Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/crash_core.c
54330 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* crash.c - kernel crash support code.
4
* Copyright (C) 2002-2004 Eric Biederman <[email protected]>
5
*/
6
7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9
#include <linux/buildid.h>
10
#include <linux/init.h>
11
#include <linux/utsname.h>
12
#include <linux/vmalloc.h>
13
#include <linux/sizes.h>
14
#include <linux/kexec.h>
15
#include <linux/memory.h>
16
#include <linux/mm.h>
17
#include <linux/cpuhotplug.h>
18
#include <linux/memblock.h>
19
#include <linux/kmemleak.h>
20
#include <linux/crash_core.h>
21
#include <linux/reboot.h>
22
#include <linux/btf.h>
23
#include <linux/objtool.h>
24
#include <linux/delay.h>
25
#include <linux/panic.h>
26
27
#include <asm/page.h>
28
#include <asm/sections.h>
29
30
#include <crypto/sha1.h>
31
32
#include "kallsyms_internal.h"
33
#include "kexec_internal.h"
34
35
/* Per cpu memory for storing cpu states in case of system crash. */
36
note_buf_t __percpu *crash_notes;
37
38
/* time to wait for possible DMA to finish before starting the kdump kernel
39
* when a CMA reservation is used
40
*/
41
#define CMA_DMA_TIMEOUT_SEC 10
42
43
#ifdef CONFIG_CRASH_DUMP
44
45
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
46
{
47
struct page *vmcoreinfo_base;
48
struct page *vmcoreinfo_pages[DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE)];
49
unsigned int order, nr_pages;
50
int i;
51
void *safecopy;
52
53
nr_pages = DIV_ROUND_UP(VMCOREINFO_BYTES, PAGE_SIZE);
54
order = get_order(VMCOREINFO_BYTES);
55
56
if (!IS_ENABLED(CONFIG_CRASH_DUMP))
57
return 0;
58
if (image->type != KEXEC_TYPE_CRASH)
59
return 0;
60
61
/*
62
* For kdump, allocate one vmcoreinfo safe copy from the
63
* crash memory. as we have arch_kexec_protect_crashkres()
64
* after kexec syscall, we naturally protect it from write
65
* (even read) access under kernel direct mapping. But on
66
* the other hand, we still need to operate it when crash
67
* happens to generate vmcoreinfo note, hereby we rely on
68
* vmap for this purpose.
69
*/
70
vmcoreinfo_base = kimage_alloc_control_pages(image, order);
71
if (!vmcoreinfo_base) {
72
pr_warn("Could not allocate vmcoreinfo buffer\n");
73
return -ENOMEM;
74
}
75
for (i = 0; i < nr_pages; i++)
76
vmcoreinfo_pages[i] = vmcoreinfo_base + i;
77
78
safecopy = vmap(vmcoreinfo_pages, nr_pages, VM_MAP, PAGE_KERNEL);
79
if (!safecopy) {
80
pr_warn("Could not vmap vmcoreinfo buffer\n");
81
return -ENOMEM;
82
}
83
84
image->vmcoreinfo_data_copy = safecopy;
85
crash_update_vmcoreinfo_safecopy(safecopy);
86
87
return 0;
88
}
89
90
91
92
int kexec_should_crash(struct task_struct *p)
93
{
94
/*
95
* If crash_kexec_post_notifiers is enabled, don't run
96
* crash_kexec() here yet, which must be run after panic
97
* notifiers in panic().
98
*/
99
if (crash_kexec_post_notifiers)
100
return 0;
101
/*
102
* There are 4 panic() calls in make_task_dead() path, each of which
103
* corresponds to each of these 4 conditions.
104
*/
105
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
106
return 1;
107
return 0;
108
}
109
110
int kexec_crash_loaded(void)
111
{
112
return !!kexec_crash_image;
113
}
114
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
115
116
static void crash_cma_clear_pending_dma(void)
117
{
118
if (!crashk_cma_cnt)
119
return;
120
121
mdelay(CMA_DMA_TIMEOUT_SEC * 1000);
122
}
123
124
/*
125
* No panic_cpu check version of crash_kexec(). This function is called
126
* only when panic_cpu holds the current CPU number; this is the only CPU
127
* which processes crash_kexec routines.
