Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/gup.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/kernel.h>
3
#include <linux/errno.h>
4
#include <linux/err.h>
5
#include <linux/spinlock.h>
6
7
#include <linux/mm.h>
8
#include <linux/memfd.h>
9
#include <linux/memremap.h>
10
#include <linux/pagemap.h>
11
#include <linux/rmap.h>
12
#include <linux/swap.h>
13
#include <linux/swapops.h>
14
#include <linux/secretmem.h>
15
16
#include <linux/sched/signal.h>
17
#include <linux/rwsem.h>
18
#include <linux/hugetlb.h>
19
#include <linux/migrate.h>
20
#include <linux/mm_inline.h>
21
#include <linux/pagevec.h>
22
#include <linux/sched/mm.h>
23
#include <linux/shmem_fs.h>
24
25
#include <asm/mmu_context.h>
26
#include <asm/tlbflush.h>
27
28
#include "internal.h"
29
#include "swap.h"
30
31
static inline void sanity_check_pinned_pages(struct page **pages,
32
unsigned long npages)
33
{
34
if (!IS_ENABLED(CONFIG_DEBUG_VM))
35
return;
36
37
/*
38
* We only pin anonymous pages if they are exclusive. Once pinned, we
39
* can no longer turn them possibly shared and PageAnonExclusive() will
40
* stick around until the page is freed.
41
*
42
* We'd like to verify that our pinned anonymous pages are still mapped
43
* exclusively. The issue with anon THP is that we don't know how
44
* they are/were mapped when pinning them. However, for anon
45
* THP we can assume that either the given page (PTE-mapped THP) or
46
* the head page (PMD-mapped THP) should be PageAnonExclusive(). If
47
* neither is the case, there is certainly something wrong.
48
*/
49
for (; npages; npages--, pages++) {
50
struct page *page = *pages;
51
struct folio *folio;
52
53
if (!page)
54
continue;
55
56
folio = page_folio(page);
57
58
if (is_zero_page(page) ||
59
!folio_test_anon(folio))
60
continue;
61
if (!folio_test_large(folio) || folio_test_hugetlb(folio))
62
VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
63
else
64
/* Either a PTE-mapped or a PMD-mapped THP. */
65
VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
66
!PageAnonExclusive(page), page);
67
}
68
}
69
70
/*
71
* Return the folio with ref appropriately incremented,
72
* or NULL if that failed.
73
*/
74
static inline struct folio *try_get_folio(struct page *page, int refs)
75
{
76
struct folio *folio;
77
78
retry:
79
folio = page_folio(page);
80
if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
81
return NULL;
82
if (unlikely(!folio_ref_try_add(folio, refs)))
83
return NULL;
84
85
/*
86
* At this point we have a stable reference to the folio; but it
87
* could be that between calling page_folio() and the refcount
88
* increment, the folio was split, in which case we'd end up
89
* holding a reference on a folio that has nothing to do with the page
90
* we were given anymore.
91
* So now that the folio is stable, recheck that the page still
92
* belongs to this folio.
93
*/
94
if (unlikely(page_folio(page) != folio)) {
95
folio_put_refs(folio, refs);
96
goto retry;
97
}
98
99
return folio;
100
}
101
102
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103
{
104
if (flags & FOLL_PIN) {
105
if (is_zero_folio(folio))
106
return;
107
node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108
if (folio_has_pincount(folio))
109
atomic_sub(refs, &folio->_pincount);
110
else
111
refs *= GUP_PIN_COUNTING_BIAS;
112
}
113
114
folio_put_refs(folio, refs);
115
}
116
117
/**
118
* try_grab_folio() - add a folio's refcount by a flag-dependent amount
119
* @folio: pointer to folio to be grabbed
120
* @refs: the value to (effectively) add to the folio's refcount
121
* @flags: gup flags: these are the FOLL_* flag values
122
*
123
* This might not do anything at all, depending on the flags argument.
124
*
125
* "grab" names in this file mean, "look at flags to decide whether to use
126
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
127
*
128
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
129
* time.
130
*
131
* Return: 0 for success, or if no action was required (if neither FOLL_PIN
132
* nor FOLL_GET was set, nothing is done). A negative error code for failure:
133
*
134
* -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
135
* be grabbed.
136
*
137
* It is called when we have a stable reference for the folio, typically in
138
* GUP slow path.
139
*/
140
int __must_check try_grab_folio(struct folio *folio, int refs,
141
unsigned int flags)
142
{
143
if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
144
return -ENOMEM;
145
146
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && folio_is_pci_p2pdma(folio)))
147
return -EREMOTEIO;
148
149
if (flags & FOLL_GET)
150
folio_ref_add(folio, refs);
151
else if (flags & FOLL_PIN) {
152
/*
153
* Don't take a pin on the zero page - it's not going anywhere
154
* and it is used in a *lot* of places.
155
*/
156
if (is_zero_folio(folio))
157
return 0;
158
159
/*
160
* Increment the normal page refcount field at least once,
161
* so that the page really is pinned.
162
*/
163
if (folio_has_pincount(folio)) {
164
folio_ref_add(folio, refs);
165
atomic_add(refs, &folio->_pincount);
166
} else {
167
folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
168
}
169
170
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
171
}
172
173
return 0;
174
}
175
176
/**
177
* unpin_user_page() - release a dma-pinned page
178
* @page: pointer to page to be released
179
*
180
* Pages that were pinned via pin_user_pages*() must be released via either
181
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
182
* that such pages can be separately tracked and uniquely handled. In
183
* particular, interactions with RDMA and filesystems need special handling.
184
*/
185
void unpin_user_page(struct page *page)
186
{
187
sanity_check_pinned_pages(&page, 1);
188
gup_put_folio(page_folio(page), 1, FOLL_PIN);
189
}
190
EXPORT_SYMBOL(unpin_user_page);
191
192
/**
193
* unpin_folio() - release a dma-pinned folio
194
* @folio: pointer to folio to be released
195
*
196
* Folios that were pinned via memfd_pin_folios() or other similar routines
197
* must be released either using unpin_folio() or unpin_folios().
198
*/
199
void unpin_folio(struct folio *folio)
200
{
201
gup_put_folio(folio, 1, FOLL_PIN);
202
}
203
EXPORT_SYMBOL_GPL(unpin_folio);
204
205
/**
206
* folio_add_pin - Try to get an additional pin on a pinned folio
207
* @folio: The folio to be pinned
208
*
209
* Get an additional pin on a folio we already have a pin on. Makes no change
210
* if the folio is a zero_page.
211
*/
212
void folio_add_pin(struct folio *folio)
213
{
214
if (is_zero_folio(folio))
215
return;
216
217
/*
218
* Similar to try_grab_folio(): be sure to *also* increment the normal
219
* page refcount field at least once, so that the page really is
220
* pinned.
