Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/futex/core.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Fast Userspace Mutexes (which I call "Futexes!").
4
* (C) Rusty Russell, IBM 2002
5
*
6
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8
*
9
* Removed page pinning, fix privately mapped COW pages and other cleanups
10
* (C) Copyright 2003, 2004 Jamie Lokier
11
*
12
* Robust futex support started by Ingo Molnar
13
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15
*
16
* PI-futex support started by Ingo Molnar and Thomas Gleixner
17
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
18
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]>
19
*
20
* PRIVATE futexes by Eric Dumazet
21
* Copyright (C) 2007 Eric Dumazet <[email protected]>
22
*
23
* Requeue-PI support by Darren Hart <[email protected]>
24
* Copyright (C) IBM Corporation, 2009
25
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
26
*
27
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28
* enough at me, Linus for the original (flawed) idea, Matthew
29
* Kirkwood for proof-of-concept implementation.
30
*
31
* "The futexes are also cursed."
32
* "But they come in a choice of three flavours!"
33
*/
34
#include <linux/compat.h>
35
#include <linux/jhash.h>
36
#include <linux/pagemap.h>
37
#include <linux/debugfs.h>
38
#include <linux/plist.h>
39
#include <linux/gfp.h>
40
#include <linux/vmalloc.h>
41
#include <linux/memblock.h>
42
#include <linux/fault-inject.h>
43
#include <linux/slab.h>
44
#include <linux/prctl.h>
45
#include <linux/mempolicy.h>
46
#include <linux/mmap_lock.h>
47
48
#include "futex.h"
49
#include "../locking/rtmutex_common.h"
50
51
/*
52
* The base of the bucket array and its size are always used together
53
* (after initialization only in futex_hash()), so ensure that they
54
* reside in the same cacheline.
55
*/
56
static struct {
57
unsigned long hashmask;
58
unsigned int hashshift;
59
struct futex_hash_bucket *queues[MAX_NUMNODES];
60
} __futex_data __read_mostly __aligned(2*sizeof(long));
61
62
#define futex_hashmask (__futex_data.hashmask)
63
#define futex_hashshift (__futex_data.hashshift)
64
#define futex_queues (__futex_data.queues)
65
66
struct futex_private_hash {
67
int state;
68
unsigned int hash_mask;
69
struct rcu_head rcu;
70
void *mm;
71
bool custom;
72
struct futex_hash_bucket queues[];
73
};
74
75
/*
76
* Fault injections for futexes.
77
*/
78
#ifdef CONFIG_FAIL_FUTEX
79
80
static struct {
81
struct fault_attr attr;
82
83
bool ignore_private;
84
} fail_futex = {
85
.attr = FAULT_ATTR_INITIALIZER,
86
.ignore_private = false,
87
};
88
89
static int __init setup_fail_futex(char *str)
90
{
91
return setup_fault_attr(&fail_futex.attr, str);
92
}
93
__setup("fail_futex=", setup_fail_futex);
94
95
bool should_fail_futex(bool fshared)
96
{
97
if (fail_futex.ignore_private && !fshared)
98
return false;
99
100
return should_fail(&fail_futex.attr, 1);
101
}
102
103
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
104
105
static int __init fail_futex_debugfs(void)
106
{
107
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
108
struct dentry *dir;
109
110
dir = fault_create_debugfs_attr("fail_futex", NULL,
111
&fail_futex.attr);
112
if (IS_ERR(dir))
113
return PTR_ERR(dir);
114
115
debugfs_create_bool("ignore-private", mode, dir,
116
&fail_futex.ignore_private);
117
return 0;
118
}
119
120
late_initcall(fail_futex_debugfs);
121
122
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
123
124
#endif /* CONFIG_FAIL_FUTEX */
125
126
static struct futex_hash_bucket *
127
__futex_hash(union futex_key *key, struct futex_private_hash *fph);
128
129
#ifdef CONFIG_FUTEX_PRIVATE_HASH
130
static bool futex_ref_get(struct futex_private_hash *fph);
131
static bool futex_ref_put(struct futex_private_hash *fph);
132
static bool futex_ref_is_dead(struct futex_private_hash *fph);
133
134
enum { FR_PERCPU = 0, FR_ATOMIC };
135
136
static inline bool futex_key_is_private(union futex_key *key)
137
{
138
/*
139
* Relies on get_futex_key() to set either bit for shared
140
* futexes -- see comment with union futex_key.
141
*/
142
return !(key->both.offset & (FUT_OFF_INODE | FUT_OFF_MMSHARED));
143
}
144
145
static bool futex_private_hash_get(struct futex_private_hash *fph)
146
{
147
return futex_ref_get(fph);
148
}
149
150
void futex_private_hash_put(struct futex_private_hash *fph)
151
{
152
if (futex_ref_put(fph))
153
wake_up_var(fph->mm);
154
}
155
156
/**
157
* futex_hash_get - Get an additional reference for the local hash.
158
* @hb: ptr to the private local hash.
159
*
160
* Obtain an additional reference for the already obtained hash bucket. The
161
* caller must already own an reference.
162
*/
163
void futex_hash_get(struct futex_hash_bucket *hb)
164
{
165
struct futex_private_hash *fph = hb->priv;
166
167
if (!fph)
168
return;
169
WARN_ON_ONCE(!futex_private_hash_get(fph));
170
}
171
172
void futex_hash_put(struct futex_hash_bucket *hb)
173
{
174
struct futex_private_hash *fph = hb->priv;
175
176
if (!fph)
177
return;
178
futex_private_hash_put(fph);
179
}
180
181
static struct futex_hash_bucket *
182
__futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
183
{
184
u32 hash;
185
186
if (!futex_key_is_private(key))
187
return NULL;
188
189
if (!fph)
190
fph = rcu_dereference(key->private.mm->futex_phash);
191
if (!fph || !fph->hash_mask)
192
return NULL;
193
194
hash = jhash2((void *)&key->private.address,
195
sizeof(key->private.address) / 4,
196
key->both.offset);
197
return &fph->queues[hash & fph->hash_mask];
198
}
199
200
static void futex_rehash_private(struct futex_private_hash *old,
201
struct futex_private_hash *new)
202
{
203
struct futex_hash_bucket *hb_old, *hb_new;
204
unsigned int slots = old->hash_mask + 1;
205
unsigned int i;
206
207
for (i = 0; i < slots; i++) {
208
struct futex_q *this, *tmp;
209
210
hb_old = &old->queues[i];
211
212
spin_lock(&hb_old->lock);
213
plist_for_each_entry_safe(this, tmp, &hb_old->chain, list) {
214
215
plist_del(&this->list, &hb_old->chain);
216
futex_hb_waiters_dec(hb_old);
217
218
WARN_ON_ONCE(this->lock_ptr != &hb_old->lock);
219
220
hb_new = __futex_hash(&this->key, new);
221
futex_hb_waiters_inc(hb_new);
222
/*
223
* The new pointer isn't published yet but an already
224
* moved user can be unqueued due to timeout or signal.
225
*/
226
spin_lock_nested(&hb_new->lock, SINGLE_DEPTH_NESTING);
227
plist_add(&this->list, &hb_new->chain);
228
this->lock_ptr = &hb_new->lock;
229
spin_unlock(&hb_new->lock);
230
}
231
spin_unlock(&hb_old->lock);
232
}
233
}
234
235
static bool __futex_pivot_hash(struct mm_struct *mm,
236
struct futex_private_hash *new)
237
{
238
struct futex_private_hash *fph;
239
240
WARN_ON_ONCE(mm->futex_phash_new);
241
242
fph = rcu_dereference_protected(mm->futex_phash,
243
lockdep_is_held(&mm->futex_hash_lock));
244
if (fph) {
245
if (!futex_ref_is_dead(fph)) {
246
mm->futex_phash_new = new;
247
return false;
248
}
249
250
futex_rehash_private(fph, new);
251
}
252
new->state = FR_PERCPU;
253
scoped_guard(rcu) {
254
mm->futex_batches = get_state_synchronize_rcu();
255
rcu_assign_pointer(mm->futex_phash, new);
256
}
257
kvfree_rcu(fph, rcu);
258
return true;
259
}
260
261
static void futex_pivot_hash(struct mm_struct *mm)
262
{
263
scoped_guard(mutex, &mm->futex_hash_lock) {
264
struct futex_private_hash *fph;
265
266
fph = mm->futex_phash_new;
267
if (fph) {
268
mm->futex_phash_new = NULL;
269
__futex_pivot_hash(mm, fph);
270
}
271
}
272
}
273
274
struct futex_private_hash *futex_private_hash(void)
275
{
276
struct mm_struct *mm = current->mm;
277
/*
278
* Ideally we don't loop. If there is a replacement in progress
279
* then a new private hash is already prepared and a reference can't be
280
* obtained once the last user dropped it's.
