Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/events/uprobes.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* User-space Probes (UProbes)
4
*
5
* Copyright (C) IBM Corporation, 2008-2012
6
* Authors:
7
* Srikar Dronamraju
8
* Jim Keniston
9
* Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10
*/
11
12
#include <linux/kernel.h>
13
#include <linux/highmem.h>
14
#include <linux/pagemap.h> /* read_mapping_page */
15
#include <linux/slab.h>
16
#include <linux/sched.h>
17
#include <linux/sched/mm.h>
18
#include <linux/export.h>
19
#include <linux/rmap.h> /* anon_vma_prepare */
20
#include <linux/mmu_notifier.h>
21
#include <linux/swap.h> /* folio_free_swap */
22
#include <linux/ptrace.h> /* user_enable_single_step */
23
#include <linux/kdebug.h> /* notifier mechanism */
24
#include <linux/percpu-rwsem.h>
25
#include <linux/task_work.h>
26
#include <linux/shmem_fs.h>
27
#include <linux/khugepaged.h>
28
#include <linux/rcupdate_trace.h>
29
#include <linux/workqueue.h>
30
#include <linux/srcu.h>
31
#include <linux/oom.h> /* check_stable_address_space */
32
#include <linux/pagewalk.h>
33
34
#include <linux/uprobes.h>
35
36
#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
37
#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
38
39
static struct rb_root uprobes_tree = RB_ROOT;
40
/*
41
* allows us to skip the uprobe_mmap if there are no uprobe events active
42
* at this time. Probably a fine grained per inode count is better?
43
*/
44
#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
45
46
static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
47
static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
48
49
#define UPROBES_HASH_SZ 13
50
/* serialize uprobe->pending_list */
51
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
52
#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
53
54
DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
55
56
/* Covers return_instance's uprobe lifetime. */
57
DEFINE_STATIC_SRCU(uretprobes_srcu);
58
59
/* Have a copy of original instruction */
60
#define UPROBE_COPY_INSN 0
61
62
struct uprobe {
63
struct rb_node rb_node; /* node in the rb tree */
64
refcount_t ref;
65
struct rw_semaphore register_rwsem;
66
struct rw_semaphore consumer_rwsem;
67
struct list_head pending_list;
68
struct list_head consumers;
69
struct inode *inode; /* Also hold a ref to inode */
70
union {
71
struct rcu_head rcu;
72
struct work_struct work;
73
};
74
loff_t offset;
75
loff_t ref_ctr_offset;
76
unsigned long flags; /* "unsigned long" so bitops work */
77
78
/*
79
* The generic code assumes that it has two members of unknown type
80
* owned by the arch-specific code:
81
*
82
* insn - copy_insn() saves the original instruction here for
83
* arch_uprobe_analyze_insn().
84
*
85
* ixol - potentially modified instruction to execute out of
86
* line, copied to xol_area by xol_get_insn_slot().
87
*/
88
struct arch_uprobe arch;
89
};
90
91
struct delayed_uprobe {
92
struct list_head list;
93
struct uprobe *uprobe;
94
struct mm_struct *mm;
95
};
96
97
static DEFINE_MUTEX(delayed_uprobe_lock);
98
static LIST_HEAD(delayed_uprobe_list);
99
100
/*
101
* Execute out of line area: anonymous executable mapping installed
102
* by the probed task to execute the copy of the original instruction
103
* mangled by set_swbp().
104
*
105
* On a breakpoint hit, thread contests for a slot. It frees the
106
* slot after singlestep. Currently a fixed number of slots are
107
* allocated.
108
*/
109
struct xol_area {
110
wait_queue_head_t wq; /* if all slots are busy */
111
unsigned long *bitmap; /* 0 = free slot */
112
113
struct page *page;
114
/*
115
* We keep the vma's vm_start rather than a pointer to the vma
116
* itself. The probed process or a naughty kernel module could make
117
* the vma go away, and we must handle that reasonably gracefully.
118
*/
119
unsigned long vaddr; /* Page(s) of instruction slots */
120
};
121
122
static void uprobe_warn(struct task_struct *t, const char *msg)
123
{
124
pr_warn("uprobe: %s:%d failed to %s\n", t->comm, t->pid, msg);
125
}
126
127
/*
128
* valid_vma: Verify if the specified vma is an executable vma
129
* Relax restrictions while unregistering: vm_flags might have
130
* changed after breakpoint was inserted.
131
* - is_register: indicates if we are in register context.
132
* - Return 1 if the specified virtual address is in an
133
* executable vma.
134
*/
135
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
136
{
137
vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
138
139
if (is_register)
140
flags |= VM_WRITE;
141
142
return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
143
}
144
145
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
146
{
147
return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
148
}
149
150
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
151
{
152
return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
153
}
154
155
/**
156
* is_swbp_insn - check if instruction is breakpoint instruction.
157
* @insn: instruction to be checked.
158
* Default implementation of is_swbp_insn
159
* Returns true if @insn is a breakpoint instruction.
160
*/
161
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
162
{
163
return *insn == UPROBE_SWBP_INSN;
164
}
165
166
/**
167
* is_trap_insn - check if instruction is breakpoint instruction.
168
* @insn: instruction to be checked.
169
* Default implementation of is_trap_insn
170
* Returns true if @insn is a breakpoint instruction.
171
*
172
* This function is needed for the case where an architecture has multiple
173
* trap instructions (like powerpc).
174
*/
175
bool __weak is_trap_insn(uprobe_opcode_t *insn)
176
{
177
return is_swbp_insn(insn);
178
}
179
180
void uprobe_copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
181
{
182
void *kaddr = kmap_atomic(page);
183
memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
184
kunmap_atomic(kaddr);
185
}
186
187
static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
188
{
189
void *kaddr = kmap_atomic(page);
190
memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
191
kunmap_atomic(kaddr);
192
}
193
194
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *insn,
195
int nbytes, void *data)
196
{
197
uprobe_opcode_t old_opcode;
198
bool is_swbp;
199
200
/*
201
* Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
202
* We do not check if it is any other 'trap variant' which could
203
* be conditional trap instruction such as the one powerpc supports.
204
*
205
* The logic is that we do not care if the underlying instruction
206
* is a trap variant; uprobes always wins over any other (gdb)
207
* breakpoint.
208
*/
209
uprobe_copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
210
is_swbp = is_swbp_insn(&old_opcode);
211
212
if (is_swbp_insn(insn)) {
213
if (is_swbp) /* register: already installed? */
214
return 0;
215
} else {
216
if (!is_swbp) /* unregister: was it changed by us? */
217
return 0;
218
}
219
220
return 1;
221
}
222
223
static struct delayed_uprobe *
224
delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
225
{
226
struct delayed_uprobe *du;
227
228
list_for_each_entry(du, &delayed_uprobe_list, list)
229
if (du->uprobe == uprobe && du->mm == mm)
230
return du;
231
return NULL;
232
}
233
234
static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
235
{
236
struct delayed_uprobe *du;
237
238
if (delayed_uprobe_check(uprobe, mm))
239
return 0;
240
241
du = kzalloc(sizeof(*du), GFP_KERNEL);
242
if (!du)
243
return -ENOMEM;
244
245
du->uprobe = uprobe;
246
du->mm = mm;
247
list_add(&du->list, &delayed_uprobe_list);
248
return 0;
249
}
250
251
static void delayed_uprobe_delete(struct delayed_uprobe *du)
252
{
253
if (WARN_ON(!du))
254
return;
255
list_del(&du->list);
256
kfree(du);
257
}
258
259
static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
260
{
261
struct list_head *pos, *q;
262
struct delayed_uprobe *du;
263
264
if (!uprobe && !mm)
265
return;
266
267
list_for_each_safe(pos, q, &delayed_uprobe_list) {
268
du = list_entry(pos, struct delayed_uprobe, list);
269
270
if (uprobe && du->uprobe != uprobe)
271
continue;
272
if (mm && du->mm != mm)
273
continue;
274
275
delayed_uprobe_delete(du);
276
}
277
}
278
279
static bool valid_ref_ctr_vma(struct uprobe *uprobe,
280
struct vm_area_struct *vma)
281
{
282
unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
283
284
return uprobe->ref_ctr_offset &&
285
vma->vm_file &&
286
file_inode(vma->vm_file) == uprobe->inode &&
287
(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
288
vma->vm_start <= vaddr &&
289
vma->vm_end > vaddr;
290
}
291
292
static struct vm_area_struct *
293
find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
294
{
295
VMA_ITERATOR(vmi, mm, 0);
296
struct vm_area_struct *tmp;
297
298
for_each_vma(vmi, tmp)
299
if (valid_ref_ctr_vma(uprobe, tmp))
300
return tmp;
301
302
return NULL;
303
}
304
305
static int
306
__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
307
{
308
void *kaddr;
309
struct page *page;
310
int ret;
311
short *ptr;
312
313
if (!vaddr || !d)
314
return -EINVAL;
315
316
ret = get_user_pages_remote(mm, vaddr, 1,
317
FOLL_WRITE, &page, NULL);
318
if (unlikely(ret <= 0)) {
319
/*
320
* We are asking for 1 page. If get_user_pages_remote() fails,
321
* it may return 0, in that case we have to return error.
322
*/
323
return ret == 0 ? -EBUSY : ret;
324
}
325
326
kaddr = kmap_atomic(page);
327
ptr = kaddr + (vaddr & ~PAGE_MASK);
328
329
if (unlikely(*ptr + d < 0)) {
330
pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
331
"curr val: %d, delta: %d\n", vaddr, *ptr, d);
332
ret = -EINVAL;
333
goto out;
334
}
335
336
*ptr += d;
337
ret = 0;
338
out:
339
kunmap_atomic(kaddr);
340
put_page(page);
341
return ret;
342
}
343
344
static void update_ref_ctr_warn(struct uprobe *uprobe,
345
struct mm_struct *mm, short d)
346
{
347
pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
348
"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
349
d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
350
(unsigned long long) uprobe->offset,
351
(unsigned long long) uprobe->ref_ctr_offset, mm);
352
}
353
354
static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
355
short d)
356
{
357
struct vm_area_struct *rc_vma;
358
unsigned long rc_vaddr;
359
int ret = 0;
360
361
rc_vma = find_ref_ctr_vma(uprobe, mm);
362
363
if (rc_vma) {
364
rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
365
ret = __update_ref_ctr(mm, rc_vaddr, d);
366
if (ret)
367
update_ref_ctr_warn(uprobe, mm, d);
368
369
if (d > 0)
370
return ret;
371
}
372
373
mutex_lock(&delayed_uprobe_lock);
374
if (d > 0)
375
ret = delayed_uprobe_add(uprobe, mm);
376
else
377
delayed_uprobe_remove(uprobe, mm);
378
mutex_unlock(&delayed_uprobe_lock);
379
380
return ret;
381
}
382
383
static bool orig_page_is_identical(struct vm_area_struct *vma,
384
unsigned long vaddr, struct page *page, bool *pmd_mappable)
385
{
386
const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT;
387
struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping,
388
index);
389
struct page *orig_page;
390
bool identical;
391
392
if (IS_ERR(orig_folio))
393
return false;
394
orig_page = folio_file_page(orig_folio, index);
395
396
*pmd_mappable = folio_test_pmd_mappable(orig_folio);
397
identical = folio_test_uptodate(orig_folio) &&
398
pages_identical(page, orig_page);
399
folio_put(orig_folio);
400
return identical;
401
}
402
403
static int __uprobe_write(struct vm_area_struct *vma,
404
struct folio_walk *fw, struct folio *folio,
405
unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
406
bool is_register)
407
{
408
const unsigned long vaddr = insn_vaddr & PAGE_MASK;
409
bool pmd_mappable;
410
411
/* For now, we'll only handle PTE-mapped folios. */
412
if (fw->level != FW_LEVEL_PTE)
413
return -EFAULT;
414
415
/*
416
* See can_follow_write_pte(): we'd actually prefer a writable PTE here,
417
* but the VMA might not be writable.