221
*/
222
if (folio_has_pincount(folio)) {
223
WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
224
folio_ref_inc(folio);
225
atomic_inc(&folio->_pincount);
226
} else {
227
WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
228
folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
229
}
230
}
231
232
static inline struct folio *gup_folio_range_next(struct page *start,
233
unsigned long npages, unsigned long i, unsigned int *ntails)
234
{
235
struct page *next = start + i;
236
struct folio *folio = page_folio(next);
237
unsigned int nr = 1;
238
239
if (folio_test_large(folio))
240
nr = min_t(unsigned int, npages - i,
241
folio_nr_pages(folio) - folio_page_idx(folio, next));
242
243
*ntails = nr;
244
return folio;
245
}
246
247
static inline struct folio *gup_folio_next(struct page **list,
248
unsigned long npages, unsigned long i, unsigned int *ntails)
249
{
250
struct folio *folio = page_folio(list[i]);
251
unsigned int nr;
252
253
for (nr = i + 1; nr < npages; nr++) {
254
if (page_folio(list[nr]) != folio)
255
break;
256
}
257
258
*ntails = nr - i;
259
return folio;
260
}
261
262
/**
263
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
264
* @pages: array of pages to be maybe marked dirty, and definitely released.
265
* @npages: number of pages in the @pages array.
266
* @make_dirty: whether to mark the pages dirty
267
*
268
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
269
* variants called on that page.
270
*
271
* For each page in the @pages array, make that page (or its head page, if a
272
* compound page) dirty, if @make_dirty is true, and if the page was previously
273
* listed as clean. In any case, releases all pages using unpin_user_page(),
274
* possibly via unpin_user_pages(), for the non-dirty case.
275
*
276
* Please see the unpin_user_page() documentation for details.
277
*
278
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
279
* required, then the caller should a) verify that this is really correct,
280
* because _lock() is usually required, and b) hand code it:
281
* set_page_dirty_lock(), unpin_user_page().
282
*
283
*/
284
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
285
bool make_dirty)
286
{
287
unsigned long i;
288
struct folio *folio;
289
unsigned int nr;
290
291
if (!make_dirty) {
292
unpin_user_pages(pages, npages);
293
return;
294
}
295
296
sanity_check_pinned_pages(pages, npages);
297
for (i = 0; i < npages; i += nr) {
298
folio = gup_folio_next(pages, npages, i, &nr);
299
/*
300
* Checking PageDirty at this point may race with
301
* clear_page_dirty_for_io(), but that's OK. Two key
302
* cases:
303
*
304
* 1) This code sees the page as already dirty, so it
305
* skips the call to set_page_dirty(). That could happen
306
* because clear_page_dirty_for_io() called
307
* folio_mkclean(), followed by set_page_dirty().
308
* However, now the page is going to get written back,
309
* which meets the original intention of setting it
310
* dirty, so all is well: clear_page_dirty_for_io() goes
311
* on to call TestClearPageDirty(), and write the page
312
* back.
313
*
314
* 2) This code sees the page as clean, so it calls
315
* set_page_dirty(). The page stays dirty, despite being
316
* written back, so it gets written back again in the
317
* next writeback cycle. This is harmless.
318
*/
319
if (!folio_test_dirty(folio)) {
320
folio_lock(folio);
321
folio_mark_dirty(folio);
322
folio_unlock(folio);
323
}
324
gup_put_folio(folio, nr, FOLL_PIN);
325
}
326
}
327
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
328
329
/**
330
* unpin_user_page_range_dirty_lock() - release and optionally dirty
331
* gup-pinned page range
332
*
333
* @page: the starting page of a range maybe marked dirty, and definitely released.
334
* @npages: number of consecutive pages to release.
335
* @make_dirty: whether to mark the pages dirty
336
*
337
* "gup-pinned page range" refers to a range of pages that has had one of the
338
* pin_user_pages() variants called on that page.
339
*
340
* The page range must be truly physically contiguous: the page range
341
* corresponds to a contiguous PFN range and all pages can be iterated
342
* naturally.
343
*
344
* For the page ranges defined by [page .. page+npages], make that range (or
345
* its head pages, if a compound page) dirty, if @make_dirty is true, and if the
346
* page range was previously listed as clean.
347
*
348
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
349
* required, then the caller should a) verify that this is really correct,
350
* because _lock() is usually required, and b) hand code it:
351
* set_page_dirty_lock(), unpin_user_page().
352
*
353
*/
354
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
355
bool make_dirty)
356
{
357
unsigned long i;
358
struct folio *folio;
359
unsigned int nr;
360
361
VM_WARN_ON_ONCE(!page_range_contiguous(page, npages));
362
363
for (i = 0; i < npages; i += nr) {
364
folio = gup_folio_range_next(page, npages, i, &nr);
365
if (make_dirty && !folio_test_dirty(folio)) {
366
folio_lock(folio);
367
folio_mark_dirty(folio);
368
folio_unlock(folio);
369
}
370
gup_put_folio(folio, nr, FOLL_PIN);
371
}
372
}
373
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374
375
static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
376
{
377
unsigned long i;
378
struct folio *folio;
379
unsigned int nr;
380
381
/*
382
* Don't perform any sanity checks because we might have raced with
383
* fork() and some anonymous pages might now actually be shared --
384
* which is why we're unpinning after all.
385
*/
386
for (i = 0; i < npages; i += nr) {
387
folio = gup_folio_next(pages, npages, i, &nr);
388
gup_put_folio(folio, nr, FOLL_PIN);
389
}
390
}
391
392
/**
393
* unpin_user_pages() - release an array of gup-pinned pages.
394
* @pages: array of pages to be marked dirty and released.
395
* @npages: number of pages in the @pages array.
396
*
397
* For each page in the @pages array, release the page using unpin_user_page().
398
*
399
* Please see the unpin_user_page() documentation for details.
400
*/
401
void unpin_user_pages(struct page **pages, unsigned long npages)
402
{
403
unsigned long i;
404
struct folio *folio;
405
unsigned int nr;
406
407
/*
408
* If this WARN_ON() fires, then the system *might* be leaking pages (by
409
* leaving them pinned), but probably not. More likely, gup/pup returned
410
* a hard -ERRNO error to the caller, who erroneously passed it here.
411
*/
412
if (WARN_ON(IS_ERR_VALUE(npages)))
413
return;
414
415
sanity_check_pinned_pages(pages, npages);
416
for (i = 0; i < npages; i += nr) {
417
if (!pages[i]) {
418
nr = 1;
419
continue;
420
}
421
folio = gup_folio_next(pages, npages, i, &nr);
422
gup_put_folio(folio, nr, FOLL_PIN);
423
}
424
}
425
EXPORT_SYMBOL(unpin_user_pages);
426
427
/**
428
* unpin_user_folio() - release pages of a folio
429
* @folio: pointer to folio to be released
430
* @npages: number of pages of same folio
431
*
432
* Release npages of the folio
433
*/
434
void unpin_user_folio(struct folio *folio, unsigned long npages)
435
{
436
gup_put_folio(folio, npages, FOLL_PIN);
437
}
438
EXPORT_SYMBOL(unpin_user_folio);
439
440
/**
441
* unpin_folios() - release an array of gup-pinned folios.
