Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/dma/direct.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2018-2020 Christoph Hellwig.
4
*
5
* DMA operations that map physical memory directly without using an IOMMU.
6
*/
7
#include <linux/memblock.h> /* for max_pfn */
8
#include <linux/export.h>
9
#include <linux/mm.h>
10
#include <linux/dma-map-ops.h>
11
#include <linux/scatterlist.h>
12
#include <linux/pfn.h>
13
#include <linux/vmalloc.h>
14
#include <linux/set_memory.h>
15
#include <linux/slab.h>
16
#include <linux/pci-p2pdma.h>
17
#include "direct.h"
18
19
/*
20
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21
* it for entirely different regions. In that case the arch code needs to
22
* override the variable below for dma-direct to work properly.
23
*/
24
u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25
26
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27
phys_addr_t phys)
28
{
29
if (force_dma_unencrypted(dev))
30
return phys_to_dma_unencrypted(dev, phys);
31
return phys_to_dma(dev, phys);
32
}
33
34
static inline struct page *dma_direct_to_page(struct device *dev,
35
dma_addr_t dma_addr)
36
{
37
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38
}
39
40
u64 dma_direct_get_required_mask(struct device *dev)
41
{
42
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43
u64 max_dma = phys_to_dma_direct(dev, phys);
44
45
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46
}
47
48
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49
{
50
u64 dma_limit = min_not_zero(
51
dev->coherent_dma_mask,
52
dev->bus_dma_limit);
53
54
/*
55
* Optimistically try the zone that the physical address mask falls
56
* into first. If that returns memory that isn't actually addressable
57
* we will fallback to the next lower zone and try again.
58
*
59
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60
* zones.
61
*/
62
*phys_limit = dma_to_phys(dev, dma_limit);
63
if (*phys_limit <= zone_dma_limit)
64
return GFP_DMA;
65
if (*phys_limit <= DMA_BIT_MASK(32))
66
return GFP_DMA32;
67
return 0;
68
}
69
70
bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71
{
72
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73
74
if (dma_addr == DMA_MAPPING_ERROR)
75
return false;
76
return dma_addr + size - 1 <=
77
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78
}
79
80
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
81
{
82
if (!force_dma_unencrypted(dev))
83
return 0;
84
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
85
}
86
87
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
88
{
89
int ret;
90
91
if (!force_dma_unencrypted(dev))
92
return 0;
93
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
94
if (ret)
95
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
96
return ret;
97
}
98
99
static void __dma_direct_free_pages(struct device *dev, struct page *page,
100
size_t size)
101
{
102
if (swiotlb_free(dev, page, size))
103
return;
104
dma_free_contiguous(dev, page, size);
105
}
106
107
static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
108
{
109
struct page *page = swiotlb_alloc(dev, size);
110
111
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112
swiotlb_free(dev, page, size);
113
return NULL;
114
}
115
116
return page;
117
}
118
119
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120
gfp_t gfp, bool allow_highmem)
121
{
122
int node = dev_to_node(dev);
123
struct page *page = NULL;
124
u64 phys_limit;
125
126
WARN_ON_ONCE(!PAGE_ALIGNED(size));
127
128
if (is_swiotlb_for_alloc(dev))
129
return dma_direct_alloc_swiotlb(dev, size);
130
131
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
132
page = dma_alloc_contiguous(dev, size, gfp);
133
if (page) {
134
if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
135
(!allow_highmem && PageHighMem(page))) {
136
dma_free_contiguous(dev, page, size);
137
page = NULL;
138
}
139
}
140
again:
141
if (!page)
142
page = alloc_pages_node(node, gfp, get_order(size));
143
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
144
__free_pages(page, get_order(size));
145
page = NULL;
146
147
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
148
phys_limit < DMA_BIT_MASK(64) &&
149
!(gfp & (GFP_DMA32 | GFP_DMA))) {
150
gfp |= GFP_DMA32;
151
goto again;
152
}
153
154
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
155
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
156
goto again;
157
}
158
}
159
160
return page;
161
}
162
163
/*
164
* Check if a potentially blocking operations needs to dip into the atomic
165
* pools for the given device/gfp.
