2350
* Change in a sibling cpuset won't affect a remote
2351
* partition root.
2352
*/
2353
continue;
2354
}
2355
2356
if (!css_tryget_online(&sibling->css))
2357
continue;
2358
2359
rcu_read_unlock();
2360
update_cpumasks_hier(sibling, tmp, false);
2361
rcu_read_lock();
2362
css_put(&sibling->css);
2363
}
2364
rcu_read_unlock();
2365
}
2366
2367
static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2368
{
2369
int retval;
2370
2371
retval = cpulist_parse(buf, out_mask);
2372
if (retval < 0)
2373
return retval;
2374
if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2375
return -EINVAL;
2376
2377
return 0;
2378
}
2379
2380
/**
2381
* validate_partition - Validate a cpuset partition configuration
2382
* @cs: The cpuset to validate
2383
* @trialcs: The trial cpuset containing proposed configuration changes
2384
*
2385
* If any validation check fails, the appropriate error code is set in the
2386
* cpuset's prs_err field.
2387
*
2388
* Return: PRS error code (0 if valid, non-zero error code if invalid)
2389
*/
2390
static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2391
{
2392
struct cpuset *parent = parent_cs(cs);
2393
2394
if (cs_is_member(trialcs))
2395
return PERR_NONE;
2396
2397
if (cpumask_empty(trialcs->effective_xcpus))
2398
return PERR_INVCPUS;
2399
2400
if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2401
trialcs->effective_xcpus))
2402
return PERR_HKEEPING;
2403
2404
if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2405
return PERR_NOCPUS;
2406
2407
return PERR_NONE;
2408
}
2409
2410
static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2411
struct tmpmasks *tmp)
2412
{
2413
int retval;
2414
struct cpuset *parent = parent_cs(cs);
2415
2416
retval = validate_change(cs, trialcs);
2417
2418
if ((retval == -EINVAL) && cpuset_v2()) {
2419
struct cgroup_subsys_state *css;
2420
struct cpuset *cp;
2421
2422
/*
2423
* The -EINVAL error code indicates that partition sibling
2424
* CPU exclusivity rule has been violated. We still allow
2425
* the cpumask change to proceed while invalidating the
2426
* partition. However, any conflicting sibling partitions
2427
* have to be marked as invalid too.
2428
*/
2429
trialcs->prs_err = PERR_NOTEXCL;
2430
rcu_read_lock();
2431
cpuset_for_each_child(cp, css, parent) {
2432
struct cpumask *xcpus = user_xcpus(trialcs);
2433
2434
if (is_partition_valid(cp) &&
2435
cpumask_intersects(xcpus, cp->effective_xcpus)) {
2436
rcu_read_unlock();
2437
update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2438
rcu_read_lock();
2439
}
2440
}
2441
rcu_read_unlock();
2442
retval = 0;
2443
}
2444
return retval;
2445
}
2446
2447
/**
2448
* partition_cpus_change - Handle partition state changes due to CPU mask updates
2449
* @cs: The target cpuset being modified
2450
* @trialcs: The trial cpuset containing proposed configuration changes
2451
* @tmp: Temporary masks for intermediate calculations
2452
*
2453
* This function handles partition state transitions triggered by CPU mask changes.
2454
* CPU modifications may cause a partition to be disabled or require state updates.
2455
*/
2456
static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2457
struct tmpmasks *tmp)
2458
{
2459
enum prs_errcode prs_err;
2460
2461
if (cs_is_member(cs))
2462
return;
2463
2464
prs_err = validate_partition(cs, trialcs);
2465
if (prs_err)
2466
trialcs->prs_err = cs->prs_err = prs_err;
2467
2468
if (is_remote_partition(cs)) {
2469
if (trialcs->prs_err)
2470
remote_partition_disable(cs, tmp);
2471
else
2472
remote_cpus_update(cs, trialcs->exclusive_cpus,
2473
trialcs->effective_xcpus, tmp);
2474
} else {
2475
if (trialcs->prs_err)
2476
update_parent_effective_cpumask(cs, partcmd_invalidate,
2477
NULL, tmp);
2478
else
2479
update_parent_effective_cpumask(cs, partcmd_update,
2480
trialcs->effective_xcpus, tmp);
2481
}
2482
}
2483
2484
/**
2485
* update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2486
* @cs: the cpuset to consider
2487
* @trialcs: trial cpuset
2488
* @buf: buffer of cpu numbers written to this cpuset
2489
*/
2490
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2491
const char *buf)
2492
{
2493
int retval;
2494
struct tmpmasks tmp;
2495
bool force = false;
2496
int old_prs = cs->partition_root_state;
2497
2498
retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2499
if (retval < 0)
2500
return retval;
2501
2502
/* Nothing to do if the cpus didn't change */
2503
if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2504
return 0;
2505
2506
if (alloc_tmpmasks(&tmp))
2507
return -ENOMEM;
2508
2509
compute_trialcs_excpus(trialcs, cs);
2510
trialcs->prs_err = PERR_NONE;
2511
2512
retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2513
if (retval < 0)
2514
goto out_free;
2515
2516
/*
2517
* Check all the descendants in update_cpumasks_hier() if
2518
* effective_xcpus is to be changed.
2519
*/
2520
force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2521
2522
partition_cpus_change(cs, trialcs, &tmp);
2523
2524
spin_lock_irq(&callback_lock);
2525
cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2526
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2527
if ((old_prs > 0) && !is_partition_valid(cs))
2528
reset_partition_data(cs);
2529
spin_unlock_irq(&callback_lock);
2530
2531
/* effective_cpus/effective_xcpus will be updated here */
2532
update_cpumasks_hier(cs, &tmp, force);
2533
2534
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2535
if (cs->partition_root_state)
2536
update_partition_sd_lb(cs, old_prs);
2537
out_free:
2538
free_tmpmasks(&tmp);
2539
return retval;
2540
}
2541
2542
/**
2543
* update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2544
* @cs: the cpuset to consider
2545
* @trialcs: trial cpuset
2546
* @buf: buffer of cpu numbers written to this cpuset
2547
*
2548
* The tasks' cpumask will be updated if cs is a valid partition root.
2549
*/
2550
static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2551
const char *buf)
2552
{
2553
int retval;
2554
struct tmpmasks tmp;
2555
bool force = false;
2556
int old_prs = cs->partition_root_state;
2557
2558
retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2559
if (retval < 0)
2560
return retval;
2561
2562
/* Nothing to do if the CPUs didn't change */
2563
if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2564
return 0;
2565
2566
/*
2567
* Reject the change if there is exclusive CPUs conflict with
2568
* the siblings.
2569
*/
2570
if (compute_trialcs_excpus(trialcs, cs))
2571
return -EINVAL;
2572
2573
/*
2574
* Check all the descendants in update_cpumasks_hier() if
2575
* effective_xcpus is to be changed.
2576
*/
2577
force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2578
2579
retval = validate_change(cs, trialcs);
2580
if (retval)
2581
return retval;
2582
2583
if (alloc_tmpmasks(&tmp))
2584
return -ENOMEM;
2585
2586
trialcs->prs_err = PERR_NONE;
2587
partition_cpus_change(cs, trialcs, &tmp);
2588
2589
spin_lock_irq(&callback_lock);
2590
cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2591
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2592
if ((old_prs > 0) && !is_partition_valid(cs))
2593
reset_partition_data(cs);
2594
spin_unlock_irq(&callback_lock);
2595
2596
/*
2597
* Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2598
* of the subtree when it is a valid partition root or effective_xcpus
2599
* is updated.
2600
*/
2601
if (is_partition_valid(cs) || force)
2602
update_cpumasks_hier(cs, &tmp, force);
2603
2604
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2605
if (cs->partition_root_state)
2606
update_partition_sd_lb(cs, old_prs);
2607
2608
free_tmpmasks(&tmp);
2609
return 0;
2610
}
2611
2612
/*
2613
* Migrate memory region from one set of nodes to another. This is
2614
* performed asynchronously as it can be called from process migration path
2615
* holding locks involved in process management. All mm migrations are
2616
* performed in the queued order and can be waited for by flushing
2617
* cpuset_migrate_mm_wq.