418
*/
419
if (!pte_write(fw->pte)) {
420
if (!PageAnonExclusive(fw->page))
421
return -EFAULT;
422
if (unlikely(userfaultfd_pte_wp(vma, fw->pte)))
423
return -EFAULT;
424
/* SOFTDIRTY is handled via pte_mkdirty() below. */
425
}
426
427
/*
428
* We'll temporarily unmap the page and flush the TLB, such that we can
429
* modify the page atomically.
430
*/
431
flush_cache_page(vma, vaddr, pte_pfn(fw->pte));
432
fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep);
433
copy_to_page(fw->page, insn_vaddr, insn, nbytes);
434
435
/*
436
* When unregistering, we may only zap a PTE if uffd is disabled and
437
* there are no unexpected folio references ...
438
*/
439
if (is_register || userfaultfd_missing(vma) ||
440
(folio_ref_count(folio) != folio_expected_ref_count(folio) + 1))
441
goto remap;
442
443
/*
444
* ... and the mapped page is identical to the original page that
445
* would get faulted in on next access.
446
*/
447
if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable))
448
goto remap;
449
450
dec_mm_counter(vma->vm_mm, MM_ANONPAGES);
451
folio_remove_rmap_pte(folio, fw->page, vma);
452
if (!folio_mapped(folio) && folio_test_swapcache(folio) &&
453
folio_trylock(folio)) {
454
folio_free_swap(folio);
455
folio_unlock(folio);
456
}
457
folio_put(folio);
458
459
return pmd_mappable;
460
remap:
461
/*
462
* Make sure that our copy_to_page() changes become visible before the
463
* set_pte_at() write.
464
*/
465
smp_wmb();
466
/* We modified the page. Make sure to mark the PTE dirty. */
467
set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte));
468
return 0;
469
}
470
471
/*
472
* NOTE:
473
* Expect the breakpoint instruction to be the smallest size instruction for
474
* the architecture. If an arch has variable length instruction and the
475
* breakpoint instruction is not of the smallest length instruction
476
* supported by that architecture then we need to modify is_trap_at_addr and
477
* uprobe_write_opcode accordingly. This would never be a problem for archs
478
* that have fixed length instructions.
479
*
480
* uprobe_write_opcode - write the opcode at a given virtual address.
481
* @auprobe: arch specific probepoint information.
482
* @vma: the probed virtual memory area.
483
* @opcode_vaddr: the virtual address to store the opcode.
484
* @opcode: opcode to be written at @opcode_vaddr.
485
*
486
* Called with mm->mmap_lock held for write.
487
* Return 0 (success) or a negative errno.
488
*/
489
int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
490
const unsigned long opcode_vaddr, uprobe_opcode_t opcode,
491
bool is_register)
492
{
493
return uprobe_write(auprobe, vma, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE,
494
verify_opcode, is_register, true /* do_update_ref_ctr */, NULL);
495
}
496
497
int uprobe_write(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
498
const unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
499
uprobe_write_verify_t verify, bool is_register, bool do_update_ref_ctr,
500
void *data)
501
{
502
const unsigned long vaddr = insn_vaddr & PAGE_MASK;
503
struct mm_struct *mm = vma->vm_mm;
504
struct uprobe *uprobe;
505
int ret, ref_ctr_updated = 0;
506
unsigned int gup_flags = FOLL_FORCE;
507
struct mmu_notifier_range range;
508
struct folio_walk fw;
509
struct folio *folio;
510
struct page *page;
511
512
uprobe = container_of(auprobe, struct uprobe, arch);
513
514
if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags)))
515
return -EINVAL;
516
517
/*
518
* When registering, we have to break COW to get an exclusive anonymous
519
* page that we can safely modify. Use FOLL_WRITE to trigger a write
520
* fault if required. When unregistering, we might be lucky and the
521
* anon page is already gone. So defer write faults until really
522
* required. Use FOLL_SPLIT_PMD, because __uprobe_write()
523
* cannot deal with PMDs yet.
524
*/
525
if (is_register)
526
gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
527
528
retry:
529
ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL);
530
if (ret <= 0)
531
goto out;
532
folio = page_folio(page);
533
534
ret = verify(page, insn_vaddr, insn, nbytes, data);
535
if (ret <= 0) {
536
folio_put(folio);
537
goto out;
538
}
539
540
/* We are going to replace instruction, update ref_ctr. */
541
if (do_update_ref_ctr && !ref_ctr_updated && uprobe->ref_ctr_offset) {
542
ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
543
if (ret) {
544
folio_put(folio);
545
goto out;
546
}
547
548
ref_ctr_updated = 1;
549
}
550
551
ret = 0;
552
if (unlikely(!folio_test_anon(folio) || folio_is_zone_device(folio))) {
553
VM_WARN_ON_ONCE(is_register);
554
folio_put(folio);
555
goto out;
556
}
557
558
if (!is_register) {
559
/*
560
* In the common case, we'll be able to zap the page when
561
* unregistering. So trigger MMU notifiers now, as we won't
562
* be able to do it under PTL.
563
*/
564
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
565
vaddr, vaddr + PAGE_SIZE);
566
mmu_notifier_invalidate_range_start(&range);
567
}
568
569
ret = -EAGAIN;
570
/* Walk the page tables again, to perform the actual update. */
571
if (folio_walk_start(&fw, vma, vaddr, 0)) {
572
if (fw.page == page)
573
ret = __uprobe_write(vma, &fw, folio, insn_vaddr, insn, nbytes, is_register);
574
folio_walk_end(&fw, vma);
575
}
576
577
if (!is_register)
578
mmu_notifier_invalidate_range_end(&range);
579
580
folio_put(folio);
581
switch (ret) {
582
case -EFAULT:
583
gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
584
fallthrough;
585
case -EAGAIN:
586
goto retry;
587
default:
588
break;
589
}
590
591
out:
592
/* Revert back reference counter if instruction update failed. */
593
if (do_update_ref_ctr && ret < 0 && ref_ctr_updated)
594
update_ref_ctr(uprobe, mm, is_register ? -1 : 1);
595
596
/* try collapse pmd for compound page */
597
if (ret > 0)
598
collapse_pte_mapped_thp(mm, vaddr, false);
599
600
return ret < 0 ? ret : 0;
601
}
602
603
/**
604
* set_swbp - store breakpoint at a given address.
605
* @auprobe: arch specific probepoint information.
606
* @vma: the probed virtual memory area.
607
* @vaddr: the virtual address to insert the opcode.
608
*
609
* For mm @mm, store the breakpoint instruction at @vaddr.
610
* Return 0 (success) or a negative errno.
611
*/
612
int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
613
unsigned long vaddr)
614
{
615
return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN, true);
616
}
617
618
/**
619
* set_orig_insn - Restore the original instruction.
620
* @vma: the probed virtual memory area.
621
* @auprobe: arch specific probepoint information.
622
* @vaddr: the virtual address to insert the opcode.
623
*
624
* For mm @mm, restore the original opcode (opcode) at @vaddr.
625
* Return 0 (success) or a negative errno.
626
*/
627
int __weak set_orig_insn(struct arch_uprobe *auprobe,
628
struct vm_area_struct *vma, unsigned long vaddr)
629
{
630
return uprobe_write_opcode(auprobe, vma, vaddr,
631
*(uprobe_opcode_t *)&auprobe->insn, false);
632
}
633
634
/* uprobe should have guaranteed positive refcount */
635
static struct uprobe *get_uprobe(struct uprobe *uprobe)
636
{
637
refcount_inc(&uprobe->ref);
638
return uprobe;
639
}
640
641
/*
642
* uprobe should have guaranteed lifetime, which can be either of:
643
* - caller already has refcount taken (and wants an extra one);
644
* - uprobe is RCU protected and won't be freed until after grace period;
645
* - we are holding uprobes_treelock (for read or write, doesn't matter).
646
*/
647
static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
648
{
649
if (refcount_inc_not_zero(&uprobe->ref))
650
return uprobe;
651
return NULL;
652
}
653
654
static inline bool uprobe_is_active(struct uprobe *uprobe)
655
{
656
return !RB_EMPTY_NODE(&uprobe->rb_node);
657
}
658
659
static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
660
{
661
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
662
663
kfree(uprobe);
664
}
665
666
static void uprobe_free_srcu(struct rcu_head *rcu)
667
{
668
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
669
670
call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
671
}
672
673
static void uprobe_free_deferred(struct work_struct *work)
674
{
675
struct uprobe *uprobe = container_of(work, struct uprobe, work);
676
677
write_lock(&uprobes_treelock);
678
679
if (uprobe_is_active(uprobe)) {
680
write_seqcount_begin(&uprobes_seqcount);
681
rb_erase(&uprobe->rb_node, &uprobes_tree);
682
write_seqcount_end(&uprobes_seqcount);
683
}
684
685
write_unlock(&uprobes_treelock);
686
687
/*
688
* If application munmap(exec_vma) before uprobe_unregister()
689
* gets called, we don't get a chance to remove uprobe from
690
* delayed_uprobe_list from remove_breakpoint(). Do it here.
