Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/cgroup/rstat.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "cgroup-internal.h"
3
4
#include <linux/sched/cputime.h>
5
6
#include <linux/bpf.h>
7
#include <linux/btf.h>
8
#include <linux/btf_ids.h>
9
10
#include <trace/events/cgroup.h>
11
12
static DEFINE_SPINLOCK(rstat_base_lock);
13
static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list);
14
15
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
16
17
/*
18
* Determines whether a given css can participate in rstat.
19
* css's that are cgroup::self use rstat for base stats.
20
* Other css's associated with a subsystem use rstat only when
21
* they define the ss->css_rstat_flush callback.
22
*/
23
static inline bool css_uses_rstat(struct cgroup_subsys_state *css)
24
{
25
return css_is_self(css) || css->ss->css_rstat_flush != NULL;
26
}
27
28
static struct css_rstat_cpu *css_rstat_cpu(
29
struct cgroup_subsys_state *css, int cpu)
30
{
31
return per_cpu_ptr(css->rstat_cpu, cpu);
32
}
33
34
static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu(
35
struct cgroup *cgrp, int cpu)
36
{
37
return per_cpu_ptr(cgrp->rstat_base_cpu, cpu);
38
}
39
40
static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss)
41
{
42
if (ss)
43
return &ss->rstat_ss_lock;
44
45
return &rstat_base_lock;
46
}
47
48
static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu)
49
{
50
if (ss)
51
return per_cpu_ptr(ss->lhead, cpu);
52
return per_cpu_ptr(&rstat_backlog_list, cpu);
53
}
54
55
/**
56
* css_rstat_updated - keep track of updated rstat_cpu
57
* @css: target cgroup subsystem state
58
* @cpu: cpu on which rstat_cpu was updated
59
*
60
* Atomically inserts the css in the ss's llist for the given cpu. This is
61
* reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist
62
* will be processed at the flush time to create the update tree.
63
*
64
* NOTE: if the user needs the guarantee that the updater either add itself in
65
* the lockless list or the concurrent flusher flushes its updated stats, a
66
* memory barrier is needed before the call to css_rstat_updated() i.e. a
67
* barrier after updating the per-cpu stats and before calling
68
* css_rstat_updated().
69
*/
70
__bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu)
71
{
72
struct llist_head *lhead;
73
struct css_rstat_cpu *rstatc;
74
struct css_rstat_cpu __percpu *rstatc_pcpu;
75
struct llist_node *self;
76
77
/*
78
* Since bpf programs can call this function, prevent access to
79
* uninitialized rstat pointers.
80
*/
81
if (!css_uses_rstat(css))
82
return;
83
84
lockdep_assert_preemption_disabled();
85
86
/*
87
* For archs withnot nmi safe cmpxchg or percpu ops support, ignore
88
* the requests from nmi context.
89
*/
90
if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
91
!IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi())
92
return;
93
94
rstatc = css_rstat_cpu(css, cpu);
95
/*
96
* If already on list return. This check is racy and smp_mb() is needed
97
* to pair it with the smp_mb() in css_process_update_tree() if the
98
* guarantee that the updated stats are visible to concurrent flusher is
99
* needed.
100
*/
101
if (llist_on_list(&rstatc->lnode))
102
return;
103
104
/*
105
* This function can be renentered by irqs and nmis for the same cgroup
106
* and may try to insert the same per-cpu lnode into the llist. Note
107
* that llist_add() does not protect against such scenarios.
108
*
109
* To protect against such stacked contexts of irqs/nmis, we use the
110
* fact that lnode points to itself when not on a list and then use
111
* this_cpu_cmpxchg() to atomically set to NULL to select the winner
112
* which will call llist_add(). The losers can assume the insertion is
113
* successful and the winner will eventually add the per-cpu lnode to
114
* the llist.
115
*/
116
self = &rstatc->lnode;
117
rstatc_pcpu = css->rstat_cpu;
118
if (this_cpu_cmpxchg(rstatc_pcpu->lnode.next, self, NULL) != self)
119
return;
120
121
lhead = ss_lhead_cpu(css->ss, cpu);
122
llist_add(&rstatc->lnode, lhead);
123
}
124
125
static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu)
126
{
127
/* put @css and all ancestors on the corresponding updated lists */
128
while (true) {
129
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
130
struct cgroup_subsys_state *parent = css->parent;
131
struct css_rstat_cpu *prstatc;
132
133
/*
134
* Both additions and removals are bottom-up. If a cgroup
135
* is already in the tree, all ancestors are.
