Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/dma/mapping.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch-independent dma-mapping routines
4
*
5
* Copyright (c) 2006 SUSE Linux Products GmbH
6
* Copyright (c) 2006 Tejun Heo <[email protected]>
7
*/
8
#include <linux/memblock.h> /* for max_pfn */
9
#include <linux/acpi.h>
10
#include <linux/dma-map-ops.h>
11
#include <linux/export.h>
12
#include <linux/gfp.h>
13
#include <linux/iommu-dma.h>
14
#include <linux/kmsan.h>
15
#include <linux/of_device.h>
16
#include <linux/slab.h>
17
#include <linux/vmalloc.h>
18
#include "debug.h"
19
#include "direct.h"
20
21
#define CREATE_TRACE_POINTS
22
#include <trace/events/dma.h>
23
24
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27
bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28
#endif
29
30
/*
31
* Managed DMA API
32
*/
33
struct dma_devres {
34
size_t size;
35
void *vaddr;
36
dma_addr_t dma_handle;
37
unsigned long attrs;
38
};
39
40
static void dmam_release(struct device *dev, void *res)
41
{
42
struct dma_devres *this = res;
43
44
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45
this->attrs);
46
}
47
48
static int dmam_match(struct device *dev, void *res, void *match_data)
49
{
50
struct dma_devres *this = res, *match = match_data;
51
52
if (this->vaddr == match->vaddr) {
53
WARN_ON(this->size != match->size ||
54
this->dma_handle != match->dma_handle);
55
return 1;
56
}
57
return 0;
58
}
59
60
/**
61
* dmam_free_coherent - Managed dma_free_coherent()
62
* @dev: Device to free coherent memory for
63
* @size: Size of allocation
64
* @vaddr: Virtual address of the memory to free
65
* @dma_handle: DMA handle of the memory to free
66
*
67
* Managed dma_free_coherent().
68
*/
69
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70
dma_addr_t dma_handle)
71
{
72
struct dma_devres match_data = { size, vaddr, dma_handle };
73
74
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75
dma_free_coherent(dev, size, vaddr, dma_handle);
76
}
77
EXPORT_SYMBOL(dmam_free_coherent);
78
79
/**
80
* dmam_alloc_attrs - Managed dma_alloc_attrs()
81
* @dev: Device to allocate non_coherent memory for
82
* @size: Size of allocation
83
* @dma_handle: Out argument for allocated DMA handle
84
* @gfp: Allocation flags
85
* @attrs: Flags in the DMA_ATTR_* namespace.
86
*
87
* Managed dma_alloc_attrs(). Memory allocated using this function will be
88
* automatically released on driver detach.
89
*
90
* RETURNS:
91
* Pointer to allocated memory on success, NULL on failure.
92
*/
93
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94
gfp_t gfp, unsigned long attrs)
95
{
96
struct dma_devres *dr;
97
void *vaddr;
98
99
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100
if (!dr)
101
return NULL;
102
103
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104
if (!vaddr) {
105
devres_free(dr);
106
return NULL;
107
}
108
109
dr->vaddr = vaddr;
110
dr->dma_handle = *dma_handle;
111
dr->size = size;
112
dr->attrs = attrs;
113
114
devres_add(dev, dr);
115
116
return vaddr;
117
}
118
EXPORT_SYMBOL(dmam_alloc_attrs);
119
120
static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121
const struct dma_map_ops *ops)
122
{
123
if (use_dma_iommu(dev))
124
return false;
125
126
if (likely(!ops))
127
return true;
128
129
#ifdef CONFIG_DMA_OPS_BYPASS
130
if (dev->dma_ops_bypass)
131
return min_not_zero(mask, dev->bus_dma_limit) >=
132
dma_direct_get_required_mask(dev);
133
#endif
134
return false;
135
}
136
137
138
/*
139
* Check if the devices uses a direct mapping for streaming DMA operations.
140
* This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141
* enough.