691
*/
692
mutex_lock(&delayed_uprobe_lock);
693
delayed_uprobe_remove(uprobe, NULL);
694
mutex_unlock(&delayed_uprobe_lock);
695
696
/* start srcu -> rcu_tasks_trace -> kfree chain */
697
call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
698
}
699
700
static void put_uprobe(struct uprobe *uprobe)
701
{
702
if (!refcount_dec_and_test(&uprobe->ref))
703
return;
704
705
INIT_WORK(&uprobe->work, uprobe_free_deferred);
706
schedule_work(&uprobe->work);
707
}
708
709
/* Initialize hprobe as SRCU-protected "leased" uprobe */
710
static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
711
{
712
WARN_ON(!uprobe);
713
hprobe->state = HPROBE_LEASED;
714
hprobe->uprobe = uprobe;
715
hprobe->srcu_idx = srcu_idx;
716
}
717
718
/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
719
static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
720
{
721
hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
722
hprobe->uprobe = uprobe;
723
hprobe->srcu_idx = -1;
724
}
725
726
/*
727
* hprobe_consume() fetches hprobe's underlying uprobe and detects whether
728
* uprobe is SRCU protected or is refcounted. hprobe_consume() can be
729
* used only once for a given hprobe.
730
*
731
* Caller has to call hprobe_finalize() and pass previous hprobe_state, so
732
* that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
733
* is appropriate.
734
*/
735
static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
736
{
737
*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
738
switch (*hstate) {
739
case HPROBE_LEASED:
740
case HPROBE_STABLE:
741
return hprobe->uprobe;
742
case HPROBE_GONE: /* uprobe is NULL, no SRCU */
743
case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
744
return NULL;
745
default:
746
WARN(1, "hprobe invalid state %d", *hstate);
747
return NULL;
748
}
749
}
750
751
/*
752
* Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
753
* hprobe_finalize() can only be used from current context after
754
* hprobe_consume() call (which determines uprobe and hstate value).
755
*/
756
static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
757
{
758
switch (hstate) {
759
case HPROBE_LEASED:
760
__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
761
break;
762
case HPROBE_STABLE:
763
put_uprobe(hprobe->uprobe);
764
break;
765
case HPROBE_GONE:
766
case HPROBE_CONSUMED:
767
break;
768
default:
769
WARN(1, "hprobe invalid state %d", hstate);
770
break;
771
}
772
}
773
774
/*
775
* Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
776
* to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
777
* them can win the race to perform SRCU unlocking. Whoever wins must perform
778
* SRCU unlock.
779
*
780
* Returns underlying valid uprobe or NULL, if there was no underlying uprobe
781
* to begin with or we failed to bump its refcount and it's going away.
782
*
783
* Returned non-NULL uprobe can be still safely used within an ongoing SRCU
784
* locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
785
* an extra refcount for caller to assume and use. Otherwise, it's not
786
* guaranteed that returned uprobe has a positive refcount, so caller has to
787
* attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
788
* SRCU lock region. See dup_utask().
789
*/
790
static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
791
{
792
enum hprobe_state hstate;
793
794
/*
795
* Caller should guarantee that return_instance is not going to be
796
* freed from under us. This can be achieved either through holding
797
* rcu_read_lock() or by owning return_instance in the first place.
798
*
799
* Underlying uprobe is itself protected from reuse by SRCU, so ensure
800
* SRCU lock is held properly.
801
*/
802
lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
803
804
hstate = READ_ONCE(hprobe->state);
805
switch (hstate) {
806
case HPROBE_STABLE:
807
/* uprobe has positive refcount, bump refcount, if necessary */
808
return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
809
case HPROBE_GONE:
810
/*
811
* SRCU was unlocked earlier and we didn't manage to take
812
* uprobe refcnt, so it's effectively NULL
813
*/
814
return NULL;
815
case HPROBE_CONSUMED:
816
/*
817
* uprobe was consumed, so it's effectively NULL as far as
818
* uretprobe processing logic is concerned
819
*/
820
return NULL;
821
case HPROBE_LEASED: {
822
struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
823
/*
824
* Try to switch hprobe state, guarding against
825
* hprobe_consume() or another hprobe_expire() racing with us.
826
* Note, if we failed to get uprobe refcount, we use special
827
* HPROBE_GONE state to signal that hprobe->uprobe shouldn't
828
* be used as it will be freed after SRCU is unlocked.
829
*/
830
if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
831
/* We won the race, we are the ones to unlock SRCU */
832
__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
833
return get ? get_uprobe(uprobe) : uprobe;
834
}
835
836
/*
837
* We lost the race, undo refcount bump (if it ever happened),
838
* unless caller would like an extra refcount anyways.
839
*/
840
if (uprobe && !get)
841
put_uprobe(uprobe);
842
/*
843
* Even if hprobe_consume() or another hprobe_expire() wins
844
* the state update race and unlocks SRCU from under us, we
845
* still have a guarantee that underyling uprobe won't be
846
* freed due to ongoing caller's SRCU lock region, so we can
847
* return it regardless. Also, if `get` was true, we also have
848
* an extra ref for the caller to own. This is used in dup_utask().
849
*/
850
return uprobe;
851
}
852
default:
853
WARN(1, "unknown hprobe state %d", hstate);
854
return NULL;
855
}
856
}
857
858
static __always_inline
859
int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
860
const struct uprobe *r)
861
{
862
if (l_inode < r->inode)
863
return -1;
864
865
if (l_inode > r->inode)
866
return 1;
867
868
if (l_offset < r->offset)
869
return -1;
870
871
if (l_offset > r->offset)
872
return 1;
873
874
return 0;
875
}
876
877
#define __node_2_uprobe(node) \
878
rb_entry((node), struct uprobe, rb_node)
879
880
struct __uprobe_key {
881
struct inode *inode;
882
loff_t offset;
883
};
884
885
static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
886
{
887
const struct __uprobe_key *a = key;
888
return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
889
}
890
891
static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
892
{
893
struct uprobe *u = __node_2_uprobe(a);
894
return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
895
}
896
897
/*
898
* Assumes being inside RCU protected region.
899
* No refcount is taken on returned uprobe.
900
*/
901
static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
902
{
903
struct __uprobe_key key = {
904
.inode = inode,
905
.offset = offset,
906
};
907
struct rb_node *node;
908
unsigned int seq;
909
910
lockdep_assert(rcu_read_lock_trace_held());
911
912
do {
913
seq = read_seqcount_begin(&uprobes_seqcount);
914
node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
915
/*
916
* Lockless RB-tree lookups can result only in false negatives.
917
* If the element is found, it is correct and can be returned
918
* under RCU protection. If we find nothing, we need to
919
* validate that seqcount didn't change. If it did, we have to
920
* try again as we might have missed the element (false
921
* negative). If seqcount is unchanged, search truly failed.
922
*/
923
if (node)
924
return __node_2_uprobe(node);
925
} while (read_seqcount_retry(&uprobes_seqcount, seq));
926
927
return NULL;
928
}
929
930
/*
931
* Attempt to insert a new uprobe into uprobes_tree.
932
*
933
* If uprobe already exists (for given inode+offset), we just increment
934
* refcount of previously existing uprobe.
935
*
936
* If not, a provided new instance of uprobe is inserted into the tree (with
937
* assumed initial refcount == 1).
938
*
939
* In any case, we return a uprobe instance that ends up being in uprobes_tree.
940
* Caller has to clean up new uprobe instance, if it ended up not being
941
* inserted into the tree.
942
*
943
* We assume that uprobes_treelock is held for writing.
944
*/
945
static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
946
{
947
struct rb_node *node;
948
again:
949
node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
950
if (node) {
951
struct uprobe *u = __node_2_uprobe(node);
952
953
if (!try_get_uprobe(u)) {
954
rb_erase(node, &uprobes_tree);
955
RB_CLEAR_NODE(&u->rb_node);
956
goto again;
957
}
958
959
return u;
960
}
961
962
return uprobe;
963
}
964
965
/*
966
* Acquire uprobes_treelock and insert uprobe into uprobes_tree
967
* (or reuse existing one, see __insert_uprobe() comments above).
968
*/
969
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
970
{
971
struct uprobe *u;
972
973
write_lock(&uprobes_treelock);
974
write_seqcount_begin(&uprobes_seqcount);
975
u = __insert_uprobe(uprobe);
976
write_seqcount_end(&uprobes_seqcount);
977
write_unlock(&uprobes_treelock);
978
979
return u;
980
}
981
982
static void
983
ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
984
{
985
pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
986
"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
987
uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
988
(unsigned long long) cur_uprobe->ref_ctr_offset,
989
(unsigned long long) uprobe->ref_ctr_offset);
990
}
991
992
static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
993
loff_t ref_ctr_offset)
994
{
995
struct uprobe *uprobe, *cur_uprobe;
996
997
uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
998
if (!uprobe)
999
return ERR_PTR(-ENOMEM);
1000
1001
uprobe->inode = inode;
1002
uprobe->offset = offset;
1003
uprobe->ref_ctr_offset = ref_ctr_offset;
1004
INIT_LIST_HEAD(&uprobe->consumers);
1005
init_rwsem(&uprobe->register_rwsem);
1006
init_rwsem(&uprobe->consumer_rwsem);
1007
RB_CLEAR_NODE(&uprobe->rb_node);
1008
refcount_set(&uprobe->ref, 1);
1009
1010
/* add to uprobes_tree, sorted on inode:offset */
1011
cur_uprobe = insert_uprobe(uprobe);
1012
/* a uprobe exists for this inode:offset combination */
1013
if (cur_uprobe != uprobe) {
1014
if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1015
ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1016
put_uprobe(cur_uprobe);
1017
kfree(uprobe);
1018
return ERR_PTR(-EINVAL);
1019
}
1020
kfree(uprobe);
1021
uprobe = cur_uprobe;
1022
}
1023
1024
return uprobe;
1025
}
1026
1027
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1028
{
1029
static atomic64_t id;
1030
1031
down_write(&uprobe->consumer_rwsem);
1032
list_add_rcu(&uc->cons_node, &uprobe->consumers);
1033
uc->id = (__u64) atomic64_inc_return(&id);
1034
up_write(&uprobe->consumer_rwsem);
1035
}
1036
1037
/*
1038
* For uprobe @uprobe, delete the consumer @uc.
1039
* Should never be called with consumer that's not part of @uprobe->consumers.
1040
*/
1041
static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1042
{
1043
down_write(&uprobe->consumer_rwsem);
1044
list_del_rcu(&uc->cons_node);
1045
up_write(&uprobe->consumer_rwsem);
1046
}
1047
1048
static int __copy_insn(struct address_space *mapping, struct file *filp,
1049
void *insn, int nbytes, loff_t offset)
1050
{
1051
struct page *page;
1052
/*
1053
* Ensure that the page that has the original instruction is populated
1054
* and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1055
* see uprobe_register().