136
*/
137
if (rstatc->updated_next)
138
break;
139
140
/* Root has no parent to link it to, but mark it busy */
141
if (!parent) {
142
rstatc->updated_next = css;
143
break;
144
}
145
146
prstatc = css_rstat_cpu(parent, cpu);
147
rstatc->updated_next = prstatc->updated_children;
148
prstatc->updated_children = css;
149
150
css = parent;
151
}
152
}
153
154
static void css_process_update_tree(struct cgroup_subsys *ss, int cpu)
155
{
156
struct llist_head *lhead = ss_lhead_cpu(ss, cpu);
157
struct llist_node *lnode;
158
159
while ((lnode = llist_del_first_init(lhead))) {
160
struct css_rstat_cpu *rstatc;
161
162
/*
163
* smp_mb() is needed here (more specifically in between
164
* init_llist_node() and per-cpu stats flushing) if the
165
* guarantee is required by a rstat user where etiher the
166
* updater should add itself on the lockless list or the
167
* flusher flush the stats updated by the updater who have
168
* observed that they are already on the list. The
169
* corresponding barrier pair for this one should be before
170
* css_rstat_updated() by the user.
171
*
172
* For now, there aren't any such user, so not adding the
173
* barrier here but if such a use-case arise, please add
174
* smp_mb() here.
175
*/
176
177
rstatc = container_of(lnode, struct css_rstat_cpu, lnode);
178
__css_process_update_tree(rstatc->owner, cpu);
179
}
180
}
181
182
/**
183
* css_rstat_push_children - push children css's into the given list
184
* @head: current head of the list (= subtree root)
185
* @child: first child of the root
186
* @cpu: target cpu
187
* Return: A new singly linked list of css's to be flushed
188
*
189
* Iteratively traverse down the css_rstat_cpu updated tree level by
190
* level and push all the parents first before their next level children
191
* into a singly linked list via the rstat_flush_next pointer built from the
192
* tail backward like "pushing" css's into a stack. The root is pushed by
193
* the caller.
194
*/
195
static struct cgroup_subsys_state *css_rstat_push_children(
196
struct cgroup_subsys_state *head,
197
struct cgroup_subsys_state *child, int cpu)
198
{
199
struct cgroup_subsys_state *cnext = child; /* Next head of child css level */
200
struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */
201
struct cgroup_subsys_state *parent, *grandchild;
202
struct css_rstat_cpu *crstatc;
203
204
child->rstat_flush_next = NULL;
205
206
/*
207
* The subsystem rstat lock must be held for the whole duration from
208
* here as the rstat_flush_next list is being constructed to when
209
* it is consumed later in css_rstat_flush().
210
*/
211
lockdep_assert_held(ss_rstat_lock(head->ss));
212
213
/*
214
* Notation: -> updated_next pointer
215
* => rstat_flush_next pointer
216
*
217
* Assuming the following sample updated_children lists:
218
* P: C1 -> C2 -> P
219
* C1: G11 -> G12 -> C1
220
* C2: G21 -> G22 -> C2
221
*
222
* After 1st iteration:
223
* head => C2 => C1 => NULL
224
* ghead => G21 => G11 => NULL
225
*
226
* After 2nd iteration:
227
* head => G12 => G11 => G22 => G21 => C2 => C1 => NULL
228
*/
229
next_level:
230
while (cnext) {
231
child = cnext;
232
cnext = child->rstat_flush_next;
233
parent = child->parent;
234
235
/* updated_next is parent cgroup terminated if !NULL */
236
while (child != parent) {
237
child->rstat_flush_next = head;
238
head = child;
239
crstatc = css_rstat_cpu(child, cpu);
240
grandchild = crstatc->updated_children;
241
if (grandchild != child) {
242
/* Push the grand child to the next level */
243
crstatc->updated_children = child;
244
grandchild->rstat_flush_next = ghead;
245
ghead = grandchild;
246
}
247
child = crstatc->updated_next;
248
crstatc->updated_next = NULL;
249
}
250
}
251
252
if (ghead) {
253
cnext = ghead;
254
ghead = NULL;
255
goto next_level;
256
}
257
return head;
258
}
259
260
/**
261
* css_rstat_updated_list - build a list of updated css's to be flushed
262
* @root: root of the css subtree to traverse
263
* @cpu: target cpu
264
* Return: A singly linked list of css's to be flushed
265
*
266
* Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
267
* each returned css is unlinked from the updated tree.
