Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/exit.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/kernel/exit.c
4
*
5
* Copyright (C) 1991, 1992 Linus Torvalds
6
*/
7
8
#include <linux/mm.h>
9
#include <linux/slab.h>
10
#include <linux/sched/autogroup.h>
11
#include <linux/sched/mm.h>
12
#include <linux/sched/stat.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15
#include <linux/sched/cputime.h>
16
#include <linux/interrupt.h>
17
#include <linux/module.h>
18
#include <linux/capability.h>
19
#include <linux/completion.h>
20
#include <linux/personality.h>
21
#include <linux/tty.h>
22
#include <linux/iocontext.h>
23
#include <linux/key.h>
24
#include <linux/cpu.h>
25
#include <linux/acct.h>
26
#include <linux/tsacct_kern.h>
27
#include <linux/file.h>
28
#include <linux/freezer.h>
29
#include <linux/binfmts.h>
30
#include <linux/nsproxy.h>
31
#include <linux/pid_namespace.h>
32
#include <linux/ptrace.h>
33
#include <linux/profile.h>
34
#include <linux/mount.h>
35
#include <linux/proc_fs.h>
36
#include <linux/kthread.h>
37
#include <linux/mempolicy.h>
38
#include <linux/taskstats_kern.h>
39
#include <linux/delayacct.h>
40
#include <linux/cgroup.h>
41
#include <linux/syscalls.h>
42
#include <linux/signal.h>
43
#include <linux/posix-timers.h>
44
#include <linux/cn_proc.h>
45
#include <linux/mutex.h>
46
#include <linux/futex.h>
47
#include <linux/pipe_fs_i.h>
48
#include <linux/audit.h> /* for audit_free() */
49
#include <linux/resource.h>
50
#include <linux/task_io_accounting_ops.h>
51
#include <linux/blkdev.h>
52
#include <linux/task_work.h>
53
#include <linux/fs_struct.h>
54
#include <linux/init_task.h>
55
#include <linux/perf_event.h>
56
#include <trace/events/sched.h>
57
#include <linux/hw_breakpoint.h>
58
#include <linux/oom.h>
59
#include <linux/writeback.h>
60
#include <linux/shm.h>
61
#include <linux/kcov.h>
62
#include <linux/kmsan.h>
63
#include <linux/random.h>
64
#include <linux/rcuwait.h>
65
#include <linux/compat.h>
66
#include <linux/io_uring.h>
67
#include <linux/kprobes.h>
68
#include <linux/rethook.h>
69
#include <linux/sysfs.h>
70
#include <linux/user_events.h>
71
#include <linux/unwind_deferred.h>
72
#include <linux/uaccess.h>
73
#include <linux/pidfs.h>
74
75
#include <uapi/linux/wait.h>
76
77
#include <asm/unistd.h>
78
#include <asm/mmu_context.h>
79
80
#include "exit.h"
81
82
/*
83
* The default value should be high enough to not crash a system that randomly
84
* crashes its kernel from time to time, but low enough to at least not permit
85
* overflowing 32-bit refcounts or the ldsem writer count.
86
*/
87
static unsigned int oops_limit = 10000;
88
89
#ifdef CONFIG_SYSCTL
90
static const struct ctl_table kern_exit_table[] = {
91
{
92
.procname = "oops_limit",
93
.data = &oops_limit,
94
.maxlen = sizeof(oops_limit),
95
.mode = 0644,
96
.proc_handler = proc_douintvec,
97
},
98
};
99
100
static __init int kernel_exit_sysctls_init(void)
101
{
102
register_sysctl_init("kernel", kern_exit_table);
103
return 0;
104
}
105
late_initcall(kernel_exit_sysctls_init);
106
#endif
107
108
static atomic_t oops_count = ATOMIC_INIT(0);
109
110
#ifdef CONFIG_SYSFS
111
static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112
char *page)
113
{
114
return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115
}
116
117
static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119
static __init int kernel_exit_sysfs_init(void)
120
{
121
sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122
return 0;
123
}
124
late_initcall(kernel_exit_sysfs_init);
125
#endif
126
127
/*
128
* For things release_task() would like to do *after* tasklist_lock is released.
129
*/
130
struct release_task_post {
131
struct pid *pids[PIDTYPE_MAX];
132
};
133
134
static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135
bool group_dead)
136
{
137
struct pid *pid = task_pid(p);
138
139
nr_threads--;
140
141
detach_pid(post->pids, p, PIDTYPE_PID);
142
wake_up_all(&pid->wait_pidfd);
143
144
if (group_dead) {
145
detach_pid(post->pids, p, PIDTYPE_TGID);
146
detach_pid(post->pids, p, PIDTYPE_PGID);
147
detach_pid(post->pids, p, PIDTYPE_SID);
148
149
list_del_rcu(&p->tasks);
150
list_del_init(&p->sibling);
151
__this_cpu_dec(process_counts);
152
}
153
list_del_rcu(&p->thread_node);
154
}
155
156
/*
157
* This function expects the tasklist_lock write-locked.
158
*/
159
static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160
{
161
struct signal_struct *sig = tsk->signal;
162
bool group_dead = thread_group_leader(tsk);
163
struct sighand_struct *sighand;
164
struct tty_struct *tty;
165
u64 utime, stime;
166
167
sighand = rcu_dereference_check(tsk->sighand,
168
lockdep_tasklist_lock_is_held());
169
spin_lock(&sighand->siglock);
170
171
#ifdef CONFIG_POSIX_TIMERS
172
posix_cpu_timers_exit(tsk);
173
if (group_dead)
174
posix_cpu_timers_exit_group(tsk);
175
#endif
176
177
if (group_dead) {
178
tty = sig->tty;
179
sig->tty = NULL;
180
} else {
181
/*
182
* If there is any task waiting for the group exit
183
* then notify it:
184
*/
185
if (sig->notify_count > 0 && !--sig->notify_count)
186
wake_up_process(sig->group_exec_task);
187
188
if (tsk == sig->curr_target)
189
sig->curr_target = next_thread(tsk);
190
}
191
192
/*
193
* Accumulate here the counters for all threads as they die. We could
194
* skip the group leader because it is the last user of signal_struct,
195
* but we want to avoid the race with thread_group_cputime() which can
196
* see the empty ->thread_head list.
197
*/
198
task_cputime(tsk, &utime, &stime);
199
write_seqlock(&sig->stats_lock);
200
sig->utime += utime;
201
sig->stime += stime;
202
sig->gtime += task_gtime(tsk);
203
sig->min_flt += tsk->min_flt;
204
sig->maj_flt += tsk->maj_flt;
205
sig->nvcsw += tsk->nvcsw;
206
sig->nivcsw += tsk->nivcsw;
207
sig->inblock += task_io_get_inblock(tsk);
208
sig->oublock += task_io_get_oublock(tsk);
209
task_io_accounting_add(&sig->ioac, &tsk->ioac);
210
sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211
sig->nr_threads--;
212
__unhash_process(post, tsk, group_dead);
213
write_sequnlock(&sig->stats_lock);
214
215
tsk->sighand = NULL;
216
spin_unlock(&sighand->siglock);
217
218
__cleanup_sighand(sighand);
219
if (group_dead)
220
tty_kref_put(tty);
221
}
222
223
static void delayed_put_task_struct(struct rcu_head *rhp)
224
{
225
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226
227
kprobe_flush_task(tsk);
228
rethook_flush_task(tsk);
229
perf_event_delayed_put(tsk);
230
trace_sched_process_free(tsk);
231
put_task_struct(tsk);
232
}
233
234
void put_task_struct_rcu_user(struct task_struct *task)
235
{
236
if (refcount_dec_and_test(&task->rcu_users))
237
call_rcu(&task->rcu, delayed_put_task_struct);
238
}
239
240
void __weak release_thread(struct task_struct *dead_task)
241
{
242
}
243
244
void release_task(struct task_struct *p)
245
{
246
struct release_task_post post;
247
struct task_struct *leader;
248
struct pid *thread_pid;
249
int zap_leader;
250
repeat:
251
memset(&post, 0, sizeof(post));
252
253
/* don't need to get the RCU readlock here - the process is dead and
254
* can't be modifying its own credentials. But shut RCU-lockdep up */
255
rcu_read_lock();
256
dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
257
rcu_read_unlock();
258
259
pidfs_exit(p);
260
cgroup_release(p);
261
262
/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
263
thread_pid = task_pid(p);
264
265
write_lock_irq(&tasklist_lock);
266
ptrace_release_task(p);
267
__exit_signal(&post, p);
268
269
/*
270
* If we are the last non-leader member of the thread
271
* group, and the leader is zombie, then notify the
272
* group leader's parent process. (if it wants notification.)