2618
*/
2619
2620
struct cpuset_migrate_mm_work {
2621
struct work_struct work;
2622
struct mm_struct *mm;
2623
nodemask_t from;
2624
nodemask_t to;
2625
};
2626
2627
static void cpuset_migrate_mm_workfn(struct work_struct *work)
2628
{
2629
struct cpuset_migrate_mm_work *mwork =
2630
container_of(work, struct cpuset_migrate_mm_work, work);
2631
2632
/* on a wq worker, no need to worry about %current's mems_allowed */
2633
do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2634
mmput(mwork->mm);
2635
kfree(mwork);
2636
}
2637
2638
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2639
const nodemask_t *to)
2640
{
2641
struct cpuset_migrate_mm_work *mwork;
2642
2643
if (nodes_equal(*from, *to)) {
2644
mmput(mm);
2645
return;
2646
}
2647
2648
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2649
if (mwork) {
2650
mwork->mm = mm;
2651
mwork->from = *from;
2652
mwork->to = *to;
2653
INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2654
queue_work(cpuset_migrate_mm_wq, &mwork->work);
2655
} else {
2656
mmput(mm);
2657
}
2658
}
2659
2660
static void flush_migrate_mm_task_workfn(struct callback_head *head)
2661
{
2662
flush_workqueue(cpuset_migrate_mm_wq);
2663
kfree(head);
2664
}
2665
2666
static void schedule_flush_migrate_mm(void)
2667
{
2668
struct callback_head *flush_cb;
2669
2670
flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2671
if (!flush_cb)
2672
return;
2673
2674
init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2675
2676
if (task_work_add(current, flush_cb, TWA_RESUME))
2677
kfree(flush_cb);
2678
}
2679
2680
/*
2681
* cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2682
* @tsk: the task to change
2683
* @newmems: new nodes that the task will be set
2684
*
2685
* We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2686
* and rebind an eventual tasks' mempolicy. If the task is allocating in
2687
* parallel, it might temporarily see an empty intersection, which results in
2688
* a seqlock check and retry before OOM or allocation failure.
2689
*/
2690
static void cpuset_change_task_nodemask(struct task_struct *tsk,
2691
nodemask_t *newmems)
2692
{
2693
task_lock(tsk);
2694
2695
local_irq_disable();
2696
write_seqcount_begin(&tsk->mems_allowed_seq);
2697
2698
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2699
mpol_rebind_task(tsk, newmems);
2700
tsk->mems_allowed = *newmems;
2701
2702
write_seqcount_end(&tsk->mems_allowed_seq);
2703
local_irq_enable();
2704
2705
task_unlock(tsk);
2706
}
2707
2708
static void *cpuset_being_rebound;
2709
2710
/**
2711
* cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2712
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2713
*
2714
* Iterate through each task of @cs updating its mems_allowed to the
2715
* effective cpuset's. As this function is called with cpuset_mutex held,
2716
* cpuset membership stays stable.
2717
*/
2718
void cpuset_update_tasks_nodemask(struct cpuset *cs)
2719
{
2720
static nodemask_t newmems; /* protected by cpuset_mutex */
2721
struct css_task_iter it;
2722
struct task_struct *task;
2723
2724
cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2725
2726
guarantee_online_mems(cs, &newmems);
2727
2728
/*
2729
* The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2730
* take while holding tasklist_lock. Forks can happen - the
2731
* mpol_dup() cpuset_being_rebound check will catch such forks,
2732
* and rebind their vma mempolicies too. Because we still hold
2733
* the global cpuset_mutex, we know that no other rebind effort
2734
* will be contending for the global variable cpuset_being_rebound.
2735
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
2736
* is idempotent. Also migrate pages in each mm to new nodes.
2737
*/
2738
css_task_iter_start(&cs->css, 0, &it);
2739
while ((task = css_task_iter_next(&it))) {
2740
struct mm_struct *mm;
2741
bool migrate;
2742
2743
cpuset_change_task_nodemask(task, &newmems);
2744
2745
mm = get_task_mm(task);
2746
if (!mm)
2747
continue;
2748
2749
migrate = is_memory_migrate(cs);
2750
2751
mpol_rebind_mm(mm, &cs->mems_allowed);
2752
if (migrate)
2753
cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2754
else
2755
mmput(mm);
2756
}
2757
css_task_iter_end(&it);
2758
2759
/*
2760
* All the tasks' nodemasks have been updated, update
2761
* cs->old_mems_allowed.
2762
*/
2763
cs->old_mems_allowed = newmems;
2764
2765
/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2766
cpuset_being_rebound = NULL;
2767
}
2768
2769
/*
2770
* update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2771
* @cs: the cpuset to consider
2772
* @new_mems: a temp variable for calculating new effective_mems
2773
*
2774
* When configured nodemask is changed, the effective nodemasks of this cpuset
2775
* and all its descendants need to be updated.
2776
*
2777
* On legacy hierarchy, effective_mems will be the same with mems_allowed.
2778
*
2779
* Called with cpuset_mutex held
2780
*/
2781
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2782
{
2783
struct cpuset *cp;
2784
struct cgroup_subsys_state *pos_css;
2785
2786
rcu_read_lock();
2787
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2788
struct cpuset *parent = parent_cs(cp);
2789
2790
nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2791
2792
/*
2793
* If it becomes empty, inherit the effective mask of the
2794
* parent, which is guaranteed to have some MEMs.
2795
*/
2796
if (is_in_v2_mode() && nodes_empty(*new_mems))
2797
*new_mems = parent->effective_mems;
2798
2799
/* Skip the whole subtree if the nodemask remains the same. */
2800
if (nodes_equal(*new_mems, cp->effective_mems)) {
2801
pos_css = css_rightmost_descendant(pos_css);
2802
continue;
2803
}
2804
2805
if (!css_tryget_online(&cp->css))
2806
continue;
2807
rcu_read_unlock();
2808
2809
spin_lock_irq(&callback_lock);
2810
cp->effective_mems = *new_mems;
2811
spin_unlock_irq(&callback_lock);
2812
2813
WARN_ON(!is_in_v2_mode() &&
2814
!nodes_equal(cp->mems_allowed, cp->effective_mems));
2815
2816
cpuset_update_tasks_nodemask(cp);
2817
2818
rcu_read_lock();
2819
css_put(&cp->css);
2820
}
2821
rcu_read_unlock();
2822
}
2823
2824
/*
2825
* Handle user request to change the 'mems' memory placement
2826
* of a cpuset. Needs to validate the request, update the
2827
* cpusets mems_allowed, and for each task in the cpuset,
2828
* update mems_allowed and rebind task's mempolicy and any vma
2829
* mempolicies and if the cpuset is marked 'memory_migrate',
2830
* migrate the tasks pages to the new memory.
2831
*
2832
* Call with cpuset_mutex held. May take callback_lock during call.
2833
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2834
* lock each such tasks mm->mmap_lock, scan its vma's and rebind
2835
* their mempolicies to the cpusets new mems_allowed.
2836
*/
2837
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2838
const char *buf)
2839
{
2840
int retval;
2841
2842
/*
2843
* An empty mems_allowed is ok iff there are no tasks in the cpuset.
2844
* The validate_change() call ensures that cpusets with tasks have memory.
2845
*/
2846
retval = nodelist_parse(buf, trialcs->mems_allowed);
2847
if (retval < 0)
2848
goto done;
2849
2850
if (!nodes_subset(trialcs->mems_allowed,
2851
top_cpuset.mems_allowed)) {
2852
retval = -EINVAL;
2853
goto done;
2854
}
2855
2856
if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2857
retval = 0; /* Too easy - nothing to do */
2858
goto done;
2859
}
2860
retval = validate_change(cs, trialcs);
2861
if (retval < 0)
2862
goto done;
2863
2864
check_insane_mems_config(&trialcs->mems_allowed);
2865
2866
spin_lock_irq(&callback_lock);
2867
cs->mems_allowed = trialcs->mems_allowed;
2868
spin_unlock_irq(&callback_lock);
2869
2870
/* use trialcs->mems_allowed as a temp variable */
2871
update_nodemasks_hier(cs, &trialcs->mems_allowed);
2872
done:
2873
return retval;
2874
}
2875
2876
bool current_cpuset_is_being_rebound(void)
2877
{
2878
bool ret;
2879
2880
rcu_read_lock();
2881
ret = task_cs(current) == cpuset_being_rebound;
2882
rcu_read_unlock();
2883
2884
return ret;
2885
}
2886
2887
/*
2888
* cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2889
* bit: the bit to update (see cpuset_flagbits_t)
2890
* cs: the cpuset to update
2891
* turning_on: whether the flag is being set or cleared
2892
*
2893
* Call with cpuset_mutex held.