268
*
269
* The only ordering guarantee is that, for a parent and a child pair
270
* covered by a given traversal, the child is before its parent in
271
* the list.
272
*
273
* Note that updated_children is self terminated and points to a list of
274
* child css's if not empty. Whereas updated_next is like a sibling link
275
* within the children list and terminated by the parent css. An exception
276
* here is the css root whose updated_next can be self terminated.
277
*/
278
static struct cgroup_subsys_state *css_rstat_updated_list(
279
struct cgroup_subsys_state *root, int cpu)
280
{
281
struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu);
282
struct cgroup_subsys_state *head = NULL, *parent, *child;
283
284
css_process_update_tree(root->ss, cpu);
285
286
/* Return NULL if this subtree is not on-list */
287
if (!rstatc->updated_next)
288
return NULL;
289
290
/*
291
* Unlink @root from its parent. As the updated_children list is
292
* singly linked, we have to walk it to find the removal point.
293
*/
294
parent = root->parent;
295
if (parent) {
296
struct css_rstat_cpu *prstatc;
297
struct cgroup_subsys_state **nextp;
298
299
prstatc = css_rstat_cpu(parent, cpu);
300
nextp = &prstatc->updated_children;
301
while (*nextp != root) {
302
struct css_rstat_cpu *nrstatc;
303
304
nrstatc = css_rstat_cpu(*nextp, cpu);
305
WARN_ON_ONCE(*nextp == parent);
306
nextp = &nrstatc->updated_next;
307
}
308
*nextp = rstatc->updated_next;
309
}
310
311
rstatc->updated_next = NULL;
312
313
/* Push @root to the list first before pushing the children */
314
head = root;
315
root->rstat_flush_next = NULL;
316
child = rstatc->updated_children;
317
rstatc->updated_children = root;
318
if (child != root)
319
head = css_rstat_push_children(head, child, cpu);
320
321
return head;
322
}
323
324
/*
325
* A hook for bpf stat collectors to attach to and flush their stats.
326
* Together with providing bpf kfuncs for css_rstat_updated() and
327
* css_rstat_flush(), this enables a complete workflow where bpf progs that
328
* collect cgroup stats can integrate with rstat for efficient flushing.
329
*
330
* A static noinline declaration here could cause the compiler to optimize away
331
* the function. A global noinline declaration will keep the definition, but may
332
* optimize away the callsite. Therefore, __weak is needed to ensure that the
333
* call is still emitted, by telling the compiler that we don't know what the
334
* function might eventually be.
335
*/
336
337
__bpf_hook_start();
338
339
__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
340
struct cgroup *parent, int cpu)
341
{
342
}
343
344
__bpf_hook_end();
345
346
/*
347
* Helper functions for locking.
348
*
349
* This makes it easier to diagnose locking issues and contention in
350
* production environments. The parameter @cpu_in_loop indicate lock
351
* was released and re-taken when collection data from the CPUs. The
352
* value -1 is used when obtaining the main lock else this is the CPU
353
* number processed last.
