Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/events/hw_breakpoint.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* Copyright (C) 2007 Alan Stern
4
* Copyright (C) IBM Corporation, 2009
5
* Copyright (C) 2009, Frederic Weisbecker <[email protected]>
6
*
7
* Thanks to Ingo Molnar for his many suggestions.
8
*
9
* Authors: Alan Stern <[email protected]>
10
* K.Prasad <[email protected]>
11
* Frederic Weisbecker <[email protected]>
12
*/
13
14
/*
15
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16
* using the CPU's debug registers.
17
* This file contains the arch-independent routines.
18
*/
19
20
#include <linux/hw_breakpoint.h>
21
22
#include <linux/atomic.h>
23
#include <linux/bug.h>
24
#include <linux/cpu.h>
25
#include <linux/export.h>
26
#include <linux/init.h>
27
#include <linux/irqflags.h>
28
#include <linux/kdebug.h>
29
#include <linux/kernel.h>
30
#include <linux/mutex.h>
31
#include <linux/notifier.h>
32
#include <linux/percpu-rwsem.h>
33
#include <linux/percpu.h>
34
#include <linux/rhashtable.h>
35
#include <linux/sched.h>
36
#include <linux/slab.h>
37
38
/*
39
* Datastructure to track the total uses of N slots across tasks or CPUs;
40
* bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
41
*/
42
struct bp_slots_histogram {
43
#ifdef hw_breakpoint_slots
44
atomic_t count[hw_breakpoint_slots(0)];
45
#else
46
atomic_t *count;
47
#endif
48
};
49
50
/*
51
* Per-CPU constraints data.
52
*/
53
struct bp_cpuinfo {
54
/* Number of pinned CPU breakpoints in a CPU. */
55
unsigned int cpu_pinned;
56
/* Histogram of pinned task breakpoints in a CPU. */
57
struct bp_slots_histogram tsk_pinned;
58
};
59
60
static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
61
62
static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
63
{
64
return per_cpu_ptr(bp_cpuinfo + type, cpu);
65
}
66
67
/* Number of pinned CPU breakpoints globally. */
68
static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
69
/* Number of pinned CPU-independent task breakpoints. */
70
static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
71
72
/* Keep track of the breakpoints attached to tasks */
73
static struct rhltable task_bps_ht;
74
static const struct rhashtable_params task_bps_ht_params = {
75
.head_offset = offsetof(struct hw_perf_event, bp_list),
76
.key_offset = offsetof(struct hw_perf_event, target),
77
.key_len = sizeof_field(struct hw_perf_event, target),
78
.automatic_shrinking = true,
79
};
80
81
static bool constraints_initialized __ro_after_init;
82
83
/*
84
* Synchronizes accesses to the per-CPU constraints; the locking rules are:
85
*
86
* 1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
87
* (due to bp_slots_histogram::count being atomic, no update are lost).
88
*
89
* 2. Holding a write-lock is required for computations that require a
90
* stable snapshot of all bp_cpuinfo::tsk_pinned.
91
*
92
* 3. In all other cases, non-atomic accesses require the appropriately held
93
* lock (read-lock for read-only accesses; write-lock for reads/writes).
94
*/
95
DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
96
97
/*
98
* Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
99
* rhltable synchronizes concurrent insertions/deletions, independent tasks may
100
* insert/delete concurrently; therefore, a mutex per task is sufficient.
101
*
102
* Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
103
* hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
104
* that hw_breakpoint may contend with per-task perf event list management. The
105
* assumption is that perf usecases involving hw_breakpoints are very unlikely
106
* to result in unnecessary contention.
107
*/
108
static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
109
{
110
struct task_struct *tsk = bp->hw.target;
111
112
return tsk ? &tsk->perf_event_mutex : NULL;
113
}
114
115
static struct mutex *bp_constraints_lock(struct perf_event *bp)
116
{
117
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
118
119
if (tsk_mtx) {
120
/*
121
* Fully analogous to the perf_try_init_event() nesting
122
* argument in the comment near perf_event_ctx_lock_nested();
123
* this child->perf_event_mutex cannot ever deadlock against
124
* the parent->perf_event_mutex usage from
125
* perf_event_task_{en,dis}able().