442
* @folios: array of folios to be marked dirty and released.
443
* @nfolios: number of folios in the @folios array.
444
*
445
* For each folio in the @folios array, release the folio using gup_put_folio.
446
*
447
* Please see the unpin_folio() documentation for details.
448
*/
449
void unpin_folios(struct folio **folios, unsigned long nfolios)
450
{
451
unsigned long i = 0, j;
452
453
/*
454
* If this WARN_ON() fires, then the system *might* be leaking folios
455
* (by leaving them pinned), but probably not. More likely, gup/pup
456
* returned a hard -ERRNO error to the caller, who erroneously passed
457
* it here.
458
*/
459
if (WARN_ON(IS_ERR_VALUE(nfolios)))
460
return;
461
462
while (i < nfolios) {
463
for (j = i + 1; j < nfolios; j++)
464
if (folios[i] != folios[j])
465
break;
466
467
if (folios[i])
468
gup_put_folio(folios[i], j - i, FOLL_PIN);
469
i = j;
470
}
471
}
472
EXPORT_SYMBOL_GPL(unpin_folios);
473
474
/*
475
* Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476
* lifecycle. Avoid setting the bit unless necessary, or it might cause write
477
* cache bouncing on large SMP machines for concurrent pinned gups.
478
*/
479
static inline void mm_set_has_pinned_flag(struct mm_struct *mm)
480
{
481
if (!mm_flags_test(MMF_HAS_PINNED, mm))
482
mm_flags_set(MMF_HAS_PINNED, mm);
483
}
484
485
#ifdef CONFIG_MMU
486
487
#ifdef CONFIG_HAVE_GUP_FAST
488
/**
489
* try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
490
* @page: pointer to page to be grabbed
491
* @refs: the value to (effectively) add to the folio's refcount
492
* @flags: gup flags: these are the FOLL_* flag values.
493
*
494
* "grab" names in this file mean, "look at flags to decide whether to use
495
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
496
*
497
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
498
* same time. (That's true throughout the get_user_pages*() and
499
* pin_user_pages*() APIs.) Cases:
500
*
501
* FOLL_GET: folio's refcount will be incremented by @refs.
502
*
503
* FOLL_PIN on large folios: folio's refcount will be incremented by
504
* @refs, and its pincount will be incremented by @refs.
505
*
506
* FOLL_PIN on single-page folios: folio's refcount will be incremented by
507
* @refs * GUP_PIN_COUNTING_BIAS.
508
*
509
* Return: The folio containing @page (with refcount appropriately
510
* incremented) for success, or NULL upon failure. If neither FOLL_GET
511
* nor FOLL_PIN was set, that's considered failure, and furthermore,
512
* a likely bug in the caller, so a warning is also emitted.
513
*
514
* It uses add ref unless zero to elevate the folio refcount and must be called
515
* in fast path only.
516
*/
517
static struct folio *try_grab_folio_fast(struct page *page, int refs,
518
unsigned int flags)
519
{
520
struct folio *folio;
521
522
/* Raise warn if it is not called in fast GUP */
523
VM_WARN_ON_ONCE(!irqs_disabled());
524
525
if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
526
return NULL;
527
528
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
529
return NULL;
530
531
if (flags & FOLL_GET)
532
return try_get_folio(page, refs);
533
534
/* FOLL_PIN is set */
535
536
/*
537
* Don't take a pin on the zero page - it's not going anywhere
538
* and it is used in a *lot* of places.
539
*/
540
if (is_zero_page(page))
541
return page_folio(page);
542
543
folio = try_get_folio(page, refs);
544
if (!folio)
545
return NULL;
546
547
/*
548
* Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
549
* right zone, so fail and let the caller fall back to the slow
550
* path.
551
*/
552
if (unlikely((flags & FOLL_LONGTERM) &&
553
!folio_is_longterm_pinnable(folio))) {
554
folio_put_refs(folio, refs);
555
return NULL;
556
}
557
558
/*
559
* When pinning a large folio, use an exact count to track it.
560
*
561
* However, be sure to *also* increment the normal folio
562
* refcount field at least once, so that the folio really
563
* is pinned. That's why the refcount from the earlier
564
* try_get_folio() is left intact.
565
*/
566
if (folio_has_pincount(folio))
567
atomic_add(refs, &folio->_pincount);
568
else
569
folio_ref_add(folio,
570
refs * (GUP_PIN_COUNTING_BIAS - 1));
571
/*
572
* Adjust the pincount before re-checking the PTE for changes.
573
* This is essentially a smp_mb() and is paired with a memory
574
* barrier in folio_try_share_anon_rmap_*().
575
*/
576
smp_mb__after_atomic();
577
578
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
579
580
return folio;
581
}
582
#endif /* CONFIG_HAVE_GUP_FAST */
583
584
/* Common code for can_follow_write_* */
585
static inline bool can_follow_write_common(struct page *page,
586
struct vm_area_struct *vma, unsigned int flags)
587
{
588
/* Maybe FOLL_FORCE is set to override it? */
589
if (!(flags & FOLL_FORCE))
590
return false;
591
592
/* But FOLL_FORCE has no effect on shared mappings */
593
if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
594
return false;
595
596
/* ... or read-only private ones */
597
if (!(vma->vm_flags & VM_MAYWRITE))
598
return false;
599
600
/* ... or already writable ones that just need to take a write fault */
601
if (vma->vm_flags & VM_WRITE)
602
return false;
603
604
/*
605
* See can_change_pte_writable(): we broke COW and could map the page
606
* writable if we have an exclusive anonymous page ...
607
*/
608
return page && PageAnon(page) && PageAnonExclusive(page);
609
}
610
611
static struct page *no_page_table(struct vm_area_struct *vma,
612
unsigned int flags, unsigned long address)
613
{
614
if (!(flags & FOLL_DUMP))
615
return NULL;
616
617
/*
618
* When core dumping, we don't want to allocate unnecessary pages or
619
* page tables. Return error instead of NULL to skip handle_mm_fault,
620
* then get_dump_page() will return NULL to leave a hole in the dump.
621
* But we can only make this optimization where a hole would surely
622
* be zero-filled if handle_mm_fault() actually did handle it.
