Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/filemap.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/mm/filemap.c
4
*
5
* Copyright (C) 1994-1999 Linus Torvalds
6
*/
7
8
/*
9
* This file handles the generic file mmap semantics used by
10
* most "normal" filesystems (but you don't /have/ to use this:
11
* the NFS filesystem used to do this differently, for example)
12
*/
13
#include <linux/export.h>
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
22
#include <linux/mm.h>
23
#include <linux/swap.h>
24
#include <linux/swapops.h>
25
#include <linux/syscalls.h>
26
#include <linux/mman.h>
27
#include <linux/pagemap.h>
28
#include <linux/file.h>
29
#include <linux/uio.h>
30
#include <linux/error-injection.h>
31
#include <linux/hash.h>
32
#include <linux/writeback.h>
33
#include <linux/backing-dev.h>
34
#include <linux/pagevec.h>
35
#include <linux/security.h>
36
#include <linux/cpuset.h>
37
#include <linux/hugetlb.h>
38
#include <linux/memcontrol.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44
#include <linux/page_idle.h>
45
#include <linux/migrate.h>
46
#include <linux/pipe_fs_i.h>
47
#include <linux/splice.h>
48
#include <linux/rcupdate_wait.h>
49
#include <linux/sched/mm.h>
50
#include <linux/sysctl.h>
51
#include <asm/pgalloc.h>
52
#include <asm/tlbflush.h>
53
#include "internal.h"
54
55
#define CREATE_TRACE_POINTS
56
#include <trace/events/filemap.h>
57
58
/*
59
* FIXME: remove all knowledge of the buffer layer from the core VM
60
*/
61
#include <linux/buffer_head.h> /* for try_to_free_buffers */
62
63
#include <asm/mman.h>
64
65
#include "swap.h"
66
67
/*
68
* Shared mappings implemented 30.11.1994. It's not fully working yet,
69
* though.
70
*
71
* Shared mappings now work. 15.8.1995 Bruno.
72
*
73
* finished 'unifying' the page and buffer cache and SMP-threaded the
74
* page-cache, 21.05.1999, Ingo Molnar <[email protected]>
75
*
76
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
77
*/
78
79
/*
80
* Lock ordering:
81
*
82
* ->i_mmap_rwsem (truncate_pagecache)
83
* ->private_lock (__free_pte->block_dirty_folio)
84
* ->swap_lock (exclusive_swap_page, others)
85
* ->i_pages lock
86
*
87
* ->i_rwsem
88
* ->invalidate_lock (acquired by fs in truncate path)
89
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
90
*
91
* ->mmap_lock
92
* ->i_mmap_rwsem
93
* ->page_table_lock or pte_lock (various, mainly in memory.c)
94
* ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95
*
96
* ->mmap_lock
97
* ->invalidate_lock (filemap_fault)
98
* ->lock_page (filemap_fault, access_process_vm)
99
*
100
* ->i_rwsem (generic_perform_write)
101
* ->mmap_lock (fault_in_readable->do_page_fault)
102
*
103
* bdi->wb.list_lock
104
* sb_lock (fs/fs-writeback.c)
105
* ->i_pages lock (__sync_single_inode)
106
*
107
* ->i_mmap_rwsem
108
* ->anon_vma.lock (vma_merge)
109
*
110
* ->anon_vma.lock
111
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
112
*
113
* ->page_table_lock or pte_lock
114
* ->swap_lock (try_to_unmap_one)
115
* ->private_lock (try_to_unmap_one)
116
* ->i_pages lock (try_to_unmap_one)
117
* ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118
* ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119
* ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120
* ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121
* bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122
* ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123
* bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124
* ->inode->i_lock (zap_pte_range->set_page_dirty)
125
* ->private_lock (zap_pte_range->block_dirty_folio)
126
*/
127
128
static void page_cache_delete(struct address_space *mapping,
129
struct folio *folio, void *shadow)
130
{
131
XA_STATE(xas, &mapping->i_pages, folio->index);
132
long nr = 1;
133
134
mapping_set_update(&xas, mapping);
135
136
xas_set_order(&xas, folio->index, folio_order(folio));
137
nr = folio_nr_pages(folio);
138
139
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140
141
xas_store(&xas, shadow);
142
xas_init_marks(&xas);
143
144
folio->mapping = NULL;
145
/* Leave folio->index set: truncation lookup relies upon it */
146
mapping->nrpages -= nr;
147
}
148
149
static void filemap_unaccount_folio(struct address_space *mapping,
150
struct folio *folio)
151
{
152
long nr;
153
154
VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155
if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156
pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157
current->comm, folio_pfn(folio));
158
dump_page(&folio->page, "still mapped when deleted");
159
dump_stack();
160
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161
162
if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163
int mapcount = folio_mapcount(folio);
164
165
if (folio_ref_count(folio) >= mapcount + 2) {
166
/*
167
* All vmas have already been torn down, so it's
168
* a good bet that actually the page is unmapped
169
* and we'd rather not leak it: if we're wrong,
170
* another bad page check should catch it later.
171
*/
172
atomic_set(&folio->_mapcount, -1);
173
folio_ref_sub(folio, mapcount);
174
}
175
}
176
}
177
178
/* hugetlb folios do not participate in page cache accounting. */
179
if (folio_test_hugetlb(folio))
180
return;
181
182
nr = folio_nr_pages(folio);
183
184
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185
if (folio_test_swapbacked(folio)) {
186
__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187
if (folio_test_pmd_mappable(folio))
188
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189
} else if (folio_test_pmd_mappable(folio)) {
190
__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191
filemap_nr_thps_dec(mapping);
192
}
193
if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
194
mod_node_page_state(folio_pgdat(folio),
195
NR_KERNEL_FILE_PAGES, -nr);
196
197
/*
198
* At this point folio must be either written or cleaned by
199
* truncate. Dirty folio here signals a bug and loss of
200
* unwritten data - on ordinary filesystems.
201
*
202
* But it's harmless on in-memory filesystems like tmpfs; and can
203
* occur when a driver which did get_user_pages() sets page dirty
204
* before putting it, while the inode is being finally evicted.
205
*
206
* Below fixes dirty accounting after removing the folio entirely
207
* but leaves the dirty flag set: it has no effect for truncated
208
* folio and anyway will be cleared before returning folio to
209
* buddy allocator.
210
*/
211
if (WARN_ON_ONCE(folio_test_dirty(folio) &&
212
mapping_can_writeback(mapping)))
213
folio_account_cleaned(folio, inode_to_wb(mapping->host));
214
}
215
216
/*
217
* Delete a page from the page cache and free it. Caller has to make
218
* sure the page is locked and that nobody else uses it - or that usage
219
* is safe. The caller must hold the i_pages lock.
220
*/
221
void __filemap_remove_folio(struct folio *folio, void *shadow)
222
{
223
struct address_space *mapping = folio->mapping;
224
225
trace_mm_filemap_delete_from_page_cache(folio);
226
filemap_unaccount_folio(mapping, folio);
227
page_cache_delete(mapping, folio, shadow);
228
}
229
230
void filemap_free_folio(struct address_space *mapping, struct folio *folio)
231
{
232
void (*free_folio)(struct folio *);
233
234
free_folio = mapping->a_ops->free_folio;
235
if (free_folio)
236
free_folio(folio);
237
238
folio_put_refs(folio, folio_nr_pages(folio));
239
}
240
241
/**
242
* filemap_remove_folio - Remove folio from page cache.
243
* @folio: The folio.
244
*
245
* This must be called only on folios that are locked and have been
246
* verified to be in the page cache. It will never put the folio into
247
* the free list because the caller has a reference on the page.
248
*/
249
void filemap_remove_folio(struct folio *folio)
250
{
251
struct address_space *mapping = folio->mapping;
252
253
BUG_ON(!folio_test_locked(folio));
254
spin_lock(&mapping->host->i_lock);
255
xa_lock_irq(&mapping->i_pages);
256
__filemap_remove_folio(folio, NULL);
257
xa_unlock_irq(&mapping->i_pages);
258
if (mapping_shrinkable(mapping))
259
inode_add_lru(mapping->host);
260
spin_unlock(&mapping->host->i_lock);
261
262
filemap_free_folio(mapping, folio);
263
}
264
265
/*
266
* page_cache_delete_batch - delete several folios from page cache
267
* @mapping: the mapping to which folios belong
268
* @fbatch: batch of folios to delete
269
*
270
* The function walks over mapping->i_pages and removes folios passed in
271
* @fbatch from the mapping. The function expects @fbatch to be sorted
272
* by page index and is optimised for it to be dense.
273
* It tolerates holes in @fbatch (mapping entries at those indices are not
274
* modified).
275
*
276
* The function expects the i_pages lock to be held.
277
*/
278
static void page_cache_delete_batch(struct address_space *mapping,
279
struct folio_batch *fbatch)
280
{
281
XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
282
long total_pages = 0;
283
int i = 0;
284
struct folio *folio;
285
286
mapping_set_update(&xas, mapping);
287
xas_for_each(&xas, folio, ULONG_MAX) {
288
if (i >= folio_batch_count(fbatch))
289
break;
290
291
/* A swap/dax/shadow entry got inserted? Skip it. */
292
if (xa_is_value(folio))
293
continue;
294
/*
295
* A page got inserted in our range? Skip it. We have our
296
* pages locked so they are protected from being removed.
297
* If we see a page whose index is higher than ours, it
298
* means our page has been removed, which shouldn't be
299
* possible because we're holding the PageLock.
300
*/
301
if (folio != fbatch->folios[i]) {
302
VM_BUG_ON_FOLIO(folio->index >
303
fbatch->folios[i]->index, folio);
304
continue;
305
}
306
307
WARN_ON_ONCE(!folio_test_locked(folio));
308
309
folio->mapping = NULL;
310
/* Leave folio->index set: truncation lookup relies on it */
311
312
i++;
313
xas_store(&xas, NULL);
314
total_pages += folio_nr_pages(folio);
315
}
316
mapping->nrpages -= total_pages;
317
}
318
319
void delete_from_page_cache_batch(struct address_space *mapping,
320
struct folio_batch *fbatch)
321
{
322
int i;
323
324
if (!folio_batch_count(fbatch))
325
return;
326
327
spin_lock(&mapping->host->i_lock);
328
xa_lock_irq(&mapping->i_pages);
329
for (i = 0; i < folio_batch_count(fbatch); i++) {
330
struct folio *folio = fbatch->folios[i];
331
332
trace_mm_filemap_delete_from_page_cache(folio);
333
filemap_unaccount_folio(mapping, folio);
334
}
335
page_cache_delete_batch(mapping, fbatch);
336
xa_unlock_irq(&mapping->i_pages);
337
if (mapping_shrinkable(mapping))
338
inode_add_lru(mapping->host);
339
spin_unlock(&mapping->host->i_lock);
340
341
for (i = 0; i < folio_batch_count(fbatch); i++)
342
filemap_free_folio(mapping, fbatch->folios[i]);
343
}
344
345
int filemap_check_errors(struct address_space *mapping)
346
{
347
int ret = 0;
348
/* Check for outstanding write errors */
349
if (test_bit(AS_ENOSPC, &mapping->flags) &&
350
test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351
ret = -ENOSPC;
352
if (test_bit(AS_EIO, &mapping->flags) &&
353
test_and_clear_bit(AS_EIO, &mapping->flags))
354
ret = -EIO;
355
return ret;
356
}
357
EXPORT_SYMBOL(filemap_check_errors);
358
359
static int filemap_check_and_keep_errors(struct address_space *mapping)
360
{
361
/* Check for outstanding write errors */
362
if (test_bit(AS_EIO, &mapping->flags))
363
return -EIO;
364
if (test_bit(AS_ENOSPC, &mapping->flags))
365
return -ENOSPC;
366
return 0;
367
}
368
369
/**
370
* filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
371
* @mapping: address space structure to write
372
* @wbc: the writeback_control controlling the writeout
373
*
374
* Call writepages on the mapping using the provided wbc to control the
375
* writeout.
376
*
377
* Return: %0 on success, negative error code otherwise.
378
*/
379
int filemap_fdatawrite_wbc(struct address_space *mapping,
380
struct writeback_control *wbc)
381
{
382
int ret;
383
384
if (!mapping_can_writeback(mapping) ||
385
!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386
return 0;
387
388
wbc_attach_fdatawrite_inode(wbc, mapping->host);
389
ret = do_writepages(mapping, wbc);
390
wbc_detach_inode(wbc);
391
return ret;
392
}
393
EXPORT_SYMBOL(filemap_fdatawrite_wbc);
394
395
/**
396
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397
* @mapping: address space structure to write
398
* @start: offset in bytes where the range starts
399
* @end: offset in bytes where the range ends (inclusive)
400
* @sync_mode: enable synchronous operation
401
*
402
* Start writeback against all of a mapping's dirty pages that lie
403
* within the byte offsets <start, end> inclusive.
404
*
405
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
406
* opposed to a regular memory cleansing writeback. The difference between
407
* these two operations is that if a dirty page/buffer is encountered, it must
408
* be waited upon, and not just skipped over.
409
*
410
* Return: %0 on success, negative error code otherwise.
411
*/
412
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
413
loff_t end, int sync_mode)
414
{
415
struct writeback_control wbc = {
416
.sync_mode = sync_mode,
417
.nr_to_write = LONG_MAX,
418
.range_start = start,
419
.range_end = end,
420
};
421
422
return filemap_fdatawrite_wbc(mapping, &wbc);
423
}
424
425
static inline int __filemap_fdatawrite(struct address_space *mapping,
426
int sync_mode)
427
{
428
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429
}
430
431
int filemap_fdatawrite(struct address_space *mapping)
432
{
433
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434
}
435
EXPORT_SYMBOL(filemap_fdatawrite);
436
437
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438
loff_t end)
439
{
440
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441
}
442
EXPORT_SYMBOL(filemap_fdatawrite_range);
443
444
/**
445
* filemap_fdatawrite_range_kick - start writeback on a range
446
* @mapping: target address_space
447
* @start: index to start writeback on
448
* @end: last (inclusive) index for writeback
449
*
450
* This is a non-integrity writeback helper, to start writing back folios
451
* for the indicated range.
452
*
453
* Return: %0 on success, negative error code otherwise.
454
*/
455
int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
456
loff_t end)
457
{
458
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
459
}
460
EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
461
462
/**
463
* filemap_flush - mostly a non-blocking flush
464
* @mapping: target address_space
465
*
466
* This is a mostly non-blocking flush. Not suitable for data-integrity
467
* purposes - I/O may not be started against all dirty pages.
468
*
469
* Return: %0 on success, negative error code otherwise.
470
*/
471
int filemap_flush(struct address_space *mapping)
472
{
473
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
474
}
475
EXPORT_SYMBOL(filemap_flush);
476
477
/**
478
* filemap_range_has_page - check if a page exists in range.
479
* @mapping: address space within which to check
480
* @start_byte: offset in bytes where the range starts
481
* @end_byte: offset in bytes where the range ends (inclusive)
482
*
483
* Find at least one page in the range supplied, usually used to check if
484
* direct writing in this range will trigger a writeback.
485
*
486
* Return: %true if at least one page exists in the specified range,
487
* %false otherwise.
488
*/
489
bool filemap_range_has_page(struct address_space *mapping,
490
loff_t start_byte, loff_t end_byte)
491
{
492
struct folio *folio;
493
XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494
pgoff_t max = end_byte >> PAGE_SHIFT;
495
496
if (end_byte < start_byte)
497
return false;
498
499
rcu_read_lock();
500
for (;;) {
501
folio = xas_find(&xas, max);
502
if (xas_retry(&xas, folio))
503
continue;
504
/* Shadow entries don't count */
505
if (xa_is_value(folio))
506
continue;
507
/*
508
* We don't need to try to pin this page; we're about to
509
* release the RCU lock anyway. It is enough to know that
510
* there was a page here recently.
511
*/
512
break;
513
}
514
rcu_read_unlock();
515
516
return folio != NULL;
517
}
518
EXPORT_SYMBOL(filemap_range_has_page);
519
520
static void __filemap_fdatawait_range(struct address_space *mapping,
521
loff_t start_byte, loff_t end_byte)
522
{
523
pgoff_t index = start_byte >> PAGE_SHIFT;
524
pgoff_t end = end_byte >> PAGE_SHIFT;
525
struct folio_batch fbatch;
526
unsigned nr_folios;
527
528
folio_batch_init(&fbatch);
529
530
while (index <= end) {
531
unsigned i;
532
533
nr_folios = filemap_get_folios_tag(mapping, &index, end,
534
PAGECACHE_TAG_WRITEBACK, &fbatch);
535
536
if (!nr_folios)
537
break;
538
539
for (i = 0; i < nr_folios; i++) {
540
struct folio *folio = fbatch.folios[i];
541
542
folio_wait_writeback(folio);
543
}
544
folio_batch_release(&fbatch);
545
cond_resched();
546
}
547
}
548
549
/**
550
* filemap_fdatawait_range - wait for writeback to complete
551
* @mapping: address space structure to wait for
552
* @start_byte: offset in bytes where the range starts
553
* @end_byte: offset in bytes where the range ends (inclusive)
554
*
555
* Walk the list of under-writeback pages of the given address space
556
* in the given range and wait for all of them. Check error status of
557
* the address space and return it.
558
*
559
* Since the error status of the address space is cleared by this function,
560
* callers are responsible for checking the return value and handling and/or
561
* reporting the error.
562
*
563
* Return: error status of the address space.
564
*/
565
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
566
loff_t end_byte)
567
{
568
__filemap_fdatawait_range(mapping, start_byte, end_byte);
569
return filemap_check_errors(mapping);
570
}
571
EXPORT_SYMBOL(filemap_fdatawait_range);
572
573
/**
574
* filemap_fdatawait_range_keep_errors - wait for writeback to complete
575
* @mapping: address space structure to wait for
576
* @start_byte: offset in bytes where the range starts
577
* @end_byte: offset in bytes where the range ends (inclusive)
578
*
579
* Walk the list of under-writeback pages of the given address space in the
580
* given range and wait for all of them. Unlike filemap_fdatawait_range(),
581
* this function does not clear error status of the address space.
582
*
583
* Use this function if callers don't handle errors themselves. Expected
584
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585
* fsfreeze(8)
586
*/
587
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
588
loff_t start_byte, loff_t end_byte)
589
{
590
__filemap_fdatawait_range(mapping, start_byte, end_byte);
591
return filemap_check_and_keep_errors(mapping);
592
}
593
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
594
595
/**
596
* file_fdatawait_range - wait for writeback to complete
597
* @file: file pointing to address space structure to wait for
598
* @start_byte: offset in bytes where the range starts
599
* @end_byte: offset in bytes where the range ends (inclusive)
600
*
601
* Walk the list of under-writeback pages of the address space that file
602
* refers to, in the given range and wait for all of them. Check error
603
* status of the address space vs. the file->f_wb_err cursor and return it.