126
*
127
* Specifically, inherited events will never occur on
128
* ->perf_event_list.
129
*/
130
mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
131
percpu_down_read(&bp_cpuinfo_sem);
132
} else {
133
percpu_down_write(&bp_cpuinfo_sem);
134
}
135
136
return tsk_mtx;
137
}
138
139
static void bp_constraints_unlock(struct mutex *tsk_mtx)
140
{
141
if (tsk_mtx) {
142
percpu_up_read(&bp_cpuinfo_sem);
143
mutex_unlock(tsk_mtx);
144
} else {
145
percpu_up_write(&bp_cpuinfo_sem);
146
}
147
}
148
149
static bool bp_constraints_is_locked(struct perf_event *bp)
150
{
151
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
152
153
return percpu_is_write_locked(&bp_cpuinfo_sem) ||
154
(tsk_mtx ? mutex_is_locked(tsk_mtx) :
155
percpu_is_read_locked(&bp_cpuinfo_sem));
156
}
157
158
static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
159
{
160
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
161
162
if (tsk_mtx)
163
lockdep_assert_held(tsk_mtx);
164
lockdep_assert_held(&bp_cpuinfo_sem);
165
}
166
167
#ifdef hw_breakpoint_slots
168
/*
169
* Number of breakpoint slots is constant, and the same for all types.
170
*/
171
static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
172
static inline int hw_breakpoint_slots_cached(int type) { return hw_breakpoint_slots(type); }
173
static inline int init_breakpoint_slots(void) { return 0; }
174
#else
175
/*
176
* Dynamic number of breakpoint slots.
177
*/
178
static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
179
180
static inline int hw_breakpoint_slots_cached(int type)
181
{
182
return __nr_bp_slots[type];
183
}
184
185
static __init bool
186
bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
187
{
188
hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
189
return hist->count;
190
}
191
192
static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
193
{
194
kfree(hist->count);
195
}
196
197
static __init int init_breakpoint_slots(void)
198
{
199
int i, cpu, err_cpu;
200
201
for (i = 0; i < TYPE_MAX; i++)
202
__nr_bp_slots[i] = hw_breakpoint_slots(i);
203
204
for_each_possible_cpu(cpu) {
205
for (i = 0; i < TYPE_MAX; i++) {
206
struct bp_cpuinfo *info = get_bp_info(cpu, i);
207
208
if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
209
goto err;
210
}
211
}
212
for (i = 0; i < TYPE_MAX; i++) {
213
if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
214
goto err;
215
if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
216
goto err;
217
}
218
219
return 0;
220
err:
221
for_each_possible_cpu(err_cpu) {
222
for (i = 0; i < TYPE_MAX; i++)
223
bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
224
if (err_cpu == cpu)
225
break;
226
}
227
for (i = 0; i < TYPE_MAX; i++) {
228
bp_slots_histogram_free(&cpu_pinned[i]);
229
bp_slots_histogram_free(&tsk_pinned_all[i]);
230
}
231
232
return -ENOMEM;
233
}
234
#endif
235
236
static inline void
237
bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
238
{
239
const int old_idx = old - 1;
240
const int new_idx = old_idx + val;
241
242
if (old_idx >= 0)
243
WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
244
if (new_idx >= 0)
245
WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
246
}
247
248
static int
249
bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
250
{
251
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
252
const int count = atomic_read(&hist->count[i]);
253
254
/* Catch unexpected writers; we want a stable snapshot. */
255
ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
256
if (count > 0)
257
return i + 1;
258
WARN(count < 0, "inconsistent breakpoint slots histogram");
259
}
260
261
return 0;
262
}
263
264
static int
265
bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
266
enum bp_type_idx type)
267
{
268
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
269
const int count1 = atomic_read(&hist1->count[i]);
270
const int count2 = atomic_read(&hist2->count[i]);
271
272
/* Catch unexpected writers; we want a stable snapshot. */
273
ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
274
ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
275
if (count1 + count2 > 0)
276
return i + 1;
277
WARN(count1 < 0, "inconsistent breakpoint slots histogram");
278
WARN(count2 < 0, "inconsistent breakpoint slots histogram");
279
}
280
281
return 0;
282
}
283
284
#ifndef hw_breakpoint_weight
285
static inline int hw_breakpoint_weight(struct perf_event *bp)
286
{
287
return 1;
288
}
289
#endif
290
291
static inline enum bp_type_idx find_slot_idx(u64 bp_type)
292
{
293
if (bp_type & HW_BREAKPOINT_RW)
294
return TYPE_DATA;
295
296
return TYPE_INST;
297
}
298
299
/*
300
* Return the maximum number of pinned breakpoints a task has in this CPU.