273
*/
274
zap_leader = 0;
275
leader = p->group_leader;
276
if (leader != p && thread_group_empty(leader)
277
&& leader->exit_state == EXIT_ZOMBIE) {
278
/* for pidfs_exit() and do_notify_parent() */
279
if (leader->signal->flags & SIGNAL_GROUP_EXIT)
280
leader->exit_code = leader->signal->group_exit_code;
281
/*
282
* If we were the last child thread and the leader has
283
* exited already, and the leader's parent ignores SIGCHLD,
284
* then we are the one who should release the leader.
285
*/
286
zap_leader = do_notify_parent(leader, leader->exit_signal);
287
if (zap_leader)
288
leader->exit_state = EXIT_DEAD;
289
}
290
291
write_unlock_irq(&tasklist_lock);
292
/* @thread_pid can't go away until free_pids() below */
293
proc_flush_pid(thread_pid);
294
add_device_randomness(&p->se.sum_exec_runtime,
295
sizeof(p->se.sum_exec_runtime));
296
free_pids(post.pids);
297
release_thread(p);
298
/*
299
* This task was already removed from the process/thread/pid lists
300
* and lock_task_sighand(p) can't succeed. Nobody else can touch
301
* ->pending or, if group dead, signal->shared_pending. We can call
302
* flush_sigqueue() lockless.
303
*/
304
flush_sigqueue(&p->pending);
305
if (thread_group_leader(p))
306
flush_sigqueue(&p->signal->shared_pending);
307
308
put_task_struct_rcu_user(p);
309
310
p = leader;
311
if (unlikely(zap_leader))
312
goto repeat;
313
}
314
315
int rcuwait_wake_up(struct rcuwait *w)
316
{
317
int ret = 0;
318
struct task_struct *task;
319
320
rcu_read_lock();
321
322
/*
323
* Order condition vs @task, such that everything prior to the load
324
* of @task is visible. This is the condition as to why the user called
325
* rcuwait_wake() in the first place. Pairs with set_current_state()
326
* barrier (A) in rcuwait_wait_event().
327
*
328
* WAIT WAKE
329
* [S] tsk = current [S] cond = true
330
* MB (A) MB (B)
331
* [L] cond [L] tsk
332
*/
333
smp_mb(); /* (B) */
334
335
task = rcu_dereference(w->task);
336
if (task)
337
ret = wake_up_process(task);
338
rcu_read_unlock();
339
340
return ret;
341
}
342
EXPORT_SYMBOL_GPL(rcuwait_wake_up);
343
344
/*
345
* Determine if a process group is "orphaned", according to the POSIX
346
* definition in 2.2.2.52. Orphaned process groups are not to be affected
347
* by terminal-generated stop signals. Newly orphaned process groups are
348
* to receive a SIGHUP and a SIGCONT.
349
*
350
* "I ask you, have you ever known what it is to be an orphan?"
351
*/
352
static int will_become_orphaned_pgrp(struct pid *pgrp,
353
struct task_struct *ignored_task)
354
{
355
struct task_struct *p;
356
357
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
358
if ((p == ignored_task) ||
359
(p->exit_state && thread_group_empty(p)) ||
360
is_global_init(p->real_parent))
361
continue;
362
363
if (task_pgrp(p->real_parent) != pgrp &&
364
task_session(p->real_parent) == task_session(p))
365
return 0;
366
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368
return 1;
369
}
370
371
int is_current_pgrp_orphaned(void)
372
{
373
int retval;
374
375
read_lock(&tasklist_lock);
376
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
377
read_unlock(&tasklist_lock);
378
379
return retval;
380
}
381
382
static bool has_stopped_jobs(struct pid *pgrp)
383
{
384
struct task_struct *p;
385
386
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
387
if (p->signal->flags & SIGNAL_STOP_STOPPED)
388
return true;
389
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
390
391
return false;
392
}
393
394
/*
395
* Check to see if any process groups have become orphaned as
396
* a result of our exiting, and if they have any stopped jobs,
397
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
398
*/
399
static void
400
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
401
{
402
struct pid *pgrp = task_pgrp(tsk);
403
struct task_struct *ignored_task = tsk;
404
405
if (!parent)
406
/* exit: our father is in a different pgrp than
407
* we are and we were the only connection outside.
408
*/
409
parent = tsk->real_parent;
410
else
411
/* reparent: our child is in a different pgrp than
412
* we are, and it was the only connection outside.
413
*/
414
ignored_task = NULL;
415
416
if (task_pgrp(parent) != pgrp &&
417
task_session(parent) == task_session(tsk) &&
418
will_become_orphaned_pgrp(pgrp, ignored_task) &&
419
has_stopped_jobs(pgrp)) {
420
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
421
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
422
}
423
}
424
425
static void coredump_task_exit(struct task_struct *tsk,
426
struct core_state *core_state)
427
{
428
struct core_thread self;
429
430
self.task = tsk;
431
if (self.task->flags & PF_SIGNALED)
432
self.next = xchg(&core_state->dumper.next, &self);
433
else
434
self.task = NULL;
435
/*
436
* Implies mb(), the result of xchg() must be visible
437
* to core_state->dumper.
438
*/
439
if (atomic_dec_and_test(&core_state->nr_threads))
440
complete(&core_state->startup);
441
442
for (;;) {
443
set_current_state(TASK_IDLE|TASK_FREEZABLE);
444
if (!self.task) /* see coredump_finish() */
445
break;
446
schedule();
447
}
448
__set_current_state(TASK_RUNNING);
449
}
450
451
#ifdef CONFIG_MEMCG
452
/* drops tasklist_lock if succeeds */
453
static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
454
{
455
bool ret = false;
456
457
task_lock(tsk);
458
if (likely(tsk->mm == mm)) {
459
/* tsk can't pass exit_mm/exec_mmap and exit */
460
read_unlock(&tasklist_lock);
461
WRITE_ONCE(mm->owner, tsk);
462
lru_gen_migrate_mm(mm);
463
ret = true;
464
}
465
task_unlock(tsk);
466
return ret;
467
}
468
469
static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
470
{
471
struct task_struct *t;
472
473
for_each_thread(g, t) {
474
struct mm_struct *t_mm = READ_ONCE(t->mm);
475
if (t_mm == mm) {
476
if (__try_to_set_owner(t, mm))
477
return true;
478
} else if (t_mm)
479
break;
480
}
481
482
return false;
483
}
484
485
/*
486
* A task is exiting. If it owned this mm, find a new owner for the mm.
487
*/
488
void mm_update_next_owner(struct mm_struct *mm)
489
{
490
struct task_struct *g, *p = current;
491
492
/*
493
* If the exiting or execing task is not the owner, it's
494
* someone else's problem.
495
*/
496
if (mm->owner != p)
497
return;
498
/*
499
* The current owner is exiting/execing and there are no other
500
* candidates. Do not leave the mm pointing to a possibly
501
* freed task structure.