128
*/
129
void __noclone __crash_kexec(struct pt_regs *regs)
130
{
131
/* Take the kexec_lock here to prevent sys_kexec_load
132
* running on one cpu from replacing the crash kernel
133
* we are using after a panic on a different cpu.
134
*
135
* If the crash kernel was not located in a fixed area
136
* of memory the xchg(&kexec_crash_image) would be
137
* sufficient. But since I reuse the memory...
138
*/
139
if (kexec_trylock()) {
140
if (kexec_crash_image) {
141
struct pt_regs fixed_regs;
142
143
crash_setup_regs(&fixed_regs, regs);
144
crash_save_vmcoreinfo();
145
machine_crash_shutdown(&fixed_regs);
146
crash_cma_clear_pending_dma();
147
machine_kexec(kexec_crash_image);
148
}
149
kexec_unlock();
150
}
151
}
152
STACK_FRAME_NON_STANDARD(__crash_kexec);
153
154
__bpf_kfunc void crash_kexec(struct pt_regs *regs)
155
{
156
if (panic_try_start()) {
157
/* This is the 1st CPU which comes here, so go ahead. */
158
__crash_kexec(regs);
159
160
/*
161
* Reset panic_cpu to allow another panic()/crash_kexec()
162
* call.
163
*/
164
panic_reset();
165
}
166
}
167
168
static inline resource_size_t crash_resource_size(const struct resource *res)
169
{
170
return !res->end ? 0 : resource_size(res);
171
}
172
173
174
175
176
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
177
void **addr, unsigned long *sz)
178
{
179
Elf64_Ehdr *ehdr;
180
Elf64_Phdr *phdr;
181
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
182
unsigned char *buf;
183
unsigned int cpu, i;
184
unsigned long long notes_addr;
185
unsigned long mstart, mend;
186
187
/* extra phdr for vmcoreinfo ELF note */
188
nr_phdr = nr_cpus + 1;
189
nr_phdr += mem->nr_ranges;
190
191
/*
192
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
193
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
194
* I think this is required by tools like gdb. So same physical
195
* memory will be mapped in two ELF headers. One will contain kernel
196
* text virtual addresses and other will have __va(physical) addresses.
197
*/
198
199
nr_phdr++;
200
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
201
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
202
203
buf = vzalloc(elf_sz);
204
if (!buf)
205
return -ENOMEM;
206
207
ehdr = (Elf64_Ehdr *)buf;
208
phdr = (Elf64_Phdr *)(ehdr + 1);
209
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
210
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
211
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
212
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
213
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
214
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
215
ehdr->e_type = ET_CORE;
216
ehdr->e_machine = ELF_ARCH;
217
ehdr->e_version = EV_CURRENT;
218
ehdr->e_phoff = sizeof(Elf64_Ehdr);
219
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
220
ehdr->e_phentsize = sizeof(Elf64_Phdr);
221
222
/* Prepare one phdr of type PT_NOTE for each possible CPU */
223
for_each_possible_cpu(cpu) {
224
phdr->p_type = PT_NOTE;
225
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
226
phdr->p_offset = phdr->p_paddr = notes_addr;
227
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
228
(ehdr->e_phnum)++;
229
phdr++;
230
}
231
232
/* Prepare one PT_NOTE header for vmcoreinfo */
233
phdr->p_type = PT_NOTE;
234
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
235
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
236
(ehdr->e_phnum)++;
237
phdr++;
238
239
/* Prepare PT_LOAD type program header for kernel text region */
240
if (need_kernel_map) {
241
phdr->p_type = PT_LOAD;
242
phdr->p_flags = PF_R|PF_W|PF_X;
243
phdr->p_vaddr = (unsigned long) _text;
244
phdr->p_filesz = phdr->p_memsz = _end - _text;
245
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
246
ehdr->e_phnum++;
247
phdr++;
248
}
249
250
/* Go through all the ranges in mem->ranges[] and prepare phdr */
251
for (i = 0; i < mem->nr_ranges; i++) {
252
mstart = mem->ranges[i].start;
253
mend = mem->ranges[i].end;
254
255
phdr->p_type = PT_LOAD;
256
phdr->p_flags = PF_R|PF_W|PF_X;
257
phdr->p_offset = mstart;
258
259
phdr->p_paddr = mstart;
260
phdr->p_vaddr = (unsigned long) __va(mstart);
261
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
262
phdr->p_align = 0;
263
ehdr->e_phnum++;
264
#ifdef CONFIG_KEXEC_FILE
265
kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
266
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
267
ehdr->e_phnum, phdr->p_offset);
268
#endif
269
phdr++;
270
}
271
272
*addr = buf;
273
*sz = elf_sz;
274
return 0;
275
}
276
277
/**
278
* crash_exclude_mem_range - exclude a mem range for existing ranges
279
* @mem: mem->range contains an array of ranges sorted in ascending order
280
* @mstart: the start of to-be-excluded range
281
* @mend: the start of to-be-excluded range
282
*
283
* If you are unsure if a range split will happen, to avoid function call
284
* failure because of -ENOMEM, always make sure
285
* mem->max_nr_ranges == mem->nr_ranges + 1
286
* before calling the function each time.
