Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/mpi/mpih-div.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* mpihelp-div.c - MPI helper functions
3
* Copyright (C) 1994, 1996 Free Software Foundation, Inc.
4
* Copyright (C) 1998, 1999 Free Software Foundation, Inc.
5
*
6
* This file is part of GnuPG.
7
*
8
* Note: This code is heavily based on the GNU MP Library.
9
* Actually it's the same code with only minor changes in the
10
* way the data is stored; this is to support the abstraction
11
* of an optional secure memory allocation which may be used
12
* to avoid revealing of sensitive data due to paging etc.
13
* The GNU MP Library itself is published under the LGPL;
14
* however I decided to publish this code under the plain GPL.
15
*/
16
17
#include "mpi-internal.h"
18
#include "longlong.h"
19
20
#ifndef UMUL_TIME
21
#define UMUL_TIME 1
22
#endif
23
#ifndef UDIV_TIME
24
#define UDIV_TIME UMUL_TIME
25
#endif
26
27
28
mpi_limb_t
29
mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
30
mpi_limb_t divisor_limb)
31
{
32
mpi_size_t i;
33
mpi_limb_t n1, n0, r;
34
mpi_limb_t dummy __maybe_unused;
35
36
/* Botch: Should this be handled at all? Rely on callers? */
37
if (!dividend_size)
38
return 0;
39
40
/* If multiplication is much faster than division, and the
41
* dividend is large, pre-invert the divisor, and use
42
* only multiplications in the inner loop.
43
*
44
* This test should be read:
45
* Does it ever help to use udiv_qrnnd_preinv?
46
* && Does what we save compensate for the inversion overhead?
47
*/
48
if (UDIV_TIME > (2 * UMUL_TIME + 6)
49
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
50
int normalization_steps;
51
52
normalization_steps = count_leading_zeros(divisor_limb);
53
if (normalization_steps) {
54
mpi_limb_t divisor_limb_inverted;
55
56
divisor_limb <<= normalization_steps;
57
58
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
59
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
60
* most significant bit (with weight 2**N) implicit.
61
*
62
* Special case for DIVISOR_LIMB == 100...000.
63
*/
64
if (!(divisor_limb << 1))
65
divisor_limb_inverted = ~(mpi_limb_t)0;
66
else
67
udiv_qrnnd(divisor_limb_inverted, dummy,
68
-divisor_limb, 0, divisor_limb);
69
70
n1 = dividend_ptr[dividend_size - 1];
71
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
72
73
/* Possible optimization:
74
* if (r == 0
75
* && divisor_limb > ((n1 << normalization_steps)
76
* | (dividend_ptr[dividend_size - 2] >> ...)))
77
* ...one division less...
78
*/
79
for (i = dividend_size - 2; i >= 0; i--) {
80
n0 = dividend_ptr[i];
81
UDIV_QRNND_PREINV(dummy, r, r,
82
((n1 << normalization_steps)
83
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
84
divisor_limb, divisor_limb_inverted);
85
n1 = n0;
86
}
87
UDIV_QRNND_PREINV(dummy, r, r,
88
n1 << normalization_steps,
89
divisor_limb, divisor_limb_inverted);
90
return r >> normalization_steps;
91
} else {
92
mpi_limb_t divisor_limb_inverted;
93
94
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
95
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
96
* most significant bit (with weight 2**N) implicit.
97
*
98
* Special case for DIVISOR_LIMB == 100...000.
99
*/
100
if (!(divisor_limb << 1))
101
divisor_limb_inverted = ~(mpi_limb_t)0;
102
else
103
udiv_qrnnd(divisor_limb_inverted, dummy,
104
-divisor_limb, 0, divisor_limb);
105
106
i = dividend_size - 1;
107
r = dividend_ptr[i];
108
109
if (r >= divisor_limb)
110
r = 0;
111
else
112
i--;
113
114
for ( ; i >= 0; i--) {
115
n0 = dividend_ptr[i];
116
UDIV_QRNND_PREINV(dummy, r, r,
117
n0, divisor_limb, divisor_limb_inverted);
118
}
119
return r;
120
}
121
} else {
122
if (UDIV_NEEDS_NORMALIZATION) {
123
int normalization_steps;
124
125
normalization_steps = count_leading_zeros(divisor_limb);
126
if (normalization_steps) {
127
divisor_limb <<= normalization_steps;
128
129
n1 = dividend_ptr[dividend_size - 1];
130
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
131
132
/* Possible optimization:
133
* if (r == 0
134
* && divisor_limb > ((n1 << normalization_steps)
135
* | (dividend_ptr[dividend_size - 2] >> ...)))