2894
*/
2895
2896
int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2897
int turning_on)
2898
{
2899
struct cpuset *trialcs;
2900
int balance_flag_changed;
2901
int spread_flag_changed;
2902
int err;
2903
2904
trialcs = dup_or_alloc_cpuset(cs);
2905
if (!trialcs)
2906
return -ENOMEM;
2907
2908
if (turning_on)
2909
set_bit(bit, &trialcs->flags);
2910
else
2911
clear_bit(bit, &trialcs->flags);
2912
2913
err = validate_change(cs, trialcs);
2914
if (err < 0)
2915
goto out;
2916
2917
balance_flag_changed = (is_sched_load_balance(cs) !=
2918
is_sched_load_balance(trialcs));
2919
2920
spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2921
|| (is_spread_page(cs) != is_spread_page(trialcs)));
2922
2923
spin_lock_irq(&callback_lock);
2924
cs->flags = trialcs->flags;
2925
spin_unlock_irq(&callback_lock);
2926
2927
if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2928
if (cpuset_v2())
2929
cpuset_force_rebuild();
2930
else
2931
rebuild_sched_domains_locked();
2932
}
2933
2934
if (spread_flag_changed)
2935
cpuset1_update_tasks_flags(cs);
2936
out:
2937
free_cpuset(trialcs);
2938
return err;
2939
}
2940
2941
/**
2942
* update_prstate - update partition_root_state
2943
* @cs: the cpuset to update
2944
* @new_prs: new partition root state
2945
* Return: 0 if successful, != 0 if error
2946
*
2947
* Call with cpuset_mutex held.
2948
*/
2949
static int update_prstate(struct cpuset *cs, int new_prs)
2950
{
2951
int err = PERR_NONE, old_prs = cs->partition_root_state;
2952
struct cpuset *parent = parent_cs(cs);
2953
struct tmpmasks tmpmask;
2954
bool isolcpus_updated = false;
2955
2956
if (old_prs == new_prs)
2957
return 0;
2958
2959
/*
2960
* Treat a previously invalid partition root as if it is a "member".
2961
*/
2962
if (new_prs && is_partition_invalid(cs))
2963
old_prs = PRS_MEMBER;
2964
2965
if (alloc_tmpmasks(&tmpmask))
2966
return -ENOMEM;
2967
2968
err = update_partition_exclusive_flag(cs, new_prs);
2969
if (err)
2970
goto out;
2971
2972
if (!old_prs) {
2973
/*
2974
* cpus_allowed and exclusive_cpus cannot be both empty.
2975
*/
2976
if (xcpus_empty(cs)) {
2977
err = PERR_CPUSEMPTY;
2978
goto out;
2979
}
2980
2981
/*
2982
* We don't support the creation of a new local partition with
2983
* a remote partition underneath it. This unsupported
2984
* setting can happen only if parent is the top_cpuset because
2985
* a remote partition cannot be created underneath an existing
2986
* local or remote partition.
2987
*/
2988
if ((parent == &top_cpuset) &&
2989
cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
2990
err = PERR_REMOTE;
2991
goto out;
2992
}
2993
2994
/*
2995
* If parent is valid partition, enable local partiion.
2996
* Otherwise, enable a remote partition.
2997
*/
2998
if (is_partition_valid(parent)) {
2999
enum partition_cmd cmd = (new_prs == PRS_ROOT)
3000
? partcmd_enable : partcmd_enablei;
3001
3002
err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3003
} else {
3004
err = remote_partition_enable(cs, new_prs, &tmpmask);
3005
}
3006
} else if (old_prs && new_prs) {
3007
/*
3008
* A change in load balance state only, no change in cpumasks.
3009
* Need to update isolated_cpus.
3010
*/
3011
isolcpus_updated = true;
3012
} else {
3013
/*
3014
* Switching back to member is always allowed even if it
3015
* disables child partitions.
3016
*/
3017
if (is_remote_partition(cs))
3018
remote_partition_disable(cs, &tmpmask);
3019
else
3020
update_parent_effective_cpumask(cs, partcmd_disable,
3021
NULL, &tmpmask);
3022
3023
/*
3024
* Invalidation of child partitions will be done in
3025
* update_cpumasks_hier().
3026
*/
3027
}
3028
out:
3029
/*
3030
* Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3031
* happens.
3032
*/
3033
if (err) {
3034
new_prs = -new_prs;
3035
update_partition_exclusive_flag(cs, new_prs);
3036
}
3037
3038
spin_lock_irq(&callback_lock);
3039
cs->partition_root_state = new_prs;
3040
WRITE_ONCE(cs->prs_err, err);
3041
if (!is_partition_valid(cs))
3042
reset_partition_data(cs);
3043
else if (isolcpus_updated)
3044
isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3045
spin_unlock_irq(&callback_lock);
3046
update_unbound_workqueue_cpumask(isolcpus_updated);
3047
3048
/* Force update if switching back to member & update effective_xcpus */
3049
update_cpumasks_hier(cs, &tmpmask, !new_prs);
3050
3051
/* A newly created partition must have effective_xcpus set */
3052
WARN_ON_ONCE(!old_prs && (new_prs > 0)
3053
&& cpumask_empty(cs->effective_xcpus));
3054
3055
/* Update sched domains and load balance flag */
3056
update_partition_sd_lb(cs, old_prs);
3057
3058
notify_partition_change(cs, old_prs);
3059
if (force_sd_rebuild)
3060
rebuild_sched_domains_locked();
3061
free_tmpmasks(&tmpmask);
3062
return 0;
3063
}
3064
3065
static struct cpuset *cpuset_attach_old_cs;
3066
3067
/*
3068
* Check to see if a cpuset can accept a new task
3069
* For v1, cpus_allowed and mems_allowed can't be empty.
3070
* For v2, effective_cpus can't be empty.
3071
* Note that in v1, effective_cpus = cpus_allowed.
3072
*/
3073
static int cpuset_can_attach_check(struct cpuset *cs)
3074
{
3075
if (cpumask_empty(cs->effective_cpus) ||
3076
(!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3077
return -ENOSPC;
3078
return 0;
3079
}
3080
3081
static void reset_migrate_dl_data(struct cpuset *cs)
3082
{
3083
cs->nr_migrate_dl_tasks = 0;
3084
cs->sum_migrate_dl_bw = 0;
3085
}
3086
3087
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3088
static int cpuset_can_attach(struct cgroup_taskset *tset)
3089
{
3090
struct cgroup_subsys_state *css;
3091
struct cpuset *cs, *oldcs;
3092
struct task_struct *task;
3093
bool cpus_updated, mems_updated;
3094
int ret;
3095
3096
/* used later by cpuset_attach() */
3097
cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3098
oldcs = cpuset_attach_old_cs;
3099
cs = css_cs(css);
3100
3101
mutex_lock(&cpuset_mutex);
3102
3103
/* Check to see if task is allowed in the cpuset */
3104
ret = cpuset_can_attach_check(cs);
3105
if (ret)
3106
goto out_unlock;
3107
3108
cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3109
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3110
3111
cgroup_taskset_for_each(task, css, tset) {
3112
ret = task_can_attach(task);
3113
if (ret)
3114
goto out_unlock;
3115
3116
/*
3117
* Skip rights over task check in v2 when nothing changes,
3118
* migration permission derives from hierarchy ownership in
3119
* cgroup_procs_write_permission()).
3120
*/
3121
if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3122
ret = security_task_setscheduler(task);
3123
if (ret)
3124
goto out_unlock;
3125
}
3126
3127
if (dl_task(task)) {
3128
cs->nr_migrate_dl_tasks++;
3129
cs->sum_migrate_dl_bw += task->dl.dl_bw;
3130
}
3131
}
3132
3133
if (!cs->nr_migrate_dl_tasks)
3134
goto out_success;
3135
3136
if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3137
int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3138
3139
if (unlikely(cpu >= nr_cpu_ids)) {
3140
reset_migrate_dl_data(cs);
3141
ret = -EINVAL;
3142
goto out_unlock;
3143
}
3144
3145
ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3146
if (ret) {
3147
reset_migrate_dl_data(cs);
3148
goto out_unlock;
3149
}
3150
}
3151
3152
out_success:
3153
/*
3154
* Mark attach is in progress. This makes validate_change() fail
3155
* changes which zero cpus/mems_allowed.