281
* In that case we block on mm_struct::futex_hash_lock and either have
282
* to perform the replacement or wait while someone else is doing the
283
* job. Eitherway, on the second iteration we acquire a reference on the
284
* new private hash or loop again because a new replacement has been
285
* requested.
286
*/
287
again:
288
scoped_guard(rcu) {
289
struct futex_private_hash *fph;
290
291
fph = rcu_dereference(mm->futex_phash);
292
if (!fph)
293
return NULL;
294
295
if (futex_private_hash_get(fph))
296
return fph;
297
}
298
futex_pivot_hash(mm);
299
goto again;
300
}
301
302
struct futex_hash_bucket *futex_hash(union futex_key *key)
303
{
304
struct futex_private_hash *fph;
305
struct futex_hash_bucket *hb;
306
307
again:
308
scoped_guard(rcu) {
309
hb = __futex_hash(key, NULL);
310
fph = hb->priv;
311
312
if (!fph || futex_private_hash_get(fph))
313
return hb;
314
}
315
futex_pivot_hash(key->private.mm);
316
goto again;
317
}
318
319
#else /* !CONFIG_FUTEX_PRIVATE_HASH */
320
321
static struct futex_hash_bucket *
322
__futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
323
{
324
return NULL;
325
}
326
327
struct futex_hash_bucket *futex_hash(union futex_key *key)
328
{
329
return __futex_hash(key, NULL);
330
}
331
332
#endif /* CONFIG_FUTEX_PRIVATE_HASH */
333
334
#ifdef CONFIG_FUTEX_MPOL
335
336
static int __futex_key_to_node(struct mm_struct *mm, unsigned long addr)
337
{
338
struct vm_area_struct *vma = vma_lookup(mm, addr);
339
struct mempolicy *mpol;
340
int node = FUTEX_NO_NODE;
341
342
if (!vma)
343
return FUTEX_NO_NODE;
344
345
mpol = vma_policy(vma);
346
if (!mpol)
347
return FUTEX_NO_NODE;
348
349
switch (mpol->mode) {
350
case MPOL_PREFERRED:
351
node = first_node(mpol->nodes);
352
break;
353
case MPOL_PREFERRED_MANY:
354
case MPOL_BIND:
355
if (mpol->home_node != NUMA_NO_NODE)
356
node = mpol->home_node;
357
break;
358
default:
359
break;
360
}
361
362
return node;
363
}
364
365
static int futex_key_to_node_opt(struct mm_struct *mm, unsigned long addr)
366
{
367
int seq, node;
368
369
guard(rcu)();
370
371
if (!mmap_lock_speculate_try_begin(mm, &seq))
372
return -EBUSY;
373
374
node = __futex_key_to_node(mm, addr);
375
376
if (mmap_lock_speculate_retry(mm, seq))
377
return -EAGAIN;
378
379
return node;
380
}
381
382
static int futex_mpol(struct mm_struct *mm, unsigned long addr)
383
{
384
int node;
385
386
node = futex_key_to_node_opt(mm, addr);
387
if (node >= FUTEX_NO_NODE)
388
return node;
389
390
guard(mmap_read_lock)(mm);
391
return __futex_key_to_node(mm, addr);
392
}
393
394
#else /* !CONFIG_FUTEX_MPOL */
395
396
static int futex_mpol(struct mm_struct *mm, unsigned long addr)
397
{
398
return FUTEX_NO_NODE;
399
}
400
401
#endif /* CONFIG_FUTEX_MPOL */
402
403
/**
404
* __futex_hash - Return the hash bucket
405
* @key: Pointer to the futex key for which the hash is calculated
406
* @fph: Pointer to private hash if known
407
*
408
* We hash on the keys returned from get_futex_key (see below) and return the
409
* corresponding hash bucket.
410
* If the FUTEX is PROCESS_PRIVATE then a per-process hash bucket (from the
411
* private hash) is returned if existing. Otherwise a hash bucket from the
412
* global hash is returned.
413
*/
414
static struct futex_hash_bucket *
415
__futex_hash(union futex_key *key, struct futex_private_hash *fph)
416
{
417
int node = key->both.node;
418
u32 hash;
419
420
if (node == FUTEX_NO_NODE) {
421
struct futex_hash_bucket *hb;
422
423
hb = __futex_hash_private(key, fph);
424
if (hb)
425
return hb;
426
}
427
428
hash = jhash2((u32 *)key,
429
offsetof(typeof(*key), both.offset) / sizeof(u32),
430
key->both.offset);
431
432
if (node == FUTEX_NO_NODE) {
433
/*
434
* In case of !FLAGS_NUMA, use some unused hash bits to pick a
435
* node -- this ensures regular futexes are interleaved across
436
* the nodes and avoids having to allocate multiple
437
* hash-tables.
438
*
439
* NOTE: this isn't perfectly uniform, but it is fast and
440
* handles sparse node masks.
441
*/
442
node = (hash >> futex_hashshift) % nr_node_ids;
443
if (!node_possible(node)) {
444
node = find_next_bit_wrap(node_possible_map.bits,
445
nr_node_ids, node);
446
}
447
}
448
449
return &futex_queues[node][hash & futex_hashmask];
450
}
451
452
/**
453
* futex_setup_timer - set up the sleeping hrtimer.
454
* @time: ptr to the given timeout value
455
* @timeout: the hrtimer_sleeper structure to be set up
456
* @flags: futex flags
457
* @range_ns: optional range in ns
458
*
459
* Return: Initialized hrtimer_sleeper structure or NULL if no timeout
460
* value given
461
*/
462
struct hrtimer_sleeper *
463
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
464
int flags, u64 range_ns)
465
{
466
if (!time)
467
return NULL;
468
469
hrtimer_setup_sleeper_on_stack(timeout,
470
(flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC,
471
HRTIMER_MODE_ABS);
472
/*
473
* If range_ns is 0, calling hrtimer_set_expires_range_ns() is
474
* effectively the same as calling hrtimer_set_expires().
475
*/
476
hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
477
478
return timeout;
479
}
480
481
/*
482
* Generate a machine wide unique identifier for this inode.
483
*
484
* This relies on u64 not wrapping in the life-time of the machine; which with
485
* 1ns resolution means almost 585 years.
486
*
487
* This further relies on the fact that a well formed program will not unmap
488
* the file while it has a (shared) futex waiting on it. This mapping will have
489
* a file reference which pins the mount and inode.
490
*
491
* If for some reason an inode gets evicted and read back in again, it will get
492
* a new sequence number and will _NOT_ match, even though it is the exact same
493
* file.
494
*
495
* It is important that futex_match() will never have a false-positive, esp.
496
* for PI futexes that can mess up the state. The above argues that false-negatives
497
* are only possible for malformed programs.
498
*/
499
static u64 get_inode_sequence_number(struct inode *inode)
500
{
501
static atomic64_t i_seq;
502
u64 old;
503
504
/* Does the inode already have a sequence number? */
505
old = atomic64_read(&inode->i_sequence);
506
if (likely(old))
507
return old;
508
509
for (;;) {
510
u64 new = atomic64_inc_return(&i_seq);
511
if (WARN_ON_ONCE(!new))
512
continue;
513
514
old = 0;
515
if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new))
516
return old;
517
return new;
518
}
519
}
520
521
/**
522
* get_futex_key() - Get parameters which are the keys for a futex
523
* @uaddr: virtual address of the futex
524
* @flags: FLAGS_*
525
* @key: address where result is stored.