142
*/
143
static inline bool dma_alloc_direct(struct device *dev,
144
const struct dma_map_ops *ops)
145
{
146
return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147
}
148
149
static inline bool dma_map_direct(struct device *dev,
150
const struct dma_map_ops *ops)
151
{
152
return dma_go_direct(dev, *dev->dma_mask, ops);
153
}
154
155
dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156
size_t offset, size_t size, enum dma_data_direction dir,
157
unsigned long attrs)
158
{
159
const struct dma_map_ops *ops = get_dma_ops(dev);
160
dma_addr_t addr;
161
162
BUG_ON(!valid_dma_direction(dir));
163
164
if (WARN_ON_ONCE(!dev->dma_mask))
165
return DMA_MAPPING_ERROR;
166
167
if (dma_map_direct(dev, ops) ||
168
arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169
addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170
else if (use_dma_iommu(dev))
171
addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172
else
173
addr = ops->map_page(dev, page, offset, size, dir, attrs);
174
kmsan_handle_dma(page, offset, size, dir);
175
trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176
attrs);
177
debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179
return addr;
180
}
181
EXPORT_SYMBOL(dma_map_page_attrs);
182
183
void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184
enum dma_data_direction dir, unsigned long attrs)
185
{
186
const struct dma_map_ops *ops = get_dma_ops(dev);
187
188
BUG_ON(!valid_dma_direction(dir));
189
if (dma_map_direct(dev, ops) ||
190
arch_dma_unmap_page_direct(dev, addr + size))
191
dma_direct_unmap_page(dev, addr, size, dir, attrs);
192
else if (use_dma_iommu(dev))
193
iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194
else
195
ops->unmap_page(dev, addr, size, dir, attrs);
196
trace_dma_unmap_page(dev, addr, size, dir, attrs);
197
debug_dma_unmap_page(dev, addr, size, dir);
198
}
199
EXPORT_SYMBOL(dma_unmap_page_attrs);
200
201
static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202
int nents, enum dma_data_direction dir, unsigned long attrs)
203
{
204
const struct dma_map_ops *ops = get_dma_ops(dev);
205
int ents;
206
207
BUG_ON(!valid_dma_direction(dir));
208
209
if (WARN_ON_ONCE(!dev->dma_mask))
210
return 0;
211
212
if (dma_map_direct(dev, ops) ||
213
arch_dma_map_sg_direct(dev, sg, nents))
214
ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215
else if (use_dma_iommu(dev))
216
ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217
else
218
ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220
if (ents > 0) {
221
kmsan_handle_dma_sg(sg, nents, dir);
222
trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223
debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224
} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225
ents != -EIO && ents != -EREMOTEIO)) {
226
trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227
return -EIO;
228
}
229
230
return ents;
231
}
232
233
/**
234
* dma_map_sg_attrs - Map the given buffer for DMA
235
* @dev: The device for which to perform the DMA operation
236
* @sg: The sg_table object describing the buffer
237
* @nents: Number of entries to map
238
* @dir: DMA direction
239
* @attrs: Optional DMA attributes for the map operation
240
*
241
* Maps a buffer described by a scatterlist passed in the sg argument with
242
* nents segments for the @dir DMA operation by the @dev device.
243
*
244
* Returns the number of mapped entries (which can be less than nents)
245
* on success. Zero is returned for any error.
246
*
247
* dma_unmap_sg_attrs() should be used to unmap the buffer with the
248
* original sg and original nents (not the value returned by this funciton).
249
*/
250
unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251
int nents, enum dma_data_direction dir, unsigned long attrs)
252
{
253
int ret;
254
255
ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256
if (ret < 0)
257
return 0;
258
return ret;
259
}
260
EXPORT_SYMBOL(dma_map_sg_attrs);
261
262
/**
263
* dma_map_sgtable - Map the given buffer for DMA
264
* @dev: The device for which to perform the DMA operation
265
* @sgt: The sg_table object describing the buffer
266
* @dir: DMA direction
267
* @attrs: Optional DMA attributes for the map operation
268
*
269
* Maps a buffer described by a scatterlist stored in the given sg_table
270
* object for the @dir DMA operation by the @dev device. After success, the
271
* ownership for the buffer is transferred to the DMA domain. One has to
272
* call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273
* ownership of the buffer back to the CPU domain before touching the
274
* buffer by the CPU.
275
*
276
* Returns 0 on success or a negative error code on error. The following
277
* error codes are supported with the given meaning:
278
*
279
* -EINVAL An invalid argument, unaligned access or other error
280
* in usage. Will not succeed if retried.
281
* -ENOMEM Insufficient resources (like memory or IOVA space) to
282
* complete the mapping. Should succeed if retried later.
283
* -EIO Legacy error code with an unknown meaning. eg. this is
284
* returned if a lower level call returned
285
* DMA_MAPPING_ERROR.
286
* -EREMOTEIO The DMA device cannot access P2PDMA memory specified
287
* in the sg_table. This will not succeed if retried.