3156
*/
3157
cs->attach_in_progress++;
3158
out_unlock:
3159
mutex_unlock(&cpuset_mutex);
3160
return ret;
3161
}
3162
3163
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3164
{
3165
struct cgroup_subsys_state *css;
3166
struct cpuset *cs;
3167
3168
cgroup_taskset_first(tset, &css);
3169
cs = css_cs(css);
3170
3171
mutex_lock(&cpuset_mutex);
3172
dec_attach_in_progress_locked(cs);
3173
3174
if (cs->nr_migrate_dl_tasks) {
3175
int cpu = cpumask_any(cs->effective_cpus);
3176
3177
dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3178
reset_migrate_dl_data(cs);
3179
}
3180
3181
mutex_unlock(&cpuset_mutex);
3182
}
3183
3184
/*
3185
* Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3186
* but we can't allocate it dynamically there. Define it global and
3187
* allocate from cpuset_init().
3188
*/
3189
static cpumask_var_t cpus_attach;
3190
static nodemask_t cpuset_attach_nodemask_to;
3191
3192
static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3193
{
3194
lockdep_assert_held(&cpuset_mutex);
3195
3196
if (cs != &top_cpuset)
3197
guarantee_active_cpus(task, cpus_attach);
3198
else
3199
cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3200
subpartitions_cpus);
3201
/*
3202
* can_attach beforehand should guarantee that this doesn't
3203
* fail. TODO: have a better way to handle failure here
3204
*/
3205
WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3206
3207
cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3208
cpuset1_update_task_spread_flags(cs, task);
3209
}
3210
3211
static void cpuset_attach(struct cgroup_taskset *tset)
3212
{
3213
struct task_struct *task;
3214
struct task_struct *leader;
3215
struct cgroup_subsys_state *css;
3216
struct cpuset *cs;
3217
struct cpuset *oldcs = cpuset_attach_old_cs;
3218
bool cpus_updated, mems_updated;
3219
bool queue_task_work = false;
3220
3221
cgroup_taskset_first(tset, &css);
3222
cs = css_cs(css);
3223
3224
lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
3225
mutex_lock(&cpuset_mutex);
3226
cpus_updated = !cpumask_equal(cs->effective_cpus,
3227
oldcs->effective_cpus);
3228
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3229
3230
/*
3231
* In the default hierarchy, enabling cpuset in the child cgroups
3232
* will trigger a number of cpuset_attach() calls with no change
3233
* in effective cpus and mems. In that case, we can optimize out
3234
* by skipping the task iteration and update.
3235
*/
3236
if (cpuset_v2() && !cpus_updated && !mems_updated) {
3237
cpuset_attach_nodemask_to = cs->effective_mems;
3238
goto out;
3239
}
3240
3241
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3242
3243
cgroup_taskset_for_each(task, css, tset)
3244
cpuset_attach_task(cs, task);
3245
3246
/*
3247
* Change mm for all threadgroup leaders. This is expensive and may
3248
* sleep and should be moved outside migration path proper. Skip it
3249
* if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3250
* not set.
3251
*/
3252
cpuset_attach_nodemask_to = cs->effective_mems;
3253
if (!is_memory_migrate(cs) && !mems_updated)
3254
goto out;
3255
3256
cgroup_taskset_for_each_leader(leader, css, tset) {
3257
struct mm_struct *mm = get_task_mm(leader);
3258
3259
if (mm) {
3260
mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3261
3262
/*
3263
* old_mems_allowed is the same with mems_allowed
3264
* here, except if this task is being moved
3265
* automatically due to hotplug. In that case
3266
* @mems_allowed has been updated and is empty, so
3267
* @old_mems_allowed is the right nodesets that we
3268
* migrate mm from.
3269
*/
3270
if (is_memory_migrate(cs)) {
3271
cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3272
&cpuset_attach_nodemask_to);
3273
queue_task_work = true;
3274
} else
3275
mmput(mm);
3276
}
3277
}
3278
3279
out:
3280
if (queue_task_work)
3281
schedule_flush_migrate_mm();
3282
cs->old_mems_allowed = cpuset_attach_nodemask_to;
3283
3284
if (cs->nr_migrate_dl_tasks) {
3285
cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3286
oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3287
reset_migrate_dl_data(cs);
3288
}
3289
3290
dec_attach_in_progress_locked(cs);
3291
3292
mutex_unlock(&cpuset_mutex);
3293
}
3294
3295
/*
3296
* Common handling for a write to a "cpus" or "mems" file.
3297
*/
3298
ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3299
char *buf, size_t nbytes, loff_t off)
3300
{
3301
struct cpuset *cs = css_cs(of_css(of));
3302
struct cpuset *trialcs;
3303
int retval = -ENODEV;
3304
3305
/* root is read-only */
3306
if (cs == &top_cpuset)
3307
return -EACCES;
3308
3309
buf = strstrip(buf);
3310
cpuset_full_lock();
3311
if (!is_cpuset_online(cs))
3312
goto out_unlock;
3313
3314
trialcs = dup_or_alloc_cpuset(cs);
3315
if (!trialcs) {
3316
retval = -ENOMEM;
3317
goto out_unlock;
3318
}
3319
3320
switch (of_cft(of)->private) {
3321
case FILE_CPULIST:
3322
retval = update_cpumask(cs, trialcs, buf);
3323
break;
3324
case FILE_EXCLUSIVE_CPULIST:
3325
retval = update_exclusive_cpumask(cs, trialcs, buf);
3326
break;
3327
case FILE_MEMLIST:
3328
retval = update_nodemask(cs, trialcs, buf);
3329
break;
3330
default:
3331
retval = -EINVAL;
3332
break;
3333
}
3334
3335
free_cpuset(trialcs);
3336
if (force_sd_rebuild)
3337
rebuild_sched_domains_locked();
3338
out_unlock:
3339
cpuset_full_unlock();
3340
if (of_cft(of)->private == FILE_MEMLIST)
3341
schedule_flush_migrate_mm();
3342
return retval ?: nbytes;
3343
}
3344
3345
/*
3346
* These ascii lists should be read in a single call, by using a user
3347
* buffer large enough to hold the entire map. If read in smaller
3348
* chunks, there is no guarantee of atomicity. Since the display format
3349
* used, list of ranges of sequential numbers, is variable length,
3350
* and since these maps can change value dynamically, one could read
3351
* gibberish by doing partial reads while a list was changing.
3352
*/
3353
int cpuset_common_seq_show(struct seq_file *sf, void *v)
3354
{
3355
struct cpuset *cs = css_cs(seq_css(sf));
3356
cpuset_filetype_t type = seq_cft(sf)->private;
3357
int ret = 0;
3358
3359
spin_lock_irq(&callback_lock);
3360
3361
switch (type) {
3362
case FILE_CPULIST:
3363
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3364
break;
3365
case FILE_MEMLIST:
3366
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3367
break;
3368
case FILE_EFFECTIVE_CPULIST:
3369
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3370
break;
3371
case FILE_EFFECTIVE_MEMLIST:
3372
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3373
break;
3374
case FILE_EXCLUSIVE_CPULIST:
3375
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3376
break;
3377
case FILE_EFFECTIVE_XCPULIST:
3378
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3379
break;
3380
case FILE_SUBPARTS_CPULIST:
3381
seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3382
break;
3383
case FILE_ISOLATED_CPULIST:
3384
seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3385
break;
3386
default:
3387
ret = -EINVAL;
3388
}
3389
3390
spin_unlock_irq(&callback_lock);
3391
return ret;
3392
}
3393
3394
static int cpuset_partition_show(struct seq_file *seq, void *v)
3395
{
3396
struct cpuset *cs = css_cs(seq_css(seq));
3397
const char *err, *type = NULL;
3398
3399
switch (cs->partition_root_state) {
3400
case PRS_ROOT:
3401
seq_puts(seq, "root\n");
3402
break;
3403
case PRS_ISOLATED:
3404
seq_puts(seq, "isolated\n");
3405
break;
3406
case PRS_MEMBER:
3407
seq_puts(seq, "member\n");
3408
break;
3409
case PRS_INVALID_ROOT:
3410
type = "root";
3411
fallthrough;
3412
case PRS_INVALID_ISOLATED:
3413
if (!type)
3414
type = "isolated";
3415
err = perr_strings[READ_ONCE(cs->prs_err)];
3416
if (err)
3417
seq_printf(seq, "%s invalid (%s)\n", type, err);
3418
else
3419
seq_printf(seq, "%s invalid\n", type);
3420
break;
3421
}
3422
return 0;
3423
}
3424
3425
static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3426
size_t nbytes, loff_t off)
3427
{
3428
struct cpuset *cs = css_cs(of_css(of));
3429
int val;
3430
int retval = -ENODEV;
3431
3432
buf = strstrip(buf);
3433
3434
if (!strcmp(buf, "root"))
3435
val = PRS_ROOT;
3436
else if (!strcmp(buf, "member"))
3437
val = PRS_MEMBER;
3438
else if (!strcmp(buf, "isolated"))
3439
val = PRS_ISOLATED;
3440
else
3441
return -EINVAL;
3442
3443
cpuset_full_lock();
3444
if (is_cpuset_online(cs))
3445
retval = update_prstate(cs, val);
3446
cpuset_full_unlock();
3447
return retval ?: nbytes;
3448
}
3449
3450
/*
3451
* This is currently a minimal set for the default hierarchy. It can be
3452
* expanded later on by migrating more features and control files from v1.