526
* @rw: mapping needs to be read/write (values: FUTEX_READ,
527
* FUTEX_WRITE)
528
*
529
* Return: a negative error code or 0
530
*
531
* The key words are stored in @key on success.
532
*
533
* For shared mappings (when @fshared), the key is:
534
*
535
* ( inode->i_sequence, page offset within mapping, offset_within_page )
536
*
537
* [ also see get_inode_sequence_number() ]
538
*
539
* For private mappings (or when !@fshared), the key is:
540
*
541
* ( current->mm, address, 0 )
542
*
543
* This allows (cross process, where applicable) identification of the futex
544
* without keeping the page pinned for the duration of the FUTEX_WAIT.
545
*
546
* lock_page() might sleep, the caller should not hold a spinlock.
547
*/
548
int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
549
enum futex_access rw)
550
{
551
unsigned long address = (unsigned long)uaddr;
552
struct mm_struct *mm = current->mm;
553
struct page *page;
554
struct folio *folio;
555
struct address_space *mapping;
556
int node, err, size, ro = 0;
557
bool node_updated = false;
558
bool fshared;
559
560
fshared = flags & FLAGS_SHARED;
561
size = futex_size(flags);
562
if (flags & FLAGS_NUMA)
563
size *= 2;
564
565
/*
566
* The futex address must be "naturally" aligned.
567
*/
568
key->both.offset = address % PAGE_SIZE;
569
if (unlikely((address % size) != 0))
570
return -EINVAL;
571
address -= key->both.offset;
572
573
if (unlikely(!access_ok(uaddr, size)))
574
return -EFAULT;
575
576
if (unlikely(should_fail_futex(fshared)))
577
return -EFAULT;
578
579
node = FUTEX_NO_NODE;
580
581
if (flags & FLAGS_NUMA) {
582
u32 __user *naddr = (void *)uaddr + size / 2;
583
584
if (futex_get_value(&node, naddr))
585
return -EFAULT;
586
587
if ((node != FUTEX_NO_NODE) &&
588
((unsigned int)node >= MAX_NUMNODES || !node_possible(node)))
589
return -EINVAL;
590
}
591
592
if (node == FUTEX_NO_NODE && (flags & FLAGS_MPOL)) {
593
node = futex_mpol(mm, address);
594
node_updated = true;
595
}
596
597
if (flags & FLAGS_NUMA) {
598
u32 __user *naddr = (void *)uaddr + size / 2;
599
600
if (node == FUTEX_NO_NODE) {
601
node = numa_node_id();
602
node_updated = true;
603
}
604
if (node_updated && futex_put_value(node, naddr))
605
return -EFAULT;
606
}
607
608
key->both.node = node;
609
610
/*
611
* PROCESS_PRIVATE futexes are fast.
612
* As the mm cannot disappear under us and the 'key' only needs
613
* virtual address, we dont even have to find the underlying vma.
614
* Note : We do have to check 'uaddr' is a valid user address,
615
* but access_ok() should be faster than find_vma()
616
*/
617
if (!fshared) {
618
/*
619
* On no-MMU, shared futexes are treated as private, therefore
620
* we must not include the current process in the key. Since
621
* there is only one address space, the address is a unique key
622
* on its own.
623
*/
624
if (IS_ENABLED(CONFIG_MMU))
625
key->private.mm = mm;
626
else
627
key->private.mm = NULL;
628
629
key->private.address = address;
630
return 0;
631
}
632
633
again:
634
/* Ignore any VERIFY_READ mapping (futex common case) */
635
if (unlikely(should_fail_futex(true)))
636
return -EFAULT;
637
638
err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
639
/*
640
* If write access is not required (eg. FUTEX_WAIT), try
641
* and get read-only access.
642
*/
643
if (err == -EFAULT && rw == FUTEX_READ) {
644
err = get_user_pages_fast(address, 1, 0, &page);
645
ro = 1;
646
}
647
if (err < 0)
648
return err;
649
else
650
err = 0;
651
652
/*
653
* The treatment of mapping from this point on is critical. The folio
654
* lock protects many things but in this context the folio lock
655
* stabilizes mapping, prevents inode freeing in the shared
656
* file-backed region case and guards against movement to swap cache.
657
*
658
* Strictly speaking the folio lock is not needed in all cases being
659
* considered here and folio lock forces unnecessarily serialization.
660
* From this point on, mapping will be re-verified if necessary and
661
* folio lock will be acquired only if it is unavoidable
662
*
663
* Mapping checks require the folio so it is looked up now. For
664
* anonymous pages, it does not matter if the folio is split
665
* in the future as the key is based on the address. For
666
* filesystem-backed pages, the precise page is required as the
667
* index of the page determines the key.
668
*/
669
folio = page_folio(page);
670
mapping = READ_ONCE(folio->mapping);
671
672
/*
673
* If folio->mapping is NULL, then it cannot be an anonymous
674
* page; but it might be the ZERO_PAGE or in the gate area or
675
* in a special mapping (all cases which we are happy to fail);
676
* or it may have been a good file page when get_user_pages_fast
677
* found it, but truncated or holepunched or subjected to
678
* invalidate_complete_page2 before we got the folio lock (also
679
* cases which we are happy to fail). And we hold a reference,
680
* so refcount care in invalidate_inode_page's remove_mapping
681
* prevents drop_caches from setting mapping to NULL beneath us.
682
*
683
* The case we do have to guard against is when memory pressure made
684
* shmem_writepage move it from filecache to swapcache beneath us:
685
* an unlikely race, but we do need to retry for folio->mapping.
686
*/
687
if (unlikely(!mapping)) {
688
int shmem_swizzled;
689
690
/*
691
* Folio lock is required to identify which special case above
692
* applies. If this is really a shmem page then the folio lock
693
* will prevent unexpected transitions.
694
*/
695
folio_lock(folio);
696
shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
697
folio_unlock(folio);
698
folio_put(folio);
699
700
if (shmem_swizzled)
701
goto again;
702
703
return -EFAULT;
704
}
705
706
/*
707
* Private mappings are handled in a simple way.
708
*
709
* If the futex key is stored in anonymous memory, then the associated
710
* object is the mm which is implicitly pinned by the calling process.
711
*
712
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
713
* it's a read-only handle, it's expected that futexes attach to
714
* the object not the particular process.
715
*/
716
if (folio_test_anon(folio)) {
717
/*
718
* A RO anonymous page will never change and thus doesn't make
719
* sense for futex operations.
720
*/
721
if (unlikely(should_fail_futex(true)) || ro) {
722
err = -EFAULT;
723
goto out;
724
}
725
726
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
727
key->private.mm = mm;
728
key->private.address = address;
729
730
} else {
731
struct inode *inode;
732
733
/*
734
* The associated futex object in this case is the inode and
735
* the folio->mapping must be traversed. Ordinarily this should
736
* be stabilised under folio lock but it's not strictly
737
* necessary in this case as we just want to pin the inode, not
738
* update i_pages or anything like that.
739
*
740
* The RCU read lock is taken as the inode is finally freed
741
* under RCU. If the mapping still matches expectations then the
742
* mapping->host can be safely accessed as being a valid inode.
743
*/
744
rcu_read_lock();
745
746
if (READ_ONCE(folio->mapping) != mapping) {
747
rcu_read_unlock();
748
folio_put(folio);
749
750
goto again;
751
}
752
753
inode = READ_ONCE(mapping->host);
754
if (!inode) {
755
rcu_read_unlock();
756
folio_put(folio);
757
758
goto again;
759
}
760
761
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
762
key->shared.i_seq = get_inode_sequence_number(inode);
763
key->shared.pgoff = page_pgoff(folio, page);
764
rcu_read_unlock();
765
}
766
767
out:
768
folio_put(folio);
769
return err;
770
}
771
772
/**
773
* fault_in_user_writeable() - Fault in user address and verify RW access
774
* @uaddr: pointer to faulting user space address
775
*
776
* Slow path to fixup the fault we just took in the atomic write
777
* access to @uaddr.