1056
*/
1057
if (mapping->a_ops->read_folio)
1058
page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1059
else
1060
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1061
if (IS_ERR(page))
1062
return PTR_ERR(page);
1063
1064
uprobe_copy_from_page(page, offset, insn, nbytes);
1065
put_page(page);
1066
1067
return 0;
1068
}
1069
1070
static int copy_insn(struct uprobe *uprobe, struct file *filp)
1071
{
1072
struct address_space *mapping = uprobe->inode->i_mapping;
1073
loff_t offs = uprobe->offset;
1074
void *insn = &uprobe->arch.insn;
1075
int size = sizeof(uprobe->arch.insn);
1076
int len, err = -EIO;
1077
1078
/* Copy only available bytes, -EIO if nothing was read */
1079
do {
1080
if (offs >= i_size_read(uprobe->inode))
1081
break;
1082
1083
len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1084
err = __copy_insn(mapping, filp, insn, len, offs);
1085
if (err)
1086
break;
1087
1088
insn += len;
1089
offs += len;
1090
size -= len;
1091
} while (size);
1092
1093
return err;
1094
}
1095
1096
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1097
struct mm_struct *mm, unsigned long vaddr)
1098
{
1099
int ret = 0;
1100
1101
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1102
return ret;
1103
1104
/* TODO: move this into _register, until then we abuse this sem. */
1105
down_write(&uprobe->consumer_rwsem);
1106
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1107
goto out;
1108
1109
ret = copy_insn(uprobe, file);
1110
if (ret)
1111
goto out;
1112
1113
ret = -ENOTSUPP;
1114
if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1115
goto out;
1116
1117
ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1118
if (ret)
1119
goto out;
1120
1121
smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1122
set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1123
1124
out:
1125
up_write(&uprobe->consumer_rwsem);
1126
1127
return ret;
1128
}
1129
1130
static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1131
{
1132
return !uc->filter || uc->filter(uc, mm);
1133
}
1134
1135
static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1136
{
1137
struct uprobe_consumer *uc;
1138
bool ret = false;
1139
1140
down_read(&uprobe->consumer_rwsem);
1141
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1142
ret = consumer_filter(uc, mm);
1143
if (ret)
1144
break;
1145
}
1146
up_read(&uprobe->consumer_rwsem);
1147
1148
return ret;
1149
}
1150
1151
static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1152
unsigned long vaddr)
1153
{
1154
struct mm_struct *mm = vma->vm_mm;
1155
bool first_uprobe;
1156
int ret;
1157
1158
ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1159
if (ret)
1160
return ret;
1161
1162
/*
1163
* set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1164
* the task can hit this breakpoint right after __replace_page().
1165
*/
1166
first_uprobe = !mm_flags_test(MMF_HAS_UPROBES, mm);
1167
if (first_uprobe)
1168
mm_flags_set(MMF_HAS_UPROBES, mm);
1169
1170
ret = set_swbp(&uprobe->arch, vma, vaddr);
1171
if (!ret)
1172
mm_flags_clear(MMF_RECALC_UPROBES, mm);
1173
else if (first_uprobe)
1174
mm_flags_clear(MMF_HAS_UPROBES, mm);
1175
1176
return ret;
1177
}
1178
1179
static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1180
unsigned long vaddr)
1181
{
1182
struct mm_struct *mm = vma->vm_mm;
1183
1184
mm_flags_set(MMF_RECALC_UPROBES, mm);
1185
return set_orig_insn(&uprobe->arch, vma, vaddr);
1186
}
1187
1188
struct map_info {
1189
struct map_info *next;
1190
struct mm_struct *mm;
1191
unsigned long vaddr;
1192
};
1193
1194
static inline struct map_info *free_map_info(struct map_info *info)
1195
{
1196
struct map_info *next = info->next;
1197
kfree(info);
1198
return next;
1199
}
1200
1201
static struct map_info *
1202
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1203
{
1204
unsigned long pgoff = offset >> PAGE_SHIFT;
1205
struct vm_area_struct *vma;
1206
struct map_info *curr = NULL;
1207
struct map_info *prev = NULL;
1208
struct map_info *info;
1209
int more = 0;
1210
1211
again:
1212
i_mmap_lock_read(mapping);
1213
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1214
if (!valid_vma(vma, is_register))
1215
continue;
1216
1217
if (!prev && !more) {
1218
/*
1219
* Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1220
* reclaim. This is optimistic, no harm done if it fails.
1221
*/
1222
prev = kmalloc(sizeof(struct map_info),
1223
GFP_NOWAIT | __GFP_NOMEMALLOC);
1224
if (prev)
1225
prev->next = NULL;
1226
}
1227
if (!prev) {
1228
more++;
1229
continue;
1230
}
1231
1232
if (!mmget_not_zero(vma->vm_mm))
1233
continue;
1234
1235
info = prev;
1236
prev = prev->next;
1237
info->next = curr;
1238
curr = info;
1239
1240
info->mm = vma->vm_mm;
1241
info->vaddr = offset_to_vaddr(vma, offset);
1242
}
1243
i_mmap_unlock_read(mapping);
1244
1245
if (!more)
1246
goto out;
1247
1248
prev = curr;
1249
while (curr) {
1250
mmput(curr->mm);
1251
curr = curr->next;
1252
}
1253
1254
do {
1255
info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1256
if (!info) {
1257
curr = ERR_PTR(-ENOMEM);
1258
goto out;
1259
}
1260
info->next = prev;
1261
prev = info;
1262
} while (--more);
1263
1264
goto again;
1265
out:
1266
while (prev)
1267
prev = free_map_info(prev);
1268
return curr;
1269
}
1270
1271
static int
1272
register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1273
{
1274
bool is_register = !!new;
1275
struct map_info *info;
1276
int err = 0;
1277
1278
percpu_down_write(&dup_mmap_sem);
1279
info = build_map_info(uprobe->inode->i_mapping,
1280
uprobe->offset, is_register);
1281
if (IS_ERR(info)) {
1282
err = PTR_ERR(info);
1283
goto out;
1284
}
1285
1286
while (info) {
1287
struct mm_struct *mm = info->mm;
1288
struct vm_area_struct *vma;
1289
1290
if (err && is_register)
1291
goto free;
1292
/*
1293
* We take mmap_lock for writing to avoid the race with
1294
* find_active_uprobe_rcu() which takes mmap_lock for reading.
1295
* Thus this install_breakpoint() can not make
1296
* is_trap_at_addr() true right after find_uprobe_rcu()
1297
* returns NULL in find_active_uprobe_rcu().
1298
*/
1299
mmap_write_lock(mm);
1300
if (check_stable_address_space(mm))
1301
goto unlock;
1302
1303
vma = find_vma(mm, info->vaddr);
1304
if (!vma || !valid_vma(vma, is_register) ||
1305
file_inode(vma->vm_file) != uprobe->inode)
1306
goto unlock;
1307
1308
if (vma->vm_start > info->vaddr ||
1309
vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1310
goto unlock;
1311
1312
if (is_register) {
1313
/* consult only the "caller", new consumer. */
1314
if (consumer_filter(new, mm))
1315
err = install_breakpoint(uprobe, vma, info->vaddr);
1316
} else if (mm_flags_test(MMF_HAS_UPROBES, mm)) {
1317
if (!filter_chain(uprobe, mm))
1318
err |= remove_breakpoint(uprobe, vma, info->vaddr);
1319
}
1320
1321
unlock:
1322
mmap_write_unlock(mm);
1323
free:
1324
mmput(mm);
1325
info = free_map_info(info);
1326
}
1327
out:
1328
percpu_up_write(&dup_mmap_sem);
1329
return err;
1330
}
1331
1332
/**
1333
* uprobe_unregister_nosync - unregister an already registered probe.
1334
* @uprobe: uprobe to remove
1335
* @uc: identify which probe if multiple probes are colocated.
1336
*/
1337
void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1338
{
1339
int err;
1340
1341
down_write(&uprobe->register_rwsem);
1342
consumer_del(uprobe, uc);
1343
err = register_for_each_vma(uprobe, NULL);
1344
up_write(&uprobe->register_rwsem);
1345
1346
/* TODO : cant unregister? schedule a worker thread */
1347
if (unlikely(err)) {
1348
uprobe_warn(current, "unregister, leaking uprobe");
1349
return;
1350
}
1351
1352
put_uprobe(uprobe);
1353
}
1354
EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1355
1356
void uprobe_unregister_sync(void)
1357
{
1358
/*
1359
* Now that handler_chain() and handle_uretprobe_chain() iterate over
1360
* uprobe->consumers list under RCU protection without holding
1361
* uprobe->register_rwsem, we need to wait for RCU grace period to
1362
* make sure that we can't call into just unregistered
1363
* uprobe_consumer's callbacks anymore. If we don't do that, fast and
1364
* unlucky enough caller can free consumer's memory and cause
1365
* handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1366
*/
1367
synchronize_rcu_tasks_trace();
1368
synchronize_srcu(&uretprobes_srcu);
1369
}
1370
EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1371
1372
/**
1373
* uprobe_register - register a probe
1374
* @inode: the file in which the probe has to be placed.
1375
* @offset: offset from the start of the file.
1376
* @ref_ctr_offset: offset of SDT marker / reference counter
1377
* @uc: information on howto handle the probe..
1378
*
1379
* Apart from the access refcount, uprobe_register() takes a creation
1380
* refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1381
* inserted into the rbtree (i.e first consumer for a @inode:@offset
1382
* tuple). Creation refcount stops uprobe_unregister from freeing the
1383
* @uprobe even before the register operation is complete. Creation
1384
* refcount is released when the last @uc for the @uprobe
1385
* unregisters. Caller of uprobe_register() is required to keep @inode
1386
* (and the containing mount) referenced.
1387
*
1388
* Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1389
*/
1390
struct uprobe *uprobe_register(struct inode *inode,
1391
loff_t offset, loff_t ref_ctr_offset,
1392
struct uprobe_consumer *uc)
1393
{
1394
struct uprobe *uprobe;
1395
int ret;
1396
1397
/* Uprobe must have at least one set consumer */
1398
if (!uc->handler && !uc->ret_handler)
1399
return ERR_PTR(-EINVAL);
1400
1401
/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1402
if (!inode->i_mapping->a_ops->read_folio &&
1403
!shmem_mapping(inode->i_mapping))
1404
return ERR_PTR(-EIO);
1405
/* Racy, just to catch the obvious mistakes */
1406
if (offset > i_size_read(inode))
1407
return ERR_PTR(-EINVAL);
1408
1409
/*
1410
* This ensures that uprobe_copy_from_page(), copy_to_page() and
1411
* __update_ref_ctr() can't cross page boundary.
1412
*/
1413
if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1414
return ERR_PTR(-EINVAL);
1415
if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1416
return ERR_PTR(-EINVAL);
1417
1418
uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1419
if (IS_ERR(uprobe))
1420
return uprobe;
1421
1422
down_write(&uprobe->register_rwsem);
1423
consumer_add(uprobe, uc);
1424
ret = register_for_each_vma(uprobe, uc);
1425
up_write(&uprobe->register_rwsem);
1426
1427
if (ret) {
1428
uprobe_unregister_nosync(uprobe, uc);
1429
/*
1430
* Registration might have partially succeeded, so we can have
1431
* this consumer being called right at this time. We need to
1432
* sync here. It's ok, it's unlikely slow path.