502
*/
503
if (atomic_read(&mm->mm_users) <= 1) {
504
WRITE_ONCE(mm->owner, NULL);
505
return;
506
}
507
508
read_lock(&tasklist_lock);
509
/*
510
* Search in the children
511
*/
512
list_for_each_entry(g, &p->children, sibling) {
513
if (try_to_set_owner(g, mm))
514
goto ret;
515
}
516
/*
517
* Search in the siblings
518
*/
519
list_for_each_entry(g, &p->real_parent->children, sibling) {
520
if (try_to_set_owner(g, mm))
521
goto ret;
522
}
523
/*
524
* Search through everything else, we should not get here often.
525
*/
526
for_each_process(g) {
527
if (atomic_read(&mm->mm_users) <= 1)
528
break;
529
if (g->flags & PF_KTHREAD)
530
continue;
531
if (try_to_set_owner(g, mm))
532
goto ret;
533
}
534
read_unlock(&tasklist_lock);
535
/*
536
* We found no owner yet mm_users > 1: this implies that we are
537
* most likely racing with swapoff (try_to_unuse()) or /proc or
538
* ptrace or page migration (get_task_mm()). Mark owner as NULL.
539
*/
540
WRITE_ONCE(mm->owner, NULL);
541
ret:
542
return;
543
544
}
545
#endif /* CONFIG_MEMCG */
546
547
/*
548
* Turn us into a lazy TLB process if we
549
* aren't already..
550
*/
551
static void exit_mm(void)
552
{
553
struct mm_struct *mm = current->mm;
554
555
exit_mm_release(current, mm);
556
if (!mm)
557
return;
558
mmap_read_lock(mm);
559
mmgrab_lazy_tlb(mm);
560
BUG_ON(mm != current->active_mm);
561
/* more a memory barrier than a real lock */
562
task_lock(current);
563
/*
564
* When a thread stops operating on an address space, the loop
565
* in membarrier_private_expedited() may not observe that
566
* tsk->mm, and the loop in membarrier_global_expedited() may
567
* not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
568
* rq->membarrier_state, so those would not issue an IPI.
569
* Membarrier requires a memory barrier after accessing
570
* user-space memory, before clearing tsk->mm or the
571
* rq->membarrier_state.
572
*/
573
smp_mb__after_spinlock();
574
local_irq_disable();
575
current->mm = NULL;
576
membarrier_update_current_mm(NULL);
577
enter_lazy_tlb(mm, current);
578
local_irq_enable();
579
task_unlock(current);
580
mmap_read_unlock(mm);
581
mm_update_next_owner(mm);
582
mmput(mm);
583
if (test_thread_flag(TIF_MEMDIE))
584
exit_oom_victim();
585
}
586
587
static struct task_struct *find_alive_thread(struct task_struct *p)
588
{
589
struct task_struct *t;
590
591
for_each_thread(p, t) {
592
if (!(t->flags & PF_EXITING))
593
return t;
594
}
595
return NULL;
596
}
597
598
static struct task_struct *find_child_reaper(struct task_struct *father,
599
struct list_head *dead)
600
__releases(&tasklist_lock)
601
__acquires(&tasklist_lock)
602
{
603
struct pid_namespace *pid_ns = task_active_pid_ns(father);
604
struct task_struct *reaper = pid_ns->child_reaper;
605
struct task_struct *p, *n;
606
607
if (likely(reaper != father))
608
return reaper;
609
610
reaper = find_alive_thread(father);
611
if (reaper) {
612
pid_ns->child_reaper = reaper;
613
return reaper;
614
}
615
616
write_unlock_irq(&tasklist_lock);
617
618
list_for_each_entry_safe(p, n, dead, ptrace_entry) {
619
list_del_init(&p->ptrace_entry);
620
release_task(p);
621
}
622
623
zap_pid_ns_processes(pid_ns);
624
write_lock_irq(&tasklist_lock);
625
626
return father;
627
}
628
629
/*
630
* When we die, we re-parent all our children, and try to:
631
* 1. give them to another thread in our thread group, if such a member exists
632
* 2. give it to the first ancestor process which prctl'd itself as a
633
* child_subreaper for its children (like a service manager)
634
* 3. give it to the init process (PID 1) in our pid namespace
635
*/
636
static struct task_struct *find_new_reaper(struct task_struct *father,
637
struct task_struct *child_reaper)
638
{
639
struct task_struct *thread, *reaper;
640
641
thread = find_alive_thread(father);
642
if (thread)
643
return thread;
644
645
if (father->signal->has_child_subreaper) {
646
unsigned int ns_level = task_pid(father)->level;
647
/*
648
* Find the first ->is_child_subreaper ancestor in our pid_ns.
649
* We can't check reaper != child_reaper to ensure we do not
650
* cross the namespaces, the exiting parent could be injected
651
* by setns() + fork().
652
* We check pid->level, this is slightly more efficient than
653
* task_active_pid_ns(reaper) != task_active_pid_ns(father).
654
*/
655
for (reaper = father->real_parent;
656
task_pid(reaper)->level == ns_level;
657
reaper = reaper->real_parent) {
658
if (reaper == &init_task)
659
break;
660
if (!reaper->signal->is_child_subreaper)
661
continue;
662
thread = find_alive_thread(reaper);
663
if (thread)
664
return thread;
665
}
666
}
667
668
return child_reaper;
669
}
670
671
/*
672
* Any that need to be release_task'd are put on the @dead list.
673
*/
674
static void reparent_leader(struct task_struct *father, struct task_struct *p,
675
struct list_head *dead)
676
{
677
if (unlikely(p->exit_state == EXIT_DEAD))
678
return;
679
680
/* We don't want people slaying init. */
681
p->exit_signal = SIGCHLD;
682
683
/* If it has exited notify the new parent about this child's death. */
684
if (!p->ptrace &&
685
p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
686
if (do_notify_parent(p, p->exit_signal)) {
687
p->exit_state = EXIT_DEAD;
688
list_add(&p->ptrace_entry, dead);
689
}
690
}
691
692
kill_orphaned_pgrp(p, father);
693
}
694
695
/*
696
* Make init inherit all the child processes
697
*/
698
static void forget_original_parent(struct task_struct *father,
699
struct list_head *dead)
700
{
701
struct task_struct *p, *t, *reaper;
702
703
if (unlikely(!list_empty(&father->ptraced)))
704
exit_ptrace(father, dead);
705
706
/* Can drop and reacquire tasklist_lock */
707
reaper = find_child_reaper(father, dead);
708
if (list_empty(&father->children))
709
return;
710
711
reaper = find_new_reaper(father, reaper);
712
list_for_each_entry(p, &father->children, sibling) {
713
for_each_thread(p, t) {
714
RCU_INIT_POINTER(t->real_parent, reaper);
715
BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
716
if (likely(!t->ptrace))
717
t->parent = t->real_parent;
718
if (t->pdeath_signal)
719
group_send_sig_info(t->pdeath_signal,
720
SEND_SIG_NOINFO, t,
721
PIDTYPE_TGID);
722
}
723
/*
724
* If this is a threaded reparent there is no need to
725
* notify anyone anything has happened.
726
*/
727
if (!same_thread_group(reaper, father))
728
reparent_leader(father, p, dead);
729
}
730
list_splice_tail_init(&father->children, &reaper->children);
731
}
732
733
/*
734
* Send signals to all our closest relatives so that they know
735
* to properly mourn us..
736
*/
737
static void exit_notify(struct task_struct *tsk, int group_dead)
738
{
739
bool autoreap;
740
struct task_struct *p, *n;
741
LIST_HEAD(dead);
742
743
write_lock_irq(&tasklist_lock);
744
forget_original_parent(tsk, &dead);
745
746
if (group_dead)
747
kill_orphaned_pgrp(tsk->group_leader, NULL);
748
749
tsk->exit_state = EXIT_ZOMBIE;
750
751
if (unlikely(tsk->ptrace)) {
752
int sig = thread_group_leader(tsk) &&
753
thread_group_empty(tsk) &&
754
!ptrace_reparented(tsk) ?