301
*/
302
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
303
{
304
struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
305
306
/*
307
* At this point we want to have acquired the bp_cpuinfo_sem as a
308
* writer to ensure that there are no concurrent writers in
309
* toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
310
*/
311
lockdep_assert_held_write(&bp_cpuinfo_sem);
312
return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
313
}
314
315
/*
316
* Count the number of breakpoints of the same type and same task.
317
* The given event must be not on the list.
318
*
319
* If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
320
* returns a negative value.
321
*/
322
static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
323
{
324
struct rhlist_head *head, *pos;
325
struct perf_event *iter;
326
int count = 0;
327
328
/*
329
* We need a stable snapshot of the per-task breakpoint list.
330
*/
331
assert_bp_constraints_lock_held(bp);
332
333
rcu_read_lock();
334
head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
335
if (!head)
336
goto out;
337
338
rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
339
if (find_slot_idx(iter->attr.bp_type) != type)
340
continue;
341
342
if (iter->cpu >= 0) {
343
if (cpu == -1) {
344
count = -1;
345
goto out;
346
} else if (cpu != iter->cpu)
347
continue;
348
}
349
350
count += hw_breakpoint_weight(iter);
351
}
352
353
out:
354
rcu_read_unlock();
355
return count;
356
}
357
358
static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
359
{
360
if (bp->cpu >= 0)
361
return cpumask_of(bp->cpu);
362
return cpu_possible_mask;
363
}
364
365
/*
366
* Returns the max pinned breakpoint slots in a given
367
* CPU (cpu > -1) or across all of them (cpu = -1).
368
*/
369
static int
370
max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
371
{
372
const struct cpumask *cpumask = cpumask_of_bp(bp);
373
int pinned_slots = 0;
374
int cpu;
375
376
if (bp->hw.target && bp->cpu < 0) {
377
int max_pinned = task_bp_pinned(-1, bp, type);
378
379
if (max_pinned >= 0) {
380
/*
381
* Fast path: task_bp_pinned() is CPU-independent and
382
* returns the same value for any CPU.
383
*/
384
max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
385
return max_pinned;
386
}
387
}
388
389
for_each_cpu(cpu, cpumask) {
390
struct bp_cpuinfo *info = get_bp_info(cpu, type);
391
int nr;
392
393
nr = info->cpu_pinned;
394
if (!bp->hw.target)
395
nr += max_task_bp_pinned(cpu, type);
396
else
397
nr += task_bp_pinned(cpu, bp, type);
398
399
pinned_slots = max(nr, pinned_slots);
400
}
401
402
return pinned_slots;
403
}
404
405
/*
406
* Add/remove the given breakpoint in our constraint table
407
*/
408
static int
409
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
410
{
411
int cpu, next_tsk_pinned;
412
413
if (!enable)
414
weight = -weight;
415
416
if (!bp->hw.target) {
417
/*
418
* Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
419
* global histogram.
420
*/
421
struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
422
423
lockdep_assert_held_write(&bp_cpuinfo_sem);
424
bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
425
info->cpu_pinned += weight;
426
return 0;
427
}
428
429
/*
430
* If bp->hw.target, tsk_pinned is only modified, but not used
431
* otherwise. We can permit concurrent updates as long as there are no
432
* other uses: having acquired bp_cpuinfo_sem as a reader allows
433
* concurrent updates here. Uses of tsk_pinned will require acquiring
434
* bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
435
*/
436
lockdep_assert_held_read(&bp_cpuinfo_sem);
437
438
/*
439
* Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
440
* histogram. We need to take care of 4 cases:
441
*
442
* 1. This breakpoint targets all CPUs (cpu < 0), and there may only
443
* exist other task breakpoints targeting all CPUs. In this case we
444
* can simply update the global slots histogram.