1433
*/
1434
uprobe_unregister_sync();
1435
return ERR_PTR(ret);
1436
}
1437
1438
return uprobe;
1439
}
1440
EXPORT_SYMBOL_GPL(uprobe_register);
1441
1442
/**
1443
* uprobe_apply - add or remove the breakpoints according to @uc->filter
1444
* @uprobe: uprobe which "owns" the breakpoint
1445
* @uc: consumer which wants to add more or remove some breakpoints
1446
* @add: add or remove the breakpoints
1447
* Return: 0 on success or negative error code.
1448
*/
1449
int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1450
{
1451
struct uprobe_consumer *con;
1452
int ret = -ENOENT;
1453
1454
down_write(&uprobe->register_rwsem);
1455
1456
rcu_read_lock_trace();
1457
list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1458
if (con == uc) {
1459
ret = register_for_each_vma(uprobe, add ? uc : NULL);
1460
break;
1461
}
1462
}
1463
rcu_read_unlock_trace();
1464
1465
up_write(&uprobe->register_rwsem);
1466
1467
return ret;
1468
}
1469
1470
static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1471
{
1472
VMA_ITERATOR(vmi, mm, 0);
1473
struct vm_area_struct *vma;
1474
int err = 0;
1475
1476
mmap_write_lock(mm);
1477
for_each_vma(vmi, vma) {
1478
unsigned long vaddr;
1479
loff_t offset;
1480
1481
if (!valid_vma(vma, false) ||
1482
file_inode(vma->vm_file) != uprobe->inode)
1483
continue;
1484
1485
offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1486
if (uprobe->offset < offset ||
1487
uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1488
continue;
1489
1490
vaddr = offset_to_vaddr(vma, uprobe->offset);
1491
err |= remove_breakpoint(uprobe, vma, vaddr);
1492
}
1493
mmap_write_unlock(mm);
1494
1495
return err;
1496
}
1497
1498
static struct rb_node *
1499
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1500
{
1501
struct rb_node *n = uprobes_tree.rb_node;
1502
1503
while (n) {
1504
struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1505
1506
if (inode < u->inode) {
1507
n = n->rb_left;
1508
} else if (inode > u->inode) {
1509
n = n->rb_right;
1510
} else {
1511
if (max < u->offset)
1512
n = n->rb_left;
1513
else if (min > u->offset)
1514
n = n->rb_right;
1515
else
1516
break;
1517
}
1518
}
1519
1520
return n;
1521
}
1522
1523
/*
1524
* For a given range in vma, build a list of probes that need to be inserted.
1525
*/
1526
static void build_probe_list(struct inode *inode,
1527
struct vm_area_struct *vma,
1528
unsigned long start, unsigned long end,
1529
struct list_head *head)
1530
{
1531
loff_t min, max;
1532
struct rb_node *n, *t;
1533
struct uprobe *u;
1534
1535
INIT_LIST_HEAD(head);
1536
min = vaddr_to_offset(vma, start);
1537
max = min + (end - start) - 1;
1538
1539
read_lock(&uprobes_treelock);
1540
n = find_node_in_range(inode, min, max);
1541
if (n) {
1542
for (t = n; t; t = rb_prev(t)) {
1543
u = rb_entry(t, struct uprobe, rb_node);
1544
if (u->inode != inode || u->offset < min)
1545
break;
1546
/* if uprobe went away, it's safe to ignore it */
1547
if (try_get_uprobe(u))
1548
list_add(&u->pending_list, head);
1549
}
1550
for (t = n; (t = rb_next(t)); ) {
1551
u = rb_entry(t, struct uprobe, rb_node);
1552
if (u->inode != inode || u->offset > max)
1553
break;
1554
/* if uprobe went away, it's safe to ignore it */
1555
if (try_get_uprobe(u))
1556
list_add(&u->pending_list, head);
1557
}
1558
}
1559
read_unlock(&uprobes_treelock);
1560
}
1561
1562
/* @vma contains reference counter, not the probed instruction. */
1563
static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1564
{
1565
struct list_head *pos, *q;
1566
struct delayed_uprobe *du;
1567
unsigned long vaddr;
1568
int ret = 0, err = 0;
1569
1570
mutex_lock(&delayed_uprobe_lock);
1571
list_for_each_safe(pos, q, &delayed_uprobe_list) {
1572
du = list_entry(pos, struct delayed_uprobe, list);
1573
1574
if (du->mm != vma->vm_mm ||
1575
!valid_ref_ctr_vma(du->uprobe, vma))
1576
continue;
1577
1578
vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1579
ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1580
if (ret) {
1581
update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1582
if (!err)
1583
err = ret;
1584
}
1585
delayed_uprobe_delete(du);
1586
}
1587
mutex_unlock(&delayed_uprobe_lock);
1588
return err;
1589
}
1590
1591
/*
1592
* Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1593
*
1594
* Currently we ignore all errors and always return 0, the callers
1595
* can't handle the failure anyway.
1596
*/
1597
int uprobe_mmap(struct vm_area_struct *vma)
1598
{
1599
struct list_head tmp_list;
1600
struct uprobe *uprobe, *u;
1601
struct inode *inode;
1602
1603
if (no_uprobe_events())
1604
return 0;
1605
1606
if (vma->vm_file &&
1607
(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1608
mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm))
1609
delayed_ref_ctr_inc(vma);
1610
1611
if (!valid_vma(vma, true))
1612
return 0;
1613
1614
inode = file_inode(vma->vm_file);
1615
if (!inode)
1616
return 0;
1617
1618
mutex_lock(uprobes_mmap_hash(inode));
1619
build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1620
/*
1621
* We can race with uprobe_unregister(), this uprobe can be already
1622
* removed. But in this case filter_chain() must return false, all
1623
* consumers have gone away.
1624
*/
1625
list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1626
if (!fatal_signal_pending(current) &&
1627
filter_chain(uprobe, vma->vm_mm)) {
1628
unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1629
install_breakpoint(uprobe, vma, vaddr);
1630
}
1631
put_uprobe(uprobe);
1632
}
1633
mutex_unlock(uprobes_mmap_hash(inode));
1634
1635
return 0;
1636
}
1637
1638
static bool
1639
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1640
{
1641
loff_t min, max;
1642
struct inode *inode;
1643
struct rb_node *n;
1644
1645
inode = file_inode(vma->vm_file);
1646
1647
min = vaddr_to_offset(vma, start);
1648
max = min + (end - start) - 1;
1649
1650
read_lock(&uprobes_treelock);
1651
n = find_node_in_range(inode, min, max);
1652
read_unlock(&uprobes_treelock);
1653
1654
return !!n;
1655
}
1656
1657
/*
1658
* Called in context of a munmap of a vma.
1659
*/
1660
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1661
{
1662
if (no_uprobe_events() || !valid_vma(vma, false))
1663
return;
1664
1665
if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1666
return;
1667
1668
if (!mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm) ||
1669
mm_flags_test(MMF_RECALC_UPROBES, vma->vm_mm))
1670
return;
1671
1672
if (vma_has_uprobes(vma, start, end))
1673
mm_flags_set(MMF_RECALC_UPROBES, vma->vm_mm);
1674
}
1675
1676
static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1677
struct vm_area_struct *vma, struct vm_fault *vmf)
1678
{
1679
struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1680
1681
vmf->page = area->page;
1682
get_page(vmf->page);
1683
return 0;
1684
}
1685
1686
static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1687
{
1688
return -EPERM;
1689
}
1690
1691
static const struct vm_special_mapping xol_mapping = {
1692
.name = "[uprobes]",
1693
.fault = xol_fault,
1694
.mremap = xol_mremap,
1695
};
1696
1697
/* Slot allocation for XOL */
1698
static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1699
{
1700
struct vm_area_struct *vma;
1701
int ret;
1702
1703
if (mmap_write_lock_killable(mm))
1704
return -EINTR;
1705
1706
if (mm->uprobes_state.xol_area) {
1707
ret = -EALREADY;
1708
goto fail;
1709
}
1710
1711
if (!area->vaddr) {
1712
/* Try to map as high as possible, this is only a hint. */
1713
area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1714
PAGE_SIZE, 0, 0);
1715
if (IS_ERR_VALUE(area->vaddr)) {
1716
ret = area->vaddr;
1717
goto fail;
1718
}
1719
}
1720
1721
vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1722
VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1723
VM_SEALED_SYSMAP,
1724
&xol_mapping);
1725
if (IS_ERR(vma)) {
1726
ret = PTR_ERR(vma);
1727
goto fail;
1728
}
1729
1730
ret = 0;
1731
/* pairs with get_xol_area() */
1732
smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1733
fail:
1734
mmap_write_unlock(mm);
1735
1736
return ret;
1737
}
1738
1739
void * __weak arch_uretprobe_trampoline(unsigned long *psize)
1740
{
1741
static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1742
1743
*psize = UPROBE_SWBP_INSN_SIZE;
1744
return &insn;
1745
}
1746
1747
static struct xol_area *__create_xol_area(unsigned long vaddr)
1748
{
1749
struct mm_struct *mm = current->mm;
1750
unsigned long insns_size;
1751
struct xol_area *area;
1752
void *insns;
1753
1754
area = kzalloc(sizeof(*area), GFP_KERNEL);
1755
if (unlikely(!area))
1756
goto out;
1757
1758
area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1759
GFP_KERNEL);
1760
if (!area->bitmap)
1761
goto free_area;
1762
1763
area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1764
if (!area->page)
1765
goto free_bitmap;
1766
1767
area->vaddr = vaddr;
1768
init_waitqueue_head(&area->wq);
1769
/* Reserve the 1st slot for get_trampoline_vaddr() */
1770
set_bit(0, area->bitmap);
1771
insns = arch_uretprobe_trampoline(&insns_size);
1772
arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1773
1774
if (!xol_add_vma(mm, area))
1775
return area;
1776
1777
__free_page(area->page);
1778
free_bitmap:
1779
kfree(area->bitmap);
1780
free_area:
1781
kfree(area);
1782
out:
1783
return NULL;
1784
}
1785
1786
/*
1787
* get_xol_area - Allocate process's xol_area if necessary.
1788
* This area will be used for storing instructions for execution out of line.
1789
*
1790
* Returns the allocated area or NULL.
1791
*/
1792
static struct xol_area *get_xol_area(void)
1793
{
1794
struct mm_struct *mm = current->mm;
1795
struct xol_area *area;
1796
1797
if (!mm->uprobes_state.xol_area)
1798
__create_xol_area(0);
1799
1800
/* Pairs with xol_add_vma() smp_store_release() */
1801
area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1802
return area;
1803
}
1804
1805
void __weak arch_uprobe_clear_state(struct mm_struct *mm)
1806
{
1807
}
1808
1809
void __weak arch_uprobe_init_state(struct mm_struct *mm)
1810
{
1811
}
1812
1813
/*
1814
* uprobe_clear_state - Free the area allocated for slots.