755
tsk->exit_signal : SIGCHLD;
756
autoreap = do_notify_parent(tsk, sig);
757
} else if (thread_group_leader(tsk)) {
758
autoreap = thread_group_empty(tsk) &&
759
do_notify_parent(tsk, tsk->exit_signal);
760
} else {
761
autoreap = true;
762
/* untraced sub-thread */
763
do_notify_pidfd(tsk);
764
}
765
766
if (autoreap) {
767
tsk->exit_state = EXIT_DEAD;
768
list_add(&tsk->ptrace_entry, &dead);
769
}
770
771
/* mt-exec, de_thread() is waiting for group leader */
772
if (unlikely(tsk->signal->notify_count < 0))
773
wake_up_process(tsk->signal->group_exec_task);
774
write_unlock_irq(&tasklist_lock);
775
776
list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
777
list_del_init(&p->ptrace_entry);
778
release_task(p);
779
}
780
}
781
782
#ifdef CONFIG_DEBUG_STACK_USAGE
783
#ifdef CONFIG_STACK_GROWSUP
784
unsigned long stack_not_used(struct task_struct *p)
785
{
786
unsigned long *n = end_of_stack(p);
787
788
do { /* Skip over canary */
789
n--;
790
} while (!*n);
791
792
return (unsigned long)end_of_stack(p) - (unsigned long)n;
793
}
794
#else /* !CONFIG_STACK_GROWSUP */
795
unsigned long stack_not_used(struct task_struct *p)
796
{
797
unsigned long *n = end_of_stack(p);
798
799
do { /* Skip over canary */
800
n++;
801
} while (!*n);
802
803
return (unsigned long)n - (unsigned long)end_of_stack(p);
804
}
805
#endif /* CONFIG_STACK_GROWSUP */
806
807
/* Count the maximum pages reached in kernel stacks */
808
static inline void kstack_histogram(unsigned long used_stack)
809
{
810
#ifdef CONFIG_VM_EVENT_COUNTERS
811
if (used_stack <= 1024)
812
count_vm_event(KSTACK_1K);
813
#if THREAD_SIZE > 1024
814
else if (used_stack <= 2048)
815
count_vm_event(KSTACK_2K);
816
#endif
817
#if THREAD_SIZE > 2048
818
else if (used_stack <= 4096)
819
count_vm_event(KSTACK_4K);
820
#endif
821
#if THREAD_SIZE > 4096
822
else if (used_stack <= 8192)
823
count_vm_event(KSTACK_8K);
824
#endif
825
#if THREAD_SIZE > 8192
826
else if (used_stack <= 16384)
827
count_vm_event(KSTACK_16K);
828
#endif
829
#if THREAD_SIZE > 16384
830
else if (used_stack <= 32768)
831
count_vm_event(KSTACK_32K);
832
#endif
833
#if THREAD_SIZE > 32768
834
else if (used_stack <= 65536)
835
count_vm_event(KSTACK_64K);
836
#endif
837
#if THREAD_SIZE > 65536
838
else
839
count_vm_event(KSTACK_REST);
840
#endif
841
#endif /* CONFIG_VM_EVENT_COUNTERS */
842
}
843
844
static void check_stack_usage(void)
845
{
846
static DEFINE_SPINLOCK(low_water_lock);
847
static int lowest_to_date = THREAD_SIZE;
848
unsigned long free;
849
850
free = stack_not_used(current);
851
kstack_histogram(THREAD_SIZE - free);
852
853
if (free >= lowest_to_date)
854
return;
855
856
spin_lock(&low_water_lock);
857
if (free < lowest_to_date) {
858
pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
859
current->comm, task_pid_nr(current), free);
860
lowest_to_date = free;
861
}
862
spin_unlock(&low_water_lock);
863
}
864
#else /* !CONFIG_DEBUG_STACK_USAGE */
865
static inline void check_stack_usage(void) {}
866
#endif /* CONFIG_DEBUG_STACK_USAGE */
867
868
static void synchronize_group_exit(struct task_struct *tsk, long code)
869
{
870
struct sighand_struct *sighand = tsk->sighand;
871
struct signal_struct *signal = tsk->signal;
872
struct core_state *core_state;
873
874
spin_lock_irq(&sighand->siglock);
875
signal->quick_threads--;
876
if ((signal->quick_threads == 0) &&
877
!(signal->flags & SIGNAL_GROUP_EXIT)) {
878
signal->flags = SIGNAL_GROUP_EXIT;
879
signal->group_exit_code = code;
880
signal->group_stop_count = 0;
881
}
882
/*
883
* Serialize with any possible pending coredump.
884
* We must hold siglock around checking core_state
885
* and setting PF_POSTCOREDUMP. The core-inducing thread
886
* will increment ->nr_threads for each thread in the
887
* group without PF_POSTCOREDUMP set.
888
*/
889
tsk->flags |= PF_POSTCOREDUMP;
890
core_state = signal->core_state;
891
spin_unlock_irq(&sighand->siglock);
892
893
if (unlikely(core_state))
894
coredump_task_exit(tsk, core_state);
895
}
896
897
void __noreturn do_exit(long code)
898
{
899
struct task_struct *tsk = current;
900
int group_dead;
901
902
WARN_ON(irqs_disabled());
903
WARN_ON(tsk->plug);
904
905
kcov_task_exit(tsk);
906
kmsan_task_exit(tsk);
907
908
synchronize_group_exit(tsk, code);
909
ptrace_event(PTRACE_EVENT_EXIT, code);
910
user_events_exit(tsk);
911
912
io_uring_files_cancel();
913
exit_signals(tsk); /* sets PF_EXITING */
914
915
seccomp_filter_release(tsk);
916
917
acct_update_integrals(tsk);
918
group_dead = atomic_dec_and_test(&tsk->signal->live);
919
if (group_dead) {
920
/*
921
* If the last thread of global init has exited, panic
922
* immediately to get a useable coredump.
923
*/
924
if (unlikely(is_global_init(tsk)))
925
panic("Attempted to kill init! exitcode=0x%08x\n",
926
tsk->signal->group_exit_code ?: (int)code);
927
928
#ifdef CONFIG_POSIX_TIMERS
929
hrtimer_cancel(&tsk->signal->real_timer);
930
exit_itimers(tsk);
931
#endif
932
if (tsk->mm)
933
setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
934
}
935
acct_collect(code, group_dead);
936
if (group_dead)
937
tty_audit_exit();
938
audit_free(tsk);
939
940
tsk->exit_code = code;
941
taskstats_exit(tsk, group_dead);
942
unwind_deferred_task_exit(tsk);
943
trace_sched_process_exit(tsk, group_dead);
944
945
/*
946
* Since sampling can touch ->mm, make sure to stop everything before we
947
* tear it down.
948
*
949
* Also flushes inherited counters to the parent - before the parent
950
* gets woken up by child-exit notifications.
951
*/
952
perf_event_exit_task(tsk);
953
954
exit_mm();
955
956
if (group_dead)
957
acct_process();
958
959
exit_sem(tsk);
960
exit_shm(tsk);
961
exit_files(tsk);
962
exit_fs(tsk);
963
if (group_dead)
964
disassociate_ctty(1);
965
exit_task_namespaces(tsk);
966
exit_task_work(tsk);
967
exit_thread(tsk);
968
969
sched_autogroup_exit_task(tsk);
970
cgroup_exit(tsk);
971
972
/*
973
* FIXME: do that only when needed, using sched_exit tracepoint
974
*/
975
flush_ptrace_hw_breakpoint(tsk);
976
977
exit_tasks_rcu_start();
978
exit_notify(tsk, group_dead);
979
proc_exit_connector(tsk);
980
mpol_put_task_policy(tsk);
981
#ifdef CONFIG_FUTEX
982
if (unlikely(current->pi_state_cache))
983
kfree(current->pi_state_cache);
984
#endif
985
/*
986
* Make sure we are holding no locks:
987
*/
988
debug_check_no_locks_held();
989
990
if (tsk->io_context)
991
exit_io_context(tsk);
992
993
if (tsk->splice_pipe)
994
free_pipe_info(tsk->splice_pipe);
995
996
if (tsk->task_frag.page)
997
put_page(tsk->task_frag.page);
998
999
exit_task_stack_account(tsk);
1000
1001
check_stack_usage();
1002
preempt_disable();
1003
if (tsk->nr_dirtied)
1004
__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1005
exit_rcu();
1006
exit_tasks_rcu_finish();
1007
1008
lockdep_free_task(tsk);
1009
do_task_dead();
1010
}
1011
1012
void __noreturn make_task_dead(int signr)
1013
{
1014
/*
1015
* Take the task off the cpu after something catastrophic has
1016
* happened.