166
*/
167
static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
168
{
169
return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
170
}
171
172
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
173
dma_addr_t *dma_handle, gfp_t gfp)
174
{
175
struct page *page;
176
u64 phys_limit;
177
void *ret;
178
179
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
180
return NULL;
181
182
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
183
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184
if (!page)
185
return NULL;
186
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187
return ret;
188
}
189
190
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191
dma_addr_t *dma_handle, gfp_t gfp)
192
{
193
struct page *page;
194
195
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196
if (!page)
197
return NULL;
198
199
/* remove any dirty cache lines on the kernel alias */
200
if (!PageHighMem(page))
201
arch_dma_prep_coherent(page, size);
202
203
/* return the page pointer as the opaque cookie */
204
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205
return page;
206
}
207
208
void *dma_direct_alloc(struct device *dev, size_t size,
209
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210
{
211
bool remap = false, set_uncached = false;
212
struct page *page;
213
void *ret;
214
215
size = PAGE_ALIGN(size);
216
if (attrs & DMA_ATTR_NO_WARN)
217
gfp |= __GFP_NOWARN;
218
219
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223
if (!dev_is_dma_coherent(dev)) {
224
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
225
!is_swiotlb_for_alloc(dev))
226
return arch_dma_alloc(dev, size, dma_handle, gfp,
227
attrs);
228
229
/*
230
* If there is a global pool, always allocate from it for
231
* non-coherent devices.
232
*/
233
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
234
return dma_alloc_from_global_coherent(dev, size,
235
dma_handle);
236
237
/*
238
* Otherwise we require the architecture to either be able to
239
* mark arbitrary parts of the kernel direct mapping uncached,
240
* or remapped it uncached.
241
*/
242
set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
243
remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
244
if (!set_uncached && !remap) {
245
pr_warn_once("coherent DMA allocations not supported on this platform.\n");
246
return NULL;
247
}
248
}
249
250
/*
251
* Remapping or decrypting memory may block, allocate the memory from
252
* the atomic pools instead if we aren't allowed block.
253
*/
254
if ((remap || force_dma_unencrypted(dev)) &&
255
dma_direct_use_pool(dev, gfp))
256
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
257
258
/* we always manually zero the memory once we are done */
259
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
260
if (!page)
261
return NULL;
262
263
/*
264
* dma_alloc_contiguous can return highmem pages depending on a
265
* combination the cma= arguments and per-arch setup. These need to be
266
* remapped to return a kernel virtual address.
267
*/
268
if (PageHighMem(page)) {
269
remap = true;
270
set_uncached = false;
271
}
272
273
if (remap) {
274
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
275
276
if (force_dma_unencrypted(dev))
277
prot = pgprot_decrypted(prot);
278
279
/* remove any dirty cache lines on the kernel alias */
280
arch_dma_prep_coherent(page, size);
281
282
/* create a coherent mapping */
283
ret = dma_common_contiguous_remap(page, size, prot,
284
__builtin_return_address(0));
285
if (!ret)
286
goto out_free_pages;
287
} else {
288
ret = page_address(page);
289
if (dma_set_decrypted(dev, ret, size))
290
goto out_leak_pages;
291
}
292
293
memset(ret, 0, size);
294
295
if (set_uncached) {
296
arch_dma_prep_coherent(page, size);
297
ret = arch_dma_set_uncached(ret, size);
298
if (IS_ERR(ret))
299
goto out_encrypt_pages;
300
}
301
302
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
303
return ret;
304
305
out_encrypt_pages:
306
if (dma_set_encrypted(dev, page_address(page), size))
307
return NULL;
308
out_free_pages:
309
__dma_direct_free_pages(dev, page, size);
310
return NULL;
311
out_leak_pages:
312
return NULL;
313
}
314
315
void dma_direct_free(struct device *dev, size_t size,
316
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
317
{
318
unsigned int page_order = get_order(size);
319
320
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
321
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
322
/* cpu_addr is a struct page cookie, not a kernel address */
323
dma_free_contiguous(dev, cpu_addr, size);
324
return;
325
}
326
327
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
328
!dev_is_dma_coherent(dev) &&
329
!is_swiotlb_for_alloc(dev)) {
330
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
331
return;
332
}
333
334
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
335
!dev_is_dma_coherent(dev)) {
336
if (!dma_release_from_global_coherent(page_order, cpu_addr))
337
WARN_ON_ONCE(1);
338
return;
339
}
340
341
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
342
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
343
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
344
return;
345
346
if (is_vmalloc_addr(cpu_addr)) {
347
vunmap(cpu_addr);
348
} else {
349
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
350
arch_dma_clear_uncached(cpu_addr, size);
351
if (dma_set_encrypted(dev, cpu_addr, size))
352
return;
353
}
354
355
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
356
}
357
358
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
359
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
360
{
361
struct page *page;
362
void *ret;
363
364
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
365
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
366
367
page = __dma_direct_alloc_pages(dev, size, gfp, false);