287
*
288
* returns 0 if a memory range is excluded successfully
289
* return -ENOMEM if mem->ranges doesn't have space to hold split ranges
290
*/
291
int crash_exclude_mem_range(struct crash_mem *mem,
292
unsigned long long mstart, unsigned long long mend)
293
{
294
int i;
295
unsigned long long start, end, p_start, p_end;
296
297
for (i = 0; i < mem->nr_ranges; i++) {
298
start = mem->ranges[i].start;
299
end = mem->ranges[i].end;
300
p_start = mstart;
301
p_end = mend;
302
303
if (p_start > end)
304
continue;
305
306
/*
307
* Because the memory ranges in mem->ranges are stored in
308
* ascending order, when we detect `p_end < start`, we can
309
* immediately exit the for loop, as the subsequent memory
310
* ranges will definitely be outside the range we are looking
311
* for.
312
*/
313
if (p_end < start)
314
break;
315
316
/* Truncate any area outside of range */
317
if (p_start < start)
318
p_start = start;
319
if (p_end > end)
320
p_end = end;
321
322
/* Found completely overlapping range */
323
if (p_start == start && p_end == end) {
324
memmove(&mem->ranges[i], &mem->ranges[i + 1],
325
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
326
i--;
327
mem->nr_ranges--;
328
} else if (p_start > start && p_end < end) {
329
/* Split original range */
330
if (mem->nr_ranges >= mem->max_nr_ranges)
331
return -ENOMEM;
332
333
memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
334
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
335
336
mem->ranges[i].end = p_start - 1;
337
mem->ranges[i + 1].start = p_end + 1;
338
mem->ranges[i + 1].end = end;
339
340
i++;
341
mem->nr_ranges++;
342
} else if (p_start != start)
343
mem->ranges[i].end = p_start - 1;
344
else
345
mem->ranges[i].start = p_end + 1;
346
}
347
348
return 0;
349
}
350
EXPORT_SYMBOL_GPL(crash_exclude_mem_range);
351
352
ssize_t crash_get_memory_size(void)
353
{
354
ssize_t size = 0;
355
356
if (!kexec_trylock())
357
return -EBUSY;
358
359
size += crash_resource_size(&crashk_res);
360
size += crash_resource_size(&crashk_low_res);
361
362
kexec_unlock();
363
return size;
364
}
365
366
static int __crash_shrink_memory(struct resource *old_res,
367
unsigned long new_size)
368
{
369
struct resource *ram_res;
370
371
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
372
if (!ram_res)
373
return -ENOMEM;
374
375
ram_res->start = old_res->start + new_size;
376
ram_res->end = old_res->end;
377
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
378
ram_res->name = "System RAM";
379
380
if (!new_size) {
381
release_resource(old_res);
382
old_res->start = 0;
383
old_res->end = 0;
384
} else {
385
old_res->end = ram_res->start - 1;
386
}
387
388
crash_free_reserved_phys_range(ram_res->start, ram_res->end);
389
insert_resource(&iomem_resource, ram_res);
390
391
return 0;
392
}
393
394
int crash_shrink_memory(unsigned long new_size)
395
{
396
int ret = 0;
397
unsigned long old_size, low_size;
398
399
if (!kexec_trylock())
400
return -EBUSY;
401
402
if (kexec_crash_image) {
403
ret = -ENOENT;
404
goto unlock;
405
}
406
407
low_size = crash_resource_size(&crashk_low_res);
408
old_size = crash_resource_size(&crashk_res) + low_size;
409
new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
410
if (new_size >= old_size) {
411
ret = (new_size == old_size) ? 0 : -EINVAL;
412
goto unlock;
413
}
414
415
/*
416
* (low_size > new_size) implies that low_size is greater than zero.