136
* ...one division less...
137
*/
138
for (i = dividend_size - 2; i >= 0; i--) {
139
n0 = dividend_ptr[i];
140
udiv_qrnnd(dummy, r, r,
141
((n1 << normalization_steps)
142
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
143
divisor_limb);
144
n1 = n0;
145
}
146
udiv_qrnnd(dummy, r, r,
147
n1 << normalization_steps,
148
divisor_limb);
149
return r >> normalization_steps;
150
}
151
}
152
/* No normalization needed, either because udiv_qrnnd doesn't require
153
* it, or because DIVISOR_LIMB is already normalized.
154
*/
155
i = dividend_size - 1;
156
r = dividend_ptr[i];
157
158
if (r >= divisor_limb)
159
r = 0;
160
else
161
i--;
162
163
for (; i >= 0; i--) {
164
n0 = dividend_ptr[i];
165
udiv_qrnnd(dummy, r, r, n0, divisor_limb);
166
}
167
return r;
168
}
169
}
170
171
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
172
* the NSIZE-DSIZE least significant quotient limbs at QP
173
* and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
174
* non-zero, generate that many fraction bits and append them after the
175
* other quotient limbs.
176
* Return the most significant limb of the quotient, this is always 0 or 1.
177
*
178
* Preconditions:
179
* 0. NSIZE >= DSIZE.
180
* 1. The most significant bit of the divisor must be set.
181
* 2. QP must either not overlap with the input operands at all, or
182
* QP + DSIZE >= NP must hold true. (This means that it's
183
* possible to put the quotient in the high part of NUM, right after the
184
* remainder in NUM.
185
* 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
186
*/
187
188
mpi_limb_t
189
mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
190
mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
191
{
192
mpi_limb_t most_significant_q_limb = 0;
193
194
switch (dsize) {
195
case 0:
196
/* We are asked to divide by zero, so go ahead and do it! (To make
197
the compiler not remove this statement, return the value.) */
198
/*
199
* existing clients of this function have been modified
200
* not to call it with dsize == 0, so this should not happen
201
*/
202
return 1 / dsize;
203
204
case 1:
205
{
206
mpi_size_t i;
207
mpi_limb_t n1;
208
mpi_limb_t d;
209
210
d = dp[0];
211
n1 = np[nsize - 1];
212
213
if (n1 >= d) {
214
n1 -= d;
215
most_significant_q_limb = 1;
216
}
217
218
qp += qextra_limbs;
219
for (i = nsize - 2; i >= 0; i--)
220
udiv_qrnnd(qp[i], n1, n1, np[i], d);
221
qp -= qextra_limbs;
222
223
for (i = qextra_limbs - 1; i >= 0; i--)
224
udiv_qrnnd(qp[i], n1, n1, 0, d);
225
226
np[0] = n1;
227
}
228
break;
229
230
case 2:
231
{
232
mpi_size_t i;
233
mpi_limb_t n1, n0, n2;
234
mpi_limb_t d1, d0;
235
236
np += nsize - 2;
237
d1 = dp[1];
238
d0 = dp[0];
239
n1 = np[1];
240
n0 = np[0];
241
242
if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
243
sub_ddmmss(n1, n0, n1, n0, d1, d0);
244
most_significant_q_limb = 1;
245
}
246
247
for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
248
mpi_limb_t q;
249
mpi_limb_t r;
250
251
if (i >= qextra_limbs)
252
np--;
253
else
254
np[0] = 0;
255
256
if (n1 == d1) {
257
/* Q should be either 111..111 or 111..110. Need special
258
* treatment of this rare case as normal division would