445
*
446
* 2. This breakpoint targets a specific CPU (cpu >= 0), but there may
447
* only exist other task breakpoints targeting all CPUs.
448
*
449
* a. On enable: remove the existing breakpoints from the global
450
* slots histogram and use the per-CPU histogram.
451
*
452
* b. On disable: re-insert the existing breakpoints into the global
453
* slots histogram and remove from per-CPU histogram.
454
*
455
* 3. Some other existing task breakpoints target specific CPUs. Only
456
* update the per-CPU slots histogram.
457
*/
458
459
if (!enable) {
460
/*
461
* Remove before updating histograms so we can determine if this
462
* was the last task breakpoint for a specific CPU.
463
*/
464
int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
465
466
if (ret)
467
return ret;
468
}
469
/*
470
* Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
471
*/
472
next_tsk_pinned = task_bp_pinned(-1, bp, type);
473
474
if (next_tsk_pinned >= 0) {
475
if (bp->cpu < 0) { /* Case 1: fast path */
476
if (!enable)
477
next_tsk_pinned += hw_breakpoint_weight(bp);
478
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
479
} else if (enable) { /* Case 2.a: slow path */
480
/* Add existing to per-CPU histograms. */
481
for_each_possible_cpu(cpu) {
482
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
483
0, next_tsk_pinned);
484
}
485
/* Add this first CPU-pinned task breakpoint. */
486
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
487
next_tsk_pinned, weight);
488
/* Rebalance global task pinned histogram. */
489
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
490
-next_tsk_pinned);
491
} else { /* Case 2.b: slow path */
492
/* Remove this last CPU-pinned task breakpoint. */
493
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
494
next_tsk_pinned + hw_breakpoint_weight(bp), weight);
495
/* Remove all from per-CPU histograms. */
496
for_each_possible_cpu(cpu) {
497
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
498
next_tsk_pinned, -next_tsk_pinned);
499
}
500
/* Rebalance global task pinned histogram. */
501
bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
502
}
503
} else { /* Case 3: slow path */
504
const struct cpumask *cpumask = cpumask_of_bp(bp);
505
506
for_each_cpu(cpu, cpumask) {
507
next_tsk_pinned = task_bp_pinned(cpu, bp, type);
508
if (!enable)
509
next_tsk_pinned += hw_breakpoint_weight(bp);
510
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
511
next_tsk_pinned, weight);
512
}
513
}
514
515
/*
516
* Readers want a stable snapshot of the per-task breakpoint list.
517
*/
518
assert_bp_constraints_lock_held(bp);
519
520
if (enable)
521
return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
522
523
return 0;
524
}
525
526
/*
527
* Constraints to check before allowing this new breakpoint counter.
528
*
529
* Note: Flexible breakpoints are currently unimplemented, but outlined in the
530
* below algorithm for completeness. The implementation treats flexible as
531
* pinned due to no guarantee that we currently always schedule flexible events
532
* before a pinned event in a same CPU.
533
*
534
* == Non-pinned counter == (Considered as pinned for now)
535
*
536
* - If attached to a single cpu, check:
537
*
538
* (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
539
* + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
540
*
541
* -> If there are already non-pinned counters in this cpu, it means
542
* there is already a free slot for them.
543
* Otherwise, we check that the maximum number of per task
544
* breakpoints (for this cpu) plus the number of per cpu breakpoint
545
* (for this cpu) doesn't cover every registers.
546
*
547
* - If attached to every cpus, check:
548
*
549
* (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
550
* + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
551
*
552
* -> This is roughly the same, except we check the number of per cpu
553
* bp for every cpu and we keep the max one. Same for the per tasks
554
* breakpoints.
555
*
556
*
557
* == Pinned counter ==
558
*
559
* - If attached to a single cpu, check:
560
*
561
* ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
562
* + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
563
*
564
* -> Same checks as before. But now the info->flexible, if any, must keep
565
* one register at least (or they will never be fed).