354
*/
355
static inline void __css_rstat_lock(struct cgroup_subsys_state *css,
356
int cpu_in_loop)
357
__acquires(ss_rstat_lock(css->ss))
358
{
359
struct cgroup *cgrp = css->cgroup;
360
spinlock_t *lock;
361
bool contended;
362
363
lock = ss_rstat_lock(css->ss);
364
contended = !spin_trylock_irq(lock);
365
if (contended) {
366
trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
367
spin_lock_irq(lock);
368
}
369
trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
370
}
371
372
static inline void __css_rstat_unlock(struct cgroup_subsys_state *css,
373
int cpu_in_loop)
374
__releases(ss_rstat_lock(css->ss))
375
{
376
struct cgroup *cgrp = css->cgroup;
377
spinlock_t *lock;
378
379
lock = ss_rstat_lock(css->ss);
380
trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
381
spin_unlock_irq(lock);
382
}
383
384
/**
385
* css_rstat_flush - flush stats in @css's rstat subtree
386
* @css: target cgroup subsystem state
387
*
388
* Collect all per-cpu stats in @css's subtree into the global counters
389
* and propagate them upwards. After this function returns, all rstat
390
* nodes in the subtree have up-to-date ->stat.
391
*
392
* This also gets all rstat nodes in the subtree including @css off the
393
* ->updated_children lists.
394
*
395
* This function may block.
396
*/
397
__bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css)
398
{
399
int cpu;
400
bool is_self = css_is_self(css);
401
402
/*
403
* Since bpf programs can call this function, prevent access to
404
* uninitialized rstat pointers.
405
*/
406
if (!css_uses_rstat(css))
407
return;
408
409
might_sleep();
410
for_each_possible_cpu(cpu) {
411
struct cgroup_subsys_state *pos;
412
413
/* Reacquire for each CPU to avoid disabling IRQs too long */
414
__css_rstat_lock(css, cpu);
415
pos = css_rstat_updated_list(css, cpu);
416
for (; pos; pos = pos->rstat_flush_next) {
417
if (is_self) {
418
cgroup_base_stat_flush(pos->cgroup, cpu);
419
bpf_rstat_flush(pos->cgroup,
420
cgroup_parent(pos->cgroup), cpu);
421
} else
422
pos->ss->css_rstat_flush(pos, cpu);
423
}
424
__css_rstat_unlock(css, cpu);
425
if (!cond_resched())
426
cpu_relax();
427
}
428
}
429
430
int css_rstat_init(struct cgroup_subsys_state *css)
431
{
432
struct cgroup *cgrp = css->cgroup;
433
int cpu;
434
bool is_self = css_is_self(css);
435
436
if (is_self) {
437
/* the root cgrp has rstat_base_cpu preallocated */
438
if (!cgrp->rstat_base_cpu) {
439
cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu);
440
if (!cgrp->rstat_base_cpu)
441
return -ENOMEM;
442
}
443
} else if (css->ss->css_rstat_flush == NULL)
444
return 0;
445
446
/* the root cgrp's self css has rstat_cpu preallocated */
447
if (!css->rstat_cpu) {
448
css->rstat_cpu = alloc_percpu(struct css_rstat_cpu);
449
if (!css->rstat_cpu) {
450
if (is_self)
451
free_percpu(cgrp->rstat_base_cpu);
452
453
return -ENOMEM;
454
}
455
}
456
457
/* ->updated_children list is self terminated */
458
for_each_possible_cpu(cpu) {
459
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
460
461
rstatc->owner = rstatc->updated_children = css;
462
init_llist_node(&rstatc->lnode);
463
464
if (is_self) {
465
struct cgroup_rstat_base_cpu *rstatbc;
466
467
rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
468
u64_stats_init(&rstatbc->bsync);
469
}
470
}
471
472
return 0;
473
}
474
475
void css_rstat_exit(struct cgroup_subsys_state *css)
476
{
477
int cpu;
478
479
if (!css_uses_rstat(css))
480
return;
481
482
if (!css->rstat_cpu)
483
return;
484
485
css_rstat_flush(css);
486
487
/* sanity check */
488
for_each_possible_cpu(cpu) {
489
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
490
491
if (WARN_ON_ONCE(rstatc->updated_children != css) ||
492
WARN_ON_ONCE(rstatc->updated_next))
493
return;
494
}
495
496
if (css_is_self(css)) {
497
struct cgroup *cgrp = css->cgroup;
498
499
free_percpu(cgrp->rstat_base_cpu);
500
cgrp->rstat_base_cpu = NULL;
501
}
502
503
free_percpu(css->rstat_cpu);
504
css->rstat_cpu = NULL;
505
}
506
507
/**
508
* ss_rstat_init - subsystem-specific rstat initialization
509
* @ss: target subsystem
510
*
511
* If @ss is NULL, the static locks associated with the base stats
512
* are initialized. If @ss is non-NULL, the subsystem-specific locks
513
* are initialized.