778
*
779
* We have no generic implementation of a non-destructive write to the
780
* user address. We know that we faulted in the atomic pagefault
781
* disabled section so we can as well avoid the #PF overhead by
782
* calling get_user_pages() right away.
783
*/
784
int fault_in_user_writeable(u32 __user *uaddr)
785
{
786
struct mm_struct *mm = current->mm;
787
int ret;
788
789
mmap_read_lock(mm);
790
ret = fixup_user_fault(mm, (unsigned long)uaddr,
791
FAULT_FLAG_WRITE, NULL);
792
mmap_read_unlock(mm);
793
794
return ret < 0 ? ret : 0;
795
}
796
797
/**
798
* futex_top_waiter() - Return the highest priority waiter on a futex
799
* @hb: the hash bucket the futex_q's reside in
800
* @key: the futex key (to distinguish it from other futex futex_q's)
801
*
802
* Must be called with the hb lock held.
803
*/
804
struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
805
{
806
struct futex_q *this;
807
808
plist_for_each_entry(this, &hb->chain, list) {
809
if (futex_match(&this->key, key))
810
return this;
811
}
812
return NULL;
813
}
814
815
/**
816
* wait_for_owner_exiting - Block until the owner has exited
817
* @ret: owner's current futex lock status
818
* @exiting: Pointer to the exiting task
819
*
820
* Caller must hold a refcount on @exiting.
821
*/
822
void wait_for_owner_exiting(int ret, struct task_struct *exiting)
823
{
824
if (ret != -EBUSY) {
825
WARN_ON_ONCE(exiting);
826
return;
827
}
828
829
if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
830
return;
831
832
mutex_lock(&exiting->futex_exit_mutex);
833
/*
834
* No point in doing state checking here. If the waiter got here
835
* while the task was in exec()->exec_futex_release() then it can
836
* have any FUTEX_STATE_* value when the waiter has acquired the
837
* mutex. OK, if running, EXITING or DEAD if it reached exit()
838
* already. Highly unlikely and not a problem. Just one more round
839
* through the futex maze.
840
*/
841
mutex_unlock(&exiting->futex_exit_mutex);
842
843
put_task_struct(exiting);
844
}
845
846
/**
847
* __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
848
* @q: The futex_q to unqueue
849
*
850
* The q->lock_ptr must not be NULL and must be held by the caller.
851
*/
852
void __futex_unqueue(struct futex_q *q)
853
{
854
struct futex_hash_bucket *hb;
855
856
if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
857
return;
858
lockdep_assert_held(q->lock_ptr);
859
860
hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
861
plist_del(&q->list, &hb->chain);
862
futex_hb_waiters_dec(hb);
863
}
864
865
/* The key must be already stored in q->key. */
866
void futex_q_lock(struct futex_q *q, struct futex_hash_bucket *hb)
867
__acquires(&hb->lock)
868
{
869
/*
870
* Increment the counter before taking the lock so that
871
* a potential waker won't miss a to-be-slept task that is
872
* waiting for the spinlock. This is safe as all futex_q_lock()
873
* users end up calling futex_queue(). Similarly, for housekeeping,
874
* decrement the counter at futex_q_unlock() when some error has
875
* occurred and we don't end up adding the task to the list.
876
*/
877
futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
878
879
q->lock_ptr = &hb->lock;
880
881
spin_lock(&hb->lock);
882
}
883
884
void futex_q_unlock(struct futex_hash_bucket *hb)
885
__releases(&hb->lock)
886
{
887
futex_hb_waiters_dec(hb);
888
spin_unlock(&hb->lock);
889
}
890
891
void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb,
892
struct task_struct *task)
893
{
894
int prio;
895
896
/*
897
* The priority used to register this element is
898
* - either the real thread-priority for the real-time threads
899
* (i.e. threads with a priority lower than MAX_RT_PRIO)
900
* - or MAX_RT_PRIO for non-RT threads.
901
* Thus, all RT-threads are woken first in priority order, and
902
* the others are woken last, in FIFO order.
903
*/
904
prio = min(current->normal_prio, MAX_RT_PRIO);
905
906
plist_node_init(&q->list, prio);
907
plist_add(&q->list, &hb->chain);
908
q->task = task;
909
}
910
911
/**
912
* futex_unqueue() - Remove the futex_q from its futex_hash_bucket
913
* @q: The futex_q to unqueue
914
*
915
* The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
916
* be paired with exactly one earlier call to futex_queue().
917
*
918
* Return:
919
* - 1 - if the futex_q was still queued (and we removed unqueued it);
920
* - 0 - if the futex_q was already removed by the waking thread
921
*/
922
int futex_unqueue(struct futex_q *q)
923
{
924
spinlock_t *lock_ptr;
925
int ret = 0;
926
927
/* RCU so lock_ptr is not going away during locking. */
928
guard(rcu)();
929
/* In the common case we don't take the spinlock, which is nice. */
930
retry:
931
/*
932
* q->lock_ptr can change between this read and the following spin_lock.
933
* Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
934
* optimizing lock_ptr out of the logic below.
935
*/
936
lock_ptr = READ_ONCE(q->lock_ptr);
937
if (lock_ptr != NULL) {
938
spin_lock(lock_ptr);
939
/*
940
* q->lock_ptr can change between reading it and
941
* spin_lock(), causing us to take the wrong lock. This
942
* corrects the race condition.
943
*
944
* Reasoning goes like this: if we have the wrong lock,
945
* q->lock_ptr must have changed (maybe several times)
946
* between reading it and the spin_lock(). It can
947
* change again after the spin_lock() but only if it was
948
* already changed before the spin_lock(). It cannot,
949
* however, change back to the original value. Therefore
950
* we can detect whether we acquired the correct lock.
951
*/
952
if (unlikely(lock_ptr != q->lock_ptr)) {
953
spin_unlock(lock_ptr);
954
goto retry;
955
}
956
__futex_unqueue(q);
957
958
BUG_ON(q->pi_state);
959
960
spin_unlock(lock_ptr);
961
ret = 1;
962
}
963
964
return ret;
965
}
966
967
void futex_q_lockptr_lock(struct futex_q *q)
968
{
969
spinlock_t *lock_ptr;
970
971
/*
972
* See futex_unqueue() why lock_ptr can change.
973
*/
974
guard(rcu)();
975
retry:
976
lock_ptr = READ_ONCE(q->lock_ptr);
977
spin_lock(lock_ptr);
978
979
if (unlikely(lock_ptr != q->lock_ptr)) {
980
spin_unlock(lock_ptr);
981
goto retry;
982
}
983
}
984
985
/*
986
* PI futexes can not be requeued and must remove themselves from the hash
987
* bucket. The hash bucket lock (i.e. lock_ptr) is held.
988
*/
989
void futex_unqueue_pi(struct futex_q *q)
990
{
991
/*
992
* If the lock was not acquired (due to timeout or signal) then the
993
* rt_waiter is removed before futex_q is. If this is observed by
994
* an unlocker after dropping the rtmutex wait lock and before
995
* acquiring the hash bucket lock, then the unlocker dequeues the
996
* futex_q from the hash bucket list to guarantee consistent state
997
* vs. userspace. Therefore the dequeue here must be conditional.
998
*/
999
if (!plist_node_empty(&q->list))
1000
__futex_unqueue(q);
1001
1002
BUG_ON(!q->pi_state);
1003
put_pi_state(q->pi_state);
1004
q->pi_state = NULL;
1005
}
1006
1007
/* Constants for the pending_op argument of handle_futex_death */
1008
#define HANDLE_DEATH_PENDING true
1009
#define HANDLE_DEATH_LIST false
1010
1011
/*
1012
* Process a futex-list entry, check whether it's owned by the
1013
* dying task, and do notification if so:
1014
*/
1015
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
1016
bool pi, bool pending_op)
1017
{
1018
u32 uval, nval, mval;
1019
pid_t owner;
1020
int err;
1021
1022
/* Futex address must be 32bit aligned */
1023
if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
1024
return -1;
1025
1026
retry:
1027
if (get_user(uval, uaddr))
1028
return -1;
1029
1030
/*
1031
* Special case for regular (non PI) futexes. The unlock path in
1032
* user space has two race scenarios:
1033
*
1034
* 1. The unlock path releases the user space futex value and
1035
* before it can execute the futex() syscall to wake up
1036
* waiters it is killed.