1017
*
1018
* We can get here from a kernel oops, sometimes with preemption off.
1019
* Start by checking for critical errors.
1020
* Then fix up important state like USER_DS and preemption.
1021
* Then do everything else.
1022
*/
1023
struct task_struct *tsk = current;
1024
unsigned int limit;
1025
1026
if (unlikely(in_interrupt()))
1027
panic("Aiee, killing interrupt handler!");
1028
if (unlikely(!tsk->pid))
1029
panic("Attempted to kill the idle task!");
1030
1031
if (unlikely(irqs_disabled())) {
1032
pr_info("note: %s[%d] exited with irqs disabled\n",
1033
current->comm, task_pid_nr(current));
1034
local_irq_enable();
1035
}
1036
if (unlikely(in_atomic())) {
1037
pr_info("note: %s[%d] exited with preempt_count %d\n",
1038
current->comm, task_pid_nr(current),
1039
preempt_count());
1040
preempt_count_set(PREEMPT_ENABLED);
1041
}
1042
1043
/*
1044
* Every time the system oopses, if the oops happens while a reference
1045
* to an object was held, the reference leaks.
1046
* If the oops doesn't also leak memory, repeated oopsing can cause
1047
* reference counters to wrap around (if they're not using refcount_t).
1048
* This means that repeated oopsing can make unexploitable-looking bugs
1049
* exploitable through repeated oopsing.
1050
* To make sure this can't happen, place an upper bound on how often the
1051
* kernel may oops without panic().
1052
*/
1053
limit = READ_ONCE(oops_limit);
1054
if (atomic_inc_return(&oops_count) >= limit && limit)
1055
panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1056
1057
/*
1058
* We're taking recursive faults here in make_task_dead. Safest is to just
1059
* leave this task alone and wait for reboot.
1060
*/
1061
if (unlikely(tsk->flags & PF_EXITING)) {
1062
pr_alert("Fixing recursive fault but reboot is needed!\n");
1063
futex_exit_recursive(tsk);
1064
tsk->exit_state = EXIT_DEAD;
1065
refcount_inc(&tsk->rcu_users);
1066
do_task_dead();
1067
}
1068
1069
do_exit(signr);
1070
}
1071
1072
SYSCALL_DEFINE1(exit, int, error_code)
1073
{
1074
do_exit((error_code&0xff)<<8);
1075
}
1076
1077
/*
1078
* Take down every thread in the group. This is called by fatal signals
1079
* as well as by sys_exit_group (below).
1080
*/
1081
void __noreturn
1082
do_group_exit(int exit_code)
1083
{
1084
struct signal_struct *sig = current->signal;
1085
1086
if (sig->flags & SIGNAL_GROUP_EXIT)
1087
exit_code = sig->group_exit_code;
1088
else if (sig->group_exec_task)
1089
exit_code = 0;
1090
else {
1091
struct sighand_struct *const sighand = current->sighand;
1092
1093
spin_lock_irq(&sighand->siglock);
1094
if (sig->flags & SIGNAL_GROUP_EXIT)
1095
/* Another thread got here before we took the lock. */
1096
exit_code = sig->group_exit_code;
1097
else if (sig->group_exec_task)
1098
exit_code = 0;
1099
else {
1100
sig->group_exit_code = exit_code;
1101
sig->flags = SIGNAL_GROUP_EXIT;
1102
zap_other_threads(current);
1103
}
1104
spin_unlock_irq(&sighand->siglock);
1105
}
1106
1107
do_exit(exit_code);
1108
/* NOTREACHED */
1109
}
1110
1111
/*
1112
* this kills every thread in the thread group. Note that any externally
1113
* wait4()-ing process will get the correct exit code - even if this
1114
* thread is not the thread group leader.
1115
*/
1116
SYSCALL_DEFINE1(exit_group, int, error_code)
1117
{
1118
do_group_exit((error_code & 0xff) << 8);
1119
/* NOTREACHED */
1120
return 0;
1121
}
1122
1123
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1124
{
1125
return wo->wo_type == PIDTYPE_MAX ||
1126
task_pid_type(p, wo->wo_type) == wo->wo_pid;
1127
}
1128
1129
static int
1130
eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1131
{
1132
if (!eligible_pid(wo, p))
1133
return 0;
1134
1135
/*
1136
* Wait for all children (clone and not) if __WALL is set or
1137
* if it is traced by us.
1138
*/
1139
if (ptrace || (wo->wo_flags & __WALL))
1140
return 1;
1141
1142
/*
1143
* Otherwise, wait for clone children *only* if __WCLONE is set;
1144
* otherwise, wait for non-clone children *only*.
1145
*
1146
* Note: a "clone" child here is one that reports to its parent
1147
* using a signal other than SIGCHLD, or a non-leader thread which
1148
* we can only see if it is traced by us.
1149
*/
1150
if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1151
return 0;
1152
1153
return 1;
1154
}
1155
1156
/*
1157
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1158
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1159
* the lock and this task is uninteresting. If we return nonzero, we have
1160
* released the lock and the system call should return.
1161
*/
1162
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1163
{
1164
int state, status;
1165
pid_t pid = task_pid_vnr(p);
1166
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1167
struct waitid_info *infop;
1168
1169
if (!likely(wo->wo_flags & WEXITED))
1170
return 0;
1171
1172
if (unlikely(wo->wo_flags & WNOWAIT)) {
1173
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1174
? p->signal->group_exit_code : p->exit_code;
1175
get_task_struct(p);
1176
read_unlock(&tasklist_lock);
1177
sched_annotate_sleep();
1178
if (wo->wo_rusage)
1179
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1180
put_task_struct(p);
1181
goto out_info;
1182
}
1183
/*
1184
* Move the task's state to DEAD/TRACE, only one thread can do this.
1185
*/
1186
state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1187
EXIT_TRACE : EXIT_DEAD;
1188
if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1189
return 0;
1190
/*
1191
* We own this thread, nobody else can reap it.
1192
*/
1193
read_unlock(&tasklist_lock);
1194
sched_annotate_sleep();
1195
1196
/*
1197
* Check thread_group_leader() to exclude the traced sub-threads.
1198
*/
1199
if (state == EXIT_DEAD && thread_group_leader(p)) {
1200
struct signal_struct *sig = p->signal;
1201
struct signal_struct *psig = current->signal;
1202
unsigned long maxrss;
1203
u64 tgutime, tgstime;
1204
1205
/*
1206
* The resource counters for the group leader are in its
1207
* own task_struct. Those for dead threads in the group
1208
* are in its signal_struct, as are those for the child
1209
* processes it has previously reaped. All these
1210
* accumulate in the parent's signal_struct c* fields.
1211
*
1212
* We don't bother to take a lock here to protect these
1213
* p->signal fields because the whole thread group is dead
1214
* and nobody can change them.
1215
*
1216
* psig->stats_lock also protects us from our sub-threads
1217
* which can reap other children at the same time.
1218
*
1219
* We use thread_group_cputime_adjusted() to get times for
1220
* the thread group, which consolidates times for all threads
1221
* in the group including the group leader.