3453
*/
3454
static struct cftype dfl_files[] = {
3455
{
3456
.name = "cpus",
3457
.seq_show = cpuset_common_seq_show,
3458
.write = cpuset_write_resmask,
3459
.max_write_len = (100U + 6 * NR_CPUS),
3460
.private = FILE_CPULIST,
3461
.flags = CFTYPE_NOT_ON_ROOT,
3462
},
3463
3464
{
3465
.name = "mems",
3466
.seq_show = cpuset_common_seq_show,
3467
.write = cpuset_write_resmask,
3468
.max_write_len = (100U + 6 * MAX_NUMNODES),
3469
.private = FILE_MEMLIST,
3470
.flags = CFTYPE_NOT_ON_ROOT,
3471
},
3472
3473
{
3474
.name = "cpus.effective",
3475
.seq_show = cpuset_common_seq_show,
3476
.private = FILE_EFFECTIVE_CPULIST,
3477
},
3478
3479
{
3480
.name = "mems.effective",
3481
.seq_show = cpuset_common_seq_show,
3482
.private = FILE_EFFECTIVE_MEMLIST,
3483
},
3484
3485
{
3486
.name = "cpus.partition",
3487
.seq_show = cpuset_partition_show,
3488
.write = cpuset_partition_write,
3489
.private = FILE_PARTITION_ROOT,
3490
.flags = CFTYPE_NOT_ON_ROOT,
3491
.file_offset = offsetof(struct cpuset, partition_file),
3492
},
3493
3494
{
3495
.name = "cpus.exclusive",
3496
.seq_show = cpuset_common_seq_show,
3497
.write = cpuset_write_resmask,
3498
.max_write_len = (100U + 6 * NR_CPUS),
3499
.private = FILE_EXCLUSIVE_CPULIST,
3500
.flags = CFTYPE_NOT_ON_ROOT,
3501
},
3502
3503
{
3504
.name = "cpus.exclusive.effective",
3505
.seq_show = cpuset_common_seq_show,
3506
.private = FILE_EFFECTIVE_XCPULIST,
3507
.flags = CFTYPE_NOT_ON_ROOT,
3508
},
3509
3510
{
3511
.name = "cpus.subpartitions",
3512
.seq_show = cpuset_common_seq_show,
3513
.private = FILE_SUBPARTS_CPULIST,
3514
.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3515
},
3516
3517
{
3518
.name = "cpus.isolated",
3519
.seq_show = cpuset_common_seq_show,
3520
.private = FILE_ISOLATED_CPULIST,
3521
.flags = CFTYPE_ONLY_ON_ROOT,
3522
},
3523
3524
{ } /* terminate */
3525
};
3526
3527
3528
/**
3529
* cpuset_css_alloc - Allocate a cpuset css
3530
* @parent_css: Parent css of the control group that the new cpuset will be
3531
* part of
3532
* Return: cpuset css on success, -ENOMEM on failure.
3533
*
3534
* Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3535
* top cpuset css otherwise.
3536
*/
3537
static struct cgroup_subsys_state *
3538
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3539
{
3540
struct cpuset *cs;
3541
3542
if (!parent_css)
3543
return &top_cpuset.css;
3544
3545
cs = dup_or_alloc_cpuset(NULL);
3546
if (!cs)
3547
return ERR_PTR(-ENOMEM);
3548
3549
__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3550
fmeter_init(&cs->fmeter);
3551
cs->relax_domain_level = -1;
3552
INIT_LIST_HEAD(&cs->remote_sibling);
3553
3554
/* Set CS_MEMORY_MIGRATE for default hierarchy */
3555
if (cpuset_v2())
3556
__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3557
3558
return &cs->css;
3559
}
3560
3561
static int cpuset_css_online(struct cgroup_subsys_state *css)
3562
{
3563
struct cpuset *cs = css_cs(css);
3564
struct cpuset *parent = parent_cs(cs);
3565
struct cpuset *tmp_cs;
3566
struct cgroup_subsys_state *pos_css;
3567
3568
if (!parent)
3569
return 0;
3570
3571
cpuset_full_lock();
3572
if (is_spread_page(parent))
3573
set_bit(CS_SPREAD_PAGE, &cs->flags);
3574
if (is_spread_slab(parent))
3575
set_bit(CS_SPREAD_SLAB, &cs->flags);
3576
/*
3577
* For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3578
*/
3579
if (cpuset_v2() && !is_sched_load_balance(parent))
3580
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3581
3582
cpuset_inc();
3583
3584
spin_lock_irq(&callback_lock);
3585
if (is_in_v2_mode()) {
3586
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3587
cs->effective_mems = parent->effective_mems;
3588
}
3589
spin_unlock_irq(&callback_lock);
3590
3591
if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3592
goto out_unlock;
3593
3594
/*
3595
* Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3596
* set. This flag handling is implemented in cgroup core for
3597
* historical reasons - the flag may be specified during mount.
3598
*
3599
* Currently, if any sibling cpusets have exclusive cpus or mem, we
3600
* refuse to clone the configuration - thereby refusing the task to
3601
* be entered, and as a result refusing the sys_unshare() or
3602
* clone() which initiated it. If this becomes a problem for some
3603
* users who wish to allow that scenario, then this could be
3604
* changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3605
* (and likewise for mems) to the new cgroup.
3606
*/
3607
rcu_read_lock();
3608
cpuset_for_each_child(tmp_cs, pos_css, parent) {
3609
if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3610
rcu_read_unlock();
3611
goto out_unlock;
3612
}
3613
}
3614
rcu_read_unlock();
3615
3616
spin_lock_irq(&callback_lock);
3617
cs->mems_allowed = parent->mems_allowed;
3618
cs->effective_mems = parent->mems_allowed;
3619
cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3620
cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3621
spin_unlock_irq(&callback_lock);
3622
out_unlock:
3623
cpuset_full_unlock();
3624
return 0;
3625
}
3626
3627
/*
3628
* If the cpuset being removed has its flag 'sched_load_balance'
3629
* enabled, then simulate turning sched_load_balance off, which
3630
* will call rebuild_sched_domains_locked(). That is not needed
3631
* in the default hierarchy where only changes in partition
3632
* will cause repartitioning.
3633
*/
3634
static void cpuset_css_offline(struct cgroup_subsys_state *css)
3635
{
3636
struct cpuset *cs = css_cs(css);
3637
3638
cpuset_full_lock();
3639
if (!cpuset_v2() && is_sched_load_balance(cs))
3640
cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3641
3642
cpuset_dec();
3643
cpuset_full_unlock();
3644
}
3645
3646
/*
3647
* If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3648
* changing it back to member to free its exclusive CPUs back to the pool to
3649
* be used by other online cpusets.
3650
*/
3651
static void cpuset_css_killed(struct cgroup_subsys_state *css)
3652
{
3653
struct cpuset *cs = css_cs(css);
3654
3655
cpuset_full_lock();
3656
/* Reset valid partition back to member */
3657
if (is_partition_valid(cs))
3658
update_prstate(cs, PRS_MEMBER);
3659
cpuset_full_unlock();
3660
}
3661
3662
static void cpuset_css_free(struct cgroup_subsys_state *css)
3663
{
3664
struct cpuset *cs = css_cs(css);
3665
3666
free_cpuset(cs);
3667
}
3668
3669
static void cpuset_bind(struct cgroup_subsys_state *root_css)
3670
{
3671
mutex_lock(&cpuset_mutex);
3672
spin_lock_irq(&callback_lock);
3673
3674
if (is_in_v2_mode()) {
3675
cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3676
cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3677
top_cpuset.mems_allowed = node_possible_map;
3678
} else {
3679
cpumask_copy(top_cpuset.cpus_allowed,
3680
top_cpuset.effective_cpus);
3681
top_cpuset.mems_allowed = top_cpuset.effective_mems;
3682
}
3683
3684
spin_unlock_irq(&callback_lock);
3685
mutex_unlock(&cpuset_mutex);
3686
}
3687
3688
/*
3689
* In case the child is cloned into a cpuset different from its parent,
3690
* additional checks are done to see if the move is allowed.