604
*
605
* Since the error status of the file is advanced by this function,
606
* callers are responsible for checking the return value and handling and/or
607
* reporting the error.
608
*
609
* Return: error status of the address space vs. the file->f_wb_err cursor.
610
*/
611
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
612
{
613
struct address_space *mapping = file->f_mapping;
614
615
__filemap_fdatawait_range(mapping, start_byte, end_byte);
616
return file_check_and_advance_wb_err(file);
617
}
618
EXPORT_SYMBOL(file_fdatawait_range);
619
620
/**
621
* filemap_fdatawait_keep_errors - wait for writeback without clearing errors
622
* @mapping: address space structure to wait for
623
*
624
* Walk the list of under-writeback pages of the given address space
625
* and wait for all of them. Unlike filemap_fdatawait(), this function
626
* does not clear error status of the address space.
627
*
628
* Use this function if callers don't handle errors themselves. Expected
629
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
630
* fsfreeze(8)
631
*
632
* Return: error status of the address space.
633
*/
634
int filemap_fdatawait_keep_errors(struct address_space *mapping)
635
{
636
__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
637
return filemap_check_and_keep_errors(mapping);
638
}
639
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
640
641
/* Returns true if writeback might be needed or already in progress. */
642
static bool mapping_needs_writeback(struct address_space *mapping)
643
{
644
return mapping->nrpages;
645
}
646
647
bool filemap_range_has_writeback(struct address_space *mapping,
648
loff_t start_byte, loff_t end_byte)
649
{
650
XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
651
pgoff_t max = end_byte >> PAGE_SHIFT;
652
struct folio *folio;
653
654
if (end_byte < start_byte)
655
return false;
656
657
rcu_read_lock();
658
xas_for_each(&xas, folio, max) {
659
if (xas_retry(&xas, folio))
660
continue;
661
if (xa_is_value(folio))
662
continue;
663
if (folio_test_dirty(folio) || folio_test_locked(folio) ||
664
folio_test_writeback(folio))
665
break;
666
}
667
rcu_read_unlock();
668
return folio != NULL;
669
}
670
EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
671
672
/**
673
* filemap_write_and_wait_range - write out & wait on a file range
674
* @mapping: the address_space for the pages
675
* @lstart: offset in bytes where the range starts
676
* @lend: offset in bytes where the range ends (inclusive)
677
*
678
* Write out and wait upon file offsets lstart->lend, inclusive.
679
*
680
* Note that @lend is inclusive (describes the last byte to be written) so
681
* that this function can be used to write to the very end-of-file (end = -1).
682
*
683
* Return: error status of the address space.
684
*/
685
int filemap_write_and_wait_range(struct address_space *mapping,
686
loff_t lstart, loff_t lend)
687
{
688
int err = 0, err2;
689
690
if (lend < lstart)
691
return 0;
692
693
if (mapping_needs_writeback(mapping)) {
694
err = __filemap_fdatawrite_range(mapping, lstart, lend,
695
WB_SYNC_ALL);
696
/*
697
* Even if the above returned error, the pages may be
698
* written partially (e.g. -ENOSPC), so we wait for it.
699
* But the -EIO is special case, it may indicate the worst
700
* thing (e.g. bug) happened, so we avoid waiting for it.
701
*/
702
if (err != -EIO)
703
__filemap_fdatawait_range(mapping, lstart, lend);
704
}
705
err2 = filemap_check_errors(mapping);
706
if (!err)
707
err = err2;
708
return err;
709
}
710
EXPORT_SYMBOL(filemap_write_and_wait_range);
711
712
void __filemap_set_wb_err(struct address_space *mapping, int err)
713
{
714
errseq_t eseq = errseq_set(&mapping->wb_err, err);
715
716
trace_filemap_set_wb_err(mapping, eseq);
717
}
718
EXPORT_SYMBOL(__filemap_set_wb_err);
719
720
/**
721
* file_check_and_advance_wb_err - report wb error (if any) that was previously
722
* and advance wb_err to current one
723
* @file: struct file on which the error is being reported
724
*
725
* When userland calls fsync (or something like nfsd does the equivalent), we
726
* want to report any writeback errors that occurred since the last fsync (or
727
* since the file was opened if there haven't been any).
728
*
729
* Grab the wb_err from the mapping. If it matches what we have in the file,
730
* then just quickly return 0. The file is all caught up.
731
*
732
* If it doesn't match, then take the mapping value, set the "seen" flag in
733
* it and try to swap it into place. If it works, or another task beat us
734
* to it with the new value, then update the f_wb_err and return the error
735
* portion. The error at this point must be reported via proper channels
736
* (a'la fsync, or NFS COMMIT operation, etc.).
737
*
738
* While we handle mapping->wb_err with atomic operations, the f_wb_err
739
* value is protected by the f_lock since we must ensure that it reflects
740
* the latest value swapped in for this file descriptor.
741
*
742
* Return: %0 on success, negative error code otherwise.
743
*/
744
int file_check_and_advance_wb_err(struct file *file)
745
{
746
int err = 0;
747
errseq_t old = READ_ONCE(file->f_wb_err);
748
struct address_space *mapping = file->f_mapping;
749
750
/* Locklessly handle the common case where nothing has changed */
751
if (errseq_check(&mapping->wb_err, old)) {
752
/* Something changed, must use slow path */
753
spin_lock(&file->f_lock);
754
old = file->f_wb_err;
755
err = errseq_check_and_advance(&mapping->wb_err,
756
&file->f_wb_err);
757
trace_file_check_and_advance_wb_err(file, old);
758
spin_unlock(&file->f_lock);
759
}
760
761
/*
762
* We're mostly using this function as a drop in replacement for
763
* filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
764
* that the legacy code would have had on these flags.
765
*/
766
clear_bit(AS_EIO, &mapping->flags);
767
clear_bit(AS_ENOSPC, &mapping->flags);
768
return err;
769
}
770
EXPORT_SYMBOL(file_check_and_advance_wb_err);
771
772
/**
773
* file_write_and_wait_range - write out & wait on a file range
774
* @file: file pointing to address_space with pages
775
* @lstart: offset in bytes where the range starts
776
* @lend: offset in bytes where the range ends (inclusive)
777
*
778
* Write out and wait upon file offsets lstart->lend, inclusive.
779
*
780
* Note that @lend is inclusive (describes the last byte to be written) so
781
* that this function can be used to write to the very end-of-file (end = -1).
782
*
783
* After writing out and waiting on the data, we check and advance the
784
* f_wb_err cursor to the latest value, and return any errors detected there.
785
*
786
* Return: %0 on success, negative error code otherwise.
787
*/
788
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
789
{
790
int err = 0, err2;
791
struct address_space *mapping = file->f_mapping;
792
793
if (lend < lstart)
794
return 0;
795
796
if (mapping_needs_writeback(mapping)) {
797
err = __filemap_fdatawrite_range(mapping, lstart, lend,
798
WB_SYNC_ALL);
799
/* See comment of filemap_write_and_wait() */
800
if (err != -EIO)
801
__filemap_fdatawait_range(mapping, lstart, lend);
802
}
803
err2 = file_check_and_advance_wb_err(file);
804
if (!err)
805
err = err2;
806
return err;
807
}
808
EXPORT_SYMBOL(file_write_and_wait_range);
809
810
/**
811
* replace_page_cache_folio - replace a pagecache folio with a new one
812
* @old: folio to be replaced
813
* @new: folio to replace with
814
*
815
* This function replaces a folio in the pagecache with a new one. On
816
* success it acquires the pagecache reference for the new folio and
817
* drops it for the old folio. Both the old and new folios must be
818
* locked. This function does not add the new folio to the LRU, the
819
* caller must do that.
820
*
821
* The remove + add is atomic. This function cannot fail.
822
*/
823
void replace_page_cache_folio(struct folio *old, struct folio *new)
824
{
825
struct address_space *mapping = old->mapping;
826
void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
827
pgoff_t offset = old->index;
828
XA_STATE(xas, &mapping->i_pages, offset);
829
830
VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
831
VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
832
VM_BUG_ON_FOLIO(new->mapping, new);
833
834
folio_get(new);
835
new->mapping = mapping;
836
new->index = offset;
837
838
mem_cgroup_replace_folio(old, new);
839
840
xas_lock_irq(&xas);
841
xas_store(&xas, new);
842
843
old->mapping = NULL;
844
/* hugetlb pages do not participate in page cache accounting. */
845
if (!folio_test_hugetlb(old))
846
__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
847
if (!folio_test_hugetlb(new))
848
__lruvec_stat_add_folio(new, NR_FILE_PAGES);
849
if (folio_test_swapbacked(old))
850
__lruvec_stat_sub_folio(old, NR_SHMEM);
851
if (folio_test_swapbacked(new))
852
__lruvec_stat_add_folio(new, NR_SHMEM);
853
xas_unlock_irq(&xas);
854
if (free_folio)
855
free_folio(old);
856
folio_put(old);
857
}
858
EXPORT_SYMBOL_GPL(replace_page_cache_folio);
859
860
noinline int __filemap_add_folio(struct address_space *mapping,
861
struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
862
{
863
XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
864
bool huge;
865
long nr;
866
unsigned int forder = folio_order(folio);
867
868
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
869
VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
870
VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
871
folio);
872
mapping_set_update(&xas, mapping);
873
874
VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
875
huge = folio_test_hugetlb(folio);
876
nr = folio_nr_pages(folio);
877
878
gfp &= GFP_RECLAIM_MASK;
879
folio_ref_add(folio, nr);
880
folio->mapping = mapping;
881
folio->index = xas.xa_index;
882
883
for (;;) {
884
int order = -1;
885
void *entry, *old = NULL;
886
887
xas_lock_irq(&xas);
888
xas_for_each_conflict(&xas, entry) {
889
old = entry;
890
if (!xa_is_value(entry)) {
891
xas_set_err(&xas, -EEXIST);
892
goto unlock;
893
}
894
/*
895
* If a larger entry exists,
896
* it will be the first and only entry iterated.
897
*/
898
if (order == -1)
899
order = xas_get_order(&xas);
900
}
901
902
if (old) {
903
if (order > 0 && order > forder) {
904
unsigned int split_order = max(forder,
905
xas_try_split_min_order(order));
906
907
/* How to handle large swap entries? */
908
BUG_ON(shmem_mapping(mapping));
909
910
while (order > forder) {
911
xas_set_order(&xas, index, split_order);
912
xas_try_split(&xas, old, order);
913
if (xas_error(&xas))
914
goto unlock;
915
order = split_order;
916
split_order =
917
max(xas_try_split_min_order(
918
split_order),
919
forder);
920
}
921
xas_reset(&xas);
922
}
923
if (shadowp)
924
*shadowp = old;
925
}
926
927
xas_store(&xas, folio);
928
if (xas_error(&xas))
929
goto unlock;
930
931
mapping->nrpages += nr;
932
933
/* hugetlb pages do not participate in page cache accounting */
934
if (!huge) {
935
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
936
if (folio_test_pmd_mappable(folio))
937
__lruvec_stat_mod_folio(folio,
938
NR_FILE_THPS, nr);
939
}
940
941
unlock:
942
xas_unlock_irq(&xas);
943
944
if (!xas_nomem(&xas, gfp))
945
break;
946
}
947
948
if (xas_error(&xas))
949
goto error;
950
951
trace_mm_filemap_add_to_page_cache(folio);
952
return 0;
953
error:
954
folio->mapping = NULL;
955
/* Leave folio->index set: truncation relies upon it */
956
folio_put_refs(folio, nr);
957
return xas_error(&xas);
958
}
959
ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960
961
int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962
pgoff_t index, gfp_t gfp)
963
{
964
void *shadow = NULL;
965
int ret;
966
struct mem_cgroup *tmp;
967
bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
968
969
if (kernel_file)
970
tmp = set_active_memcg(root_mem_cgroup);
971
ret = mem_cgroup_charge(folio, NULL, gfp);
972
if (kernel_file)
973
set_active_memcg(tmp);
974
if (ret)
975
return ret;
976
977
__folio_set_locked(folio);
978
ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
979
if (unlikely(ret)) {
980
mem_cgroup_uncharge(folio);
981
__folio_clear_locked(folio);
982
} else {
983
/*
984
* The folio might have been evicted from cache only
985
* recently, in which case it should be activated like
986
* any other repeatedly accessed folio.
987
* The exception is folios getting rewritten; evicting other
988
* data from the working set, only to cache data that will
989
* get overwritten with something else, is a waste of memory.
990
*/
991
WARN_ON_ONCE(folio_test_active(folio));
992
if (!(gfp & __GFP_WRITE) && shadow)
993
workingset_refault(folio, shadow);
994
folio_add_lru(folio);
995
if (kernel_file)
996
mod_node_page_state(folio_pgdat(folio),
997
NR_KERNEL_FILE_PAGES,
998
folio_nr_pages(folio));
999
}
1000
return ret;
1001
}
1002
EXPORT_SYMBOL_GPL(filemap_add_folio);
1003
1004
#ifdef CONFIG_NUMA
1005
struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1006
{
1007
int n;
1008
struct folio *folio;
1009
1010
if (cpuset_do_page_mem_spread()) {
1011
unsigned int cpuset_mems_cookie;
1012
do {
1013
cpuset_mems_cookie = read_mems_allowed_begin();
1014
n = cpuset_mem_spread_node();
1015
folio = __folio_alloc_node_noprof(gfp, order, n);
1016
} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1017
1018
return folio;
1019
}
1020
return folio_alloc_noprof(gfp, order);
1021
}
1022
EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1023
#endif
1024
1025
/*
1026
* filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1027
*
1028
* Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1029
*
1030
* @mapping1: the first mapping to lock
1031
* @mapping2: the second mapping to lock
1032
*/
1033
void filemap_invalidate_lock_two(struct address_space *mapping1,
1034
struct address_space *mapping2)
1035
{
1036
if (mapping1 > mapping2)
1037
swap(mapping1, mapping2);
1038
if (mapping1)
1039
down_write(&mapping1->invalidate_lock);
1040
if (mapping2 && mapping1 != mapping2)
1041
down_write_nested(&mapping2->invalidate_lock, 1);
1042
}
1043
EXPORT_SYMBOL(filemap_invalidate_lock_two);
1044
1045
/*
1046
* filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1047
*
1048
* Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1049
*
1050
* @mapping1: the first mapping to unlock
1051
* @mapping2: the second mapping to unlock
1052
*/
1053
void filemap_invalidate_unlock_two(struct address_space *mapping1,
1054
struct address_space *mapping2)
1055
{
1056
if (mapping1)
1057
up_write(&mapping1->invalidate_lock);
1058
if (mapping2 && mapping1 != mapping2)
1059
up_write(&mapping2->invalidate_lock);
1060
}
1061
EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1062
1063
/*
1064
* In order to wait for pages to become available there must be
1065
* waitqueues associated with pages. By using a hash table of
1066
* waitqueues where the bucket discipline is to maintain all
1067
* waiters on the same queue and wake all when any of the pages
1068
* become available, and for the woken contexts to check to be
1069
* sure the appropriate page became available, this saves space
1070
* at a cost of "thundering herd" phenomena during rare hash
1071
* collisions.
1072
*/
1073
#define PAGE_WAIT_TABLE_BITS 8
1074
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1075
static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1076
1077
static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1078
{
1079
return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1080
}
1081
1082
/* How many times do we accept lock stealing from under a waiter? */
1083
static int sysctl_page_lock_unfairness = 5;
1084
static const struct ctl_table filemap_sysctl_table[] = {
1085
{
1086
.procname = "page_lock_unfairness",
1087
.data = &sysctl_page_lock_unfairness,
1088
.maxlen = sizeof(sysctl_page_lock_unfairness),
1089
.mode = 0644,
1090
.proc_handler = proc_dointvec_minmax,
1091
.extra1 = SYSCTL_ZERO,
1092
}
1093
};
1094
1095
void __init pagecache_init(void)
1096
{
1097
int i;
1098
1099
for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1100
init_waitqueue_head(&folio_wait_table[i]);
1101
1102
page_writeback_init();
1103
register_sysctl_init("vm", filemap_sysctl_table);
1104
}
1105
1106
/*
1107
* The page wait code treats the "wait->flags" somewhat unusually, because
1108
* we have multiple different kinds of waits, not just the usual "exclusive"
1109
* one.
1110
*
1111
* We have:
1112
*
1113
* (a) no special bits set:
1114
*
1115
* We're just waiting for the bit to be released, and when a waker
1116
* calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1117
* and remove it from the wait queue.
1118
*
1119
* Simple and straightforward.
1120
*
1121
* (b) WQ_FLAG_EXCLUSIVE:
1122
*
1123
* The waiter is waiting to get the lock, and only one waiter should
1124
* be woken up to avoid any thundering herd behavior. We'll set the
1125
* WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1126
*
1127
* This is the traditional exclusive wait.
1128
*
1129
* (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1130
*
1131
* The waiter is waiting to get the bit, and additionally wants the
1132
* lock to be transferred to it for fair lock behavior. If the lock
1133
* cannot be taken, we stop walking the wait queue without waking
1134
* the waiter.
1135
*
1136
* This is the "fair lock handoff" case, and in addition to setting
1137
* WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1138
* that it now has the lock.
1139
*/
1140
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1141
{
1142
unsigned int flags;
1143
struct wait_page_key *key = arg;
1144
struct wait_page_queue *wait_page
1145
= container_of(wait, struct wait_page_queue, wait);
1146
1147
if (!wake_page_match(wait_page, key))
1148
return 0;
1149
1150
/*
1151
* If it's a lock handoff wait, we get the bit for it, and
1152
* stop walking (and do not wake it up) if we can't.
1153
*/
1154
flags = wait->flags;
1155
if (flags & WQ_FLAG_EXCLUSIVE) {
1156
if (test_bit(key->bit_nr, &key->folio->flags.f))
1157
return -1;
1158
if (flags & WQ_FLAG_CUSTOM) {
1159
if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1160
return -1;
1161
flags |= WQ_FLAG_DONE;
1162
}
1163
}
1164
1165
/*
1166
* We are holding the wait-queue lock, but the waiter that
1167
* is waiting for this will be checking the flags without
1168
* any locking.
1169
*
1170
* So update the flags atomically, and wake up the waiter
1171
* afterwards to avoid any races. This store-release pairs
1172
* with the load-acquire in folio_wait_bit_common().
1173
*/
1174
smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1175
wake_up_state(wait->private, mode);
1176
1177
/*
1178
* Ok, we have successfully done what we're waiting for,
1179
* and we can unconditionally remove the wait entry.
1180
*
1181
* Note that this pairs with the "finish_wait()" in the
1182
* waiter, and has to be the absolute last thing we do.
1183
* After this list_del_init(&wait->entry) the wait entry
1184
* might be de-allocated and the process might even have
1185
* exited.