566
*
567
* - If attached to every cpus, check:
568
*
569
* ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
570
* + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
571
*/
572
static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
573
{
574
enum bp_type_idx type;
575
int max_pinned_slots;
576
int weight;
577
578
/* We couldn't initialize breakpoint constraints on boot */
579
if (!constraints_initialized)
580
return -ENOMEM;
581
582
/* Basic checks */
583
if (bp_type == HW_BREAKPOINT_EMPTY ||
584
bp_type == HW_BREAKPOINT_INVALID)
585
return -EINVAL;
586
587
type = find_slot_idx(bp_type);
588
weight = hw_breakpoint_weight(bp);
589
590
/* Check if this new breakpoint can be satisfied across all CPUs. */
591
max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
592
if (max_pinned_slots > hw_breakpoint_slots_cached(type))
593
return -ENOSPC;
594
595
return toggle_bp_slot(bp, true, type, weight);
596
}
597
598
int reserve_bp_slot(struct perf_event *bp)
599
{
600
struct mutex *mtx = bp_constraints_lock(bp);
601
int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
602
603
bp_constraints_unlock(mtx);
604
return ret;
605
}
606
607
static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
608
{
609
enum bp_type_idx type;
610
int weight;
611
612
type = find_slot_idx(bp_type);
613
weight = hw_breakpoint_weight(bp);
614
WARN_ON(toggle_bp_slot(bp, false, type, weight));
615
}
616
617
void release_bp_slot(struct perf_event *bp)
618
{
619
struct mutex *mtx = bp_constraints_lock(bp);
620
621
__release_bp_slot(bp, bp->attr.bp_type);
622
bp_constraints_unlock(mtx);
623
}
624
625
static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
626
{
627
int err;
628
629
__release_bp_slot(bp, old_type);
630
631
err = __reserve_bp_slot(bp, new_type);
632
if (err) {
633
/*
634
* Reserve the old_type slot back in case
635
* there's no space for the new type.
636
*
637
* This must succeed, because we just released
638
* the old_type slot in the __release_bp_slot
639
* call above. If not, something is broken.
640
*/
641
WARN_ON(__reserve_bp_slot(bp, old_type));
642
}
643
644
return err;
645
}
646
647
static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
648
{
649
struct mutex *mtx = bp_constraints_lock(bp);
650
int ret = __modify_bp_slot(bp, old_type, new_type);
651
652
bp_constraints_unlock(mtx);
653
return ret;
654
}
655
656
/*
657
* Allow the kernel debugger to reserve breakpoint slots without
658
* taking a lock using the dbg_* variant of for the reserve and
659
* release breakpoint slots.
660
*/
661
int dbg_reserve_bp_slot(struct perf_event *bp)
662
{
663
int ret;
664
665
if (bp_constraints_is_locked(bp))
666
return -1;
667
668
/* Locks aren't held; disable lockdep assert checking. */
669
lockdep_off();
670
ret = __reserve_bp_slot(bp, bp->attr.bp_type);
671
lockdep_on();
672
673
return ret;
674
}
675
676
int dbg_release_bp_slot(struct perf_event *bp)
677
{
678
if (bp_constraints_is_locked(bp))
679
return -1;
680
681
/* Locks aren't held; disable lockdep assert checking. */
682
lockdep_off();
683
__release_bp_slot(bp, bp->attr.bp_type);
684
lockdep_on();
685
686
return 0;
687
}
688
689
static int hw_breakpoint_parse(struct perf_event *bp,
690
const struct perf_event_attr *attr,
691
struct arch_hw_breakpoint *hw)
692
{
693
int err;
694
695
err = hw_breakpoint_arch_parse(bp, attr, hw);
696
if (err)
697
return err;
698
699
if (arch_check_bp_in_kernelspace(hw)) {
700
if (attr->exclude_kernel)
701
return -EINVAL;
702
/*
703
* Don't let unprivileged users set a breakpoint in the trap
704
* path to avoid trap recursion attacks.