623
*/
624
if (is_vm_hugetlb_page(vma)) {
625
struct hstate *h = hstate_vma(vma);
626
627
if (!hugetlbfs_pagecache_present(h, vma, address))
628
return ERR_PTR(-EFAULT);
629
} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
630
return ERR_PTR(-EFAULT);
631
}
632
633
return NULL;
634
}
635
636
#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
637
/* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
638
static inline bool can_follow_write_pud(pud_t pud, struct page *page,
639
struct vm_area_struct *vma,
640
unsigned int flags)
641
{
642
/* If the pud is writable, we can write to the page. */
643
if (pud_write(pud))
644
return true;
645
646
return can_follow_write_common(page, vma, flags);
647
}
648
649
static struct page *follow_huge_pud(struct vm_area_struct *vma,
650
unsigned long addr, pud_t *pudp,
651
int flags, unsigned long *page_mask)
652
{
653
struct mm_struct *mm = vma->vm_mm;
654
struct page *page;
655
pud_t pud = *pudp;
656
unsigned long pfn = pud_pfn(pud);
657
int ret;
658
659
assert_spin_locked(pud_lockptr(mm, pudp));
660
661
if (!pud_present(pud))
662
return NULL;
663
664
if ((flags & FOLL_WRITE) &&
665
!can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
666
return NULL;
667
668
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
669
page = pfn_to_page(pfn);
670
671
if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
672
return ERR_PTR(-EMLINK);
673
674
ret = try_grab_folio(page_folio(page), 1, flags);
675
if (ret)
676
page = ERR_PTR(ret);
677
else
678
*page_mask = HPAGE_PUD_NR - 1;
679
680
return page;
681
}
682
683
/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
684
static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
685
struct vm_area_struct *vma,
686
unsigned int flags)
687
{
688
/* If the pmd is writable, we can write to the page. */
689
if (pmd_write(pmd))
690
return true;
691
692
if (!can_follow_write_common(page, vma, flags))
693
return false;
694
695
/* ... and a write-fault isn't required for other reasons. */
696
if (pmd_needs_soft_dirty_wp(vma, pmd))
697
return false;
698
return !userfaultfd_huge_pmd_wp(vma, pmd);
699
}
700
701
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
702
unsigned long addr, pmd_t *pmd,
703
unsigned int flags,
704
unsigned long *page_mask)
705
{
706
struct mm_struct *mm = vma->vm_mm;
707
pmd_t pmdval = *pmd;
708
struct page *page;
709
int ret;
710
711
assert_spin_locked(pmd_lockptr(mm, pmd));
712
713
page = pmd_page(pmdval);
714
if ((flags & FOLL_WRITE) &&
715
!can_follow_write_pmd(pmdval, page, vma, flags))
716
return NULL;
717
718
/* Avoid dumping huge zero page */
719
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
720
return ERR_PTR(-EFAULT);
721
722
if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
723
return NULL;
724
725
if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
726
return ERR_PTR(-EMLINK);
727
728
VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
729
!PageAnonExclusive(page), page);
730
731
ret = try_grab_folio(page_folio(page), 1, flags);
732
if (ret)
733
return ERR_PTR(ret);
734
735
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
736
if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
737
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
738
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
739
740
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
741
*page_mask = HPAGE_PMD_NR - 1;
742
743
return page;
744
}
745
746
#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
747
static struct page *follow_huge_pud(struct vm_area_struct *vma,
748
unsigned long addr, pud_t *pudp,
749
int flags, unsigned long *page_mask)
750
{
751
return NULL;
752
}
753
754
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
755
unsigned long addr, pmd_t *pmd,
756
unsigned int flags,
757
unsigned long *page_mask)
758
{
759
return NULL;
760
}
761
#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
762
763
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
764
pte_t *pte, unsigned int flags)
765
{
766
if (flags & FOLL_TOUCH) {
767
pte_t orig_entry = ptep_get(pte);
768
pte_t entry = orig_entry;
769
770
if (flags & FOLL_WRITE)
771
entry = pte_mkdirty(entry);
772
entry = pte_mkyoung(entry);
773
774
if (!pte_same(orig_entry, entry)) {
775
set_pte_at(vma->vm_mm, address, pte, entry);
776
update_mmu_cache(vma, address, pte);
777
}
778
}
779
780
/* Proper page table entry exists, but no corresponding struct page */
781
return -EEXIST;
782
}
783
784
/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
785
static inline bool can_follow_write_pte(pte_t pte, struct page *page,
786
struct vm_area_struct *vma,
787
unsigned int flags)
788
{
789
/* If the pte is writable, we can write to the page. */
790
if (pte_write(pte))
791
return true;
792
793
if (!can_follow_write_common(page, vma, flags))
794
return false;
795
796
/* ... and a write-fault isn't required for other reasons. */
797
if (pte_needs_soft_dirty_wp(vma, pte))
798
return false;
799
return !userfaultfd_pte_wp(vma, pte);
800
}
801
802
static struct page *follow_page_pte(struct vm_area_struct *vma,
803
unsigned long address, pmd_t *pmd, unsigned int flags)
804
{
805
struct mm_struct *mm = vma->vm_mm;
806
struct folio *folio;
807
struct page *page;
808
spinlock_t *ptl;
809
pte_t *ptep, pte;
810
int ret;
811
812
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
813
if (!ptep)
814
return no_page_table(vma, flags, address);
815
pte = ptep_get(ptep);
816
if (!pte_present(pte))
817
goto no_page;
818
if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
819
goto no_page;
820
821
page = vm_normal_page(vma, address, pte);
822
823
/*
824
* We only care about anon pages in can_follow_write_pte().
825
*/
826
if ((flags & FOLL_WRITE) &&
827
!can_follow_write_pte(pte, page, vma, flags)) {
828
page = NULL;
829
goto out;
830
}
831
832
if (unlikely(!page)) {
833
if (flags & FOLL_DUMP) {
834
/* Avoid special (like zero) pages in core dumps */
835
page = ERR_PTR(-EFAULT);
836
goto out;
837
}
838
839
if (is_zero_pfn(pte_pfn(pte))) {
840
page = pte_page(pte);
841
} else {
842
ret = follow_pfn_pte(vma, address, ptep, flags);
843
page = ERR_PTR(ret);
844
goto out;
845
}
846
}
847
folio = page_folio(page);
848
849
if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
850
page = ERR_PTR(-EMLINK);
851
goto out;
852
}
853
854
VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
855
!PageAnonExclusive(page), page);
856
857
/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
858
ret = try_grab_folio(folio, 1, flags);
859
if (unlikely(ret)) {
860
page = ERR_PTR(ret);
861
goto out;
862
}
863
864
/*
865
* We need to make the page accessible if and only if we are going
866
* to access its content (the FOLL_PIN case). Please see
867
* Documentation/core-api/pin_user_pages.rst for details.