259
* give overflow. */
260
q = ~(mpi_limb_t) 0;
261
262
r = n0 + d1;
263
if (r < d1) { /* Carry in the addition? */
264
add_ssaaaa(n1, n0, r - d0,
265
np[0], 0, d0);
266
qp[i] = q;
267
continue;
268
}
269
n1 = d0 - (d0 != 0 ? 1 : 0);
270
n0 = -d0;
271
} else {
272
udiv_qrnnd(q, r, n1, n0, d1);
273
umul_ppmm(n1, n0, d0, q);
274
}
275
276
n2 = np[0];
277
q_test:
278
if (n1 > r || (n1 == r && n0 > n2)) {
279
/* The estimated Q was too large. */
280
q--;
281
sub_ddmmss(n1, n0, n1, n0, 0, d0);
282
r += d1;
283
if (r >= d1) /* If not carry, test Q again. */
284
goto q_test;
285
}
286
287
qp[i] = q;
288
sub_ddmmss(n1, n0, r, n2, n1, n0);
289
}
290
np[1] = n1;
291
np[0] = n0;
292
}
293
break;
294
295
default:
296
{
297
mpi_size_t i;
298
mpi_limb_t dX, d1, n0;
299
300
np += nsize - dsize;
301
dX = dp[dsize - 1];
302
d1 = dp[dsize - 2];
303
n0 = np[dsize - 1];
304
305
if (n0 >= dX) {
306
if (n0 > dX
307
|| mpihelp_cmp(np, dp, dsize - 1) >= 0) {
308
mpihelp_sub_n(np, np, dp, dsize);
309
n0 = np[dsize - 1];
310
most_significant_q_limb = 1;
311
}
312
}
313
314
for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
315
mpi_limb_t q;
316
mpi_limb_t n1, n2;
317
mpi_limb_t cy_limb;
318
319
if (i >= qextra_limbs) {
320
np--;
321
n2 = np[dsize];
322
} else {
323
n2 = np[dsize - 1];
324
MPN_COPY_DECR(np + 1, np, dsize - 1);
325
np[0] = 0;
326
}
327
328
if (n0 == dX) {
329
/* This might over-estimate q, but it's probably not worth
330
* the extra code here to find out. */
331
q = ~(mpi_limb_t) 0;
332
} else {
333
mpi_limb_t r;
334
335
udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
336
umul_ppmm(n1, n0, d1, q);
337
338
while (n1 > r
339
|| (n1 == r
340
&& n0 > np[dsize - 2])) {
341
q--;
342
r += dX;
343
if (r < dX) /* I.e. "carry in previous addition?" */
344
break;
345
n1 -= n0 < d1;
346
n0 -= d1;
347
}
348
}
349
350
/* Possible optimization: We already have (q * n0) and (1 * n1)
351
* after the calculation of q. Taking advantage of that, we
352
* could make this loop make two iterations less. */
353
cy_limb = mpihelp_submul_1(np, dp, dsize, q);
354
355
if (n2 != cy_limb) {
356
mpihelp_add_n(np, np, dp, dsize);
357
q--;
358
}
359
360
qp[i] = q;
361
n0 = np[dsize - 1];
362
}
363
}
364
}
365
366
return most_significant_q_limb;
367
}
368
369
/****************
370
* Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
371
* Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
372
* Return the single-limb remainder.
373
* There are no constraints on the value of the divisor.
374
*
375
* QUOT_PTR and DIVIDEND_PTR might point to the same limb.
376
*/
377
378
mpi_limb_t
379
mpihelp_divmod_1(mpi_ptr_t quot_ptr,
380
mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
381
mpi_limb_t divisor_limb)
382
{
383
mpi_size_t i;
384
mpi_limb_t n1, n0, r;
385
mpi_limb_t dummy __maybe_unused;
386
387
if (!dividend_size)
388
return 0;
389
390
/* If multiplication is much faster than division, and the
391
* dividend is large, pre-invert the divisor, and use
392
* only multiplications in the inner loop.
393
*
394
* This test should be read:
395
* Does it ever help to use udiv_qrnnd_preinv?