705
*/
706
if (!capable(CAP_SYS_ADMIN))
707
return -EPERM;
708
}
709
710
return 0;
711
}
712
713
int register_perf_hw_breakpoint(struct perf_event *bp)
714
{
715
struct arch_hw_breakpoint hw = { };
716
int err;
717
718
err = reserve_bp_slot(bp);
719
if (err)
720
return err;
721
722
err = hw_breakpoint_parse(bp, &bp->attr, &hw);
723
if (err) {
724
release_bp_slot(bp);
725
return err;
726
}
727
728
bp->hw.info = hw;
729
730
return 0;
731
}
732
733
/**
734
* register_user_hw_breakpoint - register a hardware breakpoint for user space
735
* @attr: breakpoint attributes
736
* @triggered: callback to trigger when we hit the breakpoint
737
* @context: context data could be used in the triggered callback
738
* @tsk: pointer to 'task_struct' of the process to which the address belongs
739
*/
740
struct perf_event *
741
register_user_hw_breakpoint(struct perf_event_attr *attr,
742
perf_overflow_handler_t triggered,
743
void *context,
744
struct task_struct *tsk)
745
{
746
return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
747
context);
748
}
749
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
750
751
static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
752
struct perf_event_attr *from)
753
{
754
to->bp_addr = from->bp_addr;
755
to->bp_type = from->bp_type;
756
to->bp_len = from->bp_len;
757
to->disabled = from->disabled;
758
}
759
760
int
761
modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
762
bool check)
763
{
764
struct arch_hw_breakpoint hw = { };
765
int err;
766
767
err = hw_breakpoint_parse(bp, attr, &hw);
768
if (err)
769
return err;
770
771
if (check) {
772
struct perf_event_attr old_attr;
773
774
old_attr = bp->attr;
775
hw_breakpoint_copy_attr(&old_attr, attr);
776
if (memcmp(&old_attr, attr, sizeof(*attr)))
777
return -EINVAL;
778
}
779
780
if (bp->attr.bp_type != attr->bp_type) {
781
err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
782
if (err)
783
return err;
784
}
785
786
hw_breakpoint_copy_attr(&bp->attr, attr);
787
bp->hw.info = hw;
788
789
return 0;
790
}
791
792
/**
793
* modify_user_hw_breakpoint - modify a user-space hardware breakpoint
794
* @bp: the breakpoint structure to modify
795
* @attr: new breakpoint attributes
796
*/
797
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
798
{
799
int err;
800
801
/*
802
* modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
803
* will not be possible to raise IPIs that invoke __perf_event_disable.
804
* So call the function directly after making sure we are targeting the
805
* current task.
806
*/
807
if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
808
perf_event_disable_local(bp);
809
else
810
perf_event_disable(bp);
811
812
err = modify_user_hw_breakpoint_check(bp, attr, false);
813
814
if (!bp->attr.disabled)
815
perf_event_enable(bp);
816
817
return err;
818
}
819
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
820
821
/**
822
* unregister_hw_breakpoint - unregister a user-space hardware breakpoint
823
* @bp: the breakpoint structure to unregister
824
*/
825
void unregister_hw_breakpoint(struct perf_event *bp)
826
{
827
if (!bp)
828
return;
829
perf_event_release_kernel(bp);
830
}
831
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
832
833
/**
834
* register_wide_hw_breakpoint - register a wide breakpoint in the kernel
835
* @attr: breakpoint attributes
836
* @triggered: callback to trigger when we hit the breakpoint
837
* @context: context data could be used in the triggered callback
838
*
839
* @return a set of per_cpu pointers to perf events
840
*/
841
struct perf_event * __percpu *
842
register_wide_hw_breakpoint(struct perf_event_attr *attr,
843
perf_overflow_handler_t triggered,
844
void *context)
845
{
846
struct perf_event * __percpu *cpu_events, *bp;
847
long err = 0;
848
int cpu;
849
850
cpu_events = alloc_percpu(typeof(*cpu_events));
851
if (!cpu_events)
852
return ERR_PTR_PCPU(-ENOMEM);
853
854
cpus_read_lock();
855
for_each_online_cpu(cpu) {
856
bp = perf_event_create_kernel_counter(attr, cpu, NULL,
857
triggered, context);
858
if (IS_ERR(bp)) {
859
err = PTR_ERR(bp);
860
break;
861
}
862
863
per_cpu(*cpu_events, cpu) = bp;
864
}
865
cpus_read_unlock();
866
867
if (likely(!err))
868
return cpu_events;
869
870
unregister_wide_hw_breakpoint(cpu_events);
871
return ERR_PTR_PCPU(err);
872
}
873
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
874
875
/**
876
* unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
877
* @cpu_events: the per cpu set of events to unregister
878
*/
879
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
880
{
881
int cpu;
882
883
for_each_possible_cpu(cpu)
884
unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
885
886
free_percpu(cpu_events);
887
}
888
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
889
890
/**
891
* hw_breakpoint_is_used - check if breakpoints are currently used
892
*
893
* Returns: true if breakpoints are used, false otherwise.