1186
*/
1187
list_del_init_careful(&wait->entry);
1188
return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1189
}
1190
1191
static void folio_wake_bit(struct folio *folio, int bit_nr)
1192
{
1193
wait_queue_head_t *q = folio_waitqueue(folio);
1194
struct wait_page_key key;
1195
unsigned long flags;
1196
1197
key.folio = folio;
1198
key.bit_nr = bit_nr;
1199
key.page_match = 0;
1200
1201
spin_lock_irqsave(&q->lock, flags);
1202
__wake_up_locked_key(q, TASK_NORMAL, &key);
1203
1204
/*
1205
* It's possible to miss clearing waiters here, when we woke our page
1206
* waiters, but the hashed waitqueue has waiters for other pages on it.
1207
* That's okay, it's a rare case. The next waker will clear it.
1208
*
1209
* Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1210
* other), the flag may be cleared in the course of freeing the page;
1211
* but that is not required for correctness.
1212
*/
1213
if (!waitqueue_active(q) || !key.page_match)
1214
folio_clear_waiters(folio);
1215
1216
spin_unlock_irqrestore(&q->lock, flags);
1217
}
1218
1219
/*
1220
* A choice of three behaviors for folio_wait_bit_common():
1221
*/
1222
enum behavior {
1223
EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1224
* __folio_lock() waiting on then setting PG_locked.
1225
*/
1226
SHARED, /* Hold ref to page and check the bit when woken, like
1227
* folio_wait_writeback() waiting on PG_writeback.
1228
*/
1229
DROP, /* Drop ref to page before wait, no check when woken,
1230
* like folio_put_wait_locked() on PG_locked.
1231
*/
1232
};
1233
1234
/*
1235
* Attempt to check (or get) the folio flag, and mark us done
1236
* if successful.
1237
*/
1238
static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1239
struct wait_queue_entry *wait)
1240
{
1241
if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1242
if (test_and_set_bit(bit_nr, &folio->flags.f))
1243
return false;
1244
} else if (test_bit(bit_nr, &folio->flags.f))
1245
return false;
1246
1247
wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1248
return true;
1249
}
1250
1251
static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1252
int state, enum behavior behavior)
1253
{
1254
wait_queue_head_t *q = folio_waitqueue(folio);
1255
int unfairness = sysctl_page_lock_unfairness;
1256
struct wait_page_queue wait_page;
1257
wait_queue_entry_t *wait = &wait_page.wait;
1258
bool thrashing = false;
1259
unsigned long pflags;
1260
bool in_thrashing;
1261
1262
if (bit_nr == PG_locked &&
1263
!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1264
delayacct_thrashing_start(&in_thrashing);
1265
psi_memstall_enter(&pflags);
1266
thrashing = true;
1267
}
1268
1269
init_wait(wait);
1270
wait->func = wake_page_function;
1271
wait_page.folio = folio;
1272
wait_page.bit_nr = bit_nr;
1273
1274
repeat:
1275
wait->flags = 0;
1276
if (behavior == EXCLUSIVE) {
1277
wait->flags = WQ_FLAG_EXCLUSIVE;
1278
if (--unfairness < 0)
1279
wait->flags |= WQ_FLAG_CUSTOM;
1280
}
1281
1282
/*
1283
* Do one last check whether we can get the
1284
* page bit synchronously.
1285
*
1286
* Do the folio_set_waiters() marking before that
1287
* to let any waker we _just_ missed know they
1288
* need to wake us up (otherwise they'll never
1289
* even go to the slow case that looks at the
1290
* page queue), and add ourselves to the wait
1291
* queue if we need to sleep.
1292
*
1293
* This part needs to be done under the queue
1294
* lock to avoid races.
1295
*/
1296
spin_lock_irq(&q->lock);
1297
folio_set_waiters(folio);
1298
if (!folio_trylock_flag(folio, bit_nr, wait))
1299
__add_wait_queue_entry_tail(q, wait);
1300
spin_unlock_irq(&q->lock);
1301
1302
/*
1303
* From now on, all the logic will be based on
1304
* the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305
* see whether the page bit testing has already
1306
* been done by the wake function.
1307
*
1308
* We can drop our reference to the folio.
1309
*/
1310
if (behavior == DROP)
1311
folio_put(folio);
1312
1313
/*
1314
* Note that until the "finish_wait()", or until
1315
* we see the WQ_FLAG_WOKEN flag, we need to
1316
* be very careful with the 'wait->flags', because
1317
* we may race with a waker that sets them.
1318
*/
1319
for (;;) {
1320
unsigned int flags;
1321
1322
set_current_state(state);
1323
1324
/* Loop until we've been woken or interrupted */
1325
flags = smp_load_acquire(&wait->flags);
1326
if (!(flags & WQ_FLAG_WOKEN)) {
1327
if (signal_pending_state(state, current))
1328
break;
1329
1330
io_schedule();
1331
continue;
1332
}
1333
1334
/* If we were non-exclusive, we're done */
1335
if (behavior != EXCLUSIVE)
1336
break;
1337
1338
/* If the waker got the lock for us, we're done */
1339
if (flags & WQ_FLAG_DONE)
1340
break;
1341
1342
/*
1343
* Otherwise, if we're getting the lock, we need to
1344
* try to get it ourselves.
1345
*
1346
* And if that fails, we'll have to retry this all.
1347
*/
1348
if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1349
goto repeat;
1350
1351
wait->flags |= WQ_FLAG_DONE;
1352
break;
1353
}
1354
1355
/*
1356
* If a signal happened, this 'finish_wait()' may remove the last
1357
* waiter from the wait-queues, but the folio waiters bit will remain
1358
* set. That's ok. The next wakeup will take care of it, and trying
1359
* to do it here would be difficult and prone to races.
1360
*/
1361
finish_wait(q, wait);
1362
1363
if (thrashing) {
1364
delayacct_thrashing_end(&in_thrashing);
1365
psi_memstall_leave(&pflags);
1366
}
1367
1368
/*
1369
* NOTE! The wait->flags weren't stable until we've done the
1370
* 'finish_wait()', and we could have exited the loop above due
1371
* to a signal, and had a wakeup event happen after the signal
1372
* test but before the 'finish_wait()'.
1373
*
1374
* So only after the finish_wait() can we reliably determine
1375
* if we got woken up or not, so we can now figure out the final
1376
* return value based on that state without races.
1377
*
1378
* Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1379
* waiter, but an exclusive one requires WQ_FLAG_DONE.
1380
*/
1381
if (behavior == EXCLUSIVE)
1382
return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1383
1384
return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1385
}
1386
1387
#ifdef CONFIG_MIGRATION
1388
/**
1389
* migration_entry_wait_on_locked - Wait for a migration entry to be removed
1390
* @entry: migration swap entry.
1391
* @ptl: already locked ptl. This function will drop the lock.
1392
*
1393
* Wait for a migration entry referencing the given page to be removed. This is
1394
* equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1395
* this can be called without taking a reference on the page. Instead this
1396
* should be called while holding the ptl for the migration entry referencing
1397
* the page.
1398
*
1399
* Returns after unlocking the ptl.
1400
*
1401
* This follows the same logic as folio_wait_bit_common() so see the comments
1402
* there.
1403
*/
1404
void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1405
__releases(ptl)
1406
{
1407
struct wait_page_queue wait_page;
1408
wait_queue_entry_t *wait = &wait_page.wait;
1409
bool thrashing = false;
1410
unsigned long pflags;
1411
bool in_thrashing;
1412
wait_queue_head_t *q;
1413
struct folio *folio = pfn_swap_entry_folio(entry);
1414
1415
q = folio_waitqueue(folio);
1416
if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1417
delayacct_thrashing_start(&in_thrashing);
1418
psi_memstall_enter(&pflags);
1419
thrashing = true;
1420
}
1421
1422
init_wait(wait);
1423
wait->func = wake_page_function;
1424
wait_page.folio = folio;
1425
wait_page.bit_nr = PG_locked;
1426
wait->flags = 0;
1427
1428
spin_lock_irq(&q->lock);
1429
folio_set_waiters(folio);
1430
if (!folio_trylock_flag(folio, PG_locked, wait))
1431
__add_wait_queue_entry_tail(q, wait);
1432
spin_unlock_irq(&q->lock);
1433
1434
/*
1435
* If a migration entry exists for the page the migration path must hold
1436
* a valid reference to the page, and it must take the ptl to remove the
1437
* migration entry. So the page is valid until the ptl is dropped.
1438
*/
1439
spin_unlock(ptl);
1440
1441
for (;;) {
1442
unsigned int flags;
1443
1444
set_current_state(TASK_UNINTERRUPTIBLE);
1445
1446
/* Loop until we've been woken or interrupted */
1447
flags = smp_load_acquire(&wait->flags);
1448
if (!(flags & WQ_FLAG_WOKEN)) {
1449
if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1450
break;
1451
1452
io_schedule();
1453
continue;
1454
}
1455
break;
1456
}
1457
1458
finish_wait(q, wait);
1459
1460
if (thrashing) {
1461
delayacct_thrashing_end(&in_thrashing);
1462
psi_memstall_leave(&pflags);
1463
}
1464
}
1465
#endif
1466
1467
void folio_wait_bit(struct folio *folio, int bit_nr)
1468
{
1469
folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1470
}
1471
EXPORT_SYMBOL(folio_wait_bit);
1472
1473
int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1474
{
1475
return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1476
}
1477
EXPORT_SYMBOL(folio_wait_bit_killable);
1478
1479
/**
1480
* folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1481
* @folio: The folio to wait for.
1482
* @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1483
*
1484
* The caller should hold a reference on @folio. They expect the page to
1485
* become unlocked relatively soon, but do not wish to hold up migration
1486
* (for example) by holding the reference while waiting for the folio to
1487
* come unlocked. After this function returns, the caller should not
1488
* dereference @folio.
1489
*
1490
* Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1491
*/
1492
static int folio_put_wait_locked(struct folio *folio, int state)
1493
{
1494
return folio_wait_bit_common(folio, PG_locked, state, DROP);
1495
}
1496
1497
/**
1498
* folio_unlock - Unlock a locked folio.
1499
* @folio: The folio.
1500
*
1501
* Unlocks the folio and wakes up any thread sleeping on the page lock.
1502
*
1503
* Context: May be called from interrupt or process context. May not be
1504
* called from NMI context.
1505
*/
1506
void folio_unlock(struct folio *folio)
1507
{
1508
/* Bit 7 allows x86 to check the byte's sign bit */
1509
BUILD_BUG_ON(PG_waiters != 7);
1510
BUILD_BUG_ON(PG_locked > 7);
1511
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1512
if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1513
folio_wake_bit(folio, PG_locked);
1514
}
1515
EXPORT_SYMBOL(folio_unlock);
1516
1517
/**
1518
* folio_end_read - End read on a folio.
1519
* @folio: The folio.
1520
* @success: True if all reads completed successfully.
1521
*
1522
* When all reads against a folio have completed, filesystems should
1523
* call this function to let the pagecache know that no more reads
1524
* are outstanding. This will unlock the folio and wake up any thread
1525
* sleeping on the lock. The folio will also be marked uptodate if all
1526
* reads succeeded.
1527
*
1528
* Context: May be called from interrupt or process context. May not be
1529
* called from NMI context.
1530
*/
1531
void folio_end_read(struct folio *folio, bool success)
1532
{
1533
unsigned long mask = 1 << PG_locked;
1534
1535
/* Must be in bottom byte for x86 to work */
1536
BUILD_BUG_ON(PG_uptodate > 7);
1537
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1538
VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1539
1540
if (likely(success))
1541
mask |= 1 << PG_uptodate;
1542
if (folio_xor_flags_has_waiters(folio, mask))
1543
folio_wake_bit(folio, PG_locked);
1544
}
1545
EXPORT_SYMBOL(folio_end_read);
1546
1547
/**
1548
* folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1549
* @folio: The folio.
1550
*
1551
* Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1552
* it. The folio reference held for PG_private_2 being set is released.
1553
*
1554
* This is, for example, used when a netfs folio is being written to a local
1555
* disk cache, thereby allowing writes to the cache for the same folio to be
1556
* serialised.
1557
*/
1558
void folio_end_private_2(struct folio *folio)
1559
{
1560
VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1561
clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1562
folio_wake_bit(folio, PG_private_2);
1563
folio_put(folio);
1564
}
1565
EXPORT_SYMBOL(folio_end_private_2);
1566
1567
/**
1568
* folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1569
* @folio: The folio to wait on.
1570
*
1571
* Wait for PG_private_2 to be cleared on a folio.
1572
*/
1573
void folio_wait_private_2(struct folio *folio)
1574
{
1575
while (folio_test_private_2(folio))
1576
folio_wait_bit(folio, PG_private_2);
1577
}
1578
EXPORT_SYMBOL(folio_wait_private_2);
1579
1580
/**
1581
* folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1582
* @folio: The folio to wait on.
1583
*
1584
* Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1585
* received by the calling task.
1586
*
1587
* Return:
1588
* - 0 if successful.
1589
* - -EINTR if a fatal signal was encountered.
1590
*/
1591
int folio_wait_private_2_killable(struct folio *folio)
1592
{
1593
int ret = 0;
1594
1595
while (folio_test_private_2(folio)) {
1596
ret = folio_wait_bit_killable(folio, PG_private_2);
1597
if (ret < 0)
1598
break;
1599
}
1600
1601
return ret;
1602
}
1603
EXPORT_SYMBOL(folio_wait_private_2_killable);
1604
1605
static void filemap_end_dropbehind(struct folio *folio)
1606
{
1607
struct address_space *mapping = folio->mapping;
1608
1609
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1610
1611
if (folio_test_writeback(folio) || folio_test_dirty(folio))
1612
return;
1613
if (!folio_test_clear_dropbehind(folio))
1614
return;
1615
if (mapping)
1616
folio_unmap_invalidate(mapping, folio, 0);
1617
}
1618
1619
/*
1620
* If folio was marked as dropbehind, then pages should be dropped when writeback
1621
* completes. Do that now. If we fail, it's likely because of a big folio -
1622
* just reset dropbehind for that case and latter completions should invalidate.
1623
*/
1624
static void filemap_end_dropbehind_write(struct folio *folio)
1625
{
1626
if (!folio_test_dropbehind(folio))
1627
return;
1628
1629
/*
1630
* Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1631
* but can happen if normal writeback just happens to find dirty folios
1632
* that were created as part of uncached writeback, and that writeback
1633
* would otherwise not need non-IRQ handling. Just skip the
1634
* invalidation in that case.
1635
*/
1636
if (in_task() && folio_trylock(folio)) {
1637
filemap_end_dropbehind(folio);
1638
folio_unlock(folio);
1639
}
1640
}
1641
1642
/**
1643
* folio_end_writeback - End writeback against a folio.
1644
* @folio: The folio.
1645
*
1646
* The folio must actually be under writeback.
1647
*
1648
* Context: May be called from process or interrupt context.
1649
*/
1650
void folio_end_writeback(struct folio *folio)
1651
{
1652
VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1653
1654
/*
1655
* folio_test_clear_reclaim() could be used here but it is an
1656
* atomic operation and overkill in this particular case. Failing
1657
* to shuffle a folio marked for immediate reclaim is too mild
1658
* a gain to justify taking an atomic operation penalty at the
1659
* end of every folio writeback.
1660
*/
1661
if (folio_test_reclaim(folio)) {
1662
folio_clear_reclaim(folio);
1663
folio_rotate_reclaimable(folio);
1664
}
1665
1666
/*
1667
* Writeback does not hold a folio reference of its own, relying
1668
* on truncation to wait for the clearing of PG_writeback.
1669
* But here we must make sure that the folio is not freed and
1670
* reused before the folio_wake_bit().
1671
*/
1672
folio_get(folio);
1673
if (__folio_end_writeback(folio))
1674
folio_wake_bit(folio, PG_writeback);
1675
1676
filemap_end_dropbehind_write(folio);
1677
acct_reclaim_writeback(folio);
1678
folio_put(folio);
1679
}
1680
EXPORT_SYMBOL(folio_end_writeback);
1681
1682
/**
1683
* __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1684
* @folio: The folio to lock
1685
*/
1686
void __folio_lock(struct folio *folio)
1687
{
1688
folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1689
EXCLUSIVE);
1690
}
1691
EXPORT_SYMBOL(__folio_lock);
1692
1693
int __folio_lock_killable(struct folio *folio)
1694
{
1695
return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1696
EXCLUSIVE);
1697
}
1698
EXPORT_SYMBOL_GPL(__folio_lock_killable);
1699
1700
static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1701
{
1702
struct wait_queue_head *q = folio_waitqueue(folio);
1703
int ret;
1704
1705
wait->folio = folio;
1706
wait->bit_nr = PG_locked;
1707
1708
spin_lock_irq(&q->lock);
1709
__add_wait_queue_entry_tail(q, &wait->wait);
1710
folio_set_waiters(folio);
1711
ret = !folio_trylock(folio);
1712
/*
1713
* If we were successful now, we know we're still on the
1714
* waitqueue as we're still under the lock. This means it's
1715
* safe to remove and return success, we know the callback
1716
* isn't going to trigger.
1717
*/
1718
if (!ret)
1719
__remove_wait_queue(q, &wait->wait);
1720
else
1721
ret = -EIOCBQUEUED;
1722
spin_unlock_irq(&q->lock);
1723
return ret;
1724
}
1725
1726
/*
1727
* Return values:
1728
* 0 - folio is locked.
1729
* non-zero - folio is not locked.
1730
* mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1731
* vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1732
* FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1733
*
1734
* If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1735
* with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1736
*/
1737
vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1738
{
1739
unsigned int flags = vmf->flags;
1740
1741
if (fault_flag_allow_retry_first(flags)) {
1742
/*
1743
* CAUTION! In this case, mmap_lock/per-VMA lock is not
1744
* released even though returning VM_FAULT_RETRY.
1745
*/
1746
if (flags & FAULT_FLAG_RETRY_NOWAIT)
1747
return VM_FAULT_RETRY;
1748
1749
release_fault_lock(vmf);
1750
if (flags & FAULT_FLAG_KILLABLE)
1751
folio_wait_locked_killable(folio);
1752
else
1753
folio_wait_locked(folio);
1754
return VM_FAULT_RETRY;
1755
}
1756
if (flags & FAULT_FLAG_KILLABLE) {
1757
bool ret;
1758
1759
ret = __folio_lock_killable(folio);
1760
if (ret) {
1761
release_fault_lock(vmf);
1762
return VM_FAULT_RETRY;
1763
}
1764
} else {
1765
__folio_lock(folio);
1766
}
1767
1768
return 0;
1769
}
1770
1771
/**
1772
* page_cache_next_miss() - Find the next gap in the page cache.
1773
* @mapping: Mapping.
1774
* @index: Index.
1775
* @max_scan: Maximum range to search.
1776
*
1777
* Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1778
* gap with the lowest index.