1037
*
1038
* 2. A woken up waiter is killed before it can acquire the
1039
* futex in user space.
1040
*
1041
* In the second case, the wake up notification could be generated
1042
* by the unlock path in user space after setting the futex value
1043
* to zero or by the kernel after setting the OWNER_DIED bit below.
1044
*
1045
* In both cases the TID validation below prevents a wakeup of
1046
* potential waiters which can cause these waiters to block
1047
* forever.
1048
*
1049
* In both cases the following conditions are met:
1050
*
1051
* 1) task->robust_list->list_op_pending != NULL
1052
* @pending_op == true
1053
* 2) The owner part of user space futex value == 0
1054
* 3) Regular futex: @pi == false
1055
*
1056
* If these conditions are met, it is safe to attempt waking up a
1057
* potential waiter without touching the user space futex value and
1058
* trying to set the OWNER_DIED bit. If the futex value is zero,
1059
* the rest of the user space mutex state is consistent, so a woken
1060
* waiter will just take over the uncontended futex. Setting the
1061
* OWNER_DIED bit would create inconsistent state and malfunction
1062
* of the user space owner died handling. Otherwise, the OWNER_DIED
1063
* bit is already set, and the woken waiter is expected to deal with
1064
* this.
1065
*/
1066
owner = uval & FUTEX_TID_MASK;
1067
1068
if (pending_op && !pi && !owner) {
1069
futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
1070
FUTEX_BITSET_MATCH_ANY);
1071
return 0;
1072
}
1073
1074
if (owner != task_pid_vnr(curr))
1075
return 0;
1076
1077
/*
1078
* Ok, this dying thread is truly holding a futex
1079
* of interest. Set the OWNER_DIED bit atomically
1080
* via cmpxchg, and if the value had FUTEX_WAITERS
1081
* set, wake up a waiter (if any). (We have to do a
1082
* futex_wake() even if OWNER_DIED is already set -
1083
* to handle the rare but possible case of recursive
1084
* thread-death.) The rest of the cleanup is done in
1085
* userspace.
1086
*/
1087
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1088
1089
/*
1090
* We are not holding a lock here, but we want to have
1091
* the pagefault_disable/enable() protection because
1092
* we want to handle the fault gracefully. If the
1093
* access fails we try to fault in the futex with R/W
1094
* verification via get_user_pages. get_user() above
1095
* does not guarantee R/W access. If that fails we
1096
* give up and leave the futex locked.
1097
*/
1098
if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
1099
switch (err) {
1100
case -EFAULT:
1101
if (fault_in_user_writeable(uaddr))
1102
return -1;
1103
goto retry;
1104
1105
case -EAGAIN:
1106
cond_resched();
1107
goto retry;
1108
1109
default:
1110
WARN_ON_ONCE(1);
1111
return err;
1112
}
1113
}
1114
1115
if (nval != uval)
1116
goto retry;
1117
1118
/*
1119
* Wake robust non-PI futexes here. The wakeup of
1120
* PI futexes happens in exit_pi_state():
1121
*/
1122
if (!pi && (uval & FUTEX_WAITERS)) {
1123
futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
1124
FUTEX_BITSET_MATCH_ANY);
1125
}
1126
1127
return 0;
1128
}
1129
1130
/*
1131
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
1132
*/
1133
static inline int fetch_robust_entry(struct robust_list __user **entry,
1134
struct robust_list __user * __user *head,
1135
unsigned int *pi)
1136
{
1137
unsigned long uentry;
1138
1139
if (get_user(uentry, (unsigned long __user *)head))
1140
return -EFAULT;
1141
1142
*entry = (void __user *)(uentry & ~1UL);
1143
*pi = uentry & 1;
1144
1145
return 0;
1146
}
1147
1148
/*
1149
* Walk curr->robust_list (very carefully, it's a userspace list!)
1150
* and mark any locks found there dead, and notify any waiters.
1151
*
1152
* We silently return on any sign of list-walking problem.
1153
*/
1154
static void exit_robust_list(struct task_struct *curr)
1155
{
1156
struct robust_list_head __user *head = curr->robust_list;
1157
struct robust_list __user *entry, *next_entry, *pending;
1158
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1159
unsigned int next_pi;
1160
unsigned long futex_offset;
1161
int rc;
1162
1163
/*
1164
* Fetch the list head (which was registered earlier, via
1165
* sys_set_robust_list()):
1166
*/
1167
if (fetch_robust_entry(&entry, &head->list.next, &pi))
1168
return;
1169
/*
1170
* Fetch the relative futex offset:
1171
*/
1172
if (get_user(futex_offset, &head->futex_offset))
1173
return;
1174
/*
1175
* Fetch any possibly pending lock-add first, and handle it
1176
* if it exists:
1177
*/
1178
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1179
return;
1180
1181
next_entry = NULL; /* avoid warning with gcc */
1182
while (entry != &head->list) {
1183
/*
1184
* Fetch the next entry in the list before calling
1185
* handle_futex_death:
1186
*/
1187
rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1188
/*
1189
* A pending lock might already be on the list, so
1190
* don't process it twice:
1191
*/
1192
if (entry != pending) {
1193
if (handle_futex_death((void __user *)entry + futex_offset,
1194
curr, pi, HANDLE_DEATH_LIST))
1195
return;
1196
}
1197
if (rc)
1198
return;
1199
entry = next_entry;
1200
pi = next_pi;
1201
/*
1202
* Avoid excessively long or circular lists:
1203
*/
1204
if (!--limit)
1205
break;
1206
1207
cond_resched();
1208
}
1209
1210
if (pending) {
1211
handle_futex_death((void __user *)pending + futex_offset,
1212
curr, pip, HANDLE_DEATH_PENDING);
1213
}
1214
}
1215
1216
#ifdef CONFIG_COMPAT
1217
static void __user *futex_uaddr(struct robust_list __user *entry,
1218
compat_long_t futex_offset)
1219
{
1220
compat_uptr_t base = ptr_to_compat(entry);
1221
void __user *uaddr = compat_ptr(base + futex_offset);
1222
1223
return uaddr;
1224
}
1225
1226
/*
1227
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
1228
*/
1229
static inline int
1230
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
1231
compat_uptr_t __user *head, unsigned int *pi)
1232
{
1233
if (get_user(*uentry, head))
1234
return -EFAULT;
1235
1236
*entry = compat_ptr((*uentry) & ~1);
1237
*pi = (unsigned int)(*uentry) & 1;
1238
1239
return 0;
1240
}
1241
1242
/*
1243
* Walk curr->robust_list (very carefully, it's a userspace list!)
1244
* and mark any locks found there dead, and notify any waiters.
1245
*
1246
* We silently return on any sign of list-walking problem.
1247
*/
1248
static void compat_exit_robust_list(struct task_struct *curr)
1249
{
1250
struct compat_robust_list_head __user *head = curr->compat_robust_list;
1251
struct robust_list __user *entry, *next_entry, *pending;
1252
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1253
unsigned int next_pi;
1254
compat_uptr_t uentry, next_uentry, upending;
1255
compat_long_t futex_offset;
1256
int rc;
1257
1258
/*
1259
* Fetch the list head (which was registered earlier, via
1260
* sys_set_robust_list()):
1261
*/
1262
if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
1263
return;
1264
/*
1265
* Fetch the relative futex offset:
1266
*/
1267
if (get_user(futex_offset, &head->futex_offset))
1268
return;
1269
/*
1270
* Fetch any possibly pending lock-add first, and handle it
1271
* if it exists:
1272
*/
1273
if (compat_fetch_robust_entry(&upending, &pending,
1274
&head->list_op_pending, &pip))
1275
return;
1276
1277
next_entry = NULL; /* avoid warning with gcc */
1278
while (entry != (struct robust_list __user *) &head->list) {
1279
/*
1280
* Fetch the next entry in the list before calling
1281
* handle_futex_death:
1282
*/
1283
rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
1284
(compat_uptr_t __user *)&entry->next, &next_pi);
1285
/*
1286
* A pending lock might already be on the list, so
1287
* dont process it twice:
1288
*/
1289
if (entry != pending) {
1290
void __user *uaddr = futex_uaddr(entry, futex_offset);
1291
1292
if (handle_futex_death(uaddr, curr, pi,
1293
HANDLE_DEATH_LIST))
1294
return;
1295
}
1296
if (rc)
1297
return;
1298
uentry = next_uentry;
1299
entry = next_entry;
1300
pi = next_pi;
1301
/*
1302
* Avoid excessively long or circular lists:
1303
*/
1304
if (!--limit)
1305
break;
1306
1307
cond_resched();
1308
}
1309
if (pending) {
1310
void __user *uaddr = futex_uaddr(pending, futex_offset);
1311
1312
handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
1313
}
1314
}
1315
#endif
1316
1317
#ifdef CONFIG_FUTEX_PI
1318
1319
/*
1320
* This task is holding PI mutexes at exit time => bad.