514
*/
515
int __init ss_rstat_init(struct cgroup_subsys *ss)
516
{
517
int cpu;
518
519
if (ss) {
520
ss->lhead = alloc_percpu(struct llist_head);
521
if (!ss->lhead)
522
return -ENOMEM;
523
}
524
525
spin_lock_init(ss_rstat_lock(ss));
526
for_each_possible_cpu(cpu)
527
init_llist_head(ss_lhead_cpu(ss, cpu));
528
529
return 0;
530
}
531
532
/*
533
* Functions for cgroup basic resource statistics implemented on top of
534
* rstat.
535
*/
536
static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
537
struct cgroup_base_stat *src_bstat)
538
{
539
dst_bstat->cputime.utime += src_bstat->cputime.utime;
540
dst_bstat->cputime.stime += src_bstat->cputime.stime;
541
dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
542
#ifdef CONFIG_SCHED_CORE
543
dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
544
#endif
545
dst_bstat->ntime += src_bstat->ntime;
546
}
547
548
static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
549
struct cgroup_base_stat *src_bstat)
550
{
551
dst_bstat->cputime.utime -= src_bstat->cputime.utime;
552
dst_bstat->cputime.stime -= src_bstat->cputime.stime;
553
dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
554
#ifdef CONFIG_SCHED_CORE
555
dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
556
#endif
557
dst_bstat->ntime -= src_bstat->ntime;
558
}
559
560
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
561
{
562
struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
563
struct cgroup *parent = cgroup_parent(cgrp);
564
struct cgroup_rstat_base_cpu *prstatbc;
565
struct cgroup_base_stat delta;
566
unsigned seq;
567
568
/* Root-level stats are sourced from system-wide CPU stats */
569
if (!parent)
570
return;
571
572
/* fetch the current per-cpu values */
573
do {
574
seq = __u64_stats_fetch_begin(&rstatbc->bsync);
575
delta = rstatbc->bstat;
576
} while (__u64_stats_fetch_retry(&rstatbc->bsync, seq));
577
578
/* propagate per-cpu delta to cgroup and per-cpu global statistics */
579
cgroup_base_stat_sub(&delta, &rstatbc->last_bstat);
580
cgroup_base_stat_add(&cgrp->bstat, &delta);
581
cgroup_base_stat_add(&rstatbc->last_bstat, &delta);
582
cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta);
583
584
/* propagate cgroup and per-cpu global delta to parent (unless that's root) */
585
if (cgroup_parent(parent)) {
586
delta = cgrp->bstat;
587
cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
588
cgroup_base_stat_add(&parent->bstat, &delta);
589
cgroup_base_stat_add(&cgrp->last_bstat, &delta);
590
591
delta = rstatbc->subtree_bstat;
592
prstatbc = cgroup_rstat_base_cpu(parent, cpu);
593
cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat);
594
cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta);
595
cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta);
596
}
597
}
598
599
static struct cgroup_rstat_base_cpu *
600
cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
601
{
602
struct cgroup_rstat_base_cpu *rstatbc;
603
604
rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu);
605
*flags = u64_stats_update_begin_irqsave(&rstatbc->bsync);
606
return rstatbc;
607
}
608
609
static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
610
struct cgroup_rstat_base_cpu *rstatbc,
611
unsigned long flags)
612
{
613
u64_stats_update_end_irqrestore(&rstatbc->bsync, flags);
614
css_rstat_updated(&cgrp->self, smp_processor_id());
615
put_cpu_ptr(rstatbc);
616
}
617
618
void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
619
{
620
struct cgroup_rstat_base_cpu *rstatbc;
621
unsigned long flags;
622
623
rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
624
rstatbc->bstat.cputime.sum_exec_runtime += delta_exec;
625
cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
626
}
627
628
void __cgroup_account_cputime_field(struct cgroup *cgrp,
629
enum cpu_usage_stat index, u64 delta_exec)
630
{
631
struct cgroup_rstat_base_cpu *rstatbc;
632
unsigned long flags;
633
634
rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
635
636
switch (index) {
637
case CPUTIME_NICE:
638
rstatbc->bstat.ntime += delta_exec;
639
fallthrough;
640
case CPUTIME_USER:
641
rstatbc->bstat.cputime.utime += delta_exec;
642
break;
643
case CPUTIME_SYSTEM:
644
case CPUTIME_IRQ:
645
case CPUTIME_SOFTIRQ:
646
rstatbc->bstat.cputime.stime += delta_exec;
647
break;
648
#ifdef CONFIG_SCHED_CORE
649
case CPUTIME_FORCEIDLE:
650
rstatbc->bstat.forceidle_sum += delta_exec;
651
break;
652
#endif
653
default:
654
break;
655
}
656
657
cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
658
}
659
660
/*
661
* compute the cputime for the root cgroup by getting the per cpu data
662
* at a global level, then categorizing the fields in a manner consistent
663
* with how it is done by __cgroup_account_cputime_field for each bit of
664
* cpu time attributed to a cgroup.