1779
*
1780
* This function may be called under the rcu_read_lock. However, this will
1781
* not atomically search a snapshot of the cache at a single point in time.
1782
* For example, if a gap is created at index 5, then subsequently a gap is
1783
* created at index 10, page_cache_next_miss covering both indices may
1784
* return 10 if called under the rcu_read_lock.
1785
*
1786
* Return: The index of the gap if found, otherwise an index outside the
1787
* range specified (in which case 'return - index >= max_scan' will be true).
1788
* In the rare case of index wrap-around, 0 will be returned.
1789
*/
1790
pgoff_t page_cache_next_miss(struct address_space *mapping,
1791
pgoff_t index, unsigned long max_scan)
1792
{
1793
XA_STATE(xas, &mapping->i_pages, index);
1794
unsigned long nr = max_scan;
1795
1796
while (nr--) {
1797
void *entry = xas_next(&xas);
1798
if (!entry || xa_is_value(entry))
1799
return xas.xa_index;
1800
if (xas.xa_index == 0)
1801
return 0;
1802
}
1803
1804
return index + max_scan;
1805
}
1806
EXPORT_SYMBOL(page_cache_next_miss);
1807
1808
/**
1809
* page_cache_prev_miss() - Find the previous gap in the page cache.
1810
* @mapping: Mapping.
1811
* @index: Index.
1812
* @max_scan: Maximum range to search.
1813
*
1814
* Search the range [max(index - max_scan + 1, 0), index] for the
1815
* gap with the highest index.
1816
*
1817
* This function may be called under the rcu_read_lock. However, this will
1818
* not atomically search a snapshot of the cache at a single point in time.
1819
* For example, if a gap is created at index 10, then subsequently a gap is
1820
* created at index 5, page_cache_prev_miss() covering both indices may
1821
* return 5 if called under the rcu_read_lock.
1822
*
1823
* Return: The index of the gap if found, otherwise an index outside the
1824
* range specified (in which case 'index - return >= max_scan' will be true).
1825
* In the rare case of wrap-around, ULONG_MAX will be returned.
1826
*/
1827
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1828
pgoff_t index, unsigned long max_scan)
1829
{
1830
XA_STATE(xas, &mapping->i_pages, index);
1831
1832
while (max_scan--) {
1833
void *entry = xas_prev(&xas);
1834
if (!entry || xa_is_value(entry))
1835
break;
1836
if (xas.xa_index == ULONG_MAX)
1837
break;
1838
}
1839
1840
return xas.xa_index;
1841
}
1842
EXPORT_SYMBOL(page_cache_prev_miss);
1843
1844
/*
1845
* Lockless page cache protocol:
1846
* On the lookup side:
1847
* 1. Load the folio from i_pages
1848
* 2. Increment the refcount if it's not zero
1849
* 3. If the folio is not found by xas_reload(), put the refcount and retry
1850
*
1851
* On the removal side:
1852
* A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1853
* B. Remove the page from i_pages
1854
* C. Return the page to the page allocator
1855
*
1856
* This means that any page may have its reference count temporarily
1857
* increased by a speculative page cache (or GUP-fast) lookup as it can
1858
* be allocated by another user before the RCU grace period expires.
1859
* Because the refcount temporarily acquired here may end up being the
1860
* last refcount on the page, any page allocation must be freeable by
1861
* folio_put().
1862
*/
1863
1864
/*
1865
* filemap_get_entry - Get a page cache entry.
1866
* @mapping: the address_space to search
1867
* @index: The page cache index.
1868
*
1869
* Looks up the page cache entry at @mapping & @index. If it is a folio,
1870
* it is returned with an increased refcount. If it is a shadow entry
1871
* of a previously evicted folio, or a swap entry from shmem/tmpfs,
1872
* it is returned without further action.
1873
*
1874
* Return: The folio, swap or shadow entry, %NULL if nothing is found.
1875
*/
1876
void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1877
{
1878
XA_STATE(xas, &mapping->i_pages, index);
1879
struct folio *folio;
1880
1881
rcu_read_lock();
1882
repeat:
1883
xas_reset(&xas);
1884
folio = xas_load(&xas);
1885
if (xas_retry(&xas, folio))
1886
goto repeat;
1887
/*
1888
* A shadow entry of a recently evicted page, or a swap entry from
1889
* shmem/tmpfs. Return it without attempting to raise page count.
1890
*/
1891
if (!folio || xa_is_value(folio))
1892
goto out;
1893
1894
if (!folio_try_get(folio))
1895
goto repeat;
1896
1897
if (unlikely(folio != xas_reload(&xas))) {
1898
folio_put(folio);
1899
goto repeat;
1900
}
1901
out:
1902
rcu_read_unlock();
1903
1904
return folio;
1905
}
1906
1907
/**
1908
* __filemap_get_folio - Find and get a reference to a folio.
1909
* @mapping: The address_space to search.
1910
* @index: The page index.
1911
* @fgp_flags: %FGP flags modify how the folio is returned.
1912
* @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1913
*
1914
* Looks up the page cache entry at @mapping & @index.
1915
*
1916
* If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1917
* if the %GFP flags specified for %FGP_CREAT are atomic.
1918
*
1919
* If this function returns a folio, it is returned with an increased refcount.
1920
*
1921
* Return: The found folio or an ERR_PTR() otherwise.
1922
*/
1923
struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1924
fgf_t fgp_flags, gfp_t gfp)
1925
{
1926
struct folio *folio;
1927
1928
repeat:
1929
folio = filemap_get_entry(mapping, index);
1930
if (xa_is_value(folio))
1931
folio = NULL;
1932
if (!folio)
1933
goto no_page;
1934
1935
if (fgp_flags & FGP_LOCK) {
1936
if (fgp_flags & FGP_NOWAIT) {
1937
if (!folio_trylock(folio)) {
1938
folio_put(folio);
1939
return ERR_PTR(-EAGAIN);
1940
}
1941
} else {
1942
folio_lock(folio);
1943
}
1944
1945
/* Has the page been truncated? */
1946
if (unlikely(folio->mapping != mapping)) {
1947
folio_unlock(folio);
1948
folio_put(folio);
1949
goto repeat;
1950
}
1951
VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1952
}
1953
1954
if (fgp_flags & FGP_ACCESSED)
1955
folio_mark_accessed(folio);
1956
else if (fgp_flags & FGP_WRITE) {
1957
/* Clear idle flag for buffer write */
1958
if (folio_test_idle(folio))
1959
folio_clear_idle(folio);
1960
}
1961
1962
if (fgp_flags & FGP_STABLE)
1963
folio_wait_stable(folio);
1964
no_page:
1965
if (!folio && (fgp_flags & FGP_CREAT)) {
1966
unsigned int min_order = mapping_min_folio_order(mapping);
1967
unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1968
int err;
1969
index = mapping_align_index(mapping, index);
1970
1971
if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1972
gfp |= __GFP_WRITE;
1973
if (fgp_flags & FGP_NOFS)
1974
gfp &= ~__GFP_FS;
1975
if (fgp_flags & FGP_NOWAIT) {
1976
gfp &= ~GFP_KERNEL;
1977
gfp |= GFP_NOWAIT;
1978
}
1979
if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1980
fgp_flags |= FGP_LOCK;
1981
1982
if (order > mapping_max_folio_order(mapping))
1983
order = mapping_max_folio_order(mapping);
1984
/* If we're not aligned, allocate a smaller folio */
1985
if (index & ((1UL << order) - 1))
1986
order = __ffs(index);
1987
1988
do {
1989
gfp_t alloc_gfp = gfp;
1990
1991
err = -ENOMEM;
1992
if (order > min_order)
1993
alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1994
folio = filemap_alloc_folio(alloc_gfp, order);
1995
if (!folio)
1996
continue;
1997
1998
/* Init accessed so avoid atomic mark_page_accessed later */
1999
if (fgp_flags & FGP_ACCESSED)
2000
__folio_set_referenced(folio);
2001
if (fgp_flags & FGP_DONTCACHE)
2002
__folio_set_dropbehind(folio);
2003
2004
err = filemap_add_folio(mapping, folio, index, gfp);
2005
if (!err)
2006
break;
2007
folio_put(folio);
2008
folio = NULL;
2009
} while (order-- > min_order);
2010
2011
if (err == -EEXIST)
2012
goto repeat;
2013
if (err) {
2014
/*
2015
* When NOWAIT I/O fails to allocate folios this could
2016
* be due to a nonblocking memory allocation and not
2017
* because the system actually is out of memory.
2018
* Return -EAGAIN so that there caller retries in a
2019
* blocking fashion instead of propagating -ENOMEM
2020
* to the application.
2021
*/
2022
if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2023
err = -EAGAIN;
2024
return ERR_PTR(err);
2025
}
2026
/*
2027
* filemap_add_folio locks the page, and for mmap
2028
* we expect an unlocked page.
2029
*/
2030
if (folio && (fgp_flags & FGP_FOR_MMAP))
2031
folio_unlock(folio);
2032
}
2033
2034
if (!folio)
2035
return ERR_PTR(-ENOENT);
2036
/* not an uncached lookup, clear uncached if set */
2037
if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2038
folio_clear_dropbehind(folio);
2039
return folio;
2040
}
2041
EXPORT_SYMBOL(__filemap_get_folio);
2042
2043
static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2044
xa_mark_t mark)
2045
{
2046
struct folio *folio;
2047
2048
retry:
2049
if (mark == XA_PRESENT)
2050
folio = xas_find(xas, max);
2051
else
2052
folio = xas_find_marked(xas, max, mark);
2053
2054
if (xas_retry(xas, folio))
2055
goto retry;
2056
/*
2057
* A shadow entry of a recently evicted page, a swap
2058
* entry from shmem/tmpfs or a DAX entry. Return it
2059
* without attempting to raise page count.
2060
*/
2061
if (!folio || xa_is_value(folio))
2062
return folio;
2063
2064
if (!folio_try_get(folio))
2065
goto reset;
2066
2067
if (unlikely(folio != xas_reload(xas))) {
2068
folio_put(folio);
2069
goto reset;
2070
}
2071
2072
return folio;
2073
reset:
2074
xas_reset(xas);
2075
goto retry;
2076
}
2077
2078
/**
2079
* find_get_entries - gang pagecache lookup
2080
* @mapping: The address_space to search
2081
* @start: The starting page cache index
2082
* @end: The final page index (inclusive).
2083
* @fbatch: Where the resulting entries are placed.
2084
* @indices: The cache indices corresponding to the entries in @entries
2085
*
2086
* find_get_entries() will search for and return a batch of entries in
2087
* the mapping. The entries are placed in @fbatch. find_get_entries()
2088
* takes a reference on any actual folios it returns.
2089
*
2090
* The entries have ascending indexes. The indices may not be consecutive
2091
* due to not-present entries or large folios.
2092
*
2093
* Any shadow entries of evicted folios, or swap entries from
2094
* shmem/tmpfs, are included in the returned array.
2095
*
2096
* Return: The number of entries which were found.
2097
*/
2098
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2099
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2100
{
2101
XA_STATE(xas, &mapping->i_pages, *start);
2102
struct folio *folio;
2103
2104
rcu_read_lock();
2105
while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2106
indices[fbatch->nr] = xas.xa_index;
2107
if (!folio_batch_add(fbatch, folio))
2108
break;
2109
}
2110
2111
if (folio_batch_count(fbatch)) {
2112
unsigned long nr;
2113
int idx = folio_batch_count(fbatch) - 1;
2114
2115
folio = fbatch->folios[idx];
2116
if (!xa_is_value(folio))
2117
nr = folio_nr_pages(folio);
2118
else
2119
nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2120
*start = round_down(indices[idx] + nr, nr);
2121
}
2122
rcu_read_unlock();
2123
2124
return folio_batch_count(fbatch);
2125
}
2126
2127
/**
2128
* find_lock_entries - Find a batch of pagecache entries.
2129
* @mapping: The address_space to search.
2130
* @start: The starting page cache index.
2131
* @end: The final page index (inclusive).
2132
* @fbatch: Where the resulting entries are placed.
2133
* @indices: The cache indices of the entries in @fbatch.
2134
*
2135
* find_lock_entries() will return a batch of entries from @mapping.
2136
* Swap, shadow and DAX entries are included. Folios are returned
2137
* locked and with an incremented refcount. Folios which are locked
2138
* by somebody else or under writeback are skipped. Folios which are
2139
* partially outside the range are not returned.
2140
*
2141
* The entries have ascending indexes. The indices may not be consecutive
2142
* due to not-present entries, large folios, folios which could not be
2143
* locked or folios under writeback.
2144
*
2145
* Return: The number of entries which were found.
2146
*/
2147
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2148
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2149
{
2150
XA_STATE(xas, &mapping->i_pages, *start);
2151
struct folio *folio;
2152
2153
rcu_read_lock();
2154
while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2155
unsigned long base;
2156
unsigned long nr;
2157
2158
if (!xa_is_value(folio)) {
2159
nr = folio_nr_pages(folio);
2160
base = folio->index;
2161
/* Omit large folio which begins before the start */
2162
if (base < *start)
2163
goto put;
2164
/* Omit large folio which extends beyond the end */
2165
if (base + nr - 1 > end)
2166
goto put;
2167
if (!folio_trylock(folio))
2168
goto put;
2169
if (folio->mapping != mapping ||
2170
folio_test_writeback(folio))
2171
goto unlock;
2172
VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2173
folio);
2174
} else {
2175
nr = 1 << xas_get_order(&xas);
2176
base = xas.xa_index & ~(nr - 1);
2177
/* Omit order>0 value which begins before the start */
2178
if (base < *start)
2179
continue;
2180
/* Omit order>0 value which extends beyond the end */
2181
if (base + nr - 1 > end)
2182
break;
2183
}
2184
2185
/* Update start now so that last update is correct on return */
2186
*start = base + nr;
2187
indices[fbatch->nr] = xas.xa_index;
2188
if (!folio_batch_add(fbatch, folio))
2189
break;
2190
continue;
2191
unlock:
2192
folio_unlock(folio);
2193
put:
2194
folio_put(folio);
2195
}
2196
rcu_read_unlock();
2197
2198
return folio_batch_count(fbatch);
2199
}
2200
2201
/**
2202
* filemap_get_folios - Get a batch of folios
2203
* @mapping: The address_space to search
2204
* @start: The starting page index
2205
* @end: The final page index (inclusive)
2206
* @fbatch: The batch to fill.
2207
*
2208
* Search for and return a batch of folios in the mapping starting at
2209
* index @start and up to index @end (inclusive). The folios are returned
2210
* in @fbatch with an elevated reference count.
2211
*
2212
* Return: The number of folios which were found.
2213
* We also update @start to index the next folio for the traversal.
2214
*/
2215
unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2216
pgoff_t end, struct folio_batch *fbatch)
2217
{
2218
return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2219
}
2220
EXPORT_SYMBOL(filemap_get_folios);
2221
2222
/**
2223
* filemap_get_folios_contig - Get a batch of contiguous folios
2224
* @mapping: The address_space to search
2225
* @start: The starting page index
2226
* @end: The final page index (inclusive)
2227
* @fbatch: The batch to fill
2228
*
2229
* filemap_get_folios_contig() works exactly like filemap_get_folios(),
2230
* except the returned folios are guaranteed to be contiguous. This may
2231
* not return all contiguous folios if the batch gets filled up.
2232
*
2233
* Return: The number of folios found.
2234
* Also update @start to be positioned for traversal of the next folio.
2235
*/
2236
2237
unsigned filemap_get_folios_contig(struct address_space *mapping,
2238
pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2239
{
2240
XA_STATE(xas, &mapping->i_pages, *start);
2241
unsigned long nr;
2242
struct folio *folio;
2243
2244
rcu_read_lock();
2245
2246
for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2247
folio = xas_next(&xas)) {
2248
if (xas_retry(&xas, folio))
2249
continue;
2250
/*
2251
* If the entry has been swapped out, we can stop looking.
2252
* No current caller is looking for DAX entries.
2253
*/
2254
if (xa_is_value(folio))
2255
goto update_start;
2256
2257
/* If we landed in the middle of a THP, continue at its end. */
2258
if (xa_is_sibling(folio))
2259
goto update_start;
2260
2261
if (!folio_try_get(folio))
2262
goto retry;
2263
2264
if (unlikely(folio != xas_reload(&xas)))
2265
goto put_folio;
2266
2267
if (!folio_batch_add(fbatch, folio)) {
2268
nr = folio_nr_pages(folio);
2269
*start = folio->index + nr;
2270
goto out;
2271
}
2272
xas_advance(&xas, folio_next_index(folio) - 1);
2273
continue;
2274
put_folio:
2275
folio_put(folio);
2276
2277
retry:
2278
xas_reset(&xas);
2279
}
2280
2281
update_start:
2282
nr = folio_batch_count(fbatch);
2283
2284
if (nr) {
2285
folio = fbatch->folios[nr - 1];
2286
*start = folio_next_index(folio);
2287
}
2288
out:
2289
rcu_read_unlock();
2290
return folio_batch_count(fbatch);
2291
}
2292
EXPORT_SYMBOL(filemap_get_folios_contig);
2293
2294
/**
2295
* filemap_get_folios_tag - Get a batch of folios matching @tag
2296
* @mapping: The address_space to search
2297
* @start: The starting page index
2298
* @end: The final page index (inclusive)
2299
* @tag: The tag index
2300
* @fbatch: The batch to fill
2301
*
2302
* The first folio may start before @start; if it does, it will contain
2303
* @start. The final folio may extend beyond @end; if it does, it will
2304
* contain @end. The folios have ascending indices. There may be gaps
2305
* between the folios if there are indices which have no folio in the
2306
* page cache. If folios are added to or removed from the page cache
2307
* while this is running, they may or may not be found by this call.
2308
* Only returns folios that are tagged with @tag.
2309
*
2310
* Return: The number of folios found.
2311
* Also update @start to index the next folio for traversal.
2312
*/
2313
unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2314
pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2315
{
2316
XA_STATE(xas, &mapping->i_pages, *start);
2317
struct folio *folio;
2318
2319
rcu_read_lock();
2320
while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2321
/*
2322
* Shadow entries should never be tagged, but this iteration
2323
* is lockless so there is a window for page reclaim to evict
2324
* a page we saw tagged. Skip over it.
2325
*/
2326
if (xa_is_value(folio))
2327
continue;
2328
if (!folio_batch_add(fbatch, folio)) {
2329
unsigned long nr = folio_nr_pages(folio);
2330
*start = folio->index + nr;
2331
goto out;
2332
}
2333
}
2334
/*
2335
* We come here when there is no page beyond @end. We take care to not
2336
* overflow the index @start as it confuses some of the callers. This
2337
* breaks the iteration when there is a page at index -1 but that is
2338
* already broke anyway.
