Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/crash_core.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* crash.c - kernel crash support code.
4
* Copyright (C) 2002-2004 Eric Biederman <[email protected]>
5
*/
6
7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9
#include <linux/buildid.h>
10
#include <linux/init.h>
11
#include <linux/utsname.h>
12
#include <linux/vmalloc.h>
13
#include <linux/sizes.h>
14
#include <linux/kexec.h>
15
#include <linux/memory.h>
16
#include <linux/mm.h>
17
#include <linux/cpuhotplug.h>
18
#include <linux/memblock.h>
19
#include <linux/kmemleak.h>
20
#include <linux/crash_core.h>
21
#include <linux/reboot.h>
22
#include <linux/btf.h>
23
#include <linux/objtool.h>
24
#include <linux/delay.h>
25
#include <linux/panic.h>
26
27
#include <asm/page.h>
28
#include <asm/sections.h>
29
30
#include <crypto/sha1.h>
31
32
#include "kallsyms_internal.h"
33
#include "kexec_internal.h"
34
35
/* Per cpu memory for storing cpu states in case of system crash. */
36
note_buf_t __percpu *crash_notes;
37
38
/* time to wait for possible DMA to finish before starting the kdump kernel
39
* when a CMA reservation is used
40
*/
41
#define CMA_DMA_TIMEOUT_SEC 10
42
43
#ifdef CONFIG_CRASH_DUMP
44
45
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
46
{
47
struct page *vmcoreinfo_page;
48
void *safecopy;
49
50
if (!IS_ENABLED(CONFIG_CRASH_DUMP))
51
return 0;
52
if (image->type != KEXEC_TYPE_CRASH)
53
return 0;
54
55
/*
56
* For kdump, allocate one vmcoreinfo safe copy from the
57
* crash memory. as we have arch_kexec_protect_crashkres()
58
* after kexec syscall, we naturally protect it from write
59
* (even read) access under kernel direct mapping. But on
60
* the other hand, we still need to operate it when crash
61
* happens to generate vmcoreinfo note, hereby we rely on
62
* vmap for this purpose.
63
*/
64
vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
65
if (!vmcoreinfo_page) {
66
pr_warn("Could not allocate vmcoreinfo buffer\n");
67
return -ENOMEM;
68
}
69
safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
70
if (!safecopy) {
71
pr_warn("Could not vmap vmcoreinfo buffer\n");
72
return -ENOMEM;
73
}
74
75
image->vmcoreinfo_data_copy = safecopy;
76
crash_update_vmcoreinfo_safecopy(safecopy);
77
78
return 0;
79
}
80
81
82
83
int kexec_should_crash(struct task_struct *p)
84
{
85
/*
86
* If crash_kexec_post_notifiers is enabled, don't run
87
* crash_kexec() here yet, which must be run after panic
88
* notifiers in panic().
89
*/
90
if (crash_kexec_post_notifiers)
91
return 0;
92
/*
93
* There are 4 panic() calls in make_task_dead() path, each of which
94
* corresponds to each of these 4 conditions.
95
*/
96
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
97
return 1;
98
return 0;
99
}
100
101
int kexec_crash_loaded(void)
102
{
103
return !!kexec_crash_image;
104
}
105
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
106
107
static void crash_cma_clear_pending_dma(void)
108
{
109
if (!crashk_cma_cnt)
110
return;
111
112
mdelay(CMA_DMA_TIMEOUT_SEC * 1000);
113
}
114
115
/*
116
* No panic_cpu check version of crash_kexec(). This function is called
117
* only when panic_cpu holds the current CPU number; this is the only CPU
118
* which processes crash_kexec routines.
119
*/
120
void __noclone __crash_kexec(struct pt_regs *regs)
121
{
122
/* Take the kexec_lock here to prevent sys_kexec_load
123
* running on one cpu from replacing the crash kernel
124
* we are using after a panic on a different cpu.
125
*
126
* If the crash kernel was not located in a fixed area
127
* of memory the xchg(&kexec_crash_image) would be
128
* sufficient. But since I reuse the memory...