368
if (!page)
369
return NULL;
370
371
ret = page_address(page);
372
if (dma_set_decrypted(dev, ret, size))
373
goto out_leak_pages;
374
memset(ret, 0, size);
375
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
376
return page;
377
out_leak_pages:
378
return NULL;
379
}
380
381
void dma_direct_free_pages(struct device *dev, size_t size,
382
struct page *page, dma_addr_t dma_addr,
383
enum dma_data_direction dir)
384
{
385
void *vaddr = page_address(page);
386
387
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
388
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
389
dma_free_from_pool(dev, vaddr, size))
390
return;
391
392
if (dma_set_encrypted(dev, vaddr, size))
393
return;
394
__dma_direct_free_pages(dev, page, size);
395
}
396
397
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
398
defined(CONFIG_SWIOTLB)
399
void dma_direct_sync_sg_for_device(struct device *dev,
400
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
401
{
402
struct scatterlist *sg;
403
int i;
404
405
for_each_sg(sgl, sg, nents, i) {
406
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
407
408
swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
409
410
if (!dev_is_dma_coherent(dev))
411
arch_sync_dma_for_device(paddr, sg->length,
412
dir);
413
}
414
}
415
#endif
416
417
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419
defined(CONFIG_SWIOTLB)
420
void dma_direct_sync_sg_for_cpu(struct device *dev,
421
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
422
{
423
struct scatterlist *sg;
424
int i;
425
426
for_each_sg(sgl, sg, nents, i) {
427
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
428
429
if (!dev_is_dma_coherent(dev))
430
arch_sync_dma_for_cpu(paddr, sg->length, dir);
431
432
swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
433
434
if (dir == DMA_FROM_DEVICE)
435
arch_dma_mark_clean(paddr, sg->length);
436
}
437
438
if (!dev_is_dma_coherent(dev))
439
arch_sync_dma_for_cpu_all();
440
}
441
442
/*
443
* Unmaps segments, except for ones marked as pci_p2pdma which do not
444
* require any further action as they contain a bus address.
445
*/
446
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
447
int nents, enum dma_data_direction dir, unsigned long attrs)
448
{
449
struct scatterlist *sg;
450
int i;
451
452
for_each_sg(sgl, sg, nents, i) {
453
if (sg_dma_is_bus_address(sg))
454
sg_dma_unmark_bus_address(sg);
455
else
456
dma_direct_unmap_page(dev, sg->dma_address,
457
sg_dma_len(sg), dir, attrs);
458
}
459
}
460
#endif
461
462
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
463
enum dma_data_direction dir, unsigned long attrs)
464
{
465
struct pci_p2pdma_map_state p2pdma_state = {};
466
struct scatterlist *sg;
467
int i, ret;
468
469
for_each_sg(sgl, sg, nents, i) {
470
switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
471
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
472
/*
473
* Any P2P mapping that traverses the PCI host bridge
474
* must be mapped with CPU physical address and not PCI
475
* bus addresses.
476
*/
477
break;
478
case PCI_P2PDMA_MAP_NONE:
479
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
480
sg->offset, sg->length, dir, attrs);
481
if (sg->dma_address == DMA_MAPPING_ERROR) {
482
ret = -EIO;
483
goto out_unmap;
484
}
485
break;
486
case PCI_P2PDMA_MAP_BUS_ADDR:
487
sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
488
sg_phys(sg));
489
sg_dma_mark_bus_address(sg);
490
continue;
491
default:
492
ret = -EREMOTEIO;
493
goto out_unmap;
494
}
495
sg_dma_len(sg) = sg->length;
496
}
497
498
return nents;
499
500
out_unmap:
501
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502
return ret;
503
}
504
505
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506
size_t size, enum dma_data_direction dir, unsigned long attrs)
507
{
508
dma_addr_t dma_addr = paddr;
509
510
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511
dev_err_once(dev,
512
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514
WARN_ON_ONCE(1);
515
return DMA_MAPPING_ERROR;
516
}
517
518
return dma_addr;
519
}
520
521
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522
void *cpu_addr, dma_addr_t dma_addr, size_t size,
523
unsigned long attrs)
524
{
525
struct page *page = dma_direct_to_page(dev, dma_addr);
526
int ret;
527
528
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529
if (!ret)
530
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531
return ret;
532
}
533
534
bool dma_direct_can_mmap(struct device *dev)
535
{
536
return dev_is_dma_coherent(dev) ||
537
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538
}
539
540
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541
void *cpu_addr, dma_addr_t dma_addr, size_t size,
542
unsigned long attrs)
543
{
544
unsigned long user_count = vma_pages(vma);
545
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547
int ret = -ENXIO;
548
549
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550
if (force_dma_unencrypted(dev))
551
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552
553
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554
return ret;
555
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556
return ret;
557
558
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559
return -ENXIO;
560
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561
user_count << PAGE_SHIFT, vma->vm_page_prot);
562
}
563
564
int dma_direct_supported(struct device *dev, u64 mask)
565
{
566
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567
568
/*
569
* Because 32-bit DMA masks are so common we expect every architecture
570
* to be able to satisfy them - either by not supporting more physical
571
* memory, or by providing a ZONE_DMA32. If neither is the case, the
572
* architecture needs to use an IOMMU instead of the direct mapping.