868
*/
869
if (flags & FOLL_PIN) {
870
ret = arch_make_folio_accessible(folio);
871
if (ret) {
872
unpin_user_page(page);
873
page = ERR_PTR(ret);
874
goto out;
875
}
876
}
877
if (flags & FOLL_TOUCH) {
878
if ((flags & FOLL_WRITE) &&
879
!pte_dirty(pte) && !folio_test_dirty(folio))
880
folio_mark_dirty(folio);
881
/*
882
* pte_mkyoung() would be more correct here, but atomic care
883
* is needed to avoid losing the dirty bit: it is easier to use
884
* folio_mark_accessed().
885
*/
886
folio_mark_accessed(folio);
887
}
888
out:
889
pte_unmap_unlock(ptep, ptl);
890
return page;
891
no_page:
892
pte_unmap_unlock(ptep, ptl);
893
if (!pte_none(pte))
894
return NULL;
895
return no_page_table(vma, flags, address);
896
}
897
898
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
899
unsigned long address, pud_t *pudp,
900
unsigned int flags,
901
unsigned long *page_mask)
902
{
903
pmd_t *pmd, pmdval;
904
spinlock_t *ptl;
905
struct page *page;
906
struct mm_struct *mm = vma->vm_mm;
907
908
pmd = pmd_offset(pudp, address);
909
pmdval = pmdp_get_lockless(pmd);
910
if (pmd_none(pmdval))
911
return no_page_table(vma, flags, address);
912
if (!pmd_present(pmdval))
913
return no_page_table(vma, flags, address);
914
if (likely(!pmd_leaf(pmdval)))
915
return follow_page_pte(vma, address, pmd, flags);
916
917
if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
918
return no_page_table(vma, flags, address);
919
920
ptl = pmd_lock(mm, pmd);
921
pmdval = *pmd;
922
if (unlikely(!pmd_present(pmdval))) {
923
spin_unlock(ptl);
924
return no_page_table(vma, flags, address);
925
}
926
if (unlikely(!pmd_leaf(pmdval))) {
927
spin_unlock(ptl);
928
return follow_page_pte(vma, address, pmd, flags);
929
}
930
if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
931
spin_unlock(ptl);
932
split_huge_pmd(vma, pmd, address);
933
/* If pmd was left empty, stuff a page table in there quickly */
934
return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
935
follow_page_pte(vma, address, pmd, flags);
936
}
937
page = follow_huge_pmd(vma, address, pmd, flags, page_mask);
938
spin_unlock(ptl);
939
return page;
940
}
941
942
static struct page *follow_pud_mask(struct vm_area_struct *vma,
943
unsigned long address, p4d_t *p4dp,
944
unsigned int flags,
945
unsigned long *page_mask)
946
{
947
pud_t *pudp, pud;
948
spinlock_t *ptl;
949
struct page *page;
950
struct mm_struct *mm = vma->vm_mm;
951
952
pudp = pud_offset(p4dp, address);
953
pud = READ_ONCE(*pudp);
954
if (!pud_present(pud))
955
return no_page_table(vma, flags, address);
956
if (pud_leaf(pud)) {
957
ptl = pud_lock(mm, pudp);
958
page = follow_huge_pud(vma, address, pudp, flags, page_mask);
959
spin_unlock(ptl);
960
if (page)
961
return page;
962
return no_page_table(vma, flags, address);
963
}
964
if (unlikely(pud_bad(pud)))
965
return no_page_table(vma, flags, address);
966
967
return follow_pmd_mask(vma, address, pudp, flags, page_mask);
968
}
969
970
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
971
unsigned long address, pgd_t *pgdp,
972
unsigned int flags,
973
unsigned long *page_mask)
974
{
975
p4d_t *p4dp, p4d;
976
977
p4dp = p4d_offset(pgdp, address);
978
p4d = READ_ONCE(*p4dp);
979
BUILD_BUG_ON(p4d_leaf(p4d));
980
981
if (!p4d_present(p4d) || p4d_bad(p4d))
982
return no_page_table(vma, flags, address);
983
984
return follow_pud_mask(vma, address, p4dp, flags, page_mask);
985
}
986
987
/**
988
* follow_page_mask - look up a page descriptor from a user-virtual address
989
* @vma: vm_area_struct mapping @address
990
* @address: virtual address to look up
991
* @flags: flags modifying lookup behaviour
992
* @page_mask: a pointer to output page_mask
993
*
994
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
995
*
996
* When getting an anonymous page and the caller has to trigger unsharing
997
* of a shared anonymous page first, -EMLINK is returned. The caller should
998
* trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
999
* relevant with FOLL_PIN and !FOLL_WRITE.
1000
*
1001
* On output, @page_mask is set according to the size of the page.
1002
*
1003
* Return: the mapped (struct page *), %NULL if no mapping exists, or
1004
* an error pointer if there is a mapping to something not represented
1005
* by a page descriptor (see also vm_normal_page()).
1006
*/
1007
static struct page *follow_page_mask(struct vm_area_struct *vma,
1008
unsigned long address, unsigned int flags,
1009
unsigned long *page_mask)
1010
{
1011
pgd_t *pgd;
1012
struct mm_struct *mm = vma->vm_mm;
1013
struct page *page;
1014
1015
vma_pgtable_walk_begin(vma);
1016
1017
*page_mask = 0;
1018
pgd = pgd_offset(mm, address);
1019
1020
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1021
page = no_page_table(vma, flags, address);
1022
else
1023
page = follow_p4d_mask(vma, address, pgd, flags, page_mask);
1024
1025
vma_pgtable_walk_end(vma);
1026
1027
return page;
1028
}
1029
1030
static int get_gate_page(struct mm_struct *mm, unsigned long address,
1031
unsigned int gup_flags, struct vm_area_struct **vma,
1032
struct page **page)
1033
{
1034
pgd_t *pgd;
1035
p4d_t *p4d;
1036
pud_t *pud;
1037
pmd_t *pmd;
1038
pte_t *pte;
1039
pte_t entry;
1040
int ret = -EFAULT;
1041
1042
/* user gate pages are read-only */
1043
if (gup_flags & FOLL_WRITE)
1044
return -EFAULT;
1045
pgd = pgd_offset(mm, address);
1046
if (pgd_none(*pgd))
1047
return -EFAULT;
1048
p4d = p4d_offset(pgd, address);
1049
if (p4d_none(*p4d))
1050
return -EFAULT;
1051
pud = pud_offset(p4d, address);
1052
if (pud_none(*pud))
1053
return -EFAULT;
1054
pmd = pmd_offset(pud, address);
1055
if (!pmd_present(*pmd))
1056
return -EFAULT;
1057
pte = pte_offset_map(pmd, address);
1058
if (!pte)
1059
return -EFAULT;
1060
entry = ptep_get(pte);
1061
if (pte_none(entry))
1062
goto unmap;
1063
*vma = get_gate_vma(mm);
1064
if (!page)
1065
goto out;
1066
*page = vm_normal_page(*vma, address, entry);
1067
if (!*page) {
1068
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1069
goto unmap;
1070
*page = pte_page(entry);
1071
}
1072
ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1073
if (unlikely(ret))
1074
goto unmap;
1075
out:
1076
ret = 0;
1077
unmap:
1078
pte_unmap(pte);
1079
return ret;
1080
}
1081
1082
/*
1083
* mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1084
* FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1085
* to 0 and -EBUSY returned.