1222
*/
1223
thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1224
write_seqlock_irq(&psig->stats_lock);
1225
psig->cutime += tgutime + sig->cutime;
1226
psig->cstime += tgstime + sig->cstime;
1227
psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1228
psig->cmin_flt +=
1229
p->min_flt + sig->min_flt + sig->cmin_flt;
1230
psig->cmaj_flt +=
1231
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1232
psig->cnvcsw +=
1233
p->nvcsw + sig->nvcsw + sig->cnvcsw;
1234
psig->cnivcsw +=
1235
p->nivcsw + sig->nivcsw + sig->cnivcsw;
1236
psig->cinblock +=
1237
task_io_get_inblock(p) +
1238
sig->inblock + sig->cinblock;
1239
psig->coublock +=
1240
task_io_get_oublock(p) +
1241
sig->oublock + sig->coublock;
1242
maxrss = max(sig->maxrss, sig->cmaxrss);
1243
if (psig->cmaxrss < maxrss)
1244
psig->cmaxrss = maxrss;
1245
task_io_accounting_add(&psig->ioac, &p->ioac);
1246
task_io_accounting_add(&psig->ioac, &sig->ioac);
1247
write_sequnlock_irq(&psig->stats_lock);
1248
}
1249
1250
if (wo->wo_rusage)
1251
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1252
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1253
? p->signal->group_exit_code : p->exit_code;
1254
wo->wo_stat = status;
1255
1256
if (state == EXIT_TRACE) {
1257
write_lock_irq(&tasklist_lock);
1258
/* We dropped tasklist, ptracer could die and untrace */
1259
ptrace_unlink(p);
1260
1261
/* If parent wants a zombie, don't release it now */
1262
state = EXIT_ZOMBIE;
1263
if (do_notify_parent(p, p->exit_signal))
1264
state = EXIT_DEAD;
1265
p->exit_state = state;
1266
write_unlock_irq(&tasklist_lock);
1267
}
1268
if (state == EXIT_DEAD)
1269
release_task(p);
1270
1271
out_info:
1272
infop = wo->wo_info;
1273
if (infop) {
1274
if ((status & 0x7f) == 0) {
1275
infop->cause = CLD_EXITED;
1276
infop->status = status >> 8;
1277
} else {
1278
infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1279
infop->status = status & 0x7f;
1280
}
1281
infop->pid = pid;
1282
infop->uid = uid;
1283
}
1284
1285
return pid;
1286
}
1287
1288
static int *task_stopped_code(struct task_struct *p, bool ptrace)
1289
{
1290
if (ptrace) {
1291
if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1292
return &p->exit_code;
1293
} else {
1294
if (p->signal->flags & SIGNAL_STOP_STOPPED)
1295
return &p->signal->group_exit_code;
1296
}
1297
return NULL;
1298
}
1299
1300
/**
1301
* wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1302
* @wo: wait options
1303
* @ptrace: is the wait for ptrace
1304
* @p: task to wait for
1305
*
1306
* Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1307
*
1308
* CONTEXT:
1309
* read_lock(&tasklist_lock), which is released if return value is
1310
* non-zero. Also, grabs and releases @p->sighand->siglock.
1311
*
1312
* RETURNS:
1313
* 0 if wait condition didn't exist and search for other wait conditions
1314
* should continue. Non-zero return, -errno on failure and @p's pid on
1315
* success, implies that tasklist_lock is released and wait condition
1316
* search should terminate.
1317
*/
1318
static int wait_task_stopped(struct wait_opts *wo,
1319
int ptrace, struct task_struct *p)
1320
{
1321
struct waitid_info *infop;
1322
int exit_code, *p_code, why;
1323
uid_t uid = 0; /* unneeded, required by compiler */
1324
pid_t pid;
1325
1326
/*
1327
* Traditionally we see ptrace'd stopped tasks regardless of options.
1328
*/
1329
if (!ptrace && !(wo->wo_flags & WUNTRACED))
1330
return 0;
1331
1332
if (!task_stopped_code(p, ptrace))
1333
return 0;
1334
1335
exit_code = 0;
1336
spin_lock_irq(&p->sighand->siglock);
1337
1338
p_code = task_stopped_code(p, ptrace);
1339
if (unlikely(!p_code))
1340
goto unlock_sig;
1341
1342
exit_code = *p_code;
1343
if (!exit_code)
1344
goto unlock_sig;
1345
1346
if (!unlikely(wo->wo_flags & WNOWAIT))
1347
*p_code = 0;
1348
1349
uid = from_kuid_munged(current_user_ns(), task_uid(p));
1350
unlock_sig:
1351
spin_unlock_irq(&p->sighand->siglock);
1352
if (!exit_code)
1353
return 0;
1354
1355
/*
1356
* Now we are pretty sure this task is interesting.
1357
* Make sure it doesn't get reaped out from under us while we
1358
* give up the lock and then examine it below. We don't want to
1359
* keep holding onto the tasklist_lock while we call getrusage and
1360
* possibly take page faults for user memory.
1361
*/
1362
get_task_struct(p);
1363
pid = task_pid_vnr(p);
1364
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1365
read_unlock(&tasklist_lock);
1366
sched_annotate_sleep();
1367
if (wo->wo_rusage)
1368
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1369
put_task_struct(p);
1370
1371
if (likely(!(wo->wo_flags & WNOWAIT)))
1372
wo->wo_stat = (exit_code << 8) | 0x7f;
1373
1374
infop = wo->wo_info;
1375
if (infop) {
1376
infop->cause = why;
1377
infop->status = exit_code;
1378
infop->pid = pid;
1379
infop->uid = uid;
1380
}
1381
return pid;
1382
}
1383
1384
/*
1385
* Handle do_wait work for one task in a live, non-stopped state.
1386
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1387
* the lock and this task is uninteresting. If we return nonzero, we have
1388
* released the lock and the system call should return.
1389
*/
1390
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1391
{
1392
struct waitid_info *infop;
1393
pid_t pid;
1394
uid_t uid;
1395
1396
if (!unlikely(wo->wo_flags & WCONTINUED))
1397
return 0;
1398
1399
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1400
return 0;
1401
1402
spin_lock_irq(&p->sighand->siglock);
1403
/* Re-check with the lock held. */
1404
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1405
spin_unlock_irq(&p->sighand->siglock);
1406
return 0;
1407
}
1408
if (!unlikely(wo->wo_flags & WNOWAIT))
1409
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1410
uid = from_kuid_munged(current_user_ns(), task_uid(p));
1411
spin_unlock_irq(&p->sighand->siglock);
1412
1413
pid = task_pid_vnr(p);
1414
get_task_struct(p);
1415
read_unlock(&tasklist_lock);
1416
sched_annotate_sleep();
1417
if (wo->wo_rusage)
1418
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1419
put_task_struct(p);
1420
1421
infop = wo->wo_info;
1422
if (!infop) {
1423
wo->wo_stat = 0xffff;
1424
} else {
1425
infop->cause = CLD_CONTINUED;
1426
infop->pid = pid;
1427
infop->uid = uid;
1428
infop->status = SIGCONT;
1429
}
1430
return pid;
1431
}
1432
1433
/*
1434
* Consider @p for a wait by @parent.
1435
*
1436
* -ECHILD should be in ->notask_error before the first call.
1437
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
1438
* Returns zero if the search for a child should continue;
1439
* then ->notask_error is 0 if @p is an eligible child,
1440
* or still -ECHILD.
1441
*/
1442
static int wait_consider_task(struct wait_opts *wo, int ptrace,
1443
struct task_struct *p)
1444
{
1445
/*
1446
* We can race with wait_task_zombie() from another thread.
1447
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1448
* can't confuse the checks below.
1449
*/
1450
int exit_state = READ_ONCE(p->exit_state);
1451
int ret;
1452
1453
if (unlikely(exit_state == EXIT_DEAD))
1454
return 0;
1455
1456
ret = eligible_child(wo, ptrace, p);
1457
if (!ret)
1458
return ret;
1459
1460
if (unlikely(exit_state == EXIT_TRACE)) {
1461
/*
1462
* ptrace == 0 means we are the natural parent. In this case
1463
* we should clear notask_error, debugger will notify us.