1321
* Kernel cleans up PI-state, but userspace is likely hosed.
1322
* (Robust-futex cleanup is separate and might save the day for userspace.)
1323
*/
1324
static void exit_pi_state_list(struct task_struct *curr)
1325
{
1326
struct list_head *next, *head = &curr->pi_state_list;
1327
struct futex_pi_state *pi_state;
1328
union futex_key key = FUTEX_KEY_INIT;
1329
1330
/*
1331
* The mutex mm_struct::futex_hash_lock might be acquired.
1332
*/
1333
might_sleep();
1334
/*
1335
* Ensure the hash remains stable (no resize) during the while loop
1336
* below. The hb pointer is acquired under the pi_lock so we can't block
1337
* on the mutex.
1338
*/
1339
WARN_ON(curr != current);
1340
guard(private_hash)();
1341
/*
1342
* We are a ZOMBIE and nobody can enqueue itself on
1343
* pi_state_list anymore, but we have to be careful
1344
* versus waiters unqueueing themselves:
1345
*/
1346
raw_spin_lock_irq(&curr->pi_lock);
1347
while (!list_empty(head)) {
1348
next = head->next;
1349
pi_state = list_entry(next, struct futex_pi_state, list);
1350
key = pi_state->key;
1351
if (1) {
1352
CLASS(hb, hb)(&key);
1353
1354
/*
1355
* We can race against put_pi_state() removing itself from the
1356
* list (a waiter going away). put_pi_state() will first
1357
* decrement the reference count and then modify the list, so
1358
* its possible to see the list entry but fail this reference
1359
* acquire.
1360
*
1361
* In that case; drop the locks to let put_pi_state() make
1362
* progress and retry the loop.
1363
*/
1364
if (!refcount_inc_not_zero(&pi_state->refcount)) {
1365
raw_spin_unlock_irq(&curr->pi_lock);
1366
cpu_relax();
1367
raw_spin_lock_irq(&curr->pi_lock);
1368
continue;
1369
}
1370
raw_spin_unlock_irq(&curr->pi_lock);
1371
1372
spin_lock(&hb->lock);
1373
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1374
raw_spin_lock(&curr->pi_lock);
1375
/*
1376
* We dropped the pi-lock, so re-check whether this
1377
* task still owns the PI-state:
1378
*/
1379
if (head->next != next) {
1380
/* retain curr->pi_lock for the loop invariant */
1381
raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1382
spin_unlock(&hb->lock);
1383
put_pi_state(pi_state);
1384
continue;
1385
}
1386
1387
WARN_ON(pi_state->owner != curr);
1388
WARN_ON(list_empty(&pi_state->list));
1389
list_del_init(&pi_state->list);
1390
pi_state->owner = NULL;
1391
1392
raw_spin_unlock(&curr->pi_lock);
1393
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1394
spin_unlock(&hb->lock);
1395
}
1396
1397
rt_mutex_futex_unlock(&pi_state->pi_mutex);
1398
put_pi_state(pi_state);
1399
1400
raw_spin_lock_irq(&curr->pi_lock);
1401
}
1402
raw_spin_unlock_irq(&curr->pi_lock);
1403
}
1404
#else
1405
static inline void exit_pi_state_list(struct task_struct *curr) { }
1406
#endif
1407
1408
static void futex_cleanup(struct task_struct *tsk)
1409
{
1410
if (unlikely(tsk->robust_list)) {
1411
exit_robust_list(tsk);
1412
tsk->robust_list = NULL;
1413
}
1414
1415
#ifdef CONFIG_COMPAT
1416
if (unlikely(tsk->compat_robust_list)) {
1417
compat_exit_robust_list(tsk);
1418
tsk->compat_robust_list = NULL;
1419
}
1420
#endif
1421
1422
if (unlikely(!list_empty(&tsk->pi_state_list)))
1423
exit_pi_state_list(tsk);
1424
}
1425
1426
/**
1427
* futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1428
* @tsk: task to set the state on
1429
*
1430
* Set the futex exit state of the task lockless. The futex waiter code
1431
* observes that state when a task is exiting and loops until the task has
1432
* actually finished the futex cleanup. The worst case for this is that the
1433
* waiter runs through the wait loop until the state becomes visible.
1434
*
1435
* This is called from the recursive fault handling path in make_task_dead().
1436
*
1437
* This is best effort. Either the futex exit code has run already or
1438
* not. If the OWNER_DIED bit has been set on the futex then the waiter can
1439
* take it over. If not, the problem is pushed back to user space. If the
1440
* futex exit code did not run yet, then an already queued waiter might
1441
* block forever, but there is nothing which can be done about that.
1442
*/
1443
void futex_exit_recursive(struct task_struct *tsk)
1444
{
1445
/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1446
if (tsk->futex_state == FUTEX_STATE_EXITING)
1447
mutex_unlock(&tsk->futex_exit_mutex);
1448
tsk->futex_state = FUTEX_STATE_DEAD;
1449
}
1450
1451
static void futex_cleanup_begin(struct task_struct *tsk)
1452
{
1453
/*
1454
* Prevent various race issues against a concurrent incoming waiter
1455
* including live locks by forcing the waiter to block on
1456
* tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1457
* attach_to_pi_owner().
1458
*/
1459
mutex_lock(&tsk->futex_exit_mutex);
1460
1461
/*
1462
* Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1463
*
1464
* This ensures that all subsequent checks of tsk->futex_state in
1465
* attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1466
* tsk->pi_lock held.
1467
*
1468
* It guarantees also that a pi_state which was queued right before
1469
* the state change under tsk->pi_lock by a concurrent waiter must
1470
* be observed in exit_pi_state_list().
1471
*/
1472
raw_spin_lock_irq(&tsk->pi_lock);
1473
tsk->futex_state = FUTEX_STATE_EXITING;
1474
raw_spin_unlock_irq(&tsk->pi_lock);
1475
}
1476
1477
static void futex_cleanup_end(struct task_struct *tsk, int state)
1478
{
1479
/*
1480
* Lockless store. The only side effect is that an observer might
1481
* take another loop until it becomes visible.
1482
*/
1483
tsk->futex_state = state;
1484
/*
1485
* Drop the exit protection. This unblocks waiters which observed
1486
* FUTEX_STATE_EXITING to reevaluate the state.
1487
*/
1488
mutex_unlock(&tsk->futex_exit_mutex);
1489
}
1490
1491
void futex_exec_release(struct task_struct *tsk)
1492
{
1493
/*
1494
* The state handling is done for consistency, but in the case of
1495
* exec() there is no way to prevent further damage as the PID stays
1496
* the same. But for the unlikely and arguably buggy case that a
1497
* futex is held on exec(), this provides at least as much state
1498
* consistency protection which is possible.
1499
*/
1500
futex_cleanup_begin(tsk);
1501
futex_cleanup(tsk);
1502
/*
1503
* Reset the state to FUTEX_STATE_OK. The task is alive and about
1504
* exec a new binary.