129
*/
130
if (kexec_trylock()) {
131
if (kexec_crash_image) {
132
struct pt_regs fixed_regs;
133
134
crash_setup_regs(&fixed_regs, regs);
135
crash_save_vmcoreinfo();
136
machine_crash_shutdown(&fixed_regs);
137
crash_cma_clear_pending_dma();
138
machine_kexec(kexec_crash_image);
139
}
140
kexec_unlock();
141
}
142
}
143
STACK_FRAME_NON_STANDARD(__crash_kexec);
144
145
__bpf_kfunc void crash_kexec(struct pt_regs *regs)
146
{
147
if (panic_try_start()) {
148
/* This is the 1st CPU which comes here, so go ahead. */
149
__crash_kexec(regs);
150
151
/*
152
* Reset panic_cpu to allow another panic()/crash_kexec()
153
* call.
154
*/
155
panic_reset();
156
}
157
}
158
159
static inline resource_size_t crash_resource_size(const struct resource *res)
160
{
161
return !res->end ? 0 : resource_size(res);
162
}
163
164
165
166
167
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
168
void **addr, unsigned long *sz)
169
{
170
Elf64_Ehdr *ehdr;
171
Elf64_Phdr *phdr;
172
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
173
unsigned char *buf;
174
unsigned int cpu, i;
175
unsigned long long notes_addr;
176
unsigned long mstart, mend;
177
178
/* extra phdr for vmcoreinfo ELF note */
179
nr_phdr = nr_cpus + 1;
180
nr_phdr += mem->nr_ranges;
181
182
/*
183
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
184
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
185
* I think this is required by tools like gdb. So same physical
186
* memory will be mapped in two ELF headers. One will contain kernel
187
* text virtual addresses and other will have __va(physical) addresses.
188
*/
189
190
nr_phdr++;
191
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
192
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
193
194
buf = vzalloc(elf_sz);
195
if (!buf)
196
return -ENOMEM;
197
198
ehdr = (Elf64_Ehdr *)buf;
199
phdr = (Elf64_Phdr *)(ehdr + 1);
200
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
201
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
202
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
203
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
204
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
205
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
206
ehdr->e_type = ET_CORE;
207
ehdr->e_machine = ELF_ARCH;
208
ehdr->e_version = EV_CURRENT;
209
ehdr->e_phoff = sizeof(Elf64_Ehdr);
210
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
211
ehdr->e_phentsize = sizeof(Elf64_Phdr);
212
213
/* Prepare one phdr of type PT_NOTE for each possible CPU */
214
for_each_possible_cpu(cpu) {
215
phdr->p_type = PT_NOTE;
216
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
217
phdr->p_offset = phdr->p_paddr = notes_addr;
218
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
219
(ehdr->e_phnum)++;
220
phdr++;
221
}
222
223
/* Prepare one PT_NOTE header for vmcoreinfo */
224
phdr->p_type = PT_NOTE;
225
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
226
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
227
(ehdr->e_phnum)++;
228
phdr++;
229
230
/* Prepare PT_LOAD type program header for kernel text region */
231
if (need_kernel_map) {
232
phdr->p_type = PT_LOAD;
233
phdr->p_flags = PF_R|PF_W|PF_X;
234
phdr->p_vaddr = (unsigned long) _text;
235
phdr->p_filesz = phdr->p_memsz = _end - _text;
236
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
237
ehdr->e_phnum++;
238
phdr++;
239
}
240
241
/* Go through all the ranges in mem->ranges[] and prepare phdr */
242
for (i = 0; i < mem->nr_ranges; i++) {
243
mstart = mem->ranges[i].start;
244
mend = mem->ranges[i].end;
245
246
phdr->p_type = PT_LOAD;
247
phdr->p_flags = PF_R|PF_W|PF_X;
248
phdr->p_offset = mstart;
249
250
phdr->p_paddr = mstart;
251
phdr->p_vaddr = (unsigned long) __va(mstart);
252
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
253
phdr->p_align = 0;
254
ehdr->e_phnum++;
255
#ifdef CONFIG_KEXEC_FILE
256
kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
257
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
258
ehdr->e_phnum, phdr->p_offset);
259
#endif
260
phdr++;
261
}
262
263
*addr = buf;
264
*sz = elf_sz;
265
return 0;
266
}
267
268
/**
269
* crash_exclude_mem_range - exclude a mem range for existing ranges
270
* @mem: mem->range contains an array of ranges sorted in ascending order
271
* @mstart: the start of to-be-excluded range
272
* @mend: the start of to-be-excluded range
273
*
274
* If you are unsure if a range split will happen, to avoid function call
275
* failure because of -ENOMEM, always make sure
276
* mem->max_nr_ranges == mem->nr_ranges + 1
277
* before calling the function each time.