1464
*/
1465
if (likely(!ptrace))
1466
wo->notask_error = 0;
1467
return 0;
1468
}
1469
1470
if (likely(!ptrace) && unlikely(p->ptrace)) {
1471
/*
1472
* If it is traced by its real parent's group, just pretend
1473
* the caller is ptrace_do_wait() and reap this child if it
1474
* is zombie.
1475
*
1476
* This also hides group stop state from real parent; otherwise
1477
* a single stop can be reported twice as group and ptrace stop.
1478
* If a ptracer wants to distinguish these two events for its
1479
* own children it should create a separate process which takes
1480
* the role of real parent.
1481
*/
1482
if (!ptrace_reparented(p))
1483
ptrace = 1;
1484
}
1485
1486
/* slay zombie? */
1487
if (exit_state == EXIT_ZOMBIE) {
1488
/* we don't reap group leaders with subthreads */
1489
if (!delay_group_leader(p)) {
1490
/*
1491
* A zombie ptracee is only visible to its ptracer.
1492
* Notification and reaping will be cascaded to the
1493
* real parent when the ptracer detaches.
1494
*/
1495
if (unlikely(ptrace) || likely(!p->ptrace))
1496
return wait_task_zombie(wo, p);
1497
}
1498
1499
/*
1500
* Allow access to stopped/continued state via zombie by
1501
* falling through. Clearing of notask_error is complex.
1502
*
1503
* When !@ptrace:
1504
*
1505
* If WEXITED is set, notask_error should naturally be
1506
* cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1507
* so, if there are live subthreads, there are events to
1508
* wait for. If all subthreads are dead, it's still safe
1509
* to clear - this function will be called again in finite
1510
* amount time once all the subthreads are released and
1511
* will then return without clearing.
1512
*
1513
* When @ptrace:
1514
*
1515
* Stopped state is per-task and thus can't change once the
1516
* target task dies. Only continued and exited can happen.
1517
* Clear notask_error if WCONTINUED | WEXITED.
1518
*/
1519
if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1520
wo->notask_error = 0;
1521
} else {
1522
/*
1523
* @p is alive and it's gonna stop, continue or exit, so
1524
* there always is something to wait for.
1525
*/
1526
wo->notask_error = 0;
1527
}
1528
1529
/*
1530
* Wait for stopped. Depending on @ptrace, different stopped state
1531
* is used and the two don't interact with each other.
1532
*/
1533
ret = wait_task_stopped(wo, ptrace, p);
1534
if (ret)
1535
return ret;
1536
1537
/*
1538
* Wait for continued. There's only one continued state and the
1539
* ptracer can consume it which can confuse the real parent. Don't
1540
* use WCONTINUED from ptracer. You don't need or want it.
1541
*/
1542
return wait_task_continued(wo, p);
1543
}
1544
1545
/*
1546
* Do the work of do_wait() for one thread in the group, @tsk.
1547
*
1548
* -ECHILD should be in ->notask_error before the first call.
1549
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
1550
* Returns zero if the search for a child should continue; then
1551
* ->notask_error is 0 if there were any eligible children,
1552
* or still -ECHILD.
1553
*/
1554
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1555
{
1556
struct task_struct *p;
1557
1558
list_for_each_entry(p, &tsk->children, sibling) {
1559
int ret = wait_consider_task(wo, 0, p);
1560
1561
if (ret)
1562
return ret;
1563
}
1564
1565
return 0;
1566
}
1567
1568
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1569
{
1570
struct task_struct *p;
1571
1572
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1573
int ret = wait_consider_task(wo, 1, p);
1574
1575
if (ret)
1576
return ret;
1577
}
1578
1579
return 0;
1580
}
1581
1582
bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1583
{
1584
if (!eligible_pid(wo, p))
1585
return false;
1586
1587
if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1588
return false;
1589
1590
return true;
1591
}
1592
1593
static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1594
int sync, void *key)
1595
{
1596
struct wait_opts *wo = container_of(wait, struct wait_opts,
1597
child_wait);
1598
struct task_struct *p = key;
1599
1600
if (pid_child_should_wake(wo, p))
1601
return default_wake_function(wait, mode, sync, key);
1602
1603
return 0;
1604
}
1605
1606
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1607
{
1608
__wake_up_sync_key(&parent->signal->wait_chldexit,
1609
TASK_INTERRUPTIBLE, p);
1610
}
1611
1612
static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1613
struct task_struct *target)
1614
{
1615
struct task_struct *parent =
1616
!ptrace ? target->real_parent : target->parent;
1617
1618
return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1619
same_thread_group(current, parent));
1620
}
1621
1622
/*
1623
* Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1624
* and tracee lists to find the target task.
1625
*/
1626
static int do_wait_pid(struct wait_opts *wo)
1627
{
1628
bool ptrace;
1629
struct task_struct *target;
1630
int retval;
1631
1632
ptrace = false;
1633
target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1634
if (target && is_effectively_child(wo, ptrace, target)) {
1635
retval = wait_consider_task(wo, ptrace, target);
1636
if (retval)
1637
return retval;
1638
}
1639
1640
ptrace = true;
1641
target = pid_task(wo->wo_pid, PIDTYPE_PID);
1642
if (target && target->ptrace &&
1643
is_effectively_child(wo, ptrace, target)) {
1644
retval = wait_consider_task(wo, ptrace, target);
1645
if (retval)
1646
return retval;
1647
}
1648
1649
return 0;
1650
}
1651
1652
long __do_wait(struct wait_opts *wo)
1653
{
1654
long retval;
1655
1656
/*
1657
* If there is nothing that can match our criteria, just get out.
1658
* We will clear ->notask_error to zero if we see any child that
1659
* might later match our criteria, even if we are not able to reap
1660
* it yet.