288
*/
289
int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290
enum dma_data_direction dir, unsigned long attrs)
291
{
292
int nents;
293
294
nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295
if (nents < 0)
296
return nents;
297
sgt->nents = nents;
298
return 0;
299
}
300
EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
302
void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303
int nents, enum dma_data_direction dir,
304
unsigned long attrs)
305
{
306
const struct dma_map_ops *ops = get_dma_ops(dev);
307
308
BUG_ON(!valid_dma_direction(dir));
309
trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310
debug_dma_unmap_sg(dev, sg, nents, dir);
311
if (dma_map_direct(dev, ops) ||
312
arch_dma_unmap_sg_direct(dev, sg, nents))
313
dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314
else if (use_dma_iommu(dev))
315
iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316
else if (ops->unmap_sg)
317
ops->unmap_sg(dev, sg, nents, dir, attrs);
318
}
319
EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
321
dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322
size_t size, enum dma_data_direction dir, unsigned long attrs)
323
{
324
const struct dma_map_ops *ops = get_dma_ops(dev);
325
dma_addr_t addr = DMA_MAPPING_ERROR;
326
327
BUG_ON(!valid_dma_direction(dir));
328
329
if (WARN_ON_ONCE(!dev->dma_mask))
330
return DMA_MAPPING_ERROR;
331
332
if (dma_map_direct(dev, ops))
333
addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334
else if (use_dma_iommu(dev))
335
addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336
else if (ops->map_resource)
337
addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339
trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340
debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341
return addr;
342
}
343
EXPORT_SYMBOL(dma_map_resource);
344
345
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346
enum dma_data_direction dir, unsigned long attrs)
347
{
348
const struct dma_map_ops *ops = get_dma_ops(dev);
349
350
BUG_ON(!valid_dma_direction(dir));
351
if (dma_map_direct(dev, ops))
352
; /* nothing to do: uncached and no swiotlb */
353
else if (use_dma_iommu(dev))
354
iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355
else if (ops->unmap_resource)
356
ops->unmap_resource(dev, addr, size, dir, attrs);
357
trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358
debug_dma_unmap_resource(dev, addr, size, dir);
359
}
360
EXPORT_SYMBOL(dma_unmap_resource);
361
362
#ifdef CONFIG_DMA_NEED_SYNC
363
void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364
enum dma_data_direction dir)
365
{
366
const struct dma_map_ops *ops = get_dma_ops(dev);
367
368
BUG_ON(!valid_dma_direction(dir));
369
if (dma_map_direct(dev, ops))
370
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371
else if (use_dma_iommu(dev))
372
iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373
else if (ops->sync_single_for_cpu)
374
ops->sync_single_for_cpu(dev, addr, size, dir);
375
trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377
}
378
EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
380
void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381
size_t size, enum dma_data_direction dir)
382
{
383
const struct dma_map_ops *ops = get_dma_ops(dev);
384
385
BUG_ON(!valid_dma_direction(dir));
386
if (dma_map_direct(dev, ops))
387
dma_direct_sync_single_for_device(dev, addr, size, dir);
388
else if (use_dma_iommu(dev))
389
iommu_dma_sync_single_for_device(dev, addr, size, dir);
390
else if (ops->sync_single_for_device)
391
ops->sync_single_for_device(dev, addr, size, dir);
392
trace_dma_sync_single_for_device(dev, addr, size, dir);
393
debug_dma_sync_single_for_device(dev, addr, size, dir);
394
}
395
EXPORT_SYMBOL(__dma_sync_single_for_device);
396
397
void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398
int nelems, enum dma_data_direction dir)
399
{
400
const struct dma_map_ops *ops = get_dma_ops(dev);
401
402
BUG_ON(!valid_dma_direction(dir));
403
if (dma_map_direct(dev, ops))
404
dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405
else if (use_dma_iommu(dev))
406
iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407
else if (ops->sync_sg_for_cpu)
408
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409
trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411
}
412
EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
414
void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415
int nelems, enum dma_data_direction dir)
416
{
417
const struct dma_map_ops *ops = get_dma_ops(dev);
418
419
BUG_ON(!valid_dma_direction(dir));
420
if (dma_map_direct(dev, ops))
421
dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422
else if (use_dma_iommu(dev))
423
iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424
else if (ops->sync_sg_for_device)
425
ops->sync_sg_for_device(dev, sg, nelems, dir);
426
trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428
}
429
EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
431
bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432
{
433
const struct dma_map_ops *ops = get_dma_ops(dev);
434
435
if (dma_map_direct(dev, ops))
436
/*
437
* dma_skip_sync could've been reset on first SWIOTLB buffer
438
* mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439
* In this case, fall back to more granular check.