2339
*/
2340
if (end == (pgoff_t)-1)
2341
*start = (pgoff_t)-1;
2342
else
2343
*start = end + 1;
2344
out:
2345
rcu_read_unlock();
2346
2347
return folio_batch_count(fbatch);
2348
}
2349
EXPORT_SYMBOL(filemap_get_folios_tag);
2350
2351
/*
2352
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
2353
* a _large_ part of the i/o request. Imagine the worst scenario:
2354
*
2355
* ---R__________________________________________B__________
2356
* ^ reading here ^ bad block(assume 4k)
2357
*
2358
* read(R) => miss => readahead(R...B) => media error => frustrating retries
2359
* => failing the whole request => read(R) => read(R+1) =>
2360
* readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2361
* readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2362
* readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2363
*
2364
* It is going insane. Fix it by quickly scaling down the readahead size.
2365
*/
2366
static void shrink_readahead_size_eio(struct file_ra_state *ra)
2367
{
2368
ra->ra_pages /= 4;
2369
}
2370
2371
/*
2372
* filemap_get_read_batch - Get a batch of folios for read
2373
*
2374
* Get a batch of folios which represent a contiguous range of bytes in
2375
* the file. No exceptional entries will be returned. If @index is in
2376
* the middle of a folio, the entire folio will be returned. The last
2377
* folio in the batch may have the readahead flag set or the uptodate flag
2378
* clear so that the caller can take the appropriate action.
2379
*/
2380
static void filemap_get_read_batch(struct address_space *mapping,
2381
pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2382
{
2383
XA_STATE(xas, &mapping->i_pages, index);
2384
struct folio *folio;
2385
2386
rcu_read_lock();
2387
for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2388
if (xas_retry(&xas, folio))
2389
continue;
2390
if (xas.xa_index > max || xa_is_value(folio))
2391
break;
2392
if (xa_is_sibling(folio))
2393
break;
2394
if (!folio_try_get(folio))
2395
goto retry;
2396
2397
if (unlikely(folio != xas_reload(&xas)))
2398
goto put_folio;
2399
2400
if (!folio_batch_add(fbatch, folio))
2401
break;
2402
if (!folio_test_uptodate(folio))
2403
break;
2404
if (folio_test_readahead(folio))
2405
break;
2406
xas_advance(&xas, folio_next_index(folio) - 1);
2407
continue;
2408
put_folio:
2409
folio_put(folio);
2410
retry:
2411
xas_reset(&xas);
2412
}
2413
rcu_read_unlock();
2414
}
2415
2416
static int filemap_read_folio(struct file *file, filler_t filler,
2417
struct folio *folio)
2418
{
2419
bool workingset = folio_test_workingset(folio);
2420
unsigned long pflags;
2421
int error;
2422
2423
/* Start the actual read. The read will unlock the page. */
2424
if (unlikely(workingset))
2425
psi_memstall_enter(&pflags);
2426
error = filler(file, folio);
2427
if (unlikely(workingset))
2428
psi_memstall_leave(&pflags);
2429
if (error)
2430
return error;
2431
2432
error = folio_wait_locked_killable(folio);
2433
if (error)
2434
return error;
2435
if (folio_test_uptodate(folio))
2436
return 0;
2437
if (file)
2438
shrink_readahead_size_eio(&file->f_ra);
2439
return -EIO;
2440
}
2441
2442
static bool filemap_range_uptodate(struct address_space *mapping,
2443
loff_t pos, size_t count, struct folio *folio,
2444
bool need_uptodate)
2445
{
2446
if (folio_test_uptodate(folio))
2447
return true;
2448
/* pipes can't handle partially uptodate pages */
2449
if (need_uptodate)
2450
return false;
2451
if (!mapping->a_ops->is_partially_uptodate)
2452
return false;
2453
if (mapping->host->i_blkbits >= folio_shift(folio))
2454
return false;
2455
2456
if (folio_pos(folio) > pos) {
2457
count -= folio_pos(folio) - pos;
2458
pos = 0;
2459
} else {
2460
pos -= folio_pos(folio);
2461
}
2462
2463
if (pos == 0 && count >= folio_size(folio))
2464
return false;
2465
2466
return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2467
}
2468
2469
static int filemap_update_page(struct kiocb *iocb,
2470
struct address_space *mapping, size_t count,
2471
struct folio *folio, bool need_uptodate)
2472
{
2473
int error;
2474
2475
if (iocb->ki_flags & IOCB_NOWAIT) {
2476
if (!filemap_invalidate_trylock_shared(mapping))
2477
return -EAGAIN;
2478
} else {
2479
filemap_invalidate_lock_shared(mapping);
2480
}
2481
2482
if (!folio_trylock(folio)) {
2483
error = -EAGAIN;
2484
if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2485
goto unlock_mapping;
2486
if (!(iocb->ki_flags & IOCB_WAITQ)) {
2487
filemap_invalidate_unlock_shared(mapping);
2488
/*
2489
* This is where we usually end up waiting for a
2490
* previously submitted readahead to finish.
2491
*/
2492
folio_put_wait_locked(folio, TASK_KILLABLE);
2493
return AOP_TRUNCATED_PAGE;
2494
}
2495
error = __folio_lock_async(folio, iocb->ki_waitq);
2496
if (error)
2497
goto unlock_mapping;
2498
}
2499
2500
error = AOP_TRUNCATED_PAGE;
2501
if (!folio->mapping)
2502
goto unlock;
2503
2504
error = 0;
2505
if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2506
need_uptodate))
2507
goto unlock;
2508
2509
error = -EAGAIN;
2510
if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2511
goto unlock;
2512
2513
error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2514
folio);
2515
goto unlock_mapping;
2516
unlock:
2517
folio_unlock(folio);
2518
unlock_mapping:
2519
filemap_invalidate_unlock_shared(mapping);
2520
if (error == AOP_TRUNCATED_PAGE)
2521
folio_put(folio);
2522
return error;
2523
}
2524
2525
static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2526
{
2527
struct address_space *mapping = iocb->ki_filp->f_mapping;
2528
struct folio *folio;
2529
int error;
2530
unsigned int min_order = mapping_min_folio_order(mapping);
2531
pgoff_t index;
2532
2533
if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2534
return -EAGAIN;
2535
2536
folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2537
if (!folio)
2538
return -ENOMEM;
2539
if (iocb->ki_flags & IOCB_DONTCACHE)
2540
__folio_set_dropbehind(folio);
2541
2542
/*
2543
* Protect against truncate / hole punch. Grabbing invalidate_lock
2544
* here assures we cannot instantiate and bring uptodate new
2545
* pagecache folios after evicting page cache during truncate
2546
* and before actually freeing blocks. Note that we could
2547
* release invalidate_lock after inserting the folio into
2548
* the page cache as the locked folio would then be enough to
2549
* synchronize with hole punching. But there are code paths
2550
* such as filemap_update_page() filling in partially uptodate
2551
* pages or ->readahead() that need to hold invalidate_lock
2552
* while mapping blocks for IO so let's hold the lock here as
2553
* well to keep locking rules simple.
2554
*/
2555
filemap_invalidate_lock_shared(mapping);
2556
index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2557
error = filemap_add_folio(mapping, folio, index,
2558
mapping_gfp_constraint(mapping, GFP_KERNEL));
2559
if (error == -EEXIST)
2560
error = AOP_TRUNCATED_PAGE;
2561
if (error)
2562
goto error;
2563
2564
error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2565
folio);
2566
if (error)
2567
goto error;
2568
2569
filemap_invalidate_unlock_shared(mapping);
2570
folio_batch_add(fbatch, folio);
2571
return 0;
2572
error:
2573
filemap_invalidate_unlock_shared(mapping);
2574
folio_put(folio);
2575
return error;
2576
}
2577
2578
static int filemap_readahead(struct kiocb *iocb, struct file *file,
2579
struct address_space *mapping, struct folio *folio,
2580
pgoff_t last_index)
2581
{
2582
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2583
2584
if (iocb->ki_flags & IOCB_NOIO)
2585
return -EAGAIN;
2586
if (iocb->ki_flags & IOCB_DONTCACHE)
2587
ractl.dropbehind = 1;
2588
page_cache_async_ra(&ractl, folio, last_index - folio->index);
2589
return 0;
2590
}
2591
2592
static int filemap_get_pages(struct kiocb *iocb, size_t count,
2593
struct folio_batch *fbatch, bool need_uptodate)
2594
{
2595
struct file *filp = iocb->ki_filp;
2596
struct address_space *mapping = filp->f_mapping;
2597
pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2598
pgoff_t last_index;
2599
struct folio *folio;
2600
unsigned int flags;
2601
int err = 0;
2602
2603
/* "last_index" is the index of the folio beyond the end of the read */
2604
last_index = round_up(iocb->ki_pos + count,
2605
mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2606
retry:
2607
if (fatal_signal_pending(current))
2608
return -EINTR;
2609
2610
filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2611
if (!folio_batch_count(fbatch)) {
2612
DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2613
2614
if (iocb->ki_flags & IOCB_NOIO)
2615
return -EAGAIN;
2616
if (iocb->ki_flags & IOCB_NOWAIT)
2617
flags = memalloc_noio_save();
2618
if (iocb->ki_flags & IOCB_DONTCACHE)
2619
ractl.dropbehind = 1;
2620
page_cache_sync_ra(&ractl, last_index - index);
2621
if (iocb->ki_flags & IOCB_NOWAIT)
2622
memalloc_noio_restore(flags);
2623
filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2624
}
2625
if (!folio_batch_count(fbatch)) {
2626
err = filemap_create_folio(iocb, fbatch);
2627
if (err == AOP_TRUNCATED_PAGE)
2628
goto retry;
2629
return err;
2630
}
2631
2632
folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2633
if (folio_test_readahead(folio)) {
2634
err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2635
if (err)
2636
goto err;
2637
}
2638
if (!folio_test_uptodate(folio)) {
2639
if (folio_batch_count(fbatch) > 1) {
2640
err = -EAGAIN;
2641
goto err;
2642
}
2643
err = filemap_update_page(iocb, mapping, count, folio,
2644
need_uptodate);
2645
if (err)
2646
goto err;
2647
}
2648
2649
trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2650
return 0;
2651
err:
2652
if (err < 0)
2653
folio_put(folio);
2654
if (likely(--fbatch->nr))
2655
return 0;
2656
if (err == AOP_TRUNCATED_PAGE)
2657
goto retry;
2658
return err;
2659
}
2660
2661
static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2662
{
2663
unsigned int shift = folio_shift(folio);
2664
2665
return (pos1 >> shift == pos2 >> shift);
2666
}
2667
2668
static void filemap_end_dropbehind_read(struct folio *folio)
2669
{
2670
if (!folio_test_dropbehind(folio))
2671
return;
2672
if (folio_test_writeback(folio) || folio_test_dirty(folio))
2673
return;
2674
if (folio_trylock(folio)) {
2675
filemap_end_dropbehind(folio);
2676
folio_unlock(folio);
2677
}
2678
}
2679
2680
/**
2681
* filemap_read - Read data from the page cache.
2682
* @iocb: The iocb to read.
2683
* @iter: Destination for the data.
2684
* @already_read: Number of bytes already read by the caller.
2685
*
2686
* Copies data from the page cache. If the data is not currently present,
2687
* uses the readahead and read_folio address_space operations to fetch it.
2688
*
2689
* Return: Total number of bytes copied, including those already read by
2690
* the caller. If an error happens before any bytes are copied, returns
2691
* a negative error number.
2692
*/
2693
ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2694
ssize_t already_read)
2695
{
2696
struct file *filp = iocb->ki_filp;
2697
struct file_ra_state *ra = &filp->f_ra;
2698
struct address_space *mapping = filp->f_mapping;
2699
struct inode *inode = mapping->host;
2700
struct folio_batch fbatch;
2701
int i, error = 0;
2702
bool writably_mapped;
2703
loff_t isize, end_offset;
2704
loff_t last_pos = ra->prev_pos;
2705
2706
if (unlikely(iocb->ki_pos < 0))
2707
return -EINVAL;
2708
if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2709
return 0;
2710
if (unlikely(!iov_iter_count(iter)))
2711
return 0;
2712
2713
iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2714
folio_batch_init(&fbatch);
2715
2716
do {
2717
cond_resched();
2718
2719
/*
2720
* If we've already successfully copied some data, then we
2721
* can no longer safely return -EIOCBQUEUED. Hence mark
2722
* an async read NOWAIT at that point.
2723
*/
2724
if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2725
iocb->ki_flags |= IOCB_NOWAIT;
2726
2727
if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2728
break;
2729
2730
error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2731
if (error < 0)
2732
break;
2733
2734
/*
2735
* i_size must be checked after we know the pages are Uptodate.
2736
*
2737
* Checking i_size after the check allows us to calculate
2738
* the correct value for "nr", which means the zero-filled
2739
* part of the page is not copied back to userspace (unless
2740
* another truncate extends the file - this is desired though).
2741
*/
2742
isize = i_size_read(inode);
2743
if (unlikely(iocb->ki_pos >= isize))
2744
goto put_folios;
2745
end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2746
2747
/*
2748
* Once we start copying data, we don't want to be touching any
2749
* cachelines that might be contended:
2750
*/
2751
writably_mapped = mapping_writably_mapped(mapping);
2752
2753
/*
2754
* When a read accesses the same folio several times, only
2755
* mark it as accessed the first time.
2756
*/
2757
if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2758
fbatch.folios[0]))
2759
folio_mark_accessed(fbatch.folios[0]);
2760
2761
for (i = 0; i < folio_batch_count(&fbatch); i++) {
2762
struct folio *folio = fbatch.folios[i];
2763
size_t fsize = folio_size(folio);
2764
size_t offset = iocb->ki_pos & (fsize - 1);
2765
size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2766
fsize - offset);
2767
size_t copied;
2768
2769
if (end_offset < folio_pos(folio))
2770
break;
2771
if (i > 0)
2772
folio_mark_accessed(folio);
2773
/*
2774
* If users can be writing to this folio using arbitrary
2775
* virtual addresses, take care of potential aliasing
2776
* before reading the folio on the kernel side.
2777
*/
2778
if (writably_mapped)
2779
flush_dcache_folio(folio);
2780
2781
copied = copy_folio_to_iter(folio, offset, bytes, iter);
2782
2783
already_read += copied;
2784
iocb->ki_pos += copied;
2785
last_pos = iocb->ki_pos;
2786
2787
if (copied < bytes) {
2788
error = -EFAULT;
2789
break;
2790
}
2791
}
2792
put_folios:
2793
for (i = 0; i < folio_batch_count(&fbatch); i++) {
2794
struct folio *folio = fbatch.folios[i];
2795
2796
filemap_end_dropbehind_read(folio);
2797
folio_put(folio);
2798
}
2799
folio_batch_init(&fbatch);
2800
} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2801
2802
file_accessed(filp);
2803
ra->prev_pos = last_pos;
2804
return already_read ? already_read : error;
2805
}
2806
EXPORT_SYMBOL_GPL(filemap_read);
2807
2808
int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2809
{
2810
struct address_space *mapping = iocb->ki_filp->f_mapping;
2811
loff_t pos = iocb->ki_pos;
2812
loff_t end = pos + count - 1;
2813
2814
if (iocb->ki_flags & IOCB_NOWAIT) {
2815
if (filemap_range_needs_writeback(mapping, pos, end))
2816
return -EAGAIN;
2817
return 0;
2818
}
2819
2820
return filemap_write_and_wait_range(mapping, pos, end);
2821
}
2822
EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2823
2824
int filemap_invalidate_pages(struct address_space *mapping,
2825
loff_t pos, loff_t end, bool nowait)
2826
{
2827
int ret;
2828
2829
if (nowait) {
2830
/* we could block if there are any pages in the range */
2831
if (filemap_range_has_page(mapping, pos, end))
2832
return -EAGAIN;
2833
} else {
2834
ret = filemap_write_and_wait_range(mapping, pos, end);
2835
if (ret)
2836
return ret;
2837
}
2838
2839
/*
2840
* After a write we want buffered reads to be sure to go to disk to get
2841
* the new data. We invalidate clean cached page from the region we're
2842
* about to write. We do this *before* the write so that we can return
2843
* without clobbering -EIOCBQUEUED from ->direct_IO().
2844
*/
2845
return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2846
end >> PAGE_SHIFT);
2847
}
2848
2849
int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2850
{
2851
struct address_space *mapping = iocb->ki_filp->f_mapping;
2852
2853
return filemap_invalidate_pages(mapping, iocb->ki_pos,
2854
iocb->ki_pos + count - 1,
2855
iocb->ki_flags & IOCB_NOWAIT);
2856
}
2857
EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2858
2859
/**
2860
* generic_file_read_iter - generic filesystem read routine
2861
* @iocb: kernel I/O control block
2862
* @iter: destination for the data read
2863
*
2864
* This is the "read_iter()" routine for all filesystems
2865
* that can use the page cache directly.
2866
*
2867
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2868
* be returned when no data can be read without waiting for I/O requests
2869
* to complete; it doesn't prevent readahead.
2870
*
2871
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2872
* requests shall be made for the read or for readahead. When no data
2873
* can be read, -EAGAIN shall be returned. When readahead would be
2874
* triggered, a partial, possibly empty read shall be returned.
2875
*
2876
* Return:
2877
* * number of bytes copied, even for partial reads
2878
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
2879
*/
2880
ssize_t
2881
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2882
{
2883
size_t count = iov_iter_count(iter);
2884
ssize_t retval = 0;
2885
2886
if (!count)
2887
return 0; /* skip atime */
2888
2889
if (iocb->ki_flags & IOCB_DIRECT) {
2890
struct file *file = iocb->ki_filp;
2891
struct address_space *mapping = file->f_mapping;
2892
struct inode *inode = mapping->host;
2893
2894
retval = kiocb_write_and_wait(iocb, count);
2895
if (retval < 0)
2896
return retval;
2897
file_accessed(file);
2898
2899
retval = mapping->a_ops->direct_IO(iocb, iter);
2900
if (retval >= 0) {
2901
iocb->ki_pos += retval;
2902
count -= retval;
2903
}
2904
if (retval != -EIOCBQUEUED)
2905
iov_iter_revert(iter, count - iov_iter_count(iter));
2906
2907
/*
2908
* Btrfs can have a short DIO read if we encounter
2909
* compressed extents, so if there was an error, or if
2910
* we've already read everything we wanted to, or if
2911
* there was a short read because we hit EOF, go ahead
2912
* and return. Otherwise fallthrough to buffered io for
2913
* the rest of the read. Buffered reads will not work for
2914
* DAX files, so don't bother trying.
2915
*/
2916
if (retval < 0 || !count || IS_DAX(inode))
2917
return retval;
2918
if (iocb->ki_pos >= i_size_read(inode))
2919
return retval;
2920
}
2921
2922
return filemap_read(iocb, iter, retval);
2923
}
2924
EXPORT_SYMBOL(generic_file_read_iter);
2925
2926
/*
2927
* Splice subpages from a folio into a pipe.