1661
*/
1662
wo->notask_error = -ECHILD;
1663
if ((wo->wo_type < PIDTYPE_MAX) &&
1664
(!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1665
goto notask;
1666
1667
read_lock(&tasklist_lock);
1668
1669
if (wo->wo_type == PIDTYPE_PID) {
1670
retval = do_wait_pid(wo);
1671
if (retval)
1672
return retval;
1673
} else {
1674
struct task_struct *tsk = current;
1675
1676
do {
1677
retval = do_wait_thread(wo, tsk);
1678
if (retval)
1679
return retval;
1680
1681
retval = ptrace_do_wait(wo, tsk);
1682
if (retval)
1683
return retval;
1684
1685
if (wo->wo_flags & __WNOTHREAD)
1686
break;
1687
} while_each_thread(current, tsk);
1688
}
1689
read_unlock(&tasklist_lock);
1690
1691
notask:
1692
retval = wo->notask_error;
1693
if (!retval && !(wo->wo_flags & WNOHANG))
1694
return -ERESTARTSYS;
1695
1696
return retval;
1697
}
1698
1699
static long do_wait(struct wait_opts *wo)
1700
{
1701
int retval;
1702
1703
trace_sched_process_wait(wo->wo_pid);
1704
1705
init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1706
wo->child_wait.private = current;
1707
add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1708
1709
do {
1710
set_current_state(TASK_INTERRUPTIBLE);
1711
retval = __do_wait(wo);
1712
if (retval != -ERESTARTSYS)
1713
break;
1714
if (signal_pending(current))
1715
break;
1716
schedule();
1717
} while (1);
1718
1719
__set_current_state(TASK_RUNNING);
1720
remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1721
return retval;
1722
}
1723
1724
int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1725
struct waitid_info *infop, int options,
1726
struct rusage *ru)
1727
{
1728
unsigned int f_flags = 0;
1729
struct pid *pid = NULL;
1730
enum pid_type type;
1731
1732
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1733
__WNOTHREAD|__WCLONE|__WALL))
1734
return -EINVAL;
1735
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1736
return -EINVAL;
1737
1738
switch (which) {
1739
case P_ALL:
1740
type = PIDTYPE_MAX;
1741
break;
1742
case P_PID:
1743
type = PIDTYPE_PID;
1744
if (upid <= 0)
1745
return -EINVAL;
1746
1747
pid = find_get_pid(upid);
1748
break;
1749
case P_PGID:
1750
type = PIDTYPE_PGID;
1751
if (upid < 0)
1752
return -EINVAL;
1753
1754
if (upid)
1755
pid = find_get_pid(upid);
1756
else
1757
pid = get_task_pid(current, PIDTYPE_PGID);
1758
break;
1759
case P_PIDFD:
1760
type = PIDTYPE_PID;
1761
if (upid < 0)
1762
return -EINVAL;
1763
1764
pid = pidfd_get_pid(upid, &f_flags);
1765
if (IS_ERR(pid))
1766
return PTR_ERR(pid);
1767
1768
break;
1769
default:
1770
return -EINVAL;
1771
}
1772
1773
wo->wo_type = type;
1774
wo->wo_pid = pid;
1775
wo->wo_flags = options;
1776
wo->wo_info = infop;
1777
wo->wo_rusage = ru;
1778
if (f_flags & O_NONBLOCK)
1779
wo->wo_flags |= WNOHANG;
1780
1781
return 0;
1782
}
1783
1784
static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1785
int options, struct rusage *ru)
1786
{
1787
struct wait_opts wo;
1788
long ret;
1789
1790
ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1791
if (ret)
1792
return ret;
1793
1794
ret = do_wait(&wo);
1795
if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1796
ret = -EAGAIN;
1797
1798
put_pid(wo.wo_pid);
1799
return ret;
1800
}
1801
1802
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1803
infop, int, options, struct rusage __user *, ru)
1804
{
1805
struct rusage r;
1806
struct waitid_info info = {.status = 0};
1807
long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1808
int signo = 0;
1809
1810
if (err > 0) {
1811
signo = SIGCHLD;
1812
err = 0;
1813
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1814
return -EFAULT;
1815
}
1816
if (!infop)
1817
return err;
1818
1819
if (!user_write_access_begin(infop, sizeof(*infop)))
1820
return -EFAULT;
1821
1822
unsafe_put_user(signo, &infop->si_signo, Efault);
1823
unsafe_put_user(0, &infop->si_errno, Efault);
1824
unsafe_put_user(info.cause, &infop->si_code, Efault);
1825
unsafe_put_user(info.pid, &infop->si_pid, Efault);
1826
unsafe_put_user(info.uid, &infop->si_uid, Efault);
1827
unsafe_put_user(info.status, &infop->si_status, Efault);
1828
user_write_access_end();
1829
return err;
1830
Efault:
1831
user_write_access_end();
1832
return -EFAULT;
1833
}
1834
1835
long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1836
struct rusage *ru)
1837
{
1838
struct wait_opts wo;
1839
struct pid *pid = NULL;
1840
enum pid_type type;
1841
long ret;
1842
1843
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1844
__WNOTHREAD|__WCLONE|__WALL))
1845
return -EINVAL;
1846
1847
/* -INT_MIN is not defined */
1848
if (upid == INT_MIN)
1849
return -ESRCH;
1850
1851
if (upid == -1)
1852
type = PIDTYPE_MAX;
1853
else if (upid < 0) {
1854
type = PIDTYPE_PGID;
1855
pid = find_get_pid(-upid);
1856
} else if (upid == 0) {
1857
type = PIDTYPE_PGID;
1858
pid = get_task_pid(current, PIDTYPE_PGID);
1859
} else /* upid > 0 */ {
1860
type = PIDTYPE_PID;
1861
pid = find_get_pid(upid);
1862
}
1863
1864
wo.wo_type = type;
1865
wo.wo_pid = pid;
1866
wo.wo_flags = options | WEXITED;
1867
wo.wo_info = NULL;
1868
wo.wo_stat = 0;
1869
wo.wo_rusage = ru;
1870
ret = do_wait(&wo);
1871
put_pid(pid);
1872
if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1873
ret = -EFAULT;
1874
1875
return ret;
1876
}
1877
1878
int kernel_wait(pid_t pid, int *stat)
1879
{
1880
struct wait_opts wo = {
1881
.wo_type = PIDTYPE_PID,
1882
.wo_pid = find_get_pid(pid),
1883
.wo_flags = WEXITED,
1884
};
1885
int ret;
1886
1887
ret = do_wait(&wo);
1888
if (ret > 0 && wo.wo_stat)
1889
*stat = wo.wo_stat;
1890
put_pid(wo.wo_pid);
1891
return ret;
1892
}
1893
1894
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1895
int, options, struct rusage __user *, ru)
1896
{
1897
struct rusage r;
1898
long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1899
1900
if (err > 0) {
1901
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1902
return -EFAULT;
1903
}
1904
return err;
1905
}
1906
1907
#ifdef __ARCH_WANT_SYS_WAITPID
1908
1909
/*
1910
* sys_waitpid() remains for compatibility. waitpid() should be
1911
* implemented by calling sys_wait4() from libc.a.
1912
*/
1913
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1914
{
1915
return kernel_wait4(pid, stat_addr, options, NULL);
1916
}
1917
1918
#endif
1919
1920
#ifdef CONFIG_COMPAT
1921
COMPAT_SYSCALL_DEFINE4(wait4,
1922
compat_pid_t, pid,
1923
compat_uint_t __user *, stat_addr,
1924
int, options,
1925
struct compat_rusage __user *, ru)
1926
{
1927
struct rusage r;
1928
long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1929
if (err > 0) {
1930
if (ru && put_compat_rusage(&r, ru))
1931
return -EFAULT;
1932
}
1933
return err;
1934
}
1935
1936
COMPAT_SYSCALL_DEFINE5(waitid,
1937
int, which, compat_pid_t, pid,
1938
struct compat_siginfo __user *, infop, int, options,
1939
struct compat_rusage __user *, uru)
1940
{
1941
struct rusage ru;
1942
struct waitid_info info = {.status = 0};
1943
long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1944
int signo = 0;
1945
if (err > 0) {
1946
signo = SIGCHLD;
1947
err = 0;
1948
if (uru) {
1949
/* kernel_waitid() overwrites everything in ru */
1950
if (COMPAT_USE_64BIT_TIME)
1951
err = copy_to_user(uru, &ru, sizeof(ru));
1952
else
1953
err = put_compat_rusage(&ru, uru);
1954
if (err)
1955
return -EFAULT;
1956
}
1957
}
1958
1959
if (!infop)
1960
return err;
1961
1962
if (!user_write_access_begin(infop, sizeof(*infop)))
1963
return -EFAULT;
1964
1965
unsafe_put_user(signo, &infop->si_signo, Efault);
1966
unsafe_put_user(0, &infop->si_errno, Efault);
1967
unsafe_put_user(info.cause, &infop->si_code, Efault);
1968
unsafe_put_user(info.pid, &infop->si_pid, Efault);
1969
unsafe_put_user(info.uid, &infop->si_uid, Efault);
1970
unsafe_put_user(info.status, &infop->si_status, Efault);
1971
user_write_access_end();
1972
return err;
1973
Efault:
1974
user_write_access_end();
1975
return -EFAULT;
1976
}
1977
#endif
1978
1979
/*
1980
* This needs to be __function_aligned as GCC implicitly makes any
1981
* implementation of abort() cold and drops alignment specified by
1982
* -falign-functions=N.
1983
*
1984
* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1985
*/
1986
__weak __function_aligned void abort(void)
1987
{
1988
BUG();
1989
1990
/* if that doesn't kill us, halt */
1991
panic("Oops failed to kill thread");
1992
}
1993
EXPORT_SYMBOL(abort);
1994
1995