440
*/
441
return dma_direct_need_sync(dev, dma_addr);
442
return true;
443
}
444
EXPORT_SYMBOL_GPL(__dma_need_sync);
445
446
/**
447
* dma_need_unmap - does this device need dma_unmap_* operations
448
* @dev: device to check
449
*
450
* If this function returns %false, drivers can skip calling dma_unmap_* after
451
* finishing an I/O. This function must be called after all mappings that might
452
* need to be unmapped have been performed.
453
*/
454
bool dma_need_unmap(struct device *dev)
455
{
456
if (!dma_map_direct(dev, get_dma_ops(dev)))
457
return true;
458
if (!dev->dma_skip_sync)
459
return true;
460
return IS_ENABLED(CONFIG_DMA_API_DEBUG);
461
}
462
EXPORT_SYMBOL_GPL(dma_need_unmap);
463
464
static void dma_setup_need_sync(struct device *dev)
465
{
466
const struct dma_map_ops *ops = get_dma_ops(dev);
467
468
if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
469
/*
470
* dma_skip_sync will be reset to %false on first SWIOTLB buffer
471
* mapping, if any. During the device initialization, it's
472
* enough to check only for the DMA coherence.
473
*/
474
dev->dma_skip_sync = dev_is_dma_coherent(dev);
475
else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
476
!ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
477
/*
478
* Synchronization is not possible when none of DMA sync ops
479
* is set.
480
*/
481
dev->dma_skip_sync = true;
482
else
483
dev->dma_skip_sync = false;
484
}
485
#else /* !CONFIG_DMA_NEED_SYNC */
486
static inline void dma_setup_need_sync(struct device *dev) { }
487
#endif /* !CONFIG_DMA_NEED_SYNC */
488
489
/*
490
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
491
* that the intention is to allow exporting memory allocated via the
492
* coherent DMA APIs through the dma_buf API, which only accepts a
493
* scattertable. This presents a couple of problems:
494
* 1. Not all memory allocated via the coherent DMA APIs is backed by
495
* a struct page
496
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
497
* as we will try to flush the memory through a different alias to that
498
* actually being used (and the flushes are redundant.)
499
*/
500
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
501
void *cpu_addr, dma_addr_t dma_addr, size_t size,
502
unsigned long attrs)
503
{
504
const struct dma_map_ops *ops = get_dma_ops(dev);
505
506
if (dma_alloc_direct(dev, ops))
507
return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
508
size, attrs);
509
if (use_dma_iommu(dev))
510
return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
511
size, attrs);
512
if (!ops->get_sgtable)
513
return -ENXIO;
514
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
515
}
516
EXPORT_SYMBOL(dma_get_sgtable_attrs);
517
518
#ifdef CONFIG_MMU
519
/*
520
* Return the page attributes used for mapping dma_alloc_* memory, either in
521
* kernel space if remapping is needed, or to userspace through dma_mmap_*.
522
*/
523
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
524
{
525
if (dev_is_dma_coherent(dev))
526
return prot;
527
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
528
if (attrs & DMA_ATTR_WRITE_COMBINE)
529
return pgprot_writecombine(prot);
530
#endif
531
return pgprot_dmacoherent(prot);
532
}
533
#endif /* CONFIG_MMU */
534
535
/**
536
* dma_can_mmap - check if a given device supports dma_mmap_*
537
* @dev: device to check
538
*
539
* Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
540
* map DMA allocations to userspace.
541
*/
542
bool dma_can_mmap(struct device *dev)
543
{
544
const struct dma_map_ops *ops = get_dma_ops(dev);
545
546
if (dma_alloc_direct(dev, ops))
547
return dma_direct_can_mmap(dev);
548
if (use_dma_iommu(dev))
549
return true;
550
return ops->mmap != NULL;
551
}
552
EXPORT_SYMBOL_GPL(dma_can_mmap);
553
554
/**
555
* dma_mmap_attrs - map a coherent DMA allocation into user space
556
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
557
* @vma: vm_area_struct describing requested user mapping
558
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
559
* @dma_addr: device-view address returned from dma_alloc_attrs
560
* @size: size of memory originally requested in dma_alloc_attrs
561
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
562
*
563
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
564
* space. The coherent DMA buffer must not be freed by the driver until the
565
* user space mapping has been released.