278
*
279
* returns 0 if a memory range is excluded successfully
280
* return -ENOMEM if mem->ranges doesn't have space to hold split ranges
281
*/
282
int crash_exclude_mem_range(struct crash_mem *mem,
283
unsigned long long mstart, unsigned long long mend)
284
{
285
int i;
286
unsigned long long start, end, p_start, p_end;
287
288
for (i = 0; i < mem->nr_ranges; i++) {
289
start = mem->ranges[i].start;
290
end = mem->ranges[i].end;
291
p_start = mstart;
292
p_end = mend;
293
294
if (p_start > end)
295
continue;
296
297
/*
298
* Because the memory ranges in mem->ranges are stored in
299
* ascending order, when we detect `p_end < start`, we can
300
* immediately exit the for loop, as the subsequent memory
301
* ranges will definitely be outside the range we are looking
302
* for.
303
*/
304
if (p_end < start)
305
break;
306
307
/* Truncate any area outside of range */
308
if (p_start < start)
309
p_start = start;
310
if (p_end > end)
311
p_end = end;
312
313
/* Found completely overlapping range */
314
if (p_start == start && p_end == end) {
315
memmove(&mem->ranges[i], &mem->ranges[i + 1],
316
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
317
i--;
318
mem->nr_ranges--;
319
} else if (p_start > start && p_end < end) {
320
/* Split original range */
321
if (mem->nr_ranges >= mem->max_nr_ranges)
322
return -ENOMEM;
323
324
memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
325
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
326
327
mem->ranges[i].end = p_start - 1;
328
mem->ranges[i + 1].start = p_end + 1;
329
mem->ranges[i + 1].end = end;
330
331
i++;
332
mem->nr_ranges++;
333
} else if (p_start != start)
334
mem->ranges[i].end = p_start - 1;
335
else
336
mem->ranges[i].start = p_end + 1;
337
}
338
339
return 0;
340
}
341
EXPORT_SYMBOL_GPL(crash_exclude_mem_range);
342
343
ssize_t crash_get_memory_size(void)
344
{
345
ssize_t size = 0;
346
347
if (!kexec_trylock())
348
return -EBUSY;
349
350
size += crash_resource_size(&crashk_res);
351
size += crash_resource_size(&crashk_low_res);
352
353
kexec_unlock();
354
return size;
355
}
356
357
static int __crash_shrink_memory(struct resource *old_res,
358
unsigned long new_size)
359
{
360
struct resource *ram_res;
361
362
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
363
if (!ram_res)
364
return -ENOMEM;
365
366
ram_res->start = old_res->start + new_size;
367
ram_res->end = old_res->end;
368
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
369
ram_res->name = "System RAM";
370
371
if (!new_size) {
372
release_resource(old_res);
373
old_res->start = 0;
374
old_res->end = 0;
375
} else {
376
crashk_res.end = ram_res->start - 1;
377
}
378
379
crash_free_reserved_phys_range(ram_res->start, ram_res->end);
380
insert_resource(&iomem_resource, ram_res);
381
382
return 0;
383
}
384
385
int crash_shrink_memory(unsigned long new_size)
386
{
387
int ret = 0;
388
unsigned long old_size, low_size;
389
390
if (!kexec_trylock())
391
return -EBUSY;
392
393
if (kexec_crash_image) {
394
ret = -ENOENT;
395
goto unlock;
396
}
397
398
low_size = crash_resource_size(&crashk_low_res);
399
old_size = crash_resource_size(&crashk_res) + low_size;
400
new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
401
if (new_size >= old_size) {
402
ret = (new_size == old_size) ? 0 : -EINVAL;
403
goto unlock;
404
}
405
406
/*
407
* (low_size > new_size) implies that low_size is greater than zero.
408
* This also means that if low_size is zero, the else branch is taken.