1086
*/
1087
static int faultin_page(struct vm_area_struct *vma,
1088
unsigned long address, unsigned int flags, bool unshare,
1089
int *locked)
1090
{
1091
unsigned int fault_flags = 0;
1092
vm_fault_t ret;
1093
1094
if (flags & FOLL_NOFAULT)
1095
return -EFAULT;
1096
if (flags & FOLL_WRITE)
1097
fault_flags |= FAULT_FLAG_WRITE;
1098
if (flags & FOLL_REMOTE)
1099
fault_flags |= FAULT_FLAG_REMOTE;
1100
if (flags & FOLL_UNLOCKABLE) {
1101
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1102
/*
1103
* FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1104
* FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1105
* That's because some callers may not be prepared to
1106
* handle early exits caused by non-fatal signals.
1107
*/
1108
if (flags & FOLL_INTERRUPTIBLE)
1109
fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1110
}
1111
if (flags & FOLL_NOWAIT)
1112
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1113
if (flags & FOLL_TRIED) {
1114
/*
1115
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1116
* can co-exist
1117
*/
1118
fault_flags |= FAULT_FLAG_TRIED;
1119
}
1120
if (unshare) {
1121
fault_flags |= FAULT_FLAG_UNSHARE;
1122
/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1123
VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1124
}
1125
1126
ret = handle_mm_fault(vma, address, fault_flags, NULL);
1127
1128
if (ret & VM_FAULT_COMPLETED) {
1129
/*
1130
* With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1131
* mmap lock in the page fault handler. Sanity check this.
1132
*/
1133
WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1134
*locked = 0;
1135
1136
/*
1137
* We should do the same as VM_FAULT_RETRY, but let's not
1138
* return -EBUSY since that's not reflecting the reality of
1139
* what has happened - we've just fully completed a page
1140
* fault, with the mmap lock released. Use -EAGAIN to show
1141
* that we want to take the mmap lock _again_.
1142
*/
1143
return -EAGAIN;
1144
}
1145
1146
if (ret & VM_FAULT_ERROR) {
1147
int err = vm_fault_to_errno(ret, flags);
1148
1149
if (err)
1150
return err;
1151
BUG();
1152
}
1153
1154
if (ret & VM_FAULT_RETRY) {
1155
if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1156
*locked = 0;
1157
return -EBUSY;
1158
}
1159
1160
return 0;
1161
}
1162
1163
/*
1164
* Writing to file-backed mappings which require folio dirty tracking using GUP
1165
* is a fundamentally broken operation, as kernel write access to GUP mappings
1166
* do not adhere to the semantics expected by a file system.
1167
*
1168
* Consider the following scenario:-
1169
*
1170
* 1. A folio is written to via GUP which write-faults the memory, notifying
1171
* the file system and dirtying the folio.
1172
* 2. Later, writeback is triggered, resulting in the folio being cleaned and
1173
* the PTE being marked read-only.
1174
* 3. The GUP caller writes to the folio, as it is mapped read/write via the
1175
* direct mapping.
1176
* 4. The GUP caller, now done with the page, unpins it and sets it dirty
1177
* (though it does not have to).
1178
*
1179
* This results in both data being written to a folio without writenotify, and
1180
* the folio being dirtied unexpectedly (if the caller decides to do so).
1181
*/
1182
static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1183
unsigned long gup_flags)
1184
{
1185
/*
1186
* If we aren't pinning then no problematic write can occur. A long term
1187
* pin is the most egregious case so this is the case we disallow.
1188
*/
1189
if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1190
(FOLL_PIN | FOLL_LONGTERM))
1191
return true;
1192
1193
/*
1194
* If the VMA does not require dirty tracking then no problematic write
1195
* can occur either.
1196
*/
1197
return !vma_needs_dirty_tracking(vma);
1198
}
1199
1200
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1201
{
1202
vm_flags_t vm_flags = vma->vm_flags;
1203
int write = (gup_flags & FOLL_WRITE);
1204
int foreign = (gup_flags & FOLL_REMOTE);
1205
bool vma_anon = vma_is_anonymous(vma);
1206
1207
if (vm_flags & (VM_IO | VM_PFNMAP))
1208
return -EFAULT;
1209
1210
if ((gup_flags & FOLL_ANON) && !vma_anon)
1211
return -EFAULT;
1212
1213
if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1214
return -EOPNOTSUPP;
1215
1216
if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1217
return -EOPNOTSUPP;
1218
1219
if (vma_is_secretmem(vma))
1220
return -EFAULT;
1221
1222
if (write) {
1223
if (!vma_anon &&
1224
!writable_file_mapping_allowed(vma, gup_flags))
1225
return -EFAULT;
1226
1227
if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1228
if (!(gup_flags & FOLL_FORCE))
1229
return -EFAULT;
1230
/*
1231
* We used to let the write,force case do COW in a
1232
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1233
* set a breakpoint in a read-only mapping of an
1234
* executable, without corrupting the file (yet only
1235
* when that file had been opened for writing!).
1236
* Anon pages in shared mappings are surprising: now
1237
* just reject it.
1238
*/
1239
if (!is_cow_mapping(vm_flags))
1240
return -EFAULT;
1241
}
1242
} else if (!(vm_flags & VM_READ)) {
1243
if (!(gup_flags & FOLL_FORCE))
1244
return -EFAULT;
1245
/*
1246
* Is there actually any vma we can reach here which does not
1247
* have VM_MAYREAD set?
1248
*/
1249
if (!(vm_flags & VM_MAYREAD))
1250
return -EFAULT;
1251
}
1252
/*
1253
* gups are always data accesses, not instruction
1254
* fetches, so execute=false here
1255
*/
1256
if (!arch_vma_access_permitted(vma, write, false, foreign))
1257
return -EFAULT;
1258
return 0;
1259
}
1260
1261
/*
1262
* This is "vma_lookup()", but with a warning if we would have
1263
* historically expanded the stack in the GUP code.