573
*/
574
if (mask >= DMA_BIT_MASK(32))
575
return 1;
576
577
/*
578
* This check needs to be against the actual bit mask value, so use
579
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580
* part of the check.
581
*/
582
if (IS_ENABLED(CONFIG_ZONE_DMA))
583
min_mask = min_t(u64, min_mask, zone_dma_limit);
584
return mask >= phys_to_dma_unencrypted(dev, min_mask);
585
}
586
587
static const struct bus_dma_region *dma_find_range(struct device *dev,
588
unsigned long start_pfn)
589
{
590
const struct bus_dma_region *m;
591
592
for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
593
unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
594
595
if (start_pfn >= cpu_start_pfn &&
596
start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
597
return m;
598
}
599
600
return NULL;
601
}
602
603
/*
604
* To check whether all ram resource ranges are covered by dma range map
605
* Returns 0 when further check is needed
606
* Returns 1 if there is some RAM range can't be covered by dma_range_map
607
*/
608
static int check_ram_in_range_map(unsigned long start_pfn,
609
unsigned long nr_pages, void *data)
610
{
611
unsigned long end_pfn = start_pfn + nr_pages;
612
struct device *dev = data;
613
614
while (start_pfn < end_pfn) {
615
const struct bus_dma_region *bdr;
616
617
bdr = dma_find_range(dev, start_pfn);
618
if (!bdr)
619
return 1;
620
621
start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
622
}
623
624
return 0;
625
}
626
627
bool dma_direct_all_ram_mapped(struct device *dev)
628
{
629
if (!dev->dma_range_map)
630
return true;
631
return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
632
check_ram_in_range_map);
633
}
634
635
size_t dma_direct_max_mapping_size(struct device *dev)
636
{
637
/* If SWIOTLB is active, use its maximum mapping size */
638
if (is_swiotlb_active(dev) &&
639
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
640
return swiotlb_max_mapping_size(dev);
641
return SIZE_MAX;
642
}
643
644
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
645
{
646
return !dev_is_dma_coherent(dev) ||
647
swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
648
}
649
650
/**
651
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
652
* @dev: device pointer; needed to "own" the alloced memory.
653
* @cpu_start: beginning of memory region covered by this offset.
654
* @dma_start: beginning of DMA/PCI region covered by this offset.
655
* @size: size of the region.
656
*
657
* This is for the simple case of a uniform offset which cannot
658
* be discovered by "dma-ranges".
659
*
660
* It returns -ENOMEM if out of memory, -EINVAL if a map
661
* already exists, 0 otherwise.
662
*
663
* Note: any call to this from a driver is a bug. The mapping needs
664
* to be described by the device tree or other firmware interfaces.
665
*/
666
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
667
dma_addr_t dma_start, u64 size)
668
{
669
struct bus_dma_region *map;
670
u64 offset = (u64)cpu_start - (u64)dma_start;
671
672
if (dev->dma_range_map) {
673
dev_err(dev, "attempt to add DMA range to existing map\n");
674
return -EINVAL;
675
}
676
677
if (!offset)
678
return 0;
679
680
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
681
if (!map)
682
return -ENOMEM;
683
map[0].cpu_start = cpu_start;
684
map[0].dma_start = dma_start;
685
map[0].size = size;
686
dev->dma_range_map = map;
687
return 0;
688
}
689
690