409
*
410
* If low_size is greater than 0, (low_size > new_size) indicates that
411
* crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
412
* needs to be shrunken.
413
*/
414
if (low_size > new_size) {
415
ret = __crash_shrink_memory(&crashk_res, 0);
416
if (ret)
417
goto unlock;
418
419
ret = __crash_shrink_memory(&crashk_low_res, new_size);
420
} else {
421
ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
422
}
423
424
/* Swap crashk_res and crashk_low_res if needed */
425
if (!crashk_res.end && crashk_low_res.end) {
426
crashk_res.start = crashk_low_res.start;
427
crashk_res.end = crashk_low_res.end;
428
release_resource(&crashk_low_res);
429
crashk_low_res.start = 0;
430
crashk_low_res.end = 0;
431
insert_resource(&iomem_resource, &crashk_res);
432
}
433
434
unlock:
435
kexec_unlock();
436
return ret;
437
}
438
439
void crash_save_cpu(struct pt_regs *regs, int cpu)
440
{
441
struct elf_prstatus prstatus;
442
u32 *buf;
443
444
if ((cpu < 0) || (cpu >= nr_cpu_ids))
445
return;
446
447
/* Using ELF notes here is opportunistic.
448
* I need a well defined structure format
449
* for the data I pass, and I need tags
450
* on the data to indicate what information I have
451
* squirrelled away. ELF notes happen to provide
452
* all of that, so there is no need to invent something new.
453
*/
454
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
455
if (!buf)
456
return;
457
memset(&prstatus, 0, sizeof(prstatus));
458
prstatus.common.pr_pid = current->pid;
459
elf_core_copy_regs(&prstatus.pr_reg, regs);
460
buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
461
&prstatus, sizeof(prstatus));
462
final_note(buf);
463
}
464
465
466
467
static int __init crash_notes_memory_init(void)
468
{
469
/* Allocate memory for saving cpu registers. */
470
size_t size, align;
471
472
/*
473
* crash_notes could be allocated across 2 vmalloc pages when percpu
474
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
475
* pages are also on 2 continuous physical pages. In this case the
476
* 2nd part of crash_notes in 2nd page could be lost since only the
477
* starting address and size of crash_notes are exported through sysfs.
478
* Here round up the size of crash_notes to the nearest power of two
479
* and pass it to __alloc_percpu as align value. This can make sure
480
* crash_notes is allocated inside one physical page.
481
*/
482
size = sizeof(note_buf_t);
483
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
484
485
/*
486
* Break compile if size is bigger than PAGE_SIZE since crash_notes
487
* definitely will be in 2 pages with that.
488
*/
489
BUILD_BUG_ON(size > PAGE_SIZE);
490
491
crash_notes = __alloc_percpu(size, align);
492
if (!crash_notes) {
493
pr_warn("Memory allocation for saving cpu register states failed\n");
494
return -ENOMEM;
495
}
496
return 0;
497
}
498
subsys_initcall(crash_notes_memory_init);
499
500
#endif /*CONFIG_CRASH_DUMP*/
501
502
#ifdef CONFIG_CRASH_HOTPLUG
503
#undef pr_fmt
504
#define pr_fmt(fmt) "crash hp: " fmt
505
506
/*
507
* Different than kexec/kdump loading/unloading/jumping/shrinking which
508
* usually rarely happen, there will be many crash hotplug events notified
509
* during one short period, e.g one memory board is hot added and memory
510
* regions are online. So mutex lock __crash_hotplug_lock is used to
511
* serialize the crash hotplug handling specifically.
512
*/
513
static DEFINE_MUTEX(__crash_hotplug_lock);
514
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
515
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
516
517
/*
518
* This routine utilized when the crash_hotplug sysfs node is read.
519
* It reflects the kernel's ability/permission to update the kdump
520
* image directly.
521
*/
522
int crash_check_hotplug_support(void)
523
{
524
int rc = 0;
525
526
crash_hotplug_lock();
527
/* Obtain lock while reading crash information */
528
if (!kexec_trylock()) {
529
if (!kexec_in_progress)
530
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
531
crash_hotplug_unlock();
532
return 0;
533
}
534
if (kexec_crash_image) {
535
rc = kexec_crash_image->hotplug_support;
536
}
537
/* Release lock now that update complete */
538
kexec_unlock();
539
crash_hotplug_unlock();
540
541
return rc;
542
}
543
544
/*
545
* To accurately reflect hot un/plug changes of CPU and Memory resources
546
* (including onling and offlining of those resources), the relevant
547
* kexec segments must be updated with latest CPU and Memory resources.