1264
*/
1265
static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1266
unsigned long addr)
1267
{
1268
#ifdef CONFIG_STACK_GROWSUP
1269
return vma_lookup(mm, addr);
1270
#else
1271
static volatile unsigned long next_warn;
1272
struct vm_area_struct *vma;
1273
unsigned long now, next;
1274
1275
vma = find_vma(mm, addr);
1276
if (!vma || (addr >= vma->vm_start))
1277
return vma;
1278
1279
/* Only warn for half-way relevant accesses */
1280
if (!(vma->vm_flags & VM_GROWSDOWN))
1281
return NULL;
1282
if (vma->vm_start - addr > 65536)
1283
return NULL;
1284
1285
/* Let's not warn more than once an hour.. */
1286
now = jiffies; next = next_warn;
1287
if (next && time_before(now, next))
1288
return NULL;
1289
next_warn = now + 60*60*HZ;
1290
1291
/* Let people know things may have changed. */
1292
pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1293
current->comm, task_pid_nr(current),
1294
vma->vm_start, vma->vm_end, addr);
1295
dump_stack();
1296
return NULL;
1297
#endif
1298
}
1299
1300
/**
1301
* __get_user_pages() - pin user pages in memory
1302
* @mm: mm_struct of target mm
1303
* @start: starting user address
1304
* @nr_pages: number of pages from start to pin
1305
* @gup_flags: flags modifying pin behaviour
1306
* @pages: array that receives pointers to the pages pinned.
1307
* Should be at least nr_pages long. Or NULL, if caller
1308
* only intends to ensure the pages are faulted in.
1309
* @locked: whether we're still with the mmap_lock held
1310
*
1311
* Returns either number of pages pinned (which may be less than the
1312
* number requested), or an error. Details about the return value:
1313
*
1314
* -- If nr_pages is 0, returns 0.
1315
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
1316
* -- If nr_pages is >0, and some pages were pinned, returns the number of
1317
* pages pinned. Again, this may be less than nr_pages.
1318
* -- 0 return value is possible when the fault would need to be retried.
1319
*
1320
* The caller is responsible for releasing returned @pages, via put_page().
1321
*
1322
* Must be called with mmap_lock held. It may be released. See below.
1323
*
1324
* __get_user_pages walks a process's page tables and takes a reference to
1325
* each struct page that each user address corresponds to at a given
1326
* instant. That is, it takes the page that would be accessed if a user
1327
* thread accesses the given user virtual address at that instant.
1328
*
1329
* This does not guarantee that the page exists in the user mappings when
1330
* __get_user_pages returns, and there may even be a completely different
1331
* page there in some cases (eg. if mmapped pagecache has been invalidated
1332
* and subsequently re-faulted). However it does guarantee that the page
1333
* won't be freed completely. And mostly callers simply care that the page
1334
* contains data that was valid *at some point in time*. Typically, an IO
1335
* or similar operation cannot guarantee anything stronger anyway because
1336
* locks can't be held over the syscall boundary.
1337
*
1338
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1339
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
1340
* appropriate) must be called after the page is finished with, and
1341
* before put_page is called.
1342
*
1343
* If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1344
* be released. If this happens *@locked will be set to 0 on return.
1345
*
1346
* A caller using such a combination of @gup_flags must therefore hold the
1347
* mmap_lock for reading only, and recognize when it's been released. Otherwise,
1348
* it must be held for either reading or writing and will not be released.
1349
*
1350
* In most cases, get_user_pages or get_user_pages_fast should be used
1351
* instead of __get_user_pages. __get_user_pages should be used only if
1352
* you need some special @gup_flags.
1353
*/
1354
static long __get_user_pages(struct mm_struct *mm,
1355
unsigned long start, unsigned long nr_pages,
1356
unsigned int gup_flags, struct page **pages,
1357
int *locked)
1358
{
1359
long ret = 0, i = 0;
1360
struct vm_area_struct *vma = NULL;
1361
unsigned long page_mask = 0;
1362
1363
if (!nr_pages)
1364
return 0;
1365
1366
start = untagged_addr_remote(mm, start);
1367
1368
VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1369
1370
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1371
VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1372
(FOLL_PIN | FOLL_GET));
1373
1374
do {
1375
struct page *page;
1376
unsigned int page_increm;
1377
1378
/* first iteration or cross vma bound */
1379
if (!vma || start >= vma->vm_end) {
1380
/*
1381
* MADV_POPULATE_(READ|WRITE) wants to handle VMA
1382
* lookups+error reporting differently.
1383
*/
1384
if (gup_flags & FOLL_MADV_POPULATE) {
1385
vma = vma_lookup(mm, start);
1386
if (!vma) {
1387
ret = -ENOMEM;
1388
goto out;
1389
}
1390
if (check_vma_flags(vma, gup_flags)) {
1391
ret = -EINVAL;
1392
goto out;
1393
}
1394
goto retry;
1395
}
1396
vma = gup_vma_lookup(mm, start);
1397
if (!vma && in_gate_area(mm, start)) {
1398
ret = get_gate_page(mm, start & PAGE_MASK,
1399
gup_flags, &vma,
1400
pages ? &page : NULL);
1401
if (ret)
1402
goto out;
1403
page_mask = 0;
1404
goto next_page;
1405
}
1406
1407
if (!vma) {
1408
ret = -EFAULT;
1409
goto out;
1410
}
1411
ret = check_vma_flags(vma, gup_flags);
1412
if (ret)
1413
goto out;
1414
}
1415
retry:
1416
/*
1417
* If we have a pending SIGKILL, don't keep faulting pages and
1418
* potentially allocating memory.
1419
*/
1420
if (fatal_signal_pending(current)) {
1421
ret = -EINTR;
1422
goto out;
1423
}
1424
cond_resched();
1425
1426
page = follow_page_mask(vma, start, gup_flags, &page_mask);
1427
if (!page || PTR_ERR(page) == -EMLINK) {
1428
ret = faultin_page(vma, start, gup_flags,
1429
PTR_ERR(page) == -EMLINK, locked);
1430
switch (ret) {
1431
case 0:
1432
goto retry;
1433
case -EBUSY:
1434
case -EAGAIN:
1435
ret = 0;
1436
fallthrough;
1437
case -EFAULT:
1438
case -ENOMEM:
1439
case -EHWPOISON:
1440
goto out;
1441
}
1442
BUG();
1443
} else if (PTR_ERR(page) == -EEXIST) {
1444
/*
1445
* Proper page table entry exists, but no corresponding
1446
* struct page. If the caller expects **pages to be
1447
* filled in, bail out now, because that can't be done
1448
* for this page.
1449
*/
1450
if (pages) {
1451
ret = PTR_ERR(page);
1452
goto out;
1453
}
1454
} else if (IS_ERR(page)) {
1455
ret = PTR_ERR(page);
1456
goto out;
1457
}
1458
next_page:
1459
page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1460
if (page_increm > nr_pages)
1461
page_increm = nr_pages;
1462
1463
if (pages) {
1464
struct page *subpage;
1465
unsigned int j;
1466
1467
/*
1468
* This must be a large folio (and doesn't need to
1469
* be the whole folio; it can be part of it), do
1470
* the refcount work for all the subpages too.
1471
*
1472
* NOTE: here the page may not be the head page
1473
* e.g. when start addr is not thp-size aligned.
1474
* try_grab_folio() should have taken care of tail
1475
* pages.