1505
*/
1506
futex_cleanup_end(tsk, FUTEX_STATE_OK);
1507
}
1508
1509
void futex_exit_release(struct task_struct *tsk)
1510
{
1511
futex_cleanup_begin(tsk);
1512
futex_cleanup(tsk);
1513
futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1514
}
1515
1516
static void futex_hash_bucket_init(struct futex_hash_bucket *fhb,
1517
struct futex_private_hash *fph)
1518
{
1519
#ifdef CONFIG_FUTEX_PRIVATE_HASH
1520
fhb->priv = fph;
1521
#endif
1522
atomic_set(&fhb->waiters, 0);
1523
plist_head_init(&fhb->chain);
1524
spin_lock_init(&fhb->lock);
1525
}
1526
1527
#define FH_CUSTOM 0x01
1528
1529
#ifdef CONFIG_FUTEX_PRIVATE_HASH
1530
1531
/*
1532
* futex-ref
1533
*
1534
* Heavily inspired by percpu-rwsem/percpu-refcount; not reusing any of that
1535
* code because it just doesn't fit right.
1536
*
1537
* Dual counter, per-cpu / atomic approach like percpu-refcount, except it
1538
* re-initializes the state automatically, such that the fph swizzle is also a
1539
* transition back to per-cpu.
1540
*/
1541
1542
static void futex_ref_rcu(struct rcu_head *head);
1543
1544
static void __futex_ref_atomic_begin(struct futex_private_hash *fph)
1545
{
1546
struct mm_struct *mm = fph->mm;
1547
1548
/*
1549
* The counter we're about to switch to must have fully switched;
1550
* otherwise it would be impossible for it to have reported success
1551
* from futex_ref_is_dead().
1552
*/
1553
WARN_ON_ONCE(atomic_long_read(&mm->futex_atomic) != 0);
1554
1555
/*
1556
* Set the atomic to the bias value such that futex_ref_{get,put}()
1557
* will never observe 0. Will be fixed up in __futex_ref_atomic_end()
1558
* when folding in the percpu count.
1559
*/
1560
atomic_long_set(&mm->futex_atomic, LONG_MAX);
1561
smp_store_release(&fph->state, FR_ATOMIC);
1562
1563
call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu);
1564
}
1565
1566
static void __futex_ref_atomic_end(struct futex_private_hash *fph)
1567
{
1568
struct mm_struct *mm = fph->mm;
1569
unsigned int count = 0;
1570
long ret;
1571
int cpu;
1572
1573
/*
1574
* Per __futex_ref_atomic_begin() the state of the fph must be ATOMIC
1575
* and per this RCU callback, everybody must now observe this state and
1576
* use the atomic variable.
1577
*/
1578
WARN_ON_ONCE(fph->state != FR_ATOMIC);
1579
1580
/*
1581
* Therefore the per-cpu counter is now stable, sum and reset.
1582
*/
1583
for_each_possible_cpu(cpu) {
1584
unsigned int *ptr = per_cpu_ptr(mm->futex_ref, cpu);
1585
count += *ptr;
1586
*ptr = 0;
1587
}
1588
1589
/*
1590
* Re-init for the next cycle.
1591
*/
1592
this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */
1593
1594
/*
1595
* Add actual count, subtract bias and initial refcount.
1596
*
1597
* The moment this atomic operation happens, futex_ref_is_dead() can
1598
* become true.
1599
*/
1600
ret = atomic_long_add_return(count - LONG_MAX - 1, &mm->futex_atomic);
1601
if (!ret)
1602
wake_up_var(mm);
1603
1604
WARN_ON_ONCE(ret < 0);
1605
mmput_async(mm);
1606
}
1607
1608
static void futex_ref_rcu(struct rcu_head *head)
1609
{
1610
struct mm_struct *mm = container_of(head, struct mm_struct, futex_rcu);
1611
struct futex_private_hash *fph = rcu_dereference_raw(mm->futex_phash);
1612
1613
if (fph->state == FR_PERCPU) {
1614
/*
1615
* Per this extra grace-period, everybody must now observe
1616
* fph as the current fph and no previously observed fph's
1617
* are in-flight.
1618
*
1619
* Notably, nobody will now rely on the atomic
1620
* futex_ref_is_dead() state anymore so we can begin the
1621
* migration of the per-cpu counter into the atomic.
1622
*/
1623
__futex_ref_atomic_begin(fph);
1624
return;
1625
}
1626
1627
__futex_ref_atomic_end(fph);
1628
}
1629
1630
/*
1631
* Drop the initial refcount and transition to atomics.
1632
*/
1633
static void futex_ref_drop(struct futex_private_hash *fph)
1634
{
1635
struct mm_struct *mm = fph->mm;
1636
1637
/*
1638
* Can only transition the current fph;
1639
*/
1640
WARN_ON_ONCE(rcu_dereference_raw(mm->futex_phash) != fph);
1641
/*
1642
* We enqueue at least one RCU callback. Ensure mm stays if the task
1643
* exits before the transition is completed.
1644
*/
1645
mmget(mm);
1646
1647
/*
1648
* In order to avoid the following scenario:
1649
*
1650
* futex_hash() __futex_pivot_hash()
1651
* guard(rcu); guard(mm->futex_hash_lock);
1652
* fph = mm->futex_phash;
1653
* rcu_assign_pointer(&mm->futex_phash, new);
1654
* futex_hash_allocate()
1655
* futex_ref_drop()
1656
* fph->state = FR_ATOMIC;
1657
* atomic_set(, BIAS);
1658
*
1659
* futex_private_hash_get(fph); // OOPS
1660
*
1661
* Where an old fph (which is FR_ATOMIC) and should fail on
1662
* inc_not_zero, will succeed because a new transition is started and
1663
* the atomic is bias'ed away from 0.
1664
*
1665
* There must be at least one full grace-period between publishing a
1666
* new fph and trying to replace it.
1667
*/
1668
if (poll_state_synchronize_rcu(mm->futex_batches)) {
1669
/*
1670
* There was a grace-period, we can begin now.
1671
*/
1672
__futex_ref_atomic_begin(fph);
1673
return;
1674
}
1675
1676
call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu);
1677
}
1678
1679
static bool futex_ref_get(struct futex_private_hash *fph)
1680
{
1681
struct mm_struct *mm = fph->mm;
1682
1683
guard(rcu)();
1684
1685
if (smp_load_acquire(&fph->state) == FR_PERCPU) {
1686
this_cpu_inc(*mm->futex_ref);
1687
return true;
1688
}
1689
1690
return atomic_long_inc_not_zero(&mm->futex_atomic);
1691
}
1692
1693
static bool futex_ref_put(struct futex_private_hash *fph)
1694
{
1695
struct mm_struct *mm = fph->mm;
1696
1697
guard(rcu)();
1698
1699
if (smp_load_acquire(&fph->state) == FR_PERCPU) {
1700
this_cpu_dec(*mm->futex_ref);
1701
return false;
1702
}
1703
1704
return atomic_long_dec_and_test(&mm->futex_atomic);
1705
}
1706
1707
static bool futex_ref_is_dead(struct futex_private_hash *fph)
1708
{
1709
struct mm_struct *mm = fph->mm;
1710
1711
guard(rcu)();
1712
1713
if (smp_load_acquire(&fph->state) == FR_PERCPU)
1714
return false;
1715
1716
return atomic_long_read(&mm->futex_atomic) == 0;
1717
}
1718
1719
int futex_mm_init(struct mm_struct *mm)
1720
{
1721
mutex_init(&mm->futex_hash_lock);
1722
RCU_INIT_POINTER(mm->futex_phash, NULL);
1723
mm->futex_phash_new = NULL;
1724
/* futex-ref */
1725
mm->futex_ref = NULL;
1726
atomic_long_set(&mm->futex_atomic, 0);
1727
mm->futex_batches = get_state_synchronize_rcu();
1728
return 0;
1729
}
1730
1731
void futex_hash_free(struct mm_struct *mm)
1732
{
1733
struct futex_private_hash *fph;
1734
1735
free_percpu(mm->futex_ref);
1736
kvfree(mm->futex_phash_new);
1737
fph = rcu_dereference_raw(mm->futex_phash);
1738
if (fph)
1739
kvfree(fph);
1740
}
1741
1742
static bool futex_pivot_pending(struct mm_struct *mm)
1743
{
1744
struct futex_private_hash *fph;
1745
1746
guard(rcu)();
1747
1748
if (!mm->futex_phash_new)
1749
return true;
1750
1751
fph = rcu_dereference(mm->futex_phash);
1752
return futex_ref_is_dead(fph);
1753
}
1754
1755
static bool futex_hash_less(struct futex_private_hash *a,
1756
struct futex_private_hash *b)
1757
{
1758
/* user provided always wins */
1759
if (!a->custom && b->custom)
1760
return true;
1761
if (a->custom && !b->custom)
1762
return false;
1763
1764
/* zero-sized hash wins */
1765
if (!b->hash_mask)
1766
return true;
1767
if (!a->hash_mask)
1768
return false;
1769
1770
/* keep the biggest */
1771
if (a->hash_mask < b->hash_mask)
1772
return true;
1773
if (a->hash_mask > b->hash_mask)
1774
return false;
1775
1776
return false; /* equal */
1777
}
1778
1779
static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1780
{
1781
struct mm_struct *mm = current->mm;
1782
struct futex_private_hash *fph;
1783
bool custom = flags & FH_CUSTOM;
1784
int i;
1785
1786
if (hash_slots && (hash_slots == 1 || !is_power_of_2(hash_slots)))
1787
return -EINVAL;
1788
1789
/*
1790
* Once we've disabled the global hash there is no way back.