3691
*/
3692
static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3693
{
3694
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3695
bool same_cs;
3696
int ret;
3697
3698
rcu_read_lock();
3699
same_cs = (cs == task_cs(current));
3700
rcu_read_unlock();
3701
3702
if (same_cs)
3703
return 0;
3704
3705
lockdep_assert_held(&cgroup_mutex);
3706
mutex_lock(&cpuset_mutex);
3707
3708
/* Check to see if task is allowed in the cpuset */
3709
ret = cpuset_can_attach_check(cs);
3710
if (ret)
3711
goto out_unlock;
3712
3713
ret = task_can_attach(task);
3714
if (ret)
3715
goto out_unlock;
3716
3717
ret = security_task_setscheduler(task);
3718
if (ret)
3719
goto out_unlock;
3720
3721
/*
3722
* Mark attach is in progress. This makes validate_change() fail
3723
* changes which zero cpus/mems_allowed.
3724
*/
3725
cs->attach_in_progress++;
3726
out_unlock:
3727
mutex_unlock(&cpuset_mutex);
3728
return ret;
3729
}
3730
3731
static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3732
{
3733
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3734
bool same_cs;
3735
3736
rcu_read_lock();
3737
same_cs = (cs == task_cs(current));
3738
rcu_read_unlock();
3739
3740
if (same_cs)
3741
return;
3742
3743
dec_attach_in_progress(cs);
3744
}
3745
3746
/*
3747
* Make sure the new task conform to the current state of its parent,
3748
* which could have been changed by cpuset just after it inherits the
3749
* state from the parent and before it sits on the cgroup's task list.
3750
*/
3751
static void cpuset_fork(struct task_struct *task)
3752
{
3753
struct cpuset *cs;
3754
bool same_cs;
3755
3756
rcu_read_lock();
3757
cs = task_cs(task);
3758
same_cs = (cs == task_cs(current));
3759
rcu_read_unlock();
3760
3761
if (same_cs) {
3762
if (cs == &top_cpuset)
3763
return;
3764
3765
set_cpus_allowed_ptr(task, current->cpus_ptr);
3766
task->mems_allowed = current->mems_allowed;
3767
return;
3768
}
3769
3770
/* CLONE_INTO_CGROUP */
3771
mutex_lock(&cpuset_mutex);
3772
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3773
cpuset_attach_task(cs, task);
3774
3775
dec_attach_in_progress_locked(cs);
3776
mutex_unlock(&cpuset_mutex);
3777
}
3778
3779
struct cgroup_subsys cpuset_cgrp_subsys = {
3780
.css_alloc = cpuset_css_alloc,
3781
.css_online = cpuset_css_online,
3782
.css_offline = cpuset_css_offline,
3783
.css_killed = cpuset_css_killed,
3784
.css_free = cpuset_css_free,
3785
.can_attach = cpuset_can_attach,
3786
.cancel_attach = cpuset_cancel_attach,
3787
.attach = cpuset_attach,
3788
.bind = cpuset_bind,
3789
.can_fork = cpuset_can_fork,
3790
.cancel_fork = cpuset_cancel_fork,
3791
.fork = cpuset_fork,
3792
#ifdef CONFIG_CPUSETS_V1
3793
.legacy_cftypes = cpuset1_files,
3794
#endif
3795
.dfl_cftypes = dfl_files,
3796
.early_init = true,
3797
.threaded = true,
3798
};
3799
3800
/**
3801
* cpuset_init - initialize cpusets at system boot
3802
*
3803
* Description: Initialize top_cpuset
3804
**/
3805
3806
int __init cpuset_init(void)
3807
{
3808
BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3809
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3810
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3811
BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3812
BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3813
BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3814
3815
cpumask_setall(top_cpuset.cpus_allowed);
3816
nodes_setall(top_cpuset.mems_allowed);
3817
cpumask_setall(top_cpuset.effective_cpus);
3818
cpumask_setall(top_cpuset.effective_xcpus);
3819
cpumask_setall(top_cpuset.exclusive_cpus);
3820
nodes_setall(top_cpuset.effective_mems);
3821
3822
fmeter_init(&top_cpuset.fmeter);
3823
INIT_LIST_HEAD(&remote_children);
3824
3825
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3826
3827
have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3828
if (have_boot_isolcpus) {
3829
BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3830
cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3831
cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3832
}
3833
3834
return 0;
3835
}
3836
3837
static void
3838
hotplug_update_tasks(struct cpuset *cs,
3839
struct cpumask *new_cpus, nodemask_t *new_mems,
3840
bool cpus_updated, bool mems_updated)
3841
{
3842
/* A partition root is allowed to have empty effective cpus */
3843
if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3844
cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3845
if (nodes_empty(*new_mems))
3846
*new_mems = parent_cs(cs)->effective_mems;
3847
3848
spin_lock_irq(&callback_lock);
3849
cpumask_copy(cs->effective_cpus, new_cpus);
3850
cs->effective_mems = *new_mems;
3851
spin_unlock_irq(&callback_lock);
3852
3853
if (cpus_updated)
3854
cpuset_update_tasks_cpumask(cs, new_cpus);
3855
if (mems_updated)
3856
cpuset_update_tasks_nodemask(cs);
3857
}
3858
3859
void cpuset_force_rebuild(void)
3860
{
3861
force_sd_rebuild = true;
3862
}
3863
3864
/**
3865
* cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3866
* @cs: cpuset in interest
3867
* @tmp: the tmpmasks structure pointer
3868
*
3869
* Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3870
* offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3871
* all its tasks are moved to the nearest ancestor with both resources.
3872
*/
3873
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3874
{
3875
static cpumask_t new_cpus;
3876
static nodemask_t new_mems;
3877
bool cpus_updated;
3878
bool mems_updated;
3879
bool remote;
3880
int partcmd = -1;
3881
struct cpuset *parent;
3882
retry:
3883
wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3884
3885
mutex_lock(&cpuset_mutex);
3886
3887
/*
3888
* We have raced with task attaching. We wait until attaching
3889
* is finished, so we won't attach a task to an empty cpuset.
3890
*/
3891
if (cs->attach_in_progress) {
3892
mutex_unlock(&cpuset_mutex);
3893
goto retry;
3894
}
3895
3896
parent = parent_cs(cs);
3897
compute_effective_cpumask(&new_cpus, cs, parent);
3898
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3899
3900
if (!tmp || !cs->partition_root_state)
3901
goto update_tasks;
3902
3903
/*
3904
* Compute effective_cpus for valid partition root, may invalidate
3905
* child partition roots if necessary.
3906
*/
3907
remote = is_remote_partition(cs);
3908
if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3909
compute_partition_effective_cpumask(cs, &new_cpus);
3910
3911
if (remote && cpumask_empty(&new_cpus) &&
3912
partition_is_populated(cs, NULL)) {
3913
cs->prs_err = PERR_HOTPLUG;
3914
remote_partition_disable(cs, tmp);
3915
compute_effective_cpumask(&new_cpus, cs, parent);
3916
remote = false;
3917
}
3918
3919
/*
3920
* Force the partition to become invalid if either one of
3921
* the following conditions hold:
3922
* 1) empty effective cpus but not valid empty partition.
3923
* 2) parent is invalid or doesn't grant any cpus to child
3924
* partitions.
3925
*/
3926
if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3927
tasks_nocpu_error(parent, cs, &new_cpus)))
3928
partcmd = partcmd_invalidate;
3929
/*
3930
* On the other hand, an invalid partition root may be transitioned
3931
* back to a regular one with a non-empty effective xcpus.