417
* This also means that if low_size is zero, the else branch is taken.
418
*
419
* If low_size is greater than 0, (low_size > new_size) indicates that
420
* crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
421
* needs to be shrunken.
422
*/
423
if (low_size > new_size) {
424
ret = __crash_shrink_memory(&crashk_res, 0);
425
if (ret)
426
goto unlock;
427
428
ret = __crash_shrink_memory(&crashk_low_res, new_size);
429
} else {
430
ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
431
}
432
433
/* Swap crashk_res and crashk_low_res if needed */
434
if (!crashk_res.end && crashk_low_res.end) {
435
crashk_res.start = crashk_low_res.start;
436
crashk_res.end = crashk_low_res.end;
437
release_resource(&crashk_low_res);
438
crashk_low_res.start = 0;
439
crashk_low_res.end = 0;
440
insert_resource(&iomem_resource, &crashk_res);
441
}
442
443
unlock:
444
kexec_unlock();
445
return ret;
446
}
447
448
void crash_save_cpu(struct pt_regs *regs, int cpu)
449
{
450
struct elf_prstatus prstatus;
451
u32 *buf;
452
453
if ((cpu < 0) || (cpu >= nr_cpu_ids))
454
return;
455
456
/* Using ELF notes here is opportunistic.
457
* I need a well defined structure format
458
* for the data I pass, and I need tags
459
* on the data to indicate what information I have
460
* squirrelled away. ELF notes happen to provide
461
* all of that, so there is no need to invent something new.
462
*/
463
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
464
if (!buf)
465
return;
466
memset(&prstatus, 0, sizeof(prstatus));
467
prstatus.common.pr_pid = current->pid;
468
elf_core_copy_regs(&prstatus.pr_reg, regs);
469
buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
470
&prstatus, sizeof(prstatus));
471
final_note(buf);
472
}
473
474
475
476
static int __init crash_notes_memory_init(void)
477
{
478
/* Allocate memory for saving cpu registers. */
479
size_t size, align;
480
481
/*
482
* crash_notes could be allocated across 2 vmalloc pages when percpu
483
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
484
* pages are also on 2 continuous physical pages. In this case the
485
* 2nd part of crash_notes in 2nd page could be lost since only the
486
* starting address and size of crash_notes are exported through sysfs.
487
* Here round up the size of crash_notes to the nearest power of two
488
* and pass it to __alloc_percpu as align value. This can make sure
489
* crash_notes is allocated inside one physical page.
490
*/
491
size = sizeof(note_buf_t);
492
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
493
494
/*
495
* Break compile if size is bigger than PAGE_SIZE since crash_notes
496
* definitely will be in 2 pages with that.
497
*/
498
BUILD_BUG_ON(size > PAGE_SIZE);
499
500
crash_notes = __alloc_percpu(size, align);
501
if (!crash_notes) {
502
pr_warn("Memory allocation for saving cpu register states failed\n");
503
return -ENOMEM;
504
}
505
return 0;
506
}
507
subsys_initcall(crash_notes_memory_init);
508
509
#endif /*CONFIG_CRASH_DUMP*/
510
511
#ifdef CONFIG_CRASH_HOTPLUG
512
#undef pr_fmt
513
#define pr_fmt(fmt) "crash hp: " fmt
514
515
/*
516
* Different than kexec/kdump loading/unloading/jumping/shrinking which
517
* usually rarely happen, there will be many crash hotplug events notified
518
* during one short period, e.g one memory board is hot added and memory
519
* regions are online. So mutex lock __crash_hotplug_lock is used to
520
* serialize the crash hotplug handling specifically.
521
*/
522
static DEFINE_MUTEX(__crash_hotplug_lock);
523
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
524
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
525
526
/*
527
* This routine utilized when the crash_hotplug sysfs node is read.
528
* It reflects the kernel's ability/permission to update the kdump
529
* image directly.