1815
*/
1816
void uprobe_clear_state(struct mm_struct *mm)
1817
{
1818
struct xol_area *area = mm->uprobes_state.xol_area;
1819
1820
mutex_lock(&delayed_uprobe_lock);
1821
delayed_uprobe_remove(NULL, mm);
1822
mutex_unlock(&delayed_uprobe_lock);
1823
1824
arch_uprobe_clear_state(mm);
1825
1826
if (!area)
1827
return;
1828
1829
put_page(area->page);
1830
kfree(area->bitmap);
1831
kfree(area);
1832
}
1833
1834
void uprobe_start_dup_mmap(void)
1835
{
1836
percpu_down_read(&dup_mmap_sem);
1837
}
1838
1839
void uprobe_end_dup_mmap(void)
1840
{
1841
percpu_up_read(&dup_mmap_sem);
1842
}
1843
1844
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1845
{
1846
if (mm_flags_test(MMF_HAS_UPROBES, oldmm)) {
1847
mm_flags_set(MMF_HAS_UPROBES, newmm);
1848
/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1849
mm_flags_set(MMF_RECALC_UPROBES, newmm);
1850
}
1851
}
1852
1853
static unsigned long xol_get_slot_nr(struct xol_area *area)
1854
{
1855
unsigned long slot_nr;
1856
1857
slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1858
if (slot_nr < UINSNS_PER_PAGE) {
1859
if (!test_and_set_bit(slot_nr, area->bitmap))
1860
return slot_nr;
1861
}
1862
1863
return UINSNS_PER_PAGE;
1864
}
1865
1866
/*
1867
* xol_get_insn_slot - allocate a slot for xol.
1868
*/
1869
static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1870
{
1871
struct xol_area *area = get_xol_area();
1872
unsigned long slot_nr;
1873
1874
if (!area)
1875
return false;
1876
1877
wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1878
1879
utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1880
arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1881
&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1882
return true;
1883
}
1884
1885
/*
1886
* xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1887
*/
1888
static void xol_free_insn_slot(struct uprobe_task *utask)
1889
{
1890
struct xol_area *area = current->mm->uprobes_state.xol_area;
1891
unsigned long offset = utask->xol_vaddr - area->vaddr;
1892
unsigned int slot_nr;
1893
1894
utask->xol_vaddr = 0;
1895
/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1896
if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1897
return;
1898
1899
slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1900
clear_bit(slot_nr, area->bitmap);
1901
smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1902
if (waitqueue_active(&area->wq))
1903
wake_up(&area->wq);
1904
}
1905
1906
void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1907
void *src, unsigned long len)
1908
{
1909
/* Initialize the slot */
1910
copy_to_page(page, vaddr, src, len);
1911
1912
/*
1913
* We probably need flush_icache_user_page() but it needs vma.
1914
* This should work on most of architectures by default. If
1915
* architecture needs to do something different it can define
1916
* its own version of the function.
1917
*/
1918
flush_dcache_page(page);
1919
}
1920
1921
/**
1922
* uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1923
* @regs: Reflects the saved state of the task after it has hit a breakpoint
1924
* instruction.
1925
* Return the address of the breakpoint instruction.
1926
*/
1927
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1928
{
1929
return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1930
}
1931
1932
unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1933
{
1934
struct uprobe_task *utask = current->utask;
1935
1936
if (unlikely(utask && utask->active_uprobe))
1937
return utask->vaddr;
1938
1939
return instruction_pointer(regs);
1940
}
1941
1942
static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1943
{
1944
ri->cons_cnt = 0;
1945
ri->next = utask->ri_pool;
1946
utask->ri_pool = ri;
1947
}
1948
1949
static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1950
{
1951
struct return_instance *ri = utask->ri_pool;
1952
1953
if (likely(ri))
1954
utask->ri_pool = ri->next;
1955
1956
return ri;
1957
}
1958
1959
static void ri_free(struct return_instance *ri)
1960
{
1961
kfree(ri->extra_consumers);
1962
kfree_rcu(ri, rcu);
1963
}
1964
1965
static void free_ret_instance(struct uprobe_task *utask,
1966
struct return_instance *ri, bool cleanup_hprobe)
1967
{
1968
unsigned seq;
1969
1970
if (cleanup_hprobe) {
1971
enum hprobe_state hstate;
1972
1973
(void)hprobe_consume(&ri->hprobe, &hstate);
1974
hprobe_finalize(&ri->hprobe, hstate);
1975
}
1976
1977
/*
1978
* At this point return_instance is unlinked from utask's
1979
* return_instances list and this has become visible to ri_timer().
1980
* If seqcount now indicates that ri_timer's return instance
1981
* processing loop isn't active, we can return ri into the pool of
1982
* to-be-reused return instances for future uretprobes. If ri_timer()
1983
* happens to be running right now, though, we fallback to safety and
1984
* just perform RCU-delated freeing of ri.
1985
* Admittedly, this is a rather simple use of seqcount, but it nicely
1986
* abstracts away all the necessary memory barriers, so we use
1987
* a well-supported kernel primitive here.
1988
*/
1989
if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1990
/* immediate reuse of ri without RCU GP is OK */
1991
ri_pool_push(utask, ri);
1992
} else {
1993
/* we might be racing with ri_timer(), so play it safe */
1994
ri_free(ri);
1995
}
1996
}
1997
1998
/*
1999
* Called with no locks held.
2000
* Called in context of an exiting or an exec-ing thread.
2001
*/
2002
void uprobe_free_utask(struct task_struct *t)
2003
{
2004
struct uprobe_task *utask = t->utask;
2005
struct return_instance *ri, *ri_next;
2006
2007
if (!utask)
2008
return;
2009
2010
t->utask = NULL;
2011
WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
2012
2013
timer_delete_sync(&utask->ri_timer);
2014
2015
ri = utask->return_instances;
2016
while (ri) {
2017
ri_next = ri->next;
2018
free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2019
ri = ri_next;
2020
}
2021
2022
/* free_ret_instance() above might add to ri_pool, so this loop should come last */
2023
ri = utask->ri_pool;
2024
while (ri) {
2025
ri_next = ri->next;
2026
ri_free(ri);
2027
ri = ri_next;
2028
}
2029
2030
kfree(utask);
2031
}
2032
2033
#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2034
2035
#define for_each_ret_instance_rcu(pos, head) \
2036
for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2037
2038
static void ri_timer(struct timer_list *timer)
2039
{
2040
struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2041
struct return_instance *ri;
2042
2043
/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2044
guard(srcu)(&uretprobes_srcu);
2045
/* RCU protects return_instance from freeing. */
2046
guard(rcu)();
2047
2048
/*
2049
* See free_ret_instance() for notes on seqcount use.
2050
* We also employ raw API variants to avoid lockdep false-positive
2051
* warning complaining about enabled preemption. The timer can only be
2052
* invoked once for a uprobe_task. Therefore there can only be one
2053
* writer. The reader does not require an even sequence count to make
2054
* progress, so it is OK to remain preemptible on PREEMPT_RT.
2055
*/
2056
raw_write_seqcount_begin(&utask->ri_seqcount);
2057
2058
for_each_ret_instance_rcu(ri, utask->return_instances)
2059
hprobe_expire(&ri->hprobe, false);
2060
2061
raw_write_seqcount_end(&utask->ri_seqcount);
2062
}
2063
2064
static struct uprobe_task *alloc_utask(void)
2065
{
2066
struct uprobe_task *utask;
2067
2068
utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2069
if (!utask)
2070
return NULL;
2071
2072
timer_setup(&utask->ri_timer, ri_timer, 0);
2073
seqcount_init(&utask->ri_seqcount);
2074
2075
return utask;
2076
}
2077
2078
/*
2079
* Allocate a uprobe_task object for the task if necessary.
2080
* Called when the thread hits a breakpoint.
2081
*
2082
* Returns:
2083
* - pointer to new uprobe_task on success
2084
* - NULL otherwise
2085
*/
2086
static struct uprobe_task *get_utask(void)
2087
{
2088
if (!current->utask)
2089
current->utask = alloc_utask();
2090
return current->utask;
2091
}
2092
2093
static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2094
{
2095
struct return_instance *ri;
2096
2097
ri = ri_pool_pop(utask);
2098
if (ri)
2099
return ri;
2100
2101
ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2102
if (!ri)
2103
return ZERO_SIZE_PTR;
2104
2105
return ri;
2106
}
2107
2108
static struct return_instance *dup_return_instance(struct return_instance *old)
2109
{
2110
struct return_instance *ri;
2111
2112
ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2113
if (!ri)
2114
return NULL;
2115
2116
if (unlikely(old->cons_cnt > 1)) {
2117
ri->extra_consumers = kmemdup(old->extra_consumers,
2118
sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2119
GFP_KERNEL);
2120
if (!ri->extra_consumers) {
2121
kfree(ri);
2122
return NULL;
2123
}
2124
}
2125
2126
return ri;
2127
}
2128
2129
static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2130
{
2131
struct uprobe_task *n_utask;
2132
struct return_instance **p, *o, *n;
2133
struct uprobe *uprobe;
2134
2135
n_utask = alloc_utask();
2136
if (!n_utask)
2137
return -ENOMEM;
2138
t->utask = n_utask;
2139
2140
/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2141
guard(srcu)(&uretprobes_srcu);
2142
2143
p = &n_utask->return_instances;
2144
for (o = o_utask->return_instances; o; o = o->next) {
2145
n = dup_return_instance(o);
2146
if (!n)
2147
return -ENOMEM;
2148
2149
/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2150
uprobe = hprobe_expire(&o->hprobe, true);
2151
2152
/*
2153
* New utask will have stable properly refcounted uprobe or
2154
* NULL. Even if we failed to get refcounted uprobe, we still
2155
* need to preserve full set of return_instances for proper
2156
* uretprobe handling and nesting in forked task.
2157
*/
2158
hprobe_init_stable(&n->hprobe, uprobe);
2159
2160
n->next = NULL;
2161
rcu_assign_pointer(*p, n);
2162
p = &n->next;
2163
2164
n_utask->depth++;
2165
}
2166
2167
return 0;
2168
}
2169
2170
static void dup_xol_work(struct callback_head *work)
2171
{
2172
if (current->flags & PF_EXITING)
2173
return;
2174
2175
if (!__create_xol_area(current->utask->dup_xol_addr) &&
2176
!fatal_signal_pending(current))
2177
uprobe_warn(current, "dup xol area");
2178
}
2179
2180
/*
2181
* Called in context of a new clone/fork from copy_process.