3932
*/
3933
else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
3934
!cpumask_empty(cs->effective_xcpus))
3935
partcmd = partcmd_update;
3936
3937
if (partcmd >= 0) {
3938
update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3939
if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3940
compute_partition_effective_cpumask(cs, &new_cpus);
3941
cpuset_force_rebuild();
3942
}
3943
}
3944
3945
update_tasks:
3946
cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3947
mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3948
if (!cpus_updated && !mems_updated)
3949
goto unlock; /* Hotplug doesn't affect this cpuset */
3950
3951
if (mems_updated)
3952
check_insane_mems_config(&new_mems);
3953
3954
if (is_in_v2_mode())
3955
hotplug_update_tasks(cs, &new_cpus, &new_mems,
3956
cpus_updated, mems_updated);
3957
else
3958
cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3959
cpus_updated, mems_updated);
3960
3961
unlock:
3962
mutex_unlock(&cpuset_mutex);
3963
}
3964
3965
/**
3966
* cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3967
*
3968
* This function is called after either CPU or memory configuration has
3969
* changed and updates cpuset accordingly. The top_cpuset is always
3970
* synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3971
* order to make cpusets transparent (of no affect) on systems that are
3972
* actively using CPU hotplug but making no active use of cpusets.
3973
*
3974
* Non-root cpusets are only affected by offlining. If any CPUs or memory
3975
* nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3976
* all descendants.
3977
*
3978
* Note that CPU offlining during suspend is ignored. We don't modify
3979
* cpusets across suspend/resume cycles at all.
3980
*
3981
* CPU / memory hotplug is handled synchronously.
3982
*/
3983
static void cpuset_handle_hotplug(void)
3984
{
3985
static cpumask_t new_cpus;
3986
static nodemask_t new_mems;
3987
bool cpus_updated, mems_updated;
3988
bool on_dfl = is_in_v2_mode();
3989
struct tmpmasks tmp, *ptmp = NULL;
3990
3991
if (on_dfl && !alloc_tmpmasks(&tmp))
3992
ptmp = &tmp;
3993
3994
lockdep_assert_cpus_held();
3995
mutex_lock(&cpuset_mutex);
3996
3997
/* fetch the available cpus/mems and find out which changed how */
3998
cpumask_copy(&new_cpus, cpu_active_mask);
3999
new_mems = node_states[N_MEMORY];
4000
4001
/*
4002
* If subpartitions_cpus is populated, it is likely that the check
4003
* below will produce a false positive on cpus_updated when the cpu
4004
* list isn't changed. It is extra work, but it is better to be safe.
4005
*/
4006
cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4007
!cpumask_empty(subpartitions_cpus);
4008
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4009
4010
/* For v1, synchronize cpus_allowed to cpu_active_mask */
4011
if (cpus_updated) {
4012
cpuset_force_rebuild();
4013
spin_lock_irq(&callback_lock);
4014
if (!on_dfl)
4015
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4016
/*
4017
* Make sure that CPUs allocated to child partitions
4018
* do not show up in effective_cpus. If no CPU is left,
4019
* we clear the subpartitions_cpus & let the child partitions
4020
* fight for the CPUs again.
4021
*/
4022
if (!cpumask_empty(subpartitions_cpus)) {
4023
if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4024
top_cpuset.nr_subparts = 0;
4025
cpumask_clear(subpartitions_cpus);
4026
} else {
4027
cpumask_andnot(&new_cpus, &new_cpus,
4028
subpartitions_cpus);
4029
}
4030
}
4031
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4032
spin_unlock_irq(&callback_lock);
4033
/* we don't mess with cpumasks of tasks in top_cpuset */
4034
}
4035
4036
/* synchronize mems_allowed to N_MEMORY */
4037
if (mems_updated) {
4038
spin_lock_irq(&callback_lock);
4039
if (!on_dfl)
4040
top_cpuset.mems_allowed = new_mems;
4041
top_cpuset.effective_mems = new_mems;
4042
spin_unlock_irq(&callback_lock);
4043
cpuset_update_tasks_nodemask(&top_cpuset);
4044
}
4045
4046
mutex_unlock(&cpuset_mutex);
4047
4048
/* if cpus or mems changed, we need to propagate to descendants */
4049
if (cpus_updated || mems_updated) {
4050
struct cpuset *cs;
4051
struct cgroup_subsys_state *pos_css;
4052
4053
rcu_read_lock();
4054
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4055
if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4056
continue;
4057
rcu_read_unlock();
4058
4059
cpuset_hotplug_update_tasks(cs, ptmp);
4060
4061
rcu_read_lock();
4062
css_put(&cs->css);
4063
}
4064
rcu_read_unlock();
4065
}
4066
4067
/* rebuild sched domains if necessary */
4068
if (force_sd_rebuild)
4069
rebuild_sched_domains_cpuslocked();
4070
4071
free_tmpmasks(ptmp);
4072
}
4073
4074
void cpuset_update_active_cpus(void)
4075
{
4076
/*
4077
* We're inside cpu hotplug critical region which usually nests
4078
* inside cgroup synchronization. Bounce actual hotplug processing
4079
* to a work item to avoid reverse locking order.
4080
*/
4081
cpuset_handle_hotplug();
4082
}
4083
4084
/*
4085
* Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4086
* Call this routine anytime after node_states[N_MEMORY] changes.
4087
* See cpuset_update_active_cpus() for CPU hotplug handling.
4088
*/
4089
static int cpuset_track_online_nodes(struct notifier_block *self,
4090
unsigned long action, void *arg)
4091
{
4092
cpuset_handle_hotplug();
4093
return NOTIFY_OK;
4094
}
4095
4096
/**
4097
* cpuset_init_smp - initialize cpus_allowed
4098
*
4099
* Description: Finish top cpuset after cpu, node maps are initialized
4100
*/
4101
void __init cpuset_init_smp(void)
4102
{
4103
/*
4104
* cpus_allowd/mems_allowed set to v2 values in the initial
4105
* cpuset_bind() call will be reset to v1 values in another
4106
* cpuset_bind() call when v1 cpuset is mounted.
4107
*/
4108
top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4109
4110
cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4111
top_cpuset.effective_mems = node_states[N_MEMORY];
4112
4113
hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4114
4115
cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4116
BUG_ON(!cpuset_migrate_mm_wq);
4117
}
4118
4119
/**
4120
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4121
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4122
* @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4123
*
4124
* Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4125
* attached to the specified @tsk. Guaranteed to return some non-empty
4126
* subset of cpu_active_mask, even if this means going outside the
4127
* tasks cpuset, except when the task is in the top cpuset.
4128
**/
4129
4130
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4131
{
4132
unsigned long flags;
4133
struct cpuset *cs;
4134
4135
spin_lock_irqsave(&callback_lock, flags);
4136
4137
cs = task_cs(tsk);
4138
if (cs != &top_cpuset)
4139
guarantee_active_cpus(tsk, pmask);
4140
/*
4141
* Tasks in the top cpuset won't get update to their cpumasks
4142
* when a hotplug online/offline event happens. So we include all
4143
* offline cpus in the allowed cpu list.
4144
*/
4145
if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4146
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4147
4148
/*
4149
* We first exclude cpus allocated to partitions. If there is no
4150
* allowable online cpu left, we fall back to all possible cpus.
4151
*/
4152
cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4153
if (!cpumask_intersects(pmask, cpu_active_mask))
4154
cpumask_copy(pmask, possible_mask);
4155
}
4156
4157
spin_unlock_irqrestore(&callback_lock, flags);
4158
}
4159
4160
/**
4161
* cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4162
* @tsk: pointer to task_struct with which the scheduler is struggling
4163
*
4164
* Description: In the case that the scheduler cannot find an allowed cpu in
4165
* tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4166
* mode however, this value is the same as task_cs(tsk)->effective_cpus,
4167
* which will not contain a sane cpumask during cases such as cpu hotplugging.
4168
* This is the absolute last resort for the scheduler and it is only used if
4169
* _every_ other avenue has been traveled.
4170
*
4171
* Returns true if the affinity of @tsk was changed, false otherwise.
4172
**/
4173
4174
bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4175
{
4176
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4177
const struct cpumask *cs_mask;
4178
bool changed = false;
4179
4180
rcu_read_lock();
4181
cs_mask = task_cs(tsk)->cpus_allowed;
4182
if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4183
do_set_cpus_allowed(tsk, cs_mask);
4184
changed = true;
4185
}
4186
rcu_read_unlock();
4187
4188
/*
4189
* We own tsk->cpus_allowed, nobody can change it under us.
4190
*
4191
* But we used cs && cs->cpus_allowed lockless and thus can
4192
* race with cgroup_attach_task() or update_cpumask() and get
4193
* the wrong tsk->cpus_allowed. However, both cases imply the
4194
* subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4195
* which takes task_rq_lock().
4196
*
4197
* If we are called after it dropped the lock we must see all
4198
* changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4199
* set any mask even if it is not right from task_cs() pov,
4200
* the pending set_cpus_allowed_ptr() will fix things.