566
*/
567
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
568
void *cpu_addr, dma_addr_t dma_addr, size_t size,
569
unsigned long attrs)
570
{
571
const struct dma_map_ops *ops = get_dma_ops(dev);
572
573
if (dma_alloc_direct(dev, ops))
574
return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
575
attrs);
576
if (use_dma_iommu(dev))
577
return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
578
attrs);
579
if (!ops->mmap)
580
return -ENXIO;
581
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
582
}
583
EXPORT_SYMBOL(dma_mmap_attrs);
584
585
u64 dma_get_required_mask(struct device *dev)
586
{
587
const struct dma_map_ops *ops = get_dma_ops(dev);
588
589
if (dma_alloc_direct(dev, ops))
590
return dma_direct_get_required_mask(dev);
591
592
if (use_dma_iommu(dev))
593
return DMA_BIT_MASK(32);
594
595
if (ops->get_required_mask)
596
return ops->get_required_mask(dev);
597
598
/*
599
* We require every DMA ops implementation to at least support a 32-bit
600
* DMA mask (and use bounce buffering if that isn't supported in
601
* hardware). As the direct mapping code has its own routine to
602
* actually report an optimal mask we default to 32-bit here as that
603
* is the right thing for most IOMMUs, and at least not actively
604
* harmful in general.
605
*/
606
return DMA_BIT_MASK(32);
607
}
608
EXPORT_SYMBOL_GPL(dma_get_required_mask);
609
610
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
611
gfp_t flag, unsigned long attrs)
612
{
613
const struct dma_map_ops *ops = get_dma_ops(dev);
614
void *cpu_addr;
615
616
WARN_ON_ONCE(!dev->coherent_dma_mask);
617
618
/*
619
* DMA allocations can never be turned back into a page pointer, so
620
* requesting compound pages doesn't make sense (and can't even be
621
* supported at all by various backends).
622
*/
623
if (WARN_ON_ONCE(flag & __GFP_COMP))
624
return NULL;
625
626
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
627
trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
628
DMA_BIDIRECTIONAL, flag, attrs);
629
return cpu_addr;
630
}
631
632
/* let the implementation decide on the zone to allocate from: */
633
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
634
635
if (dma_alloc_direct(dev, ops)) {
636
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
637
} else if (use_dma_iommu(dev)) {
638
cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
639
} else if (ops->alloc) {
640
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
641
} else {
642
trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
643
attrs);
644
return NULL;
645
}
646
647
trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
648
flag, attrs);
649
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
650
return cpu_addr;
651
}
652
EXPORT_SYMBOL(dma_alloc_attrs);
653
654
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
655
dma_addr_t dma_handle, unsigned long attrs)
656
{
657
const struct dma_map_ops *ops = get_dma_ops(dev);
658
659
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
660
return;
661
/*
662
* On non-coherent platforms which implement DMA-coherent buffers via
663
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
664
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
665
* sleep on some machines, and b) an indication that the driver is
666
* probably misusing the coherent API anyway.