2182
*/
2183
void uprobe_copy_process(struct task_struct *t, u64 flags)
2184
{
2185
struct uprobe_task *utask = current->utask;
2186
struct mm_struct *mm = current->mm;
2187
struct xol_area *area;
2188
2189
t->utask = NULL;
2190
2191
if (!utask || !utask->return_instances)
2192
return;
2193
2194
if (mm == t->mm && !(flags & CLONE_VFORK))
2195
return;
2196
2197
if (dup_utask(t, utask))
2198
return uprobe_warn(t, "dup ret instances");
2199
2200
/* The task can fork() after dup_xol_work() fails */
2201
area = mm->uprobes_state.xol_area;
2202
if (!area)
2203
return uprobe_warn(t, "dup xol area");
2204
2205
if (mm == t->mm)
2206
return;
2207
2208
t->utask->dup_xol_addr = area->vaddr;
2209
init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2210
task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2211
}
2212
2213
/*
2214
* Current area->vaddr notion assume the trampoline address is always
2215
* equal area->vaddr.
2216
*
2217
* Returns -1 in case the xol_area is not allocated.
2218
*/
2219
unsigned long uprobe_get_trampoline_vaddr(void)
2220
{
2221
unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2222
struct xol_area *area;
2223
2224
/* Pairs with xol_add_vma() smp_store_release() */
2225
area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2226
if (area)
2227
trampoline_vaddr = area->vaddr;
2228
2229
return trampoline_vaddr;
2230
}
2231
2232
static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2233
struct pt_regs *regs)
2234
{
2235
struct return_instance *ri = utask->return_instances, *ri_next;
2236
enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2237
2238
while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2239
ri_next = ri->next;
2240
rcu_assign_pointer(utask->return_instances, ri_next);
2241
utask->depth--;
2242
2243
free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2244
ri = ri_next;
2245
}
2246
}
2247
2248
static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2249
struct return_instance *ri)
2250
{
2251
struct uprobe_task *utask = current->utask;
2252
unsigned long orig_ret_vaddr, trampoline_vaddr;
2253
bool chained;
2254
int srcu_idx;
2255
2256
if (!get_xol_area())
2257
goto free;
2258
2259
if (utask->depth >= MAX_URETPROBE_DEPTH) {
2260
printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2261
" nestedness limit pid/tgid=%d/%d\n",
2262
current->pid, current->tgid);
2263
goto free;
2264
}
2265
2266
trampoline_vaddr = uprobe_get_trampoline_vaddr();
2267
orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2268
if (orig_ret_vaddr == -1)
2269
goto free;
2270
2271
/* drop the entries invalidated by longjmp() */
2272
chained = (orig_ret_vaddr == trampoline_vaddr);
2273
cleanup_return_instances(utask, chained, regs);
2274
2275
/*
2276
* We don't want to keep trampoline address in stack, rather keep the
2277
* original return address of first caller thru all the consequent
2278
* instances. This also makes breakpoint unwrapping easier.
2279
*/
2280
if (chained) {
2281
if (!utask->return_instances) {
2282
/*
2283
* This situation is not possible. Likely we have an
2284
* attack from user-space.
2285
*/
2286
uprobe_warn(current, "handle tail call");
2287
goto free;
2288
}
2289
orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2290
}
2291
2292
/* __srcu_read_lock() because SRCU lock survives switch to user space */
2293
srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2294
2295
ri->func = instruction_pointer(regs);
2296
ri->stack = user_stack_pointer(regs);
2297
ri->orig_ret_vaddr = orig_ret_vaddr;
2298
ri->chained = chained;
2299
2300
utask->depth++;
2301
2302
hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2303
ri->next = utask->return_instances;
2304
rcu_assign_pointer(utask->return_instances, ri);
2305
2306
mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2307
2308
return;
2309
free:
2310
ri_free(ri);
2311
}
2312
2313
/* Prepare to single-step probed instruction out of line. */
2314
static int
2315
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2316
{
2317
struct uprobe_task *utask = current->utask;
2318
int err;
2319
2320
if (!try_get_uprobe(uprobe))
2321
return -EINVAL;
2322
2323
if (!xol_get_insn_slot(uprobe, utask)) {
2324
err = -ENOMEM;
2325
goto err_out;
2326
}
2327
2328
utask->vaddr = bp_vaddr;
2329
err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2330
if (unlikely(err)) {
2331
xol_free_insn_slot(utask);
2332
goto err_out;
2333
}
2334
2335
utask->active_uprobe = uprobe;
2336
utask->state = UTASK_SSTEP;
2337
return 0;
2338
err_out:
2339
put_uprobe(uprobe);
2340
return err;
2341
}
2342
2343
/*
2344
* If we are singlestepping, then ensure this thread is not connected to
2345
* non-fatal signals until completion of singlestep. When xol insn itself
2346
* triggers the signal, restart the original insn even if the task is
2347
* already SIGKILL'ed (since coredump should report the correct ip). This
2348
* is even more important if the task has a handler for SIGSEGV/etc, The
2349
* _same_ instruction should be repeated again after return from the signal
2350
* handler, and SSTEP can never finish in this case.
2351
*/
2352
bool uprobe_deny_signal(void)
2353
{
2354
struct task_struct *t = current;
2355
struct uprobe_task *utask = t->utask;
2356
2357
if (likely(!utask || !utask->active_uprobe))
2358
return false;
2359
2360
WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2361
2362
if (task_sigpending(t)) {
2363
utask->signal_denied = true;
2364
clear_tsk_thread_flag(t, TIF_SIGPENDING);
2365
2366
if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2367
utask->state = UTASK_SSTEP_TRAPPED;
2368
set_tsk_thread_flag(t, TIF_UPROBE);
2369
}
2370
}
2371
2372
return true;
2373
}
2374
2375
static void mmf_recalc_uprobes(struct mm_struct *mm)
2376
{
2377
VMA_ITERATOR(vmi, mm, 0);
2378
struct vm_area_struct *vma;
2379
2380
for_each_vma(vmi, vma) {
2381
if (!valid_vma(vma, false))
2382
continue;
2383
/*
2384
* This is not strictly accurate, we can race with
2385
* uprobe_unregister() and see the already removed
2386
* uprobe if delete_uprobe() was not yet called.
2387
* Or this uprobe can be filtered out.
2388
*/
2389
if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2390
return;
2391
}
2392
2393
mm_flags_clear(MMF_HAS_UPROBES, mm);
2394
}
2395
2396
static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2397
{
2398
struct page *page;
2399
uprobe_opcode_t opcode;
2400
int result;
2401
2402
if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2403
return -EINVAL;
2404
2405
pagefault_disable();
2406
result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2407
pagefault_enable();
2408
2409
if (likely(result == 0))
2410
goto out;
2411
2412
result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2413
if (result < 0)
2414
return result;
2415
2416
uprobe_copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2417
put_page(page);
2418
out:
2419
/* This needs to return true for any variant of the trap insn */
2420
return is_trap_insn(&opcode);
2421
}
2422
2423
static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2424
{
2425
struct mm_struct *mm = current->mm;
2426
struct uprobe *uprobe = NULL;
2427
struct vm_area_struct *vma;
2428
struct file *vm_file;
2429
loff_t offset;
2430
unsigned int seq;
2431
2432
guard(rcu)();
2433
2434
if (!mmap_lock_speculate_try_begin(mm, &seq))
2435
return NULL;
2436
2437
vma = vma_lookup(mm, bp_vaddr);
2438
if (!vma)
2439
return NULL;
2440
2441
/*
2442
* vm_file memory can be reused for another instance of struct file,
2443
* but can't be freed from under us, so it's safe to read fields from
2444
* it, even if the values are some garbage values; ultimately
2445
* find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2446
* that whatever we speculatively found is correct
2447
*/
2448
vm_file = READ_ONCE(vma->vm_file);
2449
if (!vm_file)
2450
return NULL;
2451
2452
offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2453
uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2454
if (!uprobe)
2455
return NULL;
2456
2457
/* now double check that nothing about MM changed */
2458
if (mmap_lock_speculate_retry(mm, seq))
2459
return NULL;
2460
2461
return uprobe;
2462
}
2463
2464
/* assumes being inside RCU protected region */
2465
static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2466
{
2467
struct mm_struct *mm = current->mm;
2468
struct uprobe *uprobe = NULL;
2469
struct vm_area_struct *vma;
2470
2471
uprobe = find_active_uprobe_speculative(bp_vaddr);
2472
if (uprobe)
2473
return uprobe;
2474
2475
mmap_read_lock(mm);
2476
vma = vma_lookup(mm, bp_vaddr);
2477
if (vma) {
2478
if (vma->vm_file) {
2479
struct inode *inode = file_inode(vma->vm_file);
2480
loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2481
2482
uprobe = find_uprobe_rcu(inode, offset);
2483
}
2484
2485
if (!uprobe)
2486
*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2487
} else {
2488
*is_swbp = -EFAULT;
2489
}
2490
2491
if (!uprobe && mm_flags_test_and_clear(MMF_RECALC_UPROBES, mm))
2492
mmf_recalc_uprobes(mm);
2493
mmap_read_unlock(mm);
2494
2495
return uprobe;
2496
}
2497
2498
static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2499
{
2500
struct return_consumer *ric;
2501
2502
if (unlikely(ri == ZERO_SIZE_PTR))
2503
return ri;
2504
2505
if (unlikely(ri->cons_cnt > 0)) {
2506
ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2507
if (!ric) {
2508
ri_free(ri);
2509
return ZERO_SIZE_PTR;
2510
}
2511
ri->extra_consumers = ric;
2512
}
2513
2514
ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2515
ric->id = id;
2516
ric->cookie = cookie;
2517
2518
ri->cons_cnt++;
2519
return ri;
2520
}
2521
2522
static struct return_consumer *
2523
return_consumer_find(struct return_instance *ri, int *iter, int id)
2524
{
2525
struct return_consumer *ric;
2526
int idx;
2527
2528
for (idx = *iter; idx < ri->cons_cnt; idx++)
2529
{
2530
ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2531
if (ric->id == id) {
2532
*iter = idx + 1;
2533
return ric;
2534
}
2535
}
2536
2537
return NULL;
2538
}
2539
2540
static bool ignore_ret_handler(int rc)
2541
{
2542
return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2543
}
2544
2545
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2546
{
2547
struct uprobe_consumer *uc;
2548
bool has_consumers = false, remove = true;
2549
struct return_instance *ri = NULL;
2550
struct uprobe_task *utask = current->utask;
2551
2552
utask->auprobe = &uprobe->arch;
2553
2554
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2555
bool session = uc->handler && uc->ret_handler;
2556
__u64 cookie = 0;
2557
int rc = 0;
2558
2559
if (uc->handler) {
2560
rc = uc->handler(uc, regs, &cookie);
2561
WARN(rc < 0 || rc > 2,
2562
"bad rc=0x%x from %ps()\n", rc, uc->handler);
2563
}
2564
2565
remove &= rc == UPROBE_HANDLER_REMOVE;
2566
has_consumers = true;
2567
2568
if (!uc->ret_handler || ignore_ret_handler(rc))
2569
continue;
2570
2571
if (!ri)
2572
ri = alloc_return_instance(utask);
2573
2574
if (session)
2575
ri = push_consumer(ri, uc->id, cookie);
2576
}
2577
utask->auprobe = NULL;
2578
2579
if (!ZERO_OR_NULL_PTR(ri))
2580
prepare_uretprobe(uprobe, regs, ri);
2581
2582
if (remove && has_consumers) {
2583
down_read(&uprobe->register_rwsem);
2584
2585
/* re-check that removal is still required, this time under lock */
2586
if (!filter_chain(uprobe, current->mm)) {
2587
WARN_ON(!uprobe_is_active(uprobe));
2588
unapply_uprobe(uprobe, current->mm);
2589
}
2590
2591
up_read(&uprobe->register_rwsem);
2592
}
2593
}
2594
2595
static void
2596
handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2597
{
2598
struct return_consumer *ric;
2599
struct uprobe_consumer *uc;
2600
int ric_idx = 0;
2601
2602
/* all consumers unsubscribed meanwhile */
2603
if (unlikely(!uprobe))
2604
return;
2605
2606
rcu_read_lock_trace();
2607
list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2608
bool session = uc->handler && uc->ret_handler;
2609
2610
if (uc->ret_handler) {
2611
ric = return_consumer_find(ri, &ric_idx, uc->id);
2612
if (!session || ric)
2613
uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2614
}
2615
}
2616
rcu_read_unlock_trace();
2617
}
2618
2619
static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2620
{
2621
bool chained;
2622
2623
do {
2624
chained = ri->chained;
2625
ri = ri->next; /* can't be NULL if chained */
2626
} while (chained);
2627
2628
return ri;
2629
}
2630
2631
void uprobe_handle_trampoline(struct pt_regs *regs)
2632
{
2633
struct uprobe_task *utask;
2634
struct return_instance *ri, *ri_next, *next_chain;
2635
struct uprobe *uprobe;
2636
enum hprobe_state hstate;
2637
bool valid;
2638
2639
utask = current->utask;
2640
if (!utask)
2641
goto sigill;
2642
2643
ri = utask->return_instances;
2644
if (!ri)
2645
goto sigill;
2646
2647
do {
2648
/*
2649
* We should throw out the frames invalidated by longjmp().