4201
*
4202
* select_fallback_rq() will fix things ups and set cpu_possible_mask
4203
* if required.
4204
*/
4205
return changed;
4206
}
4207
4208
void __init cpuset_init_current_mems_allowed(void)
4209
{
4210
nodes_setall(current->mems_allowed);
4211
}
4212
4213
/**
4214
* cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4215
* @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4216
*
4217
* Description: Returns the nodemask_t mems_allowed of the cpuset
4218
* attached to the specified @tsk. Guaranteed to return some non-empty
4219
* subset of node_states[N_MEMORY], even if this means going outside the
4220
* tasks cpuset.
4221
**/
4222
4223
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4224
{
4225
nodemask_t mask;
4226
unsigned long flags;
4227
4228
spin_lock_irqsave(&callback_lock, flags);
4229
guarantee_online_mems(task_cs(tsk), &mask);
4230
spin_unlock_irqrestore(&callback_lock, flags);
4231
4232
return mask;
4233
}
4234
4235
/**
4236
* cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4237
* @nodemask: the nodemask to be checked
4238
*
4239
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
4240
*/
4241
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4242
{
4243
return nodes_intersects(*nodemask, current->mems_allowed);
4244
}
4245
4246
/*
4247
* nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4248
* mem_hardwall ancestor to the specified cpuset. Call holding
4249
* callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4250
* (an unusual configuration), then returns the root cpuset.
4251
*/
4252
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4253
{
4254
while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4255
cs = parent_cs(cs);
4256
return cs;
4257
}
4258
4259
/*
4260
* cpuset_current_node_allowed - Can current task allocate on a memory node?
4261
* @node: is this an allowed node?
4262
* @gfp_mask: memory allocation flags
4263
*
4264
* If we're in interrupt, yes, we can always allocate. If @node is set in
4265
* current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4266
* node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4267
* yes. If current has access to memory reserves as an oom victim, yes.
4268
* Otherwise, no.
4269
*
4270
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4271
* and do not allow allocations outside the current tasks cpuset
4272
* unless the task has been OOM killed.
4273
* GFP_KERNEL allocations are not so marked, so can escape to the
4274
* nearest enclosing hardwalled ancestor cpuset.
4275
*
4276
* Scanning up parent cpusets requires callback_lock. The
4277
* __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4278
* _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4279
* current tasks mems_allowed came up empty on the first pass over
4280
* the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4281
* cpuset are short of memory, might require taking the callback_lock.
4282
*
4283
* The first call here from mm/page_alloc:get_page_from_freelist()
4284
* has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4285
* so no allocation on a node outside the cpuset is allowed (unless
4286
* in interrupt, of course).
4287
*
4288
* The second pass through get_page_from_freelist() doesn't even call
4289
* here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4290
* variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4291
* in alloc_flags. That logic and the checks below have the combined
4292
* affect that:
4293
* in_interrupt - any node ok (current task context irrelevant)
4294
* GFP_ATOMIC - any node ok
4295
* tsk_is_oom_victim - any node ok
4296
* GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4297
* GFP_USER - only nodes in current tasks mems allowed ok.
4298
*/
4299
bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4300
{
4301
struct cpuset *cs; /* current cpuset ancestors */
4302
bool allowed; /* is allocation in zone z allowed? */
4303
unsigned long flags;
4304
4305
if (in_interrupt())
4306
return true;
4307
if (node_isset(node, current->mems_allowed))
4308
return true;
4309
/*
4310
* Allow tasks that have access to memory reserves because they have
4311
* been OOM killed to get memory anywhere.
4312
*/
4313
if (unlikely(tsk_is_oom_victim(current)))
4314
return true;
4315
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4316
return false;
4317
4318
if (current->flags & PF_EXITING) /* Let dying task have memory */
4319
return true;
4320
4321
/* Not hardwall and node outside mems_allowed: scan up cpusets */
4322
spin_lock_irqsave(&callback_lock, flags);
4323
4324
cs = nearest_hardwall_ancestor(task_cs(current));
4325
allowed = node_isset(node, cs->mems_allowed);
4326
4327
spin_unlock_irqrestore(&callback_lock, flags);
4328
return allowed;
4329
}
4330
4331
bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4332
{
4333
struct cgroup_subsys_state *css;
4334
struct cpuset *cs;
4335
bool allowed;
4336
4337
/*
4338
* In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4339
* and mems_allowed is likely to be empty even if we could get to it,
4340
* so return true to avoid taking a global lock on the empty check.
4341
*/
4342
if (!cpuset_v2())
4343
return true;
4344
4345
css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4346
if (!css)
4347
return true;
4348
4349
/*
4350
* Normally, accessing effective_mems would require the cpuset_mutex
4351
* or callback_lock - but node_isset is atomic and the reference
4352
* taken via cgroup_get_e_css is sufficient to protect css.
4353
*
4354
* Since this interface is intended for use by migration paths, we
4355
* relax locking here to avoid taking global locks - while accepting
4356
* there may be rare scenarios where the result may be innaccurate.
4357
*
4358
* Reclaim and migration are subject to these same race conditions, and
4359
* cannot make strong isolation guarantees, so this is acceptable.
4360
*/
4361
cs = container_of(css, struct cpuset, css);
4362
allowed = node_isset(nid, cs->effective_mems);
4363
css_put(css);
4364
return allowed;
4365
}
4366
4367
/**
4368
* cpuset_spread_node() - On which node to begin search for a page
4369
* @rotor: round robin rotor
4370
*
4371
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4372
* tasks in a cpuset with is_spread_page or is_spread_slab set),
4373
* and if the memory allocation used cpuset_mem_spread_node()
4374
* to determine on which node to start looking, as it will for
4375
* certain page cache or slab cache pages such as used for file
4376
* system buffers and inode caches, then instead of starting on the
4377
* local node to look for a free page, rather spread the starting
4378
* node around the tasks mems_allowed nodes.
4379
*
4380
* We don't have to worry about the returned node being offline
4381
* because "it can't happen", and even if it did, it would be ok.
4382
*
4383
* The routines calling guarantee_online_mems() are careful to
4384
* only set nodes in task->mems_allowed that are online. So it
4385
* should not be possible for the following code to return an
4386
* offline node. But if it did, that would be ok, as this routine
4387
* is not returning the node where the allocation must be, only
4388
* the node where the search should start. The zonelist passed to
4389
* __alloc_pages() will include all nodes. If the slab allocator
4390
* is passed an offline node, it will fall back to the local node.
4391
* See kmem_cache_alloc_node().
4392
*/
4393
static int cpuset_spread_node(int *rotor)
4394
{
4395
return *rotor = next_node_in(*rotor, current->mems_allowed);
4396
}
4397
4398
/**
4399
* cpuset_mem_spread_node() - On which node to begin search for a file page
4400
*/
4401
int cpuset_mem_spread_node(void)
4402
{
4403
if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4404
current->cpuset_mem_spread_rotor =
4405
node_random(&current->mems_allowed);
4406
4407
return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4408
}
4409
4410
/**
4411
* cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4412
* @tsk1: pointer to task_struct of some task.
4413
* @tsk2: pointer to task_struct of some other task.
4414
*
4415
* Description: Return true if @tsk1's mems_allowed intersects the
4416
* mems_allowed of @tsk2. Used by the OOM killer to determine if
4417
* one of the task's memory usage might impact the memory available
4418
* to the other.
4419
**/
4420
4421
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4422
const struct task_struct *tsk2)
4423
{
4424
return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4425
}
4426
4427
/**
4428
* cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4429
*
4430
* Description: Prints current's name, cpuset name, and cached copy of its
4431
* mems_allowed to the kernel log.
4432
*/
4433
void cpuset_print_current_mems_allowed(void)
4434
{
4435
struct cgroup *cgrp;
4436
4437
rcu_read_lock();
4438
4439
cgrp = task_cs(current)->css.cgroup;
4440
pr_cont(",cpuset=");
4441
pr_cont_cgroup_name(cgrp);
4442
pr_cont(",mems_allowed=%*pbl",
4443
nodemask_pr_args(&current->mems_allowed));
4444
4445
rcu_read_unlock();
4446
}
4447
4448
/* Display task mems_allowed in /proc/<pid>/status file. */
4449
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4450
{
4451
seq_printf(m, "Mems_allowed:\t%*pb\n",
4452
nodemask_pr_args(&task->mems_allowed));
4453
seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4454
nodemask_pr_args(&task->mems_allowed));
4455
}
4456
4457