1791
*/
1792
scoped_guard(rcu) {
1793
fph = rcu_dereference(mm->futex_phash);
1794
if (fph && !fph->hash_mask) {
1795
if (custom)
1796
return -EBUSY;
1797
return 0;
1798
}
1799
}
1800
1801
if (!mm->futex_ref) {
1802
/*
1803
* This will always be allocated by the first thread and
1804
* therefore requires no locking.
1805
*/
1806
mm->futex_ref = alloc_percpu(unsigned int);
1807
if (!mm->futex_ref)
1808
return -ENOMEM;
1809
this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */
1810
}
1811
1812
fph = kvzalloc(struct_size(fph, queues, hash_slots),
1813
GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1814
if (!fph)
1815
return -ENOMEM;
1816
1817
fph->hash_mask = hash_slots ? hash_slots - 1 : 0;
1818
fph->custom = custom;
1819
fph->mm = mm;
1820
1821
for (i = 0; i < hash_slots; i++)
1822
futex_hash_bucket_init(&fph->queues[i], fph);
1823
1824
if (custom) {
1825
/*
1826
* Only let prctl() wait / retry; don't unduly delay clone().
1827
*/
1828
again:
1829
wait_var_event(mm, futex_pivot_pending(mm));
1830
}
1831
1832
scoped_guard(mutex, &mm->futex_hash_lock) {
1833
struct futex_private_hash *free __free(kvfree) = NULL;
1834
struct futex_private_hash *cur, *new;
1835
1836
cur = rcu_dereference_protected(mm->futex_phash,
1837
lockdep_is_held(&mm->futex_hash_lock));
1838
new = mm->futex_phash_new;
1839
mm->futex_phash_new = NULL;
1840
1841
if (fph) {
1842
if (cur && !cur->hash_mask) {
1843
/*
1844
* If two threads simultaneously request the global
1845
* hash then the first one performs the switch,
1846
* the second one returns here.
1847
*/
1848
free = fph;
1849
mm->futex_phash_new = new;
1850
return -EBUSY;
1851
}
1852
if (cur && !new) {
1853
/*
1854
* If we have an existing hash, but do not yet have
1855
* allocated a replacement hash, drop the initial
1856
* reference on the existing hash.
1857
*/
1858
futex_ref_drop(cur);
1859
}
1860
1861
if (new) {
1862
/*
1863
* Two updates raced; throw out the lesser one.
1864
*/
1865
if (futex_hash_less(new, fph)) {
1866
free = new;
1867
new = fph;
1868
} else {
1869
free = fph;
1870
}
1871
} else {
1872
new = fph;
1873
}
1874
fph = NULL;
1875
}
1876
1877
if (new) {
1878
/*
1879
* Will set mm->futex_phash_new on failure;
1880
* futex_private_hash_get() will try again.
1881
*/
1882
if (!__futex_pivot_hash(mm, new) && custom)
1883
goto again;
1884
}
1885
}
1886
return 0;
1887
}
1888
1889
int futex_hash_allocate_default(void)
1890
{
1891
unsigned int threads, buckets, current_buckets = 0;
1892
struct futex_private_hash *fph;
1893
1894
if (!current->mm)
1895
return 0;
1896
1897
scoped_guard(rcu) {
1898
threads = min_t(unsigned int,
1899
get_nr_threads(current),
1900
num_online_cpus());
1901
1902
fph = rcu_dereference(current->mm->futex_phash);
1903
if (fph) {
1904
if (fph->custom)
1905
return 0;
1906
1907
current_buckets = fph->hash_mask + 1;
1908
}
1909
}
1910
1911
/*
1912
* The default allocation will remain within
1913
* 16 <= threads * 4 <= global hash size
1914
*/
1915
buckets = roundup_pow_of_two(4 * threads);
1916
buckets = clamp(buckets, 16, futex_hashmask + 1);
1917
1918
if (current_buckets >= buckets)
1919
return 0;
1920
1921
return futex_hash_allocate(buckets, 0);
1922
}
1923
1924
static int futex_hash_get_slots(void)
1925
{
1926
struct futex_private_hash *fph;
1927
1928
guard(rcu)();
1929
fph = rcu_dereference(current->mm->futex_phash);
1930
if (fph && fph->hash_mask)
1931
return fph->hash_mask + 1;
1932
return 0;
1933
}
1934
1935
#else
1936
1937
static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1938
{
1939
return -EINVAL;
1940
}
1941
1942
static int futex_hash_get_slots(void)
1943
{
1944
return 0;
1945
}
1946
1947
#endif
1948
1949
int futex_hash_prctl(unsigned long arg2, unsigned long arg3, unsigned long arg4)
1950
{
1951
unsigned int flags = FH_CUSTOM;
1952
int ret;
1953
1954
switch (arg2) {
1955
case PR_FUTEX_HASH_SET_SLOTS:
1956
if (arg4)
1957
return -EINVAL;
1958
ret = futex_hash_allocate(arg3, flags);
1959
break;
1960
1961
case PR_FUTEX_HASH_GET_SLOTS:
1962
ret = futex_hash_get_slots();
1963
break;
1964
1965
default:
1966
ret = -EINVAL;
1967
break;
1968
}
1969
return ret;
1970
}
1971
1972
static int __init futex_init(void)
1973
{
1974
unsigned long hashsize, i;
1975
unsigned int order, n;
1976
unsigned long size;
1977
1978
#ifdef CONFIG_BASE_SMALL
1979
hashsize = 16;
1980
#else
1981
hashsize = 256 * num_possible_cpus();
1982
hashsize /= num_possible_nodes();
1983
hashsize = max(4, hashsize);
1984
hashsize = roundup_pow_of_two(hashsize);
1985
#endif
1986
futex_hashshift = ilog2(hashsize);
1987
size = sizeof(struct futex_hash_bucket) * hashsize;
1988
order = get_order(size);
1989
1990
for_each_node(n) {
1991
struct futex_hash_bucket *table;
1992
1993
if (order > MAX_PAGE_ORDER)
1994
table = vmalloc_huge_node(size, GFP_KERNEL, n);
1995
else
1996
table = alloc_pages_exact_nid(n, size, GFP_KERNEL);
1997
1998
BUG_ON(!table);
1999
2000
for (i = 0; i < hashsize; i++)
2001
futex_hash_bucket_init(&table[i], NULL);
2002
2003
futex_queues[n] = table;
2004
}
2005
2006
futex_hashmask = hashsize - 1;
2007
pr_info("futex hash table entries: %lu (%lu bytes on %d NUMA nodes, total %lu KiB, %s).\n",
2008
hashsize, size, num_possible_nodes(), size * num_possible_nodes() / 1024,
2009
order > MAX_PAGE_ORDER ? "vmalloc" : "linear");
2010
return 0;
2011
}
2012
core_initcall(futex_init);
2013
2014