2928
*/
2929
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2930
struct folio *folio, loff_t fpos, size_t size)
2931
{
2932
struct page *page;
2933
size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2934
2935
page = folio_page(folio, offset / PAGE_SIZE);
2936
size = min(size, folio_size(folio) - offset);
2937
offset %= PAGE_SIZE;
2938
2939
while (spliced < size && !pipe_is_full(pipe)) {
2940
struct pipe_buffer *buf = pipe_head_buf(pipe);
2941
size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2942
2943
*buf = (struct pipe_buffer) {
2944
.ops = &page_cache_pipe_buf_ops,
2945
.page = page,
2946
.offset = offset,
2947
.len = part,
2948
};
2949
folio_get(folio);
2950
pipe->head++;
2951
page++;
2952
spliced += part;
2953
offset = 0;
2954
}
2955
2956
return spliced;
2957
}
2958
2959
/**
2960
* filemap_splice_read - Splice data from a file's pagecache into a pipe
2961
* @in: The file to read from
2962
* @ppos: Pointer to the file position to read from
2963
* @pipe: The pipe to splice into
2964
* @len: The amount to splice
2965
* @flags: The SPLICE_F_* flags
2966
*
2967
* This function gets folios from a file's pagecache and splices them into the
2968
* pipe. Readahead will be called as necessary to fill more folios. This may
2969
* be used for blockdevs also.
2970
*
2971
* Return: On success, the number of bytes read will be returned and *@ppos
2972
* will be updated if appropriate; 0 will be returned if there is no more data
2973
* to be read; -EAGAIN will be returned if the pipe had no space, and some
2974
* other negative error code will be returned on error. A short read may occur
2975
* if the pipe has insufficient space, we reach the end of the data or we hit a
2976
* hole.
2977
*/
2978
ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2979
struct pipe_inode_info *pipe,
2980
size_t len, unsigned int flags)
2981
{
2982
struct folio_batch fbatch;
2983
struct kiocb iocb;
2984
size_t total_spliced = 0, used, npages;
2985
loff_t isize, end_offset;
2986
bool writably_mapped;
2987
int i, error = 0;
2988
2989
if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2990
return 0;
2991
2992
init_sync_kiocb(&iocb, in);
2993
iocb.ki_pos = *ppos;
2994
2995
/* Work out how much data we can actually add into the pipe */
2996
used = pipe_buf_usage(pipe);
2997
npages = max_t(ssize_t, pipe->max_usage - used, 0);
2998
len = min_t(size_t, len, npages * PAGE_SIZE);
2999
3000
folio_batch_init(&fbatch);
3001
3002
do {
3003
cond_resched();
3004
3005
if (*ppos >= i_size_read(in->f_mapping->host))
3006
break;
3007
3008
iocb.ki_pos = *ppos;
3009
error = filemap_get_pages(&iocb, len, &fbatch, true);
3010
if (error < 0)
3011
break;
3012
3013
/*
3014
* i_size must be checked after we know the pages are Uptodate.
3015
*
3016
* Checking i_size after the check allows us to calculate
3017
* the correct value for "nr", which means the zero-filled
3018
* part of the page is not copied back to userspace (unless
3019
* another truncate extends the file - this is desired though).
3020
*/
3021
isize = i_size_read(in->f_mapping->host);
3022
if (unlikely(*ppos >= isize))
3023
break;
3024
end_offset = min_t(loff_t, isize, *ppos + len);
3025
3026
/*
3027
* Once we start copying data, we don't want to be touching any
3028
* cachelines that might be contended:
3029
*/
3030
writably_mapped = mapping_writably_mapped(in->f_mapping);
3031
3032
for (i = 0; i < folio_batch_count(&fbatch); i++) {
3033
struct folio *folio = fbatch.folios[i];
3034
size_t n;
3035
3036
if (folio_pos(folio) >= end_offset)
3037
goto out;
3038
folio_mark_accessed(folio);
3039
3040
/*
3041
* If users can be writing to this folio using arbitrary
3042
* virtual addresses, take care of potential aliasing
3043
* before reading the folio on the kernel side.
3044
*/
3045
if (writably_mapped)
3046
flush_dcache_folio(folio);
3047
3048
n = min_t(loff_t, len, isize - *ppos);
3049
n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3050
if (!n)
3051
goto out;
3052
len -= n;
3053
total_spliced += n;
3054
*ppos += n;
3055
in->f_ra.prev_pos = *ppos;
3056
if (pipe_is_full(pipe))
3057
goto out;
3058
}
3059
3060
folio_batch_release(&fbatch);
3061
} while (len);
3062
3063
out:
3064
folio_batch_release(&fbatch);
3065
file_accessed(in);
3066
3067
return total_spliced ? total_spliced : error;
3068
}
3069
EXPORT_SYMBOL(filemap_splice_read);
3070
3071
static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3072
struct address_space *mapping, struct folio *folio,
3073
loff_t start, loff_t end, bool seek_data)
3074
{
3075
const struct address_space_operations *ops = mapping->a_ops;
3076
size_t offset, bsz = i_blocksize(mapping->host);
3077
3078
if (xa_is_value(folio) || folio_test_uptodate(folio))
3079
return seek_data ? start : end;
3080
if (!ops->is_partially_uptodate)
3081
return seek_data ? end : start;
3082
3083
xas_pause(xas);
3084
rcu_read_unlock();
3085
folio_lock(folio);
3086
if (unlikely(folio->mapping != mapping))
3087
goto unlock;
3088
3089
offset = offset_in_folio(folio, start) & ~(bsz - 1);
3090
3091
do {
3092
if (ops->is_partially_uptodate(folio, offset, bsz) ==
3093
seek_data)
3094
break;
3095
start = (start + bsz) & ~((u64)bsz - 1);
3096
offset += bsz;
3097
} while (offset < folio_size(folio));
3098
unlock:
3099
folio_unlock(folio);
3100
rcu_read_lock();
3101
return start;
3102
}
3103
3104
static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3105
{
3106
if (xa_is_value(folio))
3107
return PAGE_SIZE << xas_get_order(xas);
3108
return folio_size(folio);
3109
}
3110
3111
/**
3112
* mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3113
* @mapping: Address space to search.
3114
* @start: First byte to consider.
3115
* @end: Limit of search (exclusive).
3116
* @whence: Either SEEK_HOLE or SEEK_DATA.
3117
*
3118
* If the page cache knows which blocks contain holes and which blocks
3119
* contain data, your filesystem can use this function to implement
3120
* SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3121
* entirely memory-based such as tmpfs, and filesystems which support
3122
* unwritten extents.
3123
*
3124
* Return: The requested offset on success, or -ENXIO if @whence specifies
3125
* SEEK_DATA and there is no data after @start. There is an implicit hole
3126
* after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3127
* and @end contain data.
3128
*/
3129
loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3130
loff_t end, int whence)
3131
{
3132
XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3133
pgoff_t max = (end - 1) >> PAGE_SHIFT;
3134
bool seek_data = (whence == SEEK_DATA);
3135
struct folio *folio;
3136
3137
if (end <= start)
3138
return -ENXIO;
3139
3140
rcu_read_lock();
3141
while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3142
loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3143
size_t seek_size;
3144
3145
if (start < pos) {
3146
if (!seek_data)
3147
goto unlock;
3148
start = pos;
3149
}
3150
3151
seek_size = seek_folio_size(&xas, folio);
3152
pos = round_up((u64)pos + 1, seek_size);
3153
start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3154
seek_data);
3155
if (start < pos)
3156
goto unlock;
3157
if (start >= end)
3158
break;
3159
if (seek_size > PAGE_SIZE)
3160
xas_set(&xas, pos >> PAGE_SHIFT);
3161
if (!xa_is_value(folio))
3162
folio_put(folio);
3163
}
3164
if (seek_data)
3165
start = -ENXIO;
3166
unlock:
3167
rcu_read_unlock();
3168
if (folio && !xa_is_value(folio))
3169
folio_put(folio);
3170
if (start > end)
3171
return end;
3172
return start;
3173
}
3174
3175
#ifdef CONFIG_MMU
3176
#define MMAP_LOTSAMISS (100)
3177
/*
3178
* lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3179
* @vmf - the vm_fault for this fault.
3180
* @folio - the folio to lock.
3181
* @fpin - the pointer to the file we may pin (or is already pinned).
3182
*
3183
* This works similar to lock_folio_or_retry in that it can drop the
3184
* mmap_lock. It differs in that it actually returns the folio locked
3185
* if it returns 1 and 0 if it couldn't lock the folio. If we did have
3186
* to drop the mmap_lock then fpin will point to the pinned file and
3187
* needs to be fput()'ed at a later point.
3188
*/
3189
static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3190
struct file **fpin)
3191
{
3192
if (folio_trylock(folio))
3193
return 1;
3194
3195
/*
3196
* NOTE! This will make us return with VM_FAULT_RETRY, but with
3197
* the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3198
* is supposed to work. We have way too many special cases..
3199
*/
3200
if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3201
return 0;
3202
3203
*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3204
if (vmf->flags & FAULT_FLAG_KILLABLE) {
3205
if (__folio_lock_killable(folio)) {
3206
/*
3207
* We didn't have the right flags to drop the
3208
* fault lock, but all fault_handlers only check
3209
* for fatal signals if we return VM_FAULT_RETRY,
3210
* so we need to drop the fault lock here and
3211
* return 0 if we don't have a fpin.
3212
*/
3213
if (*fpin == NULL)
3214
release_fault_lock(vmf);
3215
return 0;
3216
}
3217
} else
3218
__folio_lock(folio);
3219
3220
return 1;
3221
}
3222
3223
/*
3224
* Synchronous readahead happens when we don't even find a page in the page
3225
* cache at all. We don't want to perform IO under the mmap sem, so if we have
3226
* to drop the mmap sem we return the file that was pinned in order for us to do
3227
* that. If we didn't pin a file then we return NULL. The file that is
3228
* returned needs to be fput()'ed when we're done with it.
3229
*/
3230
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3231
{
3232
struct file *file = vmf->vma->vm_file;
3233
struct file_ra_state *ra = &file->f_ra;
3234
struct address_space *mapping = file->f_mapping;
3235
DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3236
struct file *fpin = NULL;
3237
vm_flags_t vm_flags = vmf->vma->vm_flags;
3238
unsigned short mmap_miss;
3239
3240
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3241
/* Use the readahead code, even if readahead is disabled */
3242
if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3243
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3244
ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3245
ra->size = HPAGE_PMD_NR;
3246
/*
3247
* Fetch two PMD folios, so we get the chance to actually
3248
* readahead, unless we've been told not to.
3249
*/
3250
if (!(vm_flags & VM_RAND_READ))
3251
ra->size *= 2;
3252
ra->async_size = HPAGE_PMD_NR;
3253
ra->order = HPAGE_PMD_ORDER;
3254
page_cache_ra_order(&ractl, ra);
3255
return fpin;
3256
}
3257
#endif
3258
3259
/*
3260
* If we don't want any read-ahead, don't bother. VM_EXEC case below is
3261
* already intended for random access.
3262
*/
3263
if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3264
return fpin;
3265
if (!ra->ra_pages)
3266
return fpin;
3267
3268
if (vm_flags & VM_SEQ_READ) {
3269
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3270
page_cache_sync_ra(&ractl, ra->ra_pages);
3271
return fpin;
3272
}
3273
3274
/* Avoid banging the cache line if not needed */
3275
mmap_miss = READ_ONCE(ra->mmap_miss);
3276
if (mmap_miss < MMAP_LOTSAMISS * 10)
3277
WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3278
3279
/*
3280
* Do we miss much more than hit in this file? If so,
3281
* stop bothering with read-ahead. It will only hurt.
3282
*/
3283
if (mmap_miss > MMAP_LOTSAMISS)
3284
return fpin;
3285
3286
if (vm_flags & VM_EXEC) {
3287
/*
3288
* Allow arch to request a preferred minimum folio order for
3289
* executable memory. This can often be beneficial to
3290
* performance if (e.g.) arm64 can contpte-map the folio.
3291
* Executable memory rarely benefits from readahead, due to its
3292
* random access nature, so set async_size to 0.
3293
*
3294
* Limit to the boundaries of the VMA to avoid reading in any
3295
* pad that might exist between sections, which would be a waste
3296
* of memory.
3297
*/
3298
struct vm_area_struct *vma = vmf->vma;
3299
unsigned long start = vma->vm_pgoff;
3300
unsigned long end = start + vma_pages(vma);
3301
unsigned long ra_end;
3302
3303
ra->order = exec_folio_order();
3304
ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3305
ra->start = max(ra->start, start);
3306
ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3307
ra_end = min(ra_end, end);
3308
ra->size = ra_end - ra->start;
3309
ra->async_size = 0;
3310
} else {
3311
/*
3312
* mmap read-around
3313
*/
3314
ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3315
ra->size = ra->ra_pages;
3316
ra->async_size = ra->ra_pages / 4;
3317
ra->order = 0;
3318
}
3319
3320
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3321
ractl._index = ra->start;
3322
page_cache_ra_order(&ractl, ra);
3323
return fpin;
3324
}
3325
3326
/*
3327
* Asynchronous readahead happens when we find the page and PG_readahead,
3328
* so we want to possibly extend the readahead further. We return the file that
3329
* was pinned if we have to drop the mmap_lock in order to do IO.
3330
*/
3331
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3332
struct folio *folio)
3333
{
3334
struct file *file = vmf->vma->vm_file;
3335
struct file_ra_state *ra = &file->f_ra;
3336
DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3337
struct file *fpin = NULL;
3338
unsigned short mmap_miss;
3339
3340
/* If we don't want any read-ahead, don't bother */
3341
if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3342
return fpin;
3343
3344
/*
3345
* If the folio is locked, we're likely racing against another fault.
3346
* Don't touch the mmap_miss counter to avoid decreasing it multiple
3347
* times for a single folio and break the balance with mmap_miss
3348
* increase in do_sync_mmap_readahead().
3349
*/
3350
if (likely(!folio_test_locked(folio))) {
3351
mmap_miss = READ_ONCE(ra->mmap_miss);
3352
if (mmap_miss)
3353
WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3354
}
3355
3356
if (folio_test_readahead(folio)) {
3357
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3358
page_cache_async_ra(&ractl, folio, ra->ra_pages);
3359
}
3360
return fpin;
3361
}
3362
3363
static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3364
{
3365
struct vm_area_struct *vma = vmf->vma;
3366
vm_fault_t ret = 0;
3367
pte_t *ptep;
3368
3369
/*
3370
* We might have COW'ed a pagecache folio and might now have an mlocked
3371
* anon folio mapped. The original pagecache folio is not mlocked and
3372
* might have been evicted. During a read+clear/modify/write update of
3373
* the PTE, such as done in do_numa_page()/change_pte_range(), we
3374
* temporarily clear the PTE under PT lock and might detect it here as
3375
* "none" when not holding the PT lock.
3376
*
3377
* Not rechecking the PTE under PT lock could result in an unexpected
3378
* major fault in an mlock'ed region. Recheck only for this special
3379
* scenario while holding the PT lock, to not degrade non-mlocked
3380
* scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3381
* the number of times we hold PT lock.
3382
*/
3383
if (!(vma->vm_flags & VM_LOCKED))
3384
return 0;
3385
3386
if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3387
return 0;
3388
3389
ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3390
&vmf->ptl);
3391
if (unlikely(!ptep))
3392
return VM_FAULT_NOPAGE;
3393
3394
if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3395
ret = VM_FAULT_NOPAGE;
3396
} else {
3397
spin_lock(vmf->ptl);
3398
if (unlikely(!pte_none(ptep_get(ptep))))
3399
ret = VM_FAULT_NOPAGE;
3400
spin_unlock(vmf->ptl);
3401
}
3402
pte_unmap(ptep);
3403
return ret;
3404
}
3405
3406
/**
3407
* filemap_fault - read in file data for page fault handling
3408
* @vmf: struct vm_fault containing details of the fault
3409
*
3410
* filemap_fault() is invoked via the vma operations vector for a
3411
* mapped memory region to read in file data during a page fault.
3412
*
3413
* The goto's are kind of ugly, but this streamlines the normal case of having
3414
* it in the page cache, and handles the special cases reasonably without
3415
* having a lot of duplicated code.
3416
*
3417
* vma->vm_mm->mmap_lock must be held on entry.
3418
*
3419
* If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3420
* may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3421
*
3422
* If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3423
* has not been released.
3424
*
3425
* We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3426
*
3427
* Return: bitwise-OR of %VM_FAULT_ codes.
3428
*/
3429
vm_fault_t filemap_fault(struct vm_fault *vmf)
3430
{
3431
int error;
3432
struct file *file = vmf->vma->vm_file;
3433
struct file *fpin = NULL;
3434
struct address_space *mapping = file->f_mapping;
3435
struct inode *inode = mapping->host;
3436
pgoff_t max_idx, index = vmf->pgoff;
3437
struct folio *folio;
3438
vm_fault_t ret = 0;
3439
bool mapping_locked = false;
3440
3441
max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3442
if (unlikely(index >= max_idx))
3443
return VM_FAULT_SIGBUS;
3444
3445
trace_mm_filemap_fault(mapping, index);
3446
3447
/*
3448
* Do we have something in the page cache already?
3449
*/
3450
folio = filemap_get_folio(mapping, index);
3451
if (likely(!IS_ERR(folio))) {
3452
/*
3453
* We found the page, so try async readahead before waiting for
3454
* the lock.
3455
*/
3456
if (!(vmf->flags & FAULT_FLAG_TRIED))
3457
fpin = do_async_mmap_readahead(vmf, folio);
3458
if (unlikely(!folio_test_uptodate(folio))) {
3459
filemap_invalidate_lock_shared(mapping);
3460
mapping_locked = true;
3461
}
3462
} else {
3463
ret = filemap_fault_recheck_pte_none(vmf);
3464
if (unlikely(ret))
3465
return ret;
3466
3467
/* No page in the page cache at all */
3468
count_vm_event(PGMAJFAULT);
3469
count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3470
ret = VM_FAULT_MAJOR;
3471
fpin = do_sync_mmap_readahead(vmf);
3472
retry_find:
3473
/*
3474
* See comment in filemap_create_folio() why we need
3475
* invalidate_lock
3476
*/
3477
if (!mapping_locked) {
3478
filemap_invalidate_lock_shared(mapping);
3479
mapping_locked = true;
3480
}
3481
folio = __filemap_get_folio(mapping, index,
3482
FGP_CREAT|FGP_FOR_MMAP,
3483
vmf->gfp_mask);
3484
if (IS_ERR(folio)) {
3485
if (fpin)
3486
goto out_retry;
3487
filemap_invalidate_unlock_shared(mapping);
3488
return VM_FAULT_OOM;
3489
}
3490
}
3491
3492
if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3493
goto out_retry;
3494
3495
/* Did it get truncated? */
3496
if (unlikely(folio->mapping != mapping)) {
3497
folio_unlock(folio);
3498
folio_put(folio);
3499
goto retry_find;
3500
}
3501
VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3502
3503
/*
3504
* We have a locked folio in the page cache, now we need to check
3505
* that it's up-to-date. If not, it is going to be due to an error,
3506
* or because readahead was otherwise unable to retrieve it.