665
*/
666
static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
667
{
668
struct task_cputime *cputime = &bstat->cputime;
669
int i;
670
671
memset(bstat, 0, sizeof(*bstat));
672
for_each_possible_cpu(i) {
673
struct kernel_cpustat kcpustat;
674
u64 *cpustat = kcpustat.cpustat;
675
u64 user = 0;
676
u64 sys = 0;
677
678
kcpustat_cpu_fetch(&kcpustat, i);
679
680
user += cpustat[CPUTIME_USER];
681
user += cpustat[CPUTIME_NICE];
682
cputime->utime += user;
683
684
sys += cpustat[CPUTIME_SYSTEM];
685
sys += cpustat[CPUTIME_IRQ];
686
sys += cpustat[CPUTIME_SOFTIRQ];
687
cputime->stime += sys;
688
689
cputime->sum_exec_runtime += user;
690
cputime->sum_exec_runtime += sys;
691
692
#ifdef CONFIG_SCHED_CORE
693
bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
694
#endif
695
bstat->ntime += cpustat[CPUTIME_NICE];
696
}
697
}
698
699
700
static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat)
701
{
702
#ifdef CONFIG_SCHED_CORE
703
u64 forceidle_time = bstat->forceidle_sum;
704
705
do_div(forceidle_time, NSEC_PER_USEC);
706
seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
707
#endif
708
}
709
710
void cgroup_base_stat_cputime_show(struct seq_file *seq)
711
{
712
struct cgroup *cgrp = seq_css(seq)->cgroup;
713
struct cgroup_base_stat bstat;
714
715
if (cgroup_parent(cgrp)) {
716
css_rstat_flush(&cgrp->self);
717
__css_rstat_lock(&cgrp->self, -1);
718
bstat = cgrp->bstat;
719
cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
720
&bstat.cputime.utime, &bstat.cputime.stime);
721
__css_rstat_unlock(&cgrp->self, -1);
722
} else {
723
root_cgroup_cputime(&bstat);
724
}
725
726
do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC);
727
do_div(bstat.cputime.utime, NSEC_PER_USEC);
728
do_div(bstat.cputime.stime, NSEC_PER_USEC);
729
do_div(bstat.ntime, NSEC_PER_USEC);
730
731
seq_printf(seq, "usage_usec %llu\n"
732
"user_usec %llu\n"
733
"system_usec %llu\n"
734
"nice_usec %llu\n",
735
bstat.cputime.sum_exec_runtime,
736
bstat.cputime.utime,
737
bstat.cputime.stime,
738
bstat.ntime);
739
740
cgroup_force_idle_show(seq, &bstat);
741
}
742
743
/* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */
744
BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
745
BTF_ID_FLAGS(func, css_rstat_updated)
746
BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE)
747
BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
748
749
static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
750
.owner = THIS_MODULE,
751
.set = &bpf_rstat_kfunc_ids,
752
};
753
754
static int __init bpf_rstat_kfunc_init(void)
755
{
756
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
757
&bpf_rstat_kfunc_set);
758
}
759
late_initcall(bpf_rstat_kfunc_init);
760
761