530
*/
531
int crash_check_hotplug_support(void)
532
{
533
int rc = 0;
534
535
crash_hotplug_lock();
536
/* Obtain lock while reading crash information */
537
if (!kexec_trylock()) {
538
if (!kexec_in_progress)
539
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
540
crash_hotplug_unlock();
541
return 0;
542
}
543
if (kexec_crash_image) {
544
rc = kexec_crash_image->hotplug_support;
545
}
546
/* Release lock now that update complete */
547
kexec_unlock();
548
crash_hotplug_unlock();
549
550
return rc;
551
}
552
553
/*
554
* To accurately reflect hot un/plug changes of CPU and Memory resources
555
* (including onling and offlining of those resources), the relevant
556
* kexec segments must be updated with latest CPU and Memory resources.
557
*
558
* Architectures must ensure two things for all segments that need
559
* updating during hotplug events:
560
*
561
* 1. Segments must be large enough to accommodate a growing number of
562
* resources.
563
* 2. Exclude the segments from SHA verification.
564
*
565
* For example, on most architectures, the elfcorehdr (which is passed
566
* to the crash kernel via the elfcorehdr= parameter) must include the
567
* new list of CPUs and memory. To make changes to the elfcorehdr, it
568
* should be large enough to permit a growing number of CPU and Memory
569
* resources. One can estimate the elfcorehdr memory size based on
570
* NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
571
* excluded from SHA verification by default if the architecture
572
* supports crash hotplug.
573
*/
574
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
575
{
576
struct kimage *image;
577
578
crash_hotplug_lock();
579
/* Obtain lock while changing crash information */
580
if (!kexec_trylock()) {
581
if (!kexec_in_progress)
582
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
583
crash_hotplug_unlock();
584
return;
585
}
586
587
/* Check kdump is not loaded */
588
if (!kexec_crash_image)
589
goto out;
590
591
image = kexec_crash_image;
592
593
/* Check that kexec segments update is permitted */
594
if (!image->hotplug_support)
595
goto out;
596
597
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
598
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
599
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
600
else
601
pr_debug("hp_action %u\n", hp_action);
602
603
/*
604
* The elfcorehdr_index is set to -1 when the struct kimage
605
* is allocated. Find the segment containing the elfcorehdr,
606
* if not already found.
607
*/
608
if (image->elfcorehdr_index < 0) {
609
unsigned long mem;
610
unsigned char *ptr;
611
unsigned int n;
612
613
for (n = 0; n < image->nr_segments; n++) {
614
mem = image->segment[n].mem;
615
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
616
if (ptr) {
617
/* The segment containing elfcorehdr */
618
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
619
image->elfcorehdr_index = (int)n;
620
kunmap_local(ptr);
621
}
622
}
623
}
624
625
if (image->elfcorehdr_index < 0) {
626
pr_err("unable to locate elfcorehdr segment");
627
goto out;
628
}
629
630
/* Needed in order for the segments to be updated */
631
arch_kexec_unprotect_crashkres();
632
633
/* Differentiate between normal load and hotplug update */
634
image->hp_action = hp_action;
635
636
/* Now invoke arch-specific update handler */
637
arch_crash_handle_hotplug_event(image, arg);
638
639
/* No longer handling a hotplug event */
640
image->hp_action = KEXEC_CRASH_HP_NONE;
641
image->elfcorehdr_updated = true;
642
643
/* Change back to read-only */
644
arch_kexec_protect_crashkres();
645
646
/* Errors in the callback is not a reason to rollback state */
647
out:
648
/* Release lock now that update complete */
649
kexec_unlock();
650
crash_hotplug_unlock();
651
}
652
653
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
654
{
655
switch (val) {
656
case MEM_ONLINE:
657
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
658
KEXEC_CRASH_HP_INVALID_CPU, arg);
659
break;
660
661
case MEM_OFFLINE:
662
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
663
KEXEC_CRASH_HP_INVALID_CPU, arg);
664
break;
665
}
666
return NOTIFY_OK;
667
}
668
669
static struct notifier_block crash_memhp_nb = {
670
.notifier_call = crash_memhp_notifier,
671
.priority = 0
672
};
673
674
static int crash_cpuhp_online(unsigned int cpu)
675
{
676
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
677
return 0;
678
}
679
680
static int crash_cpuhp_offline(unsigned int cpu)
681
{
682
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
683
return 0;
684
}
685
686
static int __init crash_hotplug_init(void)
687
{
688
int result = 0;
689
690
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
691
register_memory_notifier(&crash_memhp_nb);
692
693
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
694
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
695
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
696
}
697
698
return result;
699
}
700
701
subsys_initcall(crash_hotplug_init);
702
#endif
703
704