548
*
549
* Architectures must ensure two things for all segments that need
550
* updating during hotplug events:
551
*
552
* 1. Segments must be large enough to accommodate a growing number of
553
* resources.
554
* 2. Exclude the segments from SHA verification.
555
*
556
* For example, on most architectures, the elfcorehdr (which is passed
557
* to the crash kernel via the elfcorehdr= parameter) must include the
558
* new list of CPUs and memory. To make changes to the elfcorehdr, it
559
* should be large enough to permit a growing number of CPU and Memory
560
* resources. One can estimate the elfcorehdr memory size based on
561
* NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
562
* excluded from SHA verification by default if the architecture
563
* supports crash hotplug.
564
*/
565
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
566
{
567
struct kimage *image;
568
569
crash_hotplug_lock();
570
/* Obtain lock while changing crash information */
571
if (!kexec_trylock()) {
572
if (!kexec_in_progress)
573
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
574
crash_hotplug_unlock();
575
return;
576
}
577
578
/* Check kdump is not loaded */
579
if (!kexec_crash_image)
580
goto out;
581
582
image = kexec_crash_image;
583
584
/* Check that kexec segments update is permitted */
585
if (!image->hotplug_support)
586
goto out;
587
588
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
589
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
590
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
591
else
592
pr_debug("hp_action %u\n", hp_action);
593
594
/*
595
* The elfcorehdr_index is set to -1 when the struct kimage
596
* is allocated. Find the segment containing the elfcorehdr,
597
* if not already found.
598
*/
599
if (image->elfcorehdr_index < 0) {
600
unsigned long mem;
601
unsigned char *ptr;
602
unsigned int n;
603
604
for (n = 0; n < image->nr_segments; n++) {
605
mem = image->segment[n].mem;
606
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
607
if (ptr) {
608
/* The segment containing elfcorehdr */
609
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
610
image->elfcorehdr_index = (int)n;
611
kunmap_local(ptr);
612
}
613
}
614
}
615
616
if (image->elfcorehdr_index < 0) {
617
pr_err("unable to locate elfcorehdr segment");
618
goto out;
619
}
620
621
/* Needed in order for the segments to be updated */
622
arch_kexec_unprotect_crashkres();
623
624
/* Differentiate between normal load and hotplug update */
625
image->hp_action = hp_action;
626
627
/* Now invoke arch-specific update handler */
628
arch_crash_handle_hotplug_event(image, arg);
629
630
/* No longer handling a hotplug event */
631
image->hp_action = KEXEC_CRASH_HP_NONE;
632
image->elfcorehdr_updated = true;
633
634
/* Change back to read-only */
635
arch_kexec_protect_crashkres();
636
637
/* Errors in the callback is not a reason to rollback state */
638
out:
639
/* Release lock now that update complete */
640
kexec_unlock();
641
crash_hotplug_unlock();
642
}
643
644
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
645
{
646
switch (val) {
647
case MEM_ONLINE:
648
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
649
KEXEC_CRASH_HP_INVALID_CPU, arg);
650
break;
651
652
case MEM_OFFLINE:
653
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
654
KEXEC_CRASH_HP_INVALID_CPU, arg);
655
break;
656
}
657
return NOTIFY_OK;
658
}
659
660
static struct notifier_block crash_memhp_nb = {
661
.notifier_call = crash_memhp_notifier,
662
.priority = 0
663
};
664
665
static int crash_cpuhp_online(unsigned int cpu)
666
{
667
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
668
return 0;
669
}
670
671
static int crash_cpuhp_offline(unsigned int cpu)
672
{
673
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
674
return 0;
675
}
676
677
static int __init crash_hotplug_init(void)
678
{
679
int result = 0;
680
681
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
682
register_memory_notifier(&crash_memhp_nb);
683
684
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
685
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
686
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
687
}
688
689
return result;
690
}
691
692
subsys_initcall(crash_hotplug_init);
693
#endif
694
695