2650
* If this chain is valid, then the next one should be alive
2651
* or NULL; the latter case means that nobody but ri->func
2652
* could hit this trampoline on return. TODO: sigaltstack().
2653
*/
2654
next_chain = find_next_ret_chain(ri);
2655
valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2656
2657
instruction_pointer_set(regs, ri->orig_ret_vaddr);
2658
do {
2659
/* pop current instance from the stack of pending return instances,
2660
* as it's not pending anymore: we just fixed up original
2661
* instruction pointer in regs and are about to call handlers;
2662
* this allows fixup_uretprobe_trampoline_entries() to properly fix up
2663
* captured stack traces from uretprobe handlers, in which pending
2664
* trampoline addresses on the stack are replaced with correct
2665
* original return addresses
2666
*/
2667
ri_next = ri->next;
2668
rcu_assign_pointer(utask->return_instances, ri_next);
2669
utask->depth--;
2670
2671
uprobe = hprobe_consume(&ri->hprobe, &hstate);
2672
if (valid)
2673
handle_uretprobe_chain(ri, uprobe, regs);
2674
hprobe_finalize(&ri->hprobe, hstate);
2675
2676
/* We already took care of hprobe, no need to waste more time on that. */
2677
free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2678
ri = ri_next;
2679
} while (ri != next_chain);
2680
} while (!valid);
2681
2682
return;
2683
2684
sigill:
2685
uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2686
force_sig(SIGILL);
2687
}
2688
2689
bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2690
{
2691
return false;
2692
}
2693
2694
bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2695
struct pt_regs *regs)
2696
{
2697
return true;
2698
}
2699
2700
void __weak arch_uprobe_optimize(struct arch_uprobe *auprobe, unsigned long vaddr)
2701
{
2702
}
2703
2704
/*
2705
* Run handler and ask thread to singlestep.
2706
* Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2707
*/
2708
static void handle_swbp(struct pt_regs *regs)
2709
{
2710
struct uprobe *uprobe;
2711
unsigned long bp_vaddr;
2712
int is_swbp;
2713
2714
bp_vaddr = uprobe_get_swbp_addr(regs);
2715
if (bp_vaddr == uprobe_get_trampoline_vaddr())
2716
return uprobe_handle_trampoline(regs);
2717
2718
rcu_read_lock_trace();
2719
2720
uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2721
if (!uprobe) {
2722
if (is_swbp > 0) {
2723
/* No matching uprobe; signal SIGTRAP. */
2724
force_sig(SIGTRAP);
2725
} else {
2726
/*
2727
* Either we raced with uprobe_unregister() or we can't
2728
* access this memory. The latter is only possible if
2729
* another thread plays with our ->mm. In both cases
2730
* we can simply restart. If this vma was unmapped we
2731
* can pretend this insn was not executed yet and get
2732
* the (correct) SIGSEGV after restart.
2733
*/
2734
instruction_pointer_set(regs, bp_vaddr);
2735
}
2736
goto out;
2737
}
2738
2739
/* change it in advance for ->handler() and restart */
2740
instruction_pointer_set(regs, bp_vaddr);
2741
2742
/*
2743
* TODO: move copy_insn/etc into _register and remove this hack.
2744
* After we hit the bp, _unregister + _register can install the
2745
* new and not-yet-analyzed uprobe at the same address, restart.
2746
*/
2747
if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2748
goto out;
2749
2750
/*
2751
* Pairs with the smp_wmb() in prepare_uprobe().
2752
*
2753
* Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2754
* we must also see the stores to &uprobe->arch performed by the
2755
* prepare_uprobe() call.
2756
*/
2757
smp_rmb();
2758
2759
/* Tracing handlers use ->utask to communicate with fetch methods */
2760
if (!get_utask())
2761
goto out;
2762
2763
if (arch_uprobe_ignore(&uprobe->arch, regs))
2764
goto out;
2765
2766
handler_chain(uprobe, regs);
2767
2768
/*
2769
* If user decided to take execution elsewhere, it makes little sense
2770
* to execute the original instruction, so let's skip it.
2771
*/
2772
if (instruction_pointer(regs) != bp_vaddr)
2773
goto out;
2774
2775
/* Try to optimize after first hit. */
2776
arch_uprobe_optimize(&uprobe->arch, bp_vaddr);
2777
2778
if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2779
goto out;
2780
2781
if (pre_ssout(uprobe, regs, bp_vaddr))
2782
goto out;
2783
2784
out:
2785
/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2786
rcu_read_unlock_trace();
2787
}
2788
2789
void handle_syscall_uprobe(struct pt_regs *regs, unsigned long bp_vaddr)
2790
{
2791
struct uprobe *uprobe;
2792
int is_swbp;
2793
2794
guard(rcu_tasks_trace)();
2795
2796
uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2797
if (!uprobe)
2798
return;
2799
if (!get_utask())
2800
return;
2801
if (arch_uprobe_ignore(&uprobe->arch, regs))
2802
return;
2803
handler_chain(uprobe, regs);
2804
}
2805
2806
/*
2807
* Perform required fix-ups and disable singlestep.
2808
* Allow pending signals to take effect.
2809
*/
2810
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2811
{
2812
struct uprobe *uprobe;
2813
int err = 0;
2814
2815
uprobe = utask->active_uprobe;
2816
if (utask->state == UTASK_SSTEP_ACK)
2817
err = arch_uprobe_post_xol(&uprobe->arch, regs);
2818
else if (utask->state == UTASK_SSTEP_TRAPPED)
2819
arch_uprobe_abort_xol(&uprobe->arch, regs);
2820
else
2821
WARN_ON_ONCE(1);
2822
2823
put_uprobe(uprobe);
2824
utask->active_uprobe = NULL;
2825
utask->state = UTASK_RUNNING;
2826
xol_free_insn_slot(utask);
2827
2828
if (utask->signal_denied) {
2829
set_thread_flag(TIF_SIGPENDING);
2830
utask->signal_denied = false;
2831
}
2832
2833
if (unlikely(err)) {
2834
uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2835
force_sig(SIGILL);
2836
}
2837
}
2838
2839
/*
2840
* On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2841
* allows the thread to return from interrupt. After that handle_swbp()
2842
* sets utask->active_uprobe.
2843
*
2844
* On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2845
* and allows the thread to return from interrupt.
2846
*
2847
* While returning to userspace, thread notices the TIF_UPROBE flag and calls
2848
* uprobe_notify_resume().
2849
*/
2850
void uprobe_notify_resume(struct pt_regs *regs)
2851
{
2852
struct uprobe_task *utask;
2853
2854
clear_thread_flag(TIF_UPROBE);
2855
2856
utask = current->utask;
2857
if (utask && utask->active_uprobe)
2858
handle_singlestep(utask, regs);
2859
else
2860
handle_swbp(regs);
2861
}
2862
2863
/*
2864
* uprobe_pre_sstep_notifier gets called from interrupt context as part of
2865
* notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2866
*/
2867
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2868
{
2869
if (!current->mm)
2870
return 0;
2871
2872
if (!mm_flags_test(MMF_HAS_UPROBES, current->mm) &&
2873
(!current->utask || !current->utask->return_instances))
2874
return 0;
2875
2876
set_thread_flag(TIF_UPROBE);
2877
return 1;
2878
}
2879
2880
/*
2881
* uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2882
* mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2883
*/
2884
int uprobe_post_sstep_notifier(struct pt_regs *regs)
2885
{
2886
struct uprobe_task *utask = current->utask;
2887
2888
if (!current->mm || !utask || !utask->active_uprobe)
2889
/* task is currently not uprobed */
2890
return 0;
2891
2892
utask->state = UTASK_SSTEP_ACK;
2893
set_thread_flag(TIF_UPROBE);
2894
return 1;
2895
}
2896
2897
static struct notifier_block uprobe_exception_nb = {
2898
.notifier_call = arch_uprobe_exception_notify,
2899
.priority = INT_MAX-1, /* notified after kprobes, kgdb */
2900
};
2901
2902
void __init uprobes_init(void)
2903
{
2904
int i;
2905
2906
for (i = 0; i < UPROBES_HASH_SZ; i++)
2907
mutex_init(&uprobes_mmap_mutex[i]);
2908
2909
BUG_ON(register_die_notifier(&uprobe_exception_nb));
2910
}
2911
2912