396
* && Does what we save compensate for the inversion overhead?
397
*/
398
if (UDIV_TIME > (2 * UMUL_TIME + 6)
399
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
400
int normalization_steps;
401
402
normalization_steps = count_leading_zeros(divisor_limb);
403
if (normalization_steps) {
404
mpi_limb_t divisor_limb_inverted;
405
406
divisor_limb <<= normalization_steps;
407
408
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
409
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
410
* most significant bit (with weight 2**N) implicit.
411
*/
412
/* Special case for DIVISOR_LIMB == 100...000. */
413
if (!(divisor_limb << 1))
414
divisor_limb_inverted = ~(mpi_limb_t)0;
415
else
416
udiv_qrnnd(divisor_limb_inverted, dummy,
417
-divisor_limb, 0, divisor_limb);
418
419
n1 = dividend_ptr[dividend_size - 1];
420
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
421
422
/* Possible optimization:
423
* if (r == 0
424
* && divisor_limb > ((n1 << normalization_steps)
425
* | (dividend_ptr[dividend_size - 2] >> ...)))
426
* ...one division less...
427
*/
428
for (i = dividend_size - 2; i >= 0; i--) {
429
n0 = dividend_ptr[i];
430
UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
431
((n1 << normalization_steps)
432
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
433
divisor_limb, divisor_limb_inverted);
434
n1 = n0;
435
}
436
UDIV_QRNND_PREINV(quot_ptr[0], r, r,
437
n1 << normalization_steps,
438
divisor_limb, divisor_limb_inverted);
439
return r >> normalization_steps;
440
} else {
441
mpi_limb_t divisor_limb_inverted;
442
443
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
444
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
445
* most significant bit (with weight 2**N) implicit.
446
*/
447
/* Special case for DIVISOR_LIMB == 100...000. */
448
if (!(divisor_limb << 1))
449
divisor_limb_inverted = ~(mpi_limb_t) 0;
450
else
451
udiv_qrnnd(divisor_limb_inverted, dummy,
452
-divisor_limb, 0, divisor_limb);
453
454
i = dividend_size - 1;
455
r = dividend_ptr[i];
456
457
if (r >= divisor_limb)
458
r = 0;
459
else
460
quot_ptr[i--] = 0;
461
462
for ( ; i >= 0; i--) {
463
n0 = dividend_ptr[i];
464
UDIV_QRNND_PREINV(quot_ptr[i], r, r,
465
n0, divisor_limb, divisor_limb_inverted);
466
}
467
return r;
468
}
469
} else {
470
if (UDIV_NEEDS_NORMALIZATION) {
471
int normalization_steps;
472
473
normalization_steps = count_leading_zeros(divisor_limb);
474
if (normalization_steps) {
475
divisor_limb <<= normalization_steps;
476
477
n1 = dividend_ptr[dividend_size - 1];
478
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
479
480
/* Possible optimization:
481
* if (r == 0
482
* && divisor_limb > ((n1 << normalization_steps)
483
* | (dividend_ptr[dividend_size - 2] >> ...)))
484
* ...one division less...
485
*/
486
for (i = dividend_size - 2; i >= 0; i--) {
487
n0 = dividend_ptr[i];
488
udiv_qrnnd(quot_ptr[i + 1], r, r,
489
((n1 << normalization_steps)
490
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
491
divisor_limb);
492
n1 = n0;
493
}
494
udiv_qrnnd(quot_ptr[0], r, r,
495
n1 << normalization_steps,
496
divisor_limb);
497
return r >> normalization_steps;
498
}
499
}
500
/* No normalization needed, either because udiv_qrnnd doesn't require
501
* it, or because DIVISOR_LIMB is already normalized.
502
*/
503
i = dividend_size - 1;
504
r = dividend_ptr[i];
505
506
if (r >= divisor_limb)
507
r = 0;
508
else
509
quot_ptr[i--] = 0;
510
511
for (; i >= 0; i--) {
512
n0 = dividend_ptr[i];
513
udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
514
}
515
return r;
516
}
517
}
518
519