3507
*/
3508
if (unlikely(!folio_test_uptodate(folio))) {
3509
/*
3510
* If the invalidate lock is not held, the folio was in cache
3511
* and uptodate and now it is not. Strange but possible since we
3512
* didn't hold the page lock all the time. Let's drop
3513
* everything, get the invalidate lock and try again.
3514
*/
3515
if (!mapping_locked) {
3516
folio_unlock(folio);
3517
folio_put(folio);
3518
goto retry_find;
3519
}
3520
3521
/*
3522
* OK, the folio is really not uptodate. This can be because the
3523
* VMA has the VM_RAND_READ flag set, or because an error
3524
* arose. Let's read it in directly.
3525
*/
3526
goto page_not_uptodate;
3527
}
3528
3529
/*
3530
* We've made it this far and we had to drop our mmap_lock, now is the
3531
* time to return to the upper layer and have it re-find the vma and
3532
* redo the fault.
3533
*/
3534
if (fpin) {
3535
folio_unlock(folio);
3536
goto out_retry;
3537
}
3538
if (mapping_locked)
3539
filemap_invalidate_unlock_shared(mapping);
3540
3541
/*
3542
* Found the page and have a reference on it.
3543
* We must recheck i_size under page lock.
3544
*/
3545
max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3546
if (unlikely(index >= max_idx)) {
3547
folio_unlock(folio);
3548
folio_put(folio);
3549
return VM_FAULT_SIGBUS;
3550
}
3551
3552
vmf->page = folio_file_page(folio, index);
3553
return ret | VM_FAULT_LOCKED;
3554
3555
page_not_uptodate:
3556
/*
3557
* Umm, take care of errors if the page isn't up-to-date.
3558
* Try to re-read it _once_. We do this synchronously,
3559
* because there really aren't any performance issues here
3560
* and we need to check for errors.
3561
*/
3562
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3563
error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3564
if (fpin)
3565
goto out_retry;
3566
folio_put(folio);
3567
3568
if (!error || error == AOP_TRUNCATED_PAGE)
3569
goto retry_find;
3570
filemap_invalidate_unlock_shared(mapping);
3571
3572
return VM_FAULT_SIGBUS;
3573
3574
out_retry:
3575
/*
3576
* We dropped the mmap_lock, we need to return to the fault handler to
3577
* re-find the vma and come back and find our hopefully still populated
3578
* page.
3579
*/
3580
if (!IS_ERR(folio))
3581
folio_put(folio);
3582
if (mapping_locked)
3583
filemap_invalidate_unlock_shared(mapping);
3584
if (fpin)
3585
fput(fpin);
3586
return ret | VM_FAULT_RETRY;
3587
}
3588
EXPORT_SYMBOL(filemap_fault);
3589
3590
static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3591
pgoff_t start)
3592
{
3593
struct mm_struct *mm = vmf->vma->vm_mm;
3594
3595
/* Huge page is mapped? No need to proceed. */
3596
if (pmd_trans_huge(*vmf->pmd)) {
3597
folio_unlock(folio);
3598
folio_put(folio);
3599
return true;
3600
}
3601
3602
if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3603
struct page *page = folio_file_page(folio, start);
3604
vm_fault_t ret = do_set_pmd(vmf, folio, page);
3605
if (!ret) {
3606
/* The page is mapped successfully, reference consumed. */
3607
folio_unlock(folio);
3608
return true;
3609
}
3610
}
3611
3612
if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3613
pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3614
3615
return false;
3616
}
3617
3618
static struct folio *next_uptodate_folio(struct xa_state *xas,
3619
struct address_space *mapping, pgoff_t end_pgoff)
3620
{
3621
struct folio *folio = xas_next_entry(xas, end_pgoff);
3622
unsigned long max_idx;
3623
3624
do {
3625
if (!folio)
3626
return NULL;
3627
if (xas_retry(xas, folio))
3628
continue;
3629
if (xa_is_value(folio))
3630
continue;
3631
if (!folio_try_get(folio))
3632
continue;
3633
if (folio_test_locked(folio))
3634
goto skip;
3635
/* Has the page moved or been split? */
3636
if (unlikely(folio != xas_reload(xas)))
3637
goto skip;
3638
if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3639
goto skip;
3640
if (!folio_trylock(folio))
3641
goto skip;
3642
if (folio->mapping != mapping)
3643
goto unlock;
3644
if (!folio_test_uptodate(folio))
3645
goto unlock;
3646
max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3647
if (xas->xa_index >= max_idx)
3648
goto unlock;
3649
return folio;
3650
unlock:
3651
folio_unlock(folio);
3652
skip:
3653
folio_put(folio);
3654
} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3655
3656
return NULL;
3657
}
3658
3659
/*
3660
* Map page range [start_page, start_page + nr_pages) of folio.
3661
* start_page is gotten from start by folio_page(folio, start)
3662
*/
3663
static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3664
struct folio *folio, unsigned long start,
3665
unsigned long addr, unsigned int nr_pages,
3666
unsigned long *rss, unsigned short *mmap_miss)
3667
{
3668
unsigned int ref_from_caller = 1;
3669
vm_fault_t ret = 0;
3670
struct page *page = folio_page(folio, start);
3671
unsigned int count = 0;
3672
pte_t *old_ptep = vmf->pte;
3673
unsigned long addr0;
3674
3675
/*
3676
* Map the large folio fully where possible.
3677
*
3678
* The folio must not cross VMA or page table boundary.
3679
*/
3680
addr0 = addr - start * PAGE_SIZE;
3681
if (folio_within_vma(folio, vmf->vma) &&
3682
(addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3683
vmf->pte -= start;
3684
page -= start;
3685
addr = addr0;
3686
nr_pages = folio_nr_pages(folio);
3687
}
3688
3689
do {
3690
if (PageHWPoison(page + count))
3691
goto skip;
3692
3693
/*
3694
* If there are too many folios that are recently evicted
3695
* in a file, they will probably continue to be evicted.
3696
* In such situation, read-ahead is only a waste of IO.
3697
* Don't decrease mmap_miss in this scenario to make sure
3698
* we can stop read-ahead.
3699
*/
3700
if (!folio_test_workingset(folio))
3701
(*mmap_miss)++;
3702
3703
/*
3704
* NOTE: If there're PTE markers, we'll leave them to be
3705
* handled in the specific fault path, and it'll prohibit the
3706
* fault-around logic.
3707
*/
3708
if (!pte_none(ptep_get(&vmf->pte[count])))
3709
goto skip;
3710
3711
count++;
3712
continue;
3713
skip:
3714
if (count) {
3715
set_pte_range(vmf, folio, page, count, addr);
3716
*rss += count;
3717
folio_ref_add(folio, count - ref_from_caller);
3718
ref_from_caller = 0;
3719
if (in_range(vmf->address, addr, count * PAGE_SIZE))
3720
ret = VM_FAULT_NOPAGE;
3721
}
3722
3723
count++;
3724
page += count;
3725
vmf->pte += count;
3726
addr += count * PAGE_SIZE;
3727
count = 0;
3728
} while (--nr_pages > 0);
3729
3730
if (count) {
3731
set_pte_range(vmf, folio, page, count, addr);
3732
*rss += count;
3733
folio_ref_add(folio, count - ref_from_caller);
3734
ref_from_caller = 0;
3735
if (in_range(vmf->address, addr, count * PAGE_SIZE))
3736
ret = VM_FAULT_NOPAGE;
3737
}
3738
3739
vmf->pte = old_ptep;
3740
if (ref_from_caller)
3741
/* Locked folios cannot get truncated. */
3742
folio_ref_dec(folio);
3743
3744
return ret;
3745
}
3746
3747
static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3748
struct folio *folio, unsigned long addr,
3749
unsigned long *rss, unsigned short *mmap_miss)
3750
{
3751
vm_fault_t ret = 0;
3752
struct page *page = &folio->page;
3753
3754
if (PageHWPoison(page))
3755
goto out;
3756
3757
/* See comment of filemap_map_folio_range() */
3758
if (!folio_test_workingset(folio))
3759
(*mmap_miss)++;
3760
3761
/*
3762
* NOTE: If there're PTE markers, we'll leave them to be
3763
* handled in the specific fault path, and it'll prohibit
3764
* the fault-around logic.
3765
*/
3766
if (!pte_none(ptep_get(vmf->pte)))
3767
goto out;
3768
3769
if (vmf->address == addr)
3770
ret = VM_FAULT_NOPAGE;
3771
3772
set_pte_range(vmf, folio, page, 1, addr);
3773
(*rss)++;
3774
return ret;
3775
3776
out:
3777
/* Locked folios cannot get truncated. */
3778
folio_ref_dec(folio);
3779
return ret;
3780
}
3781
3782
vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3783
pgoff_t start_pgoff, pgoff_t end_pgoff)
3784
{
3785
struct vm_area_struct *vma = vmf->vma;
3786
struct file *file = vma->vm_file;
3787
struct address_space *mapping = file->f_mapping;
3788
pgoff_t file_end, last_pgoff = start_pgoff;
3789
unsigned long addr;
3790
XA_STATE(xas, &mapping->i_pages, start_pgoff);
3791
struct folio *folio;
3792
vm_fault_t ret = 0;
3793
unsigned long rss = 0;
3794
unsigned int nr_pages = 0, folio_type;
3795
unsigned short mmap_miss = 0, mmap_miss_saved;
3796
3797
rcu_read_lock();
3798
folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3799
if (!folio)
3800
goto out;
3801
3802
if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3803
ret = VM_FAULT_NOPAGE;
3804
goto out;
3805
}
3806
3807
addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3808
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3809
if (!vmf->pte) {
3810
folio_unlock(folio);
3811
folio_put(folio);
3812
goto out;
3813
}
3814
3815
file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3816
if (end_pgoff > file_end)
3817
end_pgoff = file_end;
3818
3819
folio_type = mm_counter_file(folio);
3820
do {
3821
unsigned long end;
3822
3823
addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3824
vmf->pte += xas.xa_index - last_pgoff;
3825
last_pgoff = xas.xa_index;
3826
end = folio_next_index(folio) - 1;
3827
nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3828
3829
if (!folio_test_large(folio))
3830
ret |= filemap_map_order0_folio(vmf,
3831
folio, addr, &rss, &mmap_miss);
3832
else
3833
ret |= filemap_map_folio_range(vmf, folio,
3834
xas.xa_index - folio->index, addr,
3835
nr_pages, &rss, &mmap_miss);
3836
3837
folio_unlock(folio);
3838
} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3839
add_mm_counter(vma->vm_mm, folio_type, rss);
3840
pte_unmap_unlock(vmf->pte, vmf->ptl);
3841
trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3842
out:
3843
rcu_read_unlock();
3844
3845
mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3846
if (mmap_miss >= mmap_miss_saved)
3847
WRITE_ONCE(file->f_ra.mmap_miss, 0);
3848
else
3849
WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3850
3851
return ret;
3852
}
3853
EXPORT_SYMBOL(filemap_map_pages);
3854
3855
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3856
{
3857
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3858
struct folio *folio = page_folio(vmf->page);
3859
vm_fault_t ret = VM_FAULT_LOCKED;
3860
3861
sb_start_pagefault(mapping->host->i_sb);
3862
file_update_time(vmf->vma->vm_file);
3863
folio_lock(folio);
3864
if (folio->mapping != mapping) {
3865
folio_unlock(folio);
3866
ret = VM_FAULT_NOPAGE;
3867
goto out;
3868
}
3869
/*
3870
* We mark the folio dirty already here so that when freeze is in
3871
* progress, we are guaranteed that writeback during freezing will
3872
* see the dirty folio and writeprotect it again.
3873
*/
3874
folio_mark_dirty(folio);
3875
folio_wait_stable(folio);
3876
out:
3877
sb_end_pagefault(mapping->host->i_sb);
3878
return ret;
3879
}
3880
3881
const struct vm_operations_struct generic_file_vm_ops = {
3882
.fault = filemap_fault,
3883
.map_pages = filemap_map_pages,
3884
.page_mkwrite = filemap_page_mkwrite,
3885
};
3886
3887
/* This is used for a general mmap of a disk file */
3888
3889
int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3890
{
3891
struct address_space *mapping = file->f_mapping;
3892
3893
if (!mapping->a_ops->read_folio)
3894
return -ENOEXEC;
3895
file_accessed(file);
3896
vma->vm_ops = &generic_file_vm_ops;
3897
return 0;
3898
}
3899
3900
int generic_file_mmap_prepare(struct vm_area_desc *desc)
3901
{
3902
struct file *file = desc->file;
3903
struct address_space *mapping = file->f_mapping;
3904
3905
if (!mapping->a_ops->read_folio)
3906
return -ENOEXEC;
3907
file_accessed(file);
3908
desc->vm_ops = &generic_file_vm_ops;
3909
return 0;
3910
}
3911
3912
/*
3913
* This is for filesystems which do not implement ->writepage.
3914
*/
3915
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3916
{
3917
if (vma_is_shared_maywrite(vma))
3918
return -EINVAL;
3919
return generic_file_mmap(file, vma);
3920
}
3921
3922
int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3923
{
3924
if (is_shared_maywrite(desc->vm_flags))
3925
return -EINVAL;
3926
return generic_file_mmap_prepare(desc);
3927
}
3928
#else
3929
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3930
{
3931
return VM_FAULT_SIGBUS;
3932
}
3933
int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3934
{
3935
return -ENOSYS;
3936
}
3937
int generic_file_mmap_prepare(struct vm_area_desc *desc)
3938
{
3939
return -ENOSYS;
3940
}
3941
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3942
{
3943
return -ENOSYS;
3944
}
3945
int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3946
{
3947
return -ENOSYS;
3948
}
3949
#endif /* CONFIG_MMU */
3950
3951
EXPORT_SYMBOL(filemap_page_mkwrite);
3952
EXPORT_SYMBOL(generic_file_mmap);
3953
EXPORT_SYMBOL(generic_file_mmap_prepare);
3954
EXPORT_SYMBOL(generic_file_readonly_mmap);
3955
EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3956
3957
static struct folio *do_read_cache_folio(struct address_space *mapping,
3958
pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3959
{
3960
struct folio *folio;
3961
int err;
3962
3963
if (!filler)
3964
filler = mapping->a_ops->read_folio;
3965
repeat:
3966
folio = filemap_get_folio(mapping, index);
3967
if (IS_ERR(folio)) {
3968
folio = filemap_alloc_folio(gfp,
3969
mapping_min_folio_order(mapping));
3970
if (!folio)
3971
return ERR_PTR(-ENOMEM);
3972
index = mapping_align_index(mapping, index);
3973
err = filemap_add_folio(mapping, folio, index, gfp);
3974
if (unlikely(err)) {
3975
folio_put(folio);
3976
if (err == -EEXIST)
3977
goto repeat;
3978
/* Presumably ENOMEM for xarray node */
3979
return ERR_PTR(err);
3980
}
3981
3982
goto filler;
3983
}
3984
if (folio_test_uptodate(folio))
3985
goto out;
3986
3987
if (!folio_trylock(folio)) {
3988
folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3989
goto repeat;
3990
}
3991
3992
/* Folio was truncated from mapping */
3993
if (!folio->mapping) {
3994
folio_unlock(folio);
3995
folio_put(folio);
3996
goto repeat;
3997
}
3998
3999
/* Someone else locked and filled the page in a very small window */
4000
if (folio_test_uptodate(folio)) {
4001
folio_unlock(folio);
4002
goto out;
4003
}
4004
4005
filler:
4006
err = filemap_read_folio(file, filler, folio);
4007
if (err) {
4008
folio_put(folio);
4009
if (err == AOP_TRUNCATED_PAGE)
4010
goto repeat;
4011
return ERR_PTR(err);
4012
}
4013
4014
out:
4015
folio_mark_accessed(folio);
4016
return folio;
4017
}
4018
4019
/**
4020
* read_cache_folio - Read into page cache, fill it if needed.
4021
* @mapping: The address_space to read from.
4022
* @index: The index to read.
4023
* @filler: Function to perform the read, or NULL to use aops->read_folio().
4024
* @file: Passed to filler function, may be NULL if not required.
4025
*
4026
* Read one page into the page cache. If it succeeds, the folio returned
4027
* will contain @index, but it may not be the first page of the folio.
4028
*
4029
* If the filler function returns an error, it will be returned to the
4030
* caller.
4031
*
4032
* Context: May sleep. Expects mapping->invalidate_lock to be held.
4033
* Return: An uptodate folio on success, ERR_PTR() on failure.
4034
*/
4035
struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4036
filler_t filler, struct file *file)
4037
{
4038
return do_read_cache_folio(mapping, index, filler, file,
4039
mapping_gfp_mask(mapping));
4040
}
4041
EXPORT_SYMBOL(read_cache_folio);
4042
4043
/**
4044
* mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4045
* @mapping: The address_space for the folio.
4046
* @index: The index that the allocated folio will contain.
4047
* @gfp: The page allocator flags to use if allocating.
4048
*
4049
* This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4050
* any new memory allocations done using the specified allocation flags.
4051
*
4052
* The most likely error from this function is EIO, but ENOMEM is
4053
* possible and so is EINTR. If ->read_folio returns another error,
4054
* that will be returned to the caller.
4055
*
4056
* The function expects mapping->invalidate_lock to be already held.
4057
*
4058
* Return: Uptodate folio on success, ERR_PTR() on failure.
4059
*/
4060
struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4061
pgoff_t index, gfp_t gfp)
4062
{
4063
return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4064
}
4065
EXPORT_SYMBOL(mapping_read_folio_gfp);
4066
4067
static struct page *do_read_cache_page(struct address_space *mapping,
4068
pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4069
{
4070
struct folio *folio;
4071
4072
folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4073
if (IS_ERR(folio))
4074
return &folio->page;
4075
return folio_file_page(folio, index);
4076
}
4077
4078
struct page *read_cache_page(struct address_space *mapping,
4079
pgoff_t index, filler_t *filler, struct file *file)
4080
{
4081
return do_read_cache_page(mapping, index, filler, file,
4082
mapping_gfp_mask(mapping));
4083
}
4084
EXPORT_SYMBOL(read_cache_page);
4085
4086
/**
4087
* read_cache_page_gfp - read into page cache, using specified page allocation flags.
4088
* @mapping: the page's address_space
4089
* @index: the page index
4090
* @gfp: the page allocator flags to use if allocating
4091
*
4092
* This is the same as "read_mapping_page(mapping, index, NULL)", but with
4093
* any new page allocations done using the specified allocation flags.
4094
*
4095
* If the page does not get brought uptodate, return -EIO.