667
*/
668
WARN_ON(irqs_disabled());
669
670
trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
671
attrs);
672
if (!cpu_addr)
673
return;
674
675
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
676
if (dma_alloc_direct(dev, ops))
677
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
678
else if (use_dma_iommu(dev))
679
iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
680
else if (ops->free)
681
ops->free(dev, size, cpu_addr, dma_handle, attrs);
682
}
683
EXPORT_SYMBOL(dma_free_attrs);
684
685
static struct page *__dma_alloc_pages(struct device *dev, size_t size,
686
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
687
{
688
const struct dma_map_ops *ops = get_dma_ops(dev);
689
690
if (WARN_ON_ONCE(!dev->coherent_dma_mask))
691
return NULL;
692
if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
693
return NULL;
694
if (WARN_ON_ONCE(gfp & __GFP_COMP))
695
return NULL;
696
697
size = PAGE_ALIGN(size);
698
if (dma_alloc_direct(dev, ops))
699
return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
700
if (use_dma_iommu(dev))
701
return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
702
if (!ops->alloc_pages_op)
703
return NULL;
704
return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
705
}
706
707
struct page *dma_alloc_pages(struct device *dev, size_t size,
708
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
709
{
710
struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
711
712
if (page) {
713
trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
714
size, dir, gfp, 0);
715
debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
716
} else {
717
trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
718
}
719
return page;
720
}
721
EXPORT_SYMBOL_GPL(dma_alloc_pages);
722
723
static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
724
dma_addr_t dma_handle, enum dma_data_direction dir)
725
{
726
const struct dma_map_ops *ops = get_dma_ops(dev);
727
728
size = PAGE_ALIGN(size);
729
if (dma_alloc_direct(dev, ops))
730
dma_direct_free_pages(dev, size, page, dma_handle, dir);
731
else if (use_dma_iommu(dev))
732
dma_common_free_pages(dev, size, page, dma_handle, dir);
733
else if (ops->free_pages)
734
ops->free_pages(dev, size, page, dma_handle, dir);
735
}
736
737
void dma_free_pages(struct device *dev, size_t size, struct page *page,
738
dma_addr_t dma_handle, enum dma_data_direction dir)
739
{
740
trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
741
debug_dma_free_pages(dev, page, size, dir, dma_handle);
742
__dma_free_pages(dev, size, page, dma_handle, dir);
743
}
744
EXPORT_SYMBOL_GPL(dma_free_pages);
745
746
int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
747
size_t size, struct page *page)
748
{
749
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
750
751
if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
752
return -ENXIO;
753
return remap_pfn_range(vma, vma->vm_start,
754
page_to_pfn(page) + vma->vm_pgoff,
755
vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
756
}
757
EXPORT_SYMBOL_GPL(dma_mmap_pages);
758
759
static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
760
enum dma_data_direction dir, gfp_t gfp)
761
{
762
struct sg_table *sgt;
763
struct page *page;
764
765
sgt = kmalloc(sizeof(*sgt), gfp);
766
if (!sgt)
767
return NULL;
768
if (sg_alloc_table(sgt, 1, gfp))
769
goto out_free_sgt;
770
page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
771
if (!page)
772
goto out_free_table;
773
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
774
sg_dma_len(sgt->sgl) = sgt->sgl->length;
775
return sgt;
776
out_free_table:
777
sg_free_table(sgt);
778
out_free_sgt:
779
kfree(sgt);
780
return NULL;
781
}
782
783
struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
784
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
785
{
786
struct sg_table *sgt;
787
788
if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
789
return NULL;
790
if (WARN_ON_ONCE(gfp & __GFP_COMP))
791
return NULL;
792
793
if (use_dma_iommu(dev))
794
sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
795
else
796
sgt = alloc_single_sgt(dev, size, dir, gfp);
797
798
if (sgt) {
799
sgt->nents = 1;
800
trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
801
debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
802
} else {
803
trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
804
}
805
return sgt;
806
}
807
EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
808
809
static void free_single_sgt(struct device *dev, size_t size,
810
struct sg_table *sgt, enum dma_data_direction dir)
811
{
812
__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
813
dir);
814
sg_free_table(sgt);
815
kfree(sgt);
816
}
817
818
void dma_free_noncontiguous(struct device *dev, size_t size,
819
struct sg_table *sgt, enum dma_data_direction dir)
820
{
821
trace_dma_free_sgt(dev, sgt, size, dir);
822
debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
823
824
if (use_dma_iommu(dev))
825
iommu_dma_free_noncontiguous(dev, size, sgt, dir);
826
else
827
free_single_sgt(dev, size, sgt, dir);
828
}
829
EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
830
831
void *dma_vmap_noncontiguous(struct device *dev, size_t size,
832
struct sg_table *sgt)
833
{
834
835
if (use_dma_iommu(dev))
836
return iommu_dma_vmap_noncontiguous(dev, size, sgt);
837
838
return page_address(sg_page(sgt->sgl));
839
}
840
EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
841
842
void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
843
{
844
if (use_dma_iommu(dev))
845
iommu_dma_vunmap_noncontiguous(dev, vaddr);
846
}
847
EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
848
849
int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
850
size_t size, struct sg_table *sgt)
851
{
852
if (use_dma_iommu(dev))
853
return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
854
return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
855
}
856
EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
857
858
static int dma_supported(struct device *dev, u64 mask)
859
{
860
const struct dma_map_ops *ops = get_dma_ops(dev);
861
862
if (use_dma_iommu(dev)) {
863
if (WARN_ON(ops))
864
return false;
865
return true;
866
}
867
868
/*
869
* ->dma_supported sets and clears the bypass flag, so ignore it here
870
* and always call into the method if there is one.