894
*/
895
bool hw_breakpoint_is_used(void)
896
{
897
int cpu;
898
899
if (!constraints_initialized)
900
return false;
901
902
for_each_possible_cpu(cpu) {
903
for (int type = 0; type < TYPE_MAX; ++type) {
904
struct bp_cpuinfo *info = get_bp_info(cpu, type);
905
906
if (info->cpu_pinned)
907
return true;
908
909
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
910
if (atomic_read(&info->tsk_pinned.count[slot]))
911
return true;
912
}
913
}
914
}
915
916
for (int type = 0; type < TYPE_MAX; ++type) {
917
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
918
/*
919
* Warn, because if there are CPU pinned counters,
920
* should never get here; bp_cpuinfo::cpu_pinned should
921
* be consistent with the global cpu_pinned histogram.
922
*/
923
if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
924
return true;
925
926
if (atomic_read(&tsk_pinned_all[type].count[slot]))
927
return true;
928
}
929
}
930
931
return false;
932
}
933
934
static struct notifier_block hw_breakpoint_exceptions_nb = {
935
.notifier_call = hw_breakpoint_exceptions_notify,
936
/* we need to be notified first */
937
.priority = 0x7fffffff
938
};
939
940
static void bp_perf_event_destroy(struct perf_event *event)
941
{
942
release_bp_slot(event);
943
}
944
945
static int hw_breakpoint_event_init(struct perf_event *bp)
946
{
947
int err;
948
949
if (bp->attr.type != PERF_TYPE_BREAKPOINT)
950
return -ENOENT;
951
952
/*
953
* Check if breakpoint type is supported before proceeding.
954
* Also, no branch sampling for breakpoint events.
955
*/
956
if (!hw_breakpoint_slots_cached(find_slot_idx(bp->attr.bp_type)) || has_branch_stack(bp))
957
return -EOPNOTSUPP;
958
959
err = register_perf_hw_breakpoint(bp);
960
if (err)
961
return err;
962
963
bp->destroy = bp_perf_event_destroy;
964
965
return 0;
966
}
967
968
static int hw_breakpoint_add(struct perf_event *bp, int flags)
969
{
970
if (!(flags & PERF_EF_START))
971
bp->hw.state = PERF_HES_STOPPED;
972
973
if (is_sampling_event(bp)) {
974
bp->hw.last_period = bp->hw.sample_period;
975
perf_swevent_set_period(bp);
976
}
977
978
return arch_install_hw_breakpoint(bp);
979
}
980
981
static void hw_breakpoint_del(struct perf_event *bp, int flags)
982
{
983
arch_uninstall_hw_breakpoint(bp);
984
}
985
986
static void hw_breakpoint_start(struct perf_event *bp, int flags)
987
{
988
bp->hw.state = 0;
989
}
990
991
static void hw_breakpoint_stop(struct perf_event *bp, int flags)
992
{
993
bp->hw.state = PERF_HES_STOPPED;
994
}
995
996
static struct pmu perf_breakpoint = {
997
.task_ctx_nr = perf_sw_context, /* could eventually get its own */
998
999
.event_init = hw_breakpoint_event_init,
1000
.add = hw_breakpoint_add,
1001
.del = hw_breakpoint_del,
1002
.start = hw_breakpoint_start,
1003
.stop = hw_breakpoint_stop,
1004
.read = hw_breakpoint_pmu_read,
1005
};
1006
1007
int __init init_hw_breakpoint(void)
1008
{
1009
int ret;
1010
1011
ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
1012
if (ret)
1013
return ret;
1014
1015
ret = init_breakpoint_slots();
1016
if (ret)
1017
return ret;
1018
1019
constraints_initialized = true;
1020
1021
perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
1022
1023
return register_die_notifier(&hw_breakpoint_exceptions_nb);
1024
}
1025
1026