4096
*
4097
* The function expects mapping->invalidate_lock to be already held.
4098
*
4099
* Return: up to date page on success, ERR_PTR() on failure.
4100
*/
4101
struct page *read_cache_page_gfp(struct address_space *mapping,
4102
pgoff_t index,
4103
gfp_t gfp)
4104
{
4105
return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4106
}
4107
EXPORT_SYMBOL(read_cache_page_gfp);
4108
4109
/*
4110
* Warn about a page cache invalidation failure during a direct I/O write.
4111
*/
4112
static void dio_warn_stale_pagecache(struct file *filp)
4113
{
4114
static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4115
char pathname[128];
4116
char *path;
4117
4118
errseq_set(&filp->f_mapping->wb_err, -EIO);
4119
if (__ratelimit(&_rs)) {
4120
path = file_path(filp, pathname, sizeof(pathname));
4121
if (IS_ERR(path))
4122
path = "(unknown)";
4123
pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4124
pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4125
current->comm);
4126
}
4127
}
4128
4129
void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4130
{
4131
struct address_space *mapping = iocb->ki_filp->f_mapping;
4132
4133
if (mapping->nrpages &&
4134
invalidate_inode_pages2_range(mapping,
4135
iocb->ki_pos >> PAGE_SHIFT,
4136
(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4137
dio_warn_stale_pagecache(iocb->ki_filp);
4138
}
4139
4140
ssize_t
4141
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4142
{
4143
struct address_space *mapping = iocb->ki_filp->f_mapping;
4144
size_t write_len = iov_iter_count(from);
4145
ssize_t written;
4146
4147
/*
4148
* If a page can not be invalidated, return 0 to fall back
4149
* to buffered write.
4150
*/
4151
written = kiocb_invalidate_pages(iocb, write_len);
4152
if (written) {
4153
if (written == -EBUSY)
4154
return 0;
4155
return written;
4156
}
4157
4158
written = mapping->a_ops->direct_IO(iocb, from);
4159
4160
/*
4161
* Finally, try again to invalidate clean pages which might have been
4162
* cached by non-direct readahead, or faulted in by get_user_pages()
4163
* if the source of the write was an mmap'ed region of the file
4164
* we're writing. Either one is a pretty crazy thing to do,
4165
* so we don't support it 100%. If this invalidation
4166
* fails, tough, the write still worked...
4167
*
4168
* Most of the time we do not need this since dio_complete() will do
4169
* the invalidation for us. However there are some file systems that
4170
* do not end up with dio_complete() being called, so let's not break
4171
* them by removing it completely.
4172
*
4173
* Noticeable example is a blkdev_direct_IO().
4174
*
4175
* Skip invalidation for async writes or if mapping has no pages.
4176
*/
4177
if (written > 0) {
4178
struct inode *inode = mapping->host;
4179
loff_t pos = iocb->ki_pos;
4180
4181
kiocb_invalidate_post_direct_write(iocb, written);
4182
pos += written;
4183
write_len -= written;
4184
if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4185
i_size_write(inode, pos);
4186
mark_inode_dirty(inode);
4187
}
4188
iocb->ki_pos = pos;
4189
}
4190
if (written != -EIOCBQUEUED)
4191
iov_iter_revert(from, write_len - iov_iter_count(from));
4192
return written;
4193
}
4194
EXPORT_SYMBOL(generic_file_direct_write);
4195
4196
ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4197
{
4198
struct file *file = iocb->ki_filp;
4199
loff_t pos = iocb->ki_pos;
4200
struct address_space *mapping = file->f_mapping;
4201
const struct address_space_operations *a_ops = mapping->a_ops;
4202
size_t chunk = mapping_max_folio_size(mapping);
4203
long status = 0;
4204
ssize_t written = 0;
4205
4206
do {
4207
struct folio *folio;
4208
size_t offset; /* Offset into folio */
4209
size_t bytes; /* Bytes to write to folio */
4210
size_t copied; /* Bytes copied from user */
4211
void *fsdata = NULL;
4212
4213
bytes = iov_iter_count(i);
4214
retry:
4215
offset = pos & (chunk - 1);
4216
bytes = min(chunk - offset, bytes);
4217
balance_dirty_pages_ratelimited(mapping);
4218
4219
if (fatal_signal_pending(current)) {
4220
status = -EINTR;
4221
break;
4222
}
4223
4224
status = a_ops->write_begin(iocb, mapping, pos, bytes,
4225
&folio, &fsdata);
4226
if (unlikely(status < 0))
4227
break;
4228
4229
offset = offset_in_folio(folio, pos);
4230
if (bytes > folio_size(folio) - offset)
4231
bytes = folio_size(folio) - offset;
4232
4233
if (mapping_writably_mapped(mapping))
4234
flush_dcache_folio(folio);
4235
4236
/*
4237
* Faults here on mmap()s can recurse into arbitrary
4238
* filesystem code. Lots of locks are held that can
4239
* deadlock. Use an atomic copy to avoid deadlocking
4240
* in page fault handling.
4241
*/
4242
copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4243
flush_dcache_folio(folio);
4244
4245
status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4246
folio, fsdata);
4247
if (unlikely(status != copied)) {
4248
iov_iter_revert(i, copied - max(status, 0L));
4249
if (unlikely(status < 0))
4250
break;
4251
}
4252
cond_resched();
4253
4254
if (unlikely(status == 0)) {
4255
/*
4256
* A short copy made ->write_end() reject the
4257
* thing entirely. Might be memory poisoning
4258
* halfway through, might be a race with munmap,
4259
* might be severe memory pressure.
4260
*/
4261
if (chunk > PAGE_SIZE)
4262
chunk /= 2;
4263
if (copied) {
4264
bytes = copied;
4265
goto retry;
4266
}
4267
4268
/*
4269
* 'folio' is now unlocked and faults on it can be
4270
* handled. Ensure forward progress by trying to
4271
* fault it in now.
4272
*/
4273
if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4274
status = -EFAULT;
4275
break;
4276
}
4277
} else {
4278
pos += status;
4279
written += status;
4280
}
4281
} while (iov_iter_count(i));
4282
4283
if (!written)
4284
return status;
4285
iocb->ki_pos += written;
4286
return written;
4287
}
4288
EXPORT_SYMBOL(generic_perform_write);
4289
4290
/**
4291
* __generic_file_write_iter - write data to a file
4292
* @iocb: IO state structure (file, offset, etc.)
4293
* @from: iov_iter with data to write
4294
*
4295
* This function does all the work needed for actually writing data to a
4296
* file. It does all basic checks, removes SUID from the file, updates
4297
* modification times and calls proper subroutines depending on whether we
4298
* do direct IO or a standard buffered write.
4299
*
4300
* It expects i_rwsem to be grabbed unless we work on a block device or similar
4301
* object which does not need locking at all.
4302
*
4303
* This function does *not* take care of syncing data in case of O_SYNC write.
4304
* A caller has to handle it. This is mainly due to the fact that we want to
4305
* avoid syncing under i_rwsem.
4306
*
4307
* Return:
4308
* * number of bytes written, even for truncated writes
4309
* * negative error code if no data has been written at all
4310
*/
4311
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4312
{
4313
struct file *file = iocb->ki_filp;
4314
struct address_space *mapping = file->f_mapping;
4315
struct inode *inode = mapping->host;
4316
ssize_t ret;
4317
4318
ret = file_remove_privs(file);
4319
if (ret)
4320
return ret;
4321
4322
ret = file_update_time(file);
4323
if (ret)
4324
return ret;
4325
4326
if (iocb->ki_flags & IOCB_DIRECT) {
4327
ret = generic_file_direct_write(iocb, from);
4328
/*
4329
* If the write stopped short of completing, fall back to
4330
* buffered writes. Some filesystems do this for writes to
4331
* holes, for example. For DAX files, a buffered write will
4332
* not succeed (even if it did, DAX does not handle dirty
4333
* page-cache pages correctly).
4334
*/
4335
if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4336
return ret;
4337
return direct_write_fallback(iocb, from, ret,
4338
generic_perform_write(iocb, from));
4339
}
4340
4341
return generic_perform_write(iocb, from);
4342
}
4343
EXPORT_SYMBOL(__generic_file_write_iter);
4344
4345
/**
4346
* generic_file_write_iter - write data to a file
4347
* @iocb: IO state structure
4348
* @from: iov_iter with data to write
4349
*
4350
* This is a wrapper around __generic_file_write_iter() to be used by most
4351
* filesystems. It takes care of syncing the file in case of O_SYNC file
4352
* and acquires i_rwsem as needed.
4353
* Return:
4354
* * negative error code if no data has been written at all of
4355
* vfs_fsync_range() failed for a synchronous write
4356
* * number of bytes written, even for truncated writes
4357
*/
4358
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4359
{
4360
struct file *file = iocb->ki_filp;
4361
struct inode *inode = file->f_mapping->host;
4362
ssize_t ret;
4363
4364
inode_lock(inode);
4365
ret = generic_write_checks(iocb, from);
4366
if (ret > 0)
4367
ret = __generic_file_write_iter(iocb, from);
4368
inode_unlock(inode);
4369
4370
if (ret > 0)
4371
ret = generic_write_sync(iocb, ret);
4372
return ret;
4373
}
4374
EXPORT_SYMBOL(generic_file_write_iter);
4375
4376
/**
4377
* filemap_release_folio() - Release fs-specific metadata on a folio.
4378
* @folio: The folio which the kernel is trying to free.
4379
* @gfp: Memory allocation flags (and I/O mode).
4380
*
4381
* The address_space is trying to release any data attached to a folio
4382
* (presumably at folio->private).
4383
*
4384
* This will also be called if the private_2 flag is set on a page,
4385
* indicating that the folio has other metadata associated with it.
4386
*
4387
* The @gfp argument specifies whether I/O may be performed to release
4388
* this page (__GFP_IO), and whether the call may block
4389
* (__GFP_RECLAIM & __GFP_FS).
4390
*
4391
* Return: %true if the release was successful, otherwise %false.
4392
*/
4393
bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4394
{
4395
struct address_space * const mapping = folio->mapping;
4396
4397
BUG_ON(!folio_test_locked(folio));
4398
if (!folio_needs_release(folio))
4399
return true;
4400
if (folio_test_writeback(folio))
4401
return false;
4402
4403
if (mapping && mapping->a_ops->release_folio)
4404
return mapping->a_ops->release_folio(folio, gfp);
4405
return try_to_free_buffers(folio);
4406
}
4407
EXPORT_SYMBOL(filemap_release_folio);
4408
4409
/**
4410
* filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4411
* @inode: The inode to flush
4412
* @flush: Set to write back rather than simply invalidate.
4413
* @start: First byte to in range.
4414
* @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4415
* onwards.
4416
*
4417
* Invalidate all the folios on an inode that contribute to the specified
4418
* range, possibly writing them back first. Whilst the operation is
4419
* undertaken, the invalidate lock is held to prevent new folios from being
4420
* installed.
4421
*/
4422
int filemap_invalidate_inode(struct inode *inode, bool flush,
4423
loff_t start, loff_t end)
4424
{
4425
struct address_space *mapping = inode->i_mapping;
4426
pgoff_t first = start >> PAGE_SHIFT;
4427
pgoff_t last = end >> PAGE_SHIFT;
4428
pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4429
4430
if (!mapping || !mapping->nrpages || end < start)
4431
goto out;
4432
4433
/* Prevent new folios from being added to the inode. */
4434
filemap_invalidate_lock(mapping);
4435
4436
if (!mapping->nrpages)
4437
goto unlock;
4438
4439
unmap_mapping_pages(mapping, first, nr, false);
4440
4441
/* Write back the data if we're asked to. */
4442
if (flush) {
4443
struct writeback_control wbc = {
4444
.sync_mode = WB_SYNC_ALL,
4445
.nr_to_write = LONG_MAX,
4446
.range_start = start,
4447
.range_end = end,
4448
};
4449
4450
filemap_fdatawrite_wbc(mapping, &wbc);
4451
}
4452
4453
/* Wait for writeback to complete on all folios and discard. */
4454
invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4455
4456
unlock:
4457
filemap_invalidate_unlock(mapping);
4458
out:
4459
return filemap_check_errors(mapping);
4460
}
4461
EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4462
4463
#ifdef CONFIG_CACHESTAT_SYSCALL
4464
/**
4465
* filemap_cachestat() - compute the page cache statistics of a mapping
4466
* @mapping: The mapping to compute the statistics for.
4467
* @first_index: The starting page cache index.
4468
* @last_index: The final page index (inclusive).
4469
* @cs: the cachestat struct to write the result to.
4470
*
4471
* This will query the page cache statistics of a mapping in the
4472
* page range of [first_index, last_index] (inclusive). The statistics
4473
* queried include: number of dirty pages, number of pages marked for
4474
* writeback, and the number of (recently) evicted pages.
4475
*/
4476
static void filemap_cachestat(struct address_space *mapping,
4477
pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4478
{
4479
XA_STATE(xas, &mapping->i_pages, first_index);
4480
struct folio *folio;
4481
4482
/* Flush stats (and potentially sleep) outside the RCU read section. */
4483
mem_cgroup_flush_stats_ratelimited(NULL);
4484
4485
rcu_read_lock();
4486
xas_for_each(&xas, folio, last_index) {
4487
int order;
4488
unsigned long nr_pages;
4489
pgoff_t folio_first_index, folio_last_index;
4490
4491
/*
4492
* Don't deref the folio. It is not pinned, and might
4493
* get freed (and reused) underneath us.
4494
*
4495
* We *could* pin it, but that would be expensive for
4496
* what should be a fast and lightweight syscall.
4497
*
4498
* Instead, derive all information of interest from
4499
* the rcu-protected xarray.
4500
*/
4501
4502
if (xas_retry(&xas, folio))
4503
continue;
4504
4505
order = xas_get_order(&xas);
4506
nr_pages = 1 << order;
4507
folio_first_index = round_down(xas.xa_index, 1 << order);
4508
folio_last_index = folio_first_index + nr_pages - 1;
4509
4510
/* Folios might straddle the range boundaries, only count covered pages */
4511
if (folio_first_index < first_index)
4512
nr_pages -= first_index - folio_first_index;
4513
4514
if (folio_last_index > last_index)
4515
nr_pages -= folio_last_index - last_index;
4516
4517
if (xa_is_value(folio)) {
4518
/* page is evicted */
4519
void *shadow = (void *)folio;
4520
bool workingset; /* not used */
4521
4522
cs->nr_evicted += nr_pages;
4523
4524
#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4525
if (shmem_mapping(mapping)) {
4526
/* shmem file - in swap cache */
4527
swp_entry_t swp = radix_to_swp_entry(folio);
4528
4529
/* swapin error results in poisoned entry */
4530
if (non_swap_entry(swp))
4531
goto resched;
4532
4533
/*
4534
* Getting a swap entry from the shmem
4535
* inode means we beat
4536
* shmem_unuse(). rcu_read_lock()
4537
* ensures swapoff waits for us before
4538
* freeing the swapper space. However,
4539
* we can race with swapping and
4540
* invalidation, so there might not be
4541
* a shadow in the swapcache (yet).
4542
*/
4543
shadow = swap_cache_get_shadow(swp);
4544
if (!shadow)
4545
goto resched;
4546
}
4547
#endif
4548
if (workingset_test_recent(shadow, true, &workingset, false))
4549
cs->nr_recently_evicted += nr_pages;
4550
4551
goto resched;
4552
}
4553
4554
/* page is in cache */
4555
cs->nr_cache += nr_pages;
4556
4557
if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4558
cs->nr_dirty += nr_pages;
4559
4560
if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4561
cs->nr_writeback += nr_pages;
4562
4563
resched:
4564
if (need_resched()) {
4565
xas_pause(&xas);
4566
cond_resched_rcu();
4567
}
4568
}
4569
rcu_read_unlock();
4570
}
4571
4572
/*
4573
* See mincore: reveal pagecache information only for files
4574
* that the calling process has write access to, or could (if
4575
* tried) open for writing.
4576
*/
4577
static inline bool can_do_cachestat(struct file *f)
4578
{
4579
if (f->f_mode & FMODE_WRITE)
4580
return true;
4581
if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4582
return true;
4583
return file_permission(f, MAY_WRITE) == 0;
4584
}
4585
4586
/*
4587
* The cachestat(2) system call.
4588
*
4589
* cachestat() returns the page cache statistics of a file in the
4590
* bytes range specified by `off` and `len`: number of cached pages,
4591
* number of dirty pages, number of pages marked for writeback,
4592
* number of evicted pages, and number of recently evicted pages.
4593
*
4594
* An evicted page is a page that is previously in the page cache
4595
* but has been evicted since. A page is recently evicted if its last
4596
* eviction was recent enough that its reentry to the cache would
4597
* indicate that it is actively being used by the system, and that
4598
* there is memory pressure on the system.
4599
*
4600
* `off` and `len` must be non-negative integers. If `len` > 0,
4601
* the queried range is [`off`, `off` + `len`]. If `len` == 0,
4602
* we will query in the range from `off` to the end of the file.
4603
*
4604
* The `flags` argument is unused for now, but is included for future
4605
* extensibility. User should pass 0 (i.e no flag specified).
4606
*
4607
* Currently, hugetlbfs is not supported.
4608
*
4609
* Because the status of a page can change after cachestat() checks it
4610
* but before it returns to the application, the returned values may
4611
* contain stale information.
4612
*
4613
* return values:
4614
* zero - success
4615
* -EFAULT - cstat or cstat_range points to an illegal address
4616
* -EINVAL - invalid flags
4617
* -EBADF - invalid file descriptor
4618
* -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4619
*/
4620
SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4621
struct cachestat_range __user *, cstat_range,
4622
struct cachestat __user *, cstat, unsigned int, flags)
4623
{
4624
CLASS(fd, f)(fd);
4625
struct address_space *mapping;
4626
struct cachestat_range csr;
4627
struct cachestat cs;
4628
pgoff_t first_index, last_index;
4629
4630
if (fd_empty(f))
4631
return -EBADF;
4632
4633
if (copy_from_user(&csr, cstat_range,
4634
sizeof(struct cachestat_range)))
4635
return -EFAULT;
4636
4637
/* hugetlbfs is not supported */
4638
if (is_file_hugepages(fd_file(f)))
4639
return -EOPNOTSUPP;
4640
4641
if (!can_do_cachestat(fd_file(f)))
4642
return -EPERM;
4643
4644
if (flags != 0)
4645
return -EINVAL;
4646
4647
first_index = csr.off >> PAGE_SHIFT;
4648
last_index =
4649
csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4650
memset(&cs, 0, sizeof(struct cachestat));
4651
mapping = fd_file(f)->f_mapping;
4652
filemap_cachestat(mapping, first_index, last_index, &cs);
4653
4654
if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4655
return -EFAULT;
4656
4657
return 0;
4658
}
4659
#endif /* CONFIG_CACHESTAT_SYSCALL */
4660
4661