871
*/
872
if (ops) {
873
if (!ops->dma_supported)
874
return true;
875
return ops->dma_supported(dev, mask);
876
}
877
878
return dma_direct_supported(dev, mask);
879
}
880
881
bool dma_pci_p2pdma_supported(struct device *dev)
882
{
883
const struct dma_map_ops *ops = get_dma_ops(dev);
884
885
/*
886
* Note: dma_ops_bypass is not checked here because P2PDMA should
887
* not be used with dma mapping ops that do not have support even
888
* if the specific device is bypassing them.
889
*/
890
891
/* if ops is not set, dma direct and default IOMMU support P2PDMA */
892
return !ops;
893
}
894
EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
895
896
int dma_set_mask(struct device *dev, u64 mask)
897
{
898
/*
899
* Truncate the mask to the actually supported dma_addr_t width to
900
* avoid generating unsupportable addresses.
901
*/
902
mask = (dma_addr_t)mask;
903
904
if (!dev->dma_mask || !dma_supported(dev, mask))
905
return -EIO;
906
907
arch_dma_set_mask(dev, mask);
908
*dev->dma_mask = mask;
909
dma_setup_need_sync(dev);
910
911
return 0;
912
}
913
EXPORT_SYMBOL(dma_set_mask);
914
915
int dma_set_coherent_mask(struct device *dev, u64 mask)
916
{
917
/*
918
* Truncate the mask to the actually supported dma_addr_t width to
919
* avoid generating unsupportable addresses.
920
*/
921
mask = (dma_addr_t)mask;
922
923
if (!dma_supported(dev, mask))
924
return -EIO;
925
926
dev->coherent_dma_mask = mask;
927
return 0;
928
}
929
EXPORT_SYMBOL(dma_set_coherent_mask);
930
931
static bool __dma_addressing_limited(struct device *dev)
932
{
933
const struct dma_map_ops *ops = get_dma_ops(dev);
934
935
if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
936
dma_get_required_mask(dev))
937
return true;
938
939
if (unlikely(ops) || use_dma_iommu(dev))
940
return false;
941
return !dma_direct_all_ram_mapped(dev);
942
}
943
944
/**
945
* dma_addressing_limited - return if the device is addressing limited
946
* @dev: device to check
947
*
948
* Return %true if the devices DMA mask is too small to address all memory in
949
* the system, else %false. Lack of addressing bits is the prime reason for
950
* bounce buffering, but might not be the only one.
951
*/
952
bool dma_addressing_limited(struct device *dev)
953
{
954
if (!__dma_addressing_limited(dev))
955
return false;
956
957
dev_dbg(dev, "device is DMA addressing limited\n");
958
return true;
959
}
960
EXPORT_SYMBOL_GPL(dma_addressing_limited);
961
962
size_t dma_max_mapping_size(struct device *dev)
963
{
964
const struct dma_map_ops *ops = get_dma_ops(dev);
965
size_t size = SIZE_MAX;
966
967
if (dma_map_direct(dev, ops))
968
size = dma_direct_max_mapping_size(dev);
969
else if (use_dma_iommu(dev))
970
size = iommu_dma_max_mapping_size(dev);
971
else if (ops && ops->max_mapping_size)
972
size = ops->max_mapping_size(dev);
973
974
return size;
975
}
976
EXPORT_SYMBOL_GPL(dma_max_mapping_size);
977
978
size_t dma_opt_mapping_size(struct device *dev)
979
{
980
const struct dma_map_ops *ops = get_dma_ops(dev);
981
size_t size = SIZE_MAX;
982
983
if (use_dma_iommu(dev))
984
size = iommu_dma_opt_mapping_size();
985
else if (ops && ops->opt_mapping_size)
986
size = ops->opt_mapping_size();
987
988
return min(dma_max_mapping_size(dev), size);
989
}
990
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
991
992
unsigned long dma_get_merge_boundary(struct device *dev)
993
{
994
const struct dma_map_ops *ops = get_dma_ops(dev);
995
996
if (use_dma_iommu(dev))
997
return iommu_dma_get_merge_boundary(dev);
998
999
if (!ops || !ops->get_merge_boundary)
1000
return 0; /* can't merge */
1001
1002
return ops->get_merge_boundary(dev);
1003
}
1004
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1005
1006