1476
*/
1477
if (page_increm > 1) {
1478
struct folio *folio = page_folio(page);
1479
1480
/*
1481
* Since we already hold refcount on the
1482
* large folio, this should never fail.
1483
*/
1484
if (try_grab_folio(folio, page_increm - 1,
1485
gup_flags)) {
1486
/*
1487
* Release the 1st page ref if the
1488
* folio is problematic, fail hard.
1489
*/
1490
gup_put_folio(folio, 1, gup_flags);
1491
ret = -EFAULT;
1492
goto out;
1493
}
1494
}
1495
1496
for (j = 0; j < page_increm; j++) {
1497
subpage = page + j;
1498
pages[i + j] = subpage;
1499
flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1500
flush_dcache_page(subpage);
1501
}
1502
}
1503
1504
i += page_increm;
1505
start += page_increm * PAGE_SIZE;
1506
nr_pages -= page_increm;
1507
} while (nr_pages);
1508
out:
1509
return i ? i : ret;
1510
}
1511
1512
static bool vma_permits_fault(struct vm_area_struct *vma,
1513
unsigned int fault_flags)
1514
{
1515
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1516
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1517
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1518
1519
if (!(vm_flags & vma->vm_flags))
1520
return false;
1521
1522
/*
1523
* The architecture might have a hardware protection
1524
* mechanism other than read/write that can deny access.
1525
*
1526
* gup always represents data access, not instruction
1527
* fetches, so execute=false here:
1528
*/
1529
if (!arch_vma_access_permitted(vma, write, false, foreign))
1530
return false;
1531
1532
return true;
1533
}
1534
1535
/**
1536
* fixup_user_fault() - manually resolve a user page fault
1537
* @mm: mm_struct of target mm
1538
* @address: user address
1539
* @fault_flags:flags to pass down to handle_mm_fault()
1540
* @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1541
* does not allow retry. If NULL, the caller must guarantee
1542
* that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1543
*
1544
* This is meant to be called in the specific scenario where for locking reasons
1545
* we try to access user memory in atomic context (within a pagefault_disable()
1546
* section), this returns -EFAULT, and we want to resolve the user fault before
1547
* trying again.
1548
*
1549
* Typically this is meant to be used by the futex code.
1550
*
1551
* The main difference with get_user_pages() is that this function will
1552
* unconditionally call handle_mm_fault() which will in turn perform all the
1553
* necessary SW fixup of the dirty and young bits in the PTE, while
1554
* get_user_pages() only guarantees to update these in the struct page.
1555
*
1556
* This is important for some architectures where those bits also gate the
1557
* access permission to the page because they are maintained in software. On
1558
* such architectures, gup() will not be enough to make a subsequent access
1559
* succeed.
1560
*
1561
* This function will not return with an unlocked mmap_lock. So it has not the
1562
* same semantics wrt the @mm->mmap_lock as does filemap_fault().
1563
*/
1564
int fixup_user_fault(struct mm_struct *mm,
1565
unsigned long address, unsigned int fault_flags,
1566
bool *unlocked)
1567
{
1568
struct vm_area_struct *vma;
1569
vm_fault_t ret;
1570
1571
address = untagged_addr_remote(mm, address);
1572
1573
if (unlocked)
1574
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1575
1576
retry:
1577
vma = gup_vma_lookup(mm, address);
1578
if (!vma)
1579
return -EFAULT;
1580
1581
if (!vma_permits_fault(vma, fault_flags))
1582
return -EFAULT;
1583
1584
if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1585
fatal_signal_pending(current))
1586
return -EINTR;
1587
1588
ret = handle_mm_fault(vma, address, fault_flags, NULL);
1589
1590
if (ret & VM_FAULT_COMPLETED) {
1591
/*
1592
* NOTE: it's a pity that we need to retake the lock here
1593
* to pair with the unlock() in the callers. Ideally we
1594
* could tell the callers so they do not need to unlock.
1595
*/
1596
mmap_read_lock(mm);
1597
*unlocked = true;
1598
return 0;
1599
}
1600
1601
if (ret & VM_FAULT_ERROR) {
1602
int err = vm_fault_to_errno(ret, 0);
1603
1604
if (err)
1605
return err;
1606
BUG();
1607
}
1608
1609
if (ret & VM_FAULT_RETRY) {
1610
mmap_read_lock(mm);
1611
*unlocked = true;
1612
fault_flags |= FAULT_FLAG_TRIED;
1613
goto retry;
1614
}
1615
1616
return 0;
1617
}
1618
EXPORT_SYMBOL_GPL(fixup_user_fault);
1619
1620
/*
1621
* GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1622
* specified, it'll also respond to generic signals. The caller of GUP
1623
* that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1624
*/
1625
static bool gup_signal_pending(unsigned int flags)
1626
{
1627
if (fatal_signal_pending(current))
1628
return true;
1629
1630
if (!(flags & FOLL_INTERRUPTIBLE))
1631
return false;
1632
1633
return signal_pending(current);
1634
}
1635
1636
/*
1637
* Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1638
* the caller. This function may drop the mmap_lock. If it does so, then it will
1639
* set (*locked = 0).
1640
*
1641
* (*locked == 0) means that the caller expects this function to acquire and
1642
* drop the mmap_lock. Therefore, the value of *locked will still be zero when
1643
* the function returns, even though it may have changed temporarily during
1644
* function execution.
1645
*
1646
* Please note that this function, unlike __get_user_pages(), will not return 0
1647
* for nr_pages > 0, unless FOLL_NOWAIT is used.
1648
*/
1649
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1650
unsigned long start,
1651
unsigned long nr_pages,
1652
struct page **pages,
1653
int *locked,
1654
unsigned int flags)
1655
{
1656
long ret, pages_done;
1657
bool must_unlock = false;
1658
1659
if (!nr_pages)
1660
return 0;
1661
1662
/*
1663
* The internal caller expects GUP to manage the lock internally and the
1664
* lock must be released when this returns.
1665
*/
1666
if (!*locked) {
1667
if (mmap_read_lock_killable(mm))
1668
return -EAGAIN;
1669
must_unlock = true;
1670
*locked = 1;
1671
}
1672
else
1673
mmap_assert_locked(mm);
1674
1675
if (flags & FOLL_PIN)
1676
mm_set_has_pinned_flag(mm);
1677
1678
/*
1679
* FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1680
* is to set FOLL_GET if the caller wants pages[] filled in (but has
1681
* carelessly failed to specify FOLL_GET), so keep doing that, but only
1682
* for FOLL_GET, not for the newer FOLL_PIN.
1683
*
1684
* FOLL_PIN always expects pages to be non-null, but no need to assert
1685
* that here, as any failures will be obvious enough.
1686
*/
1687
if (pages && !(flags & FOLL_PIN))
1688
flags |= FOLL_GET;
1689
1690
pages_done = 0;
1691
for (;;) {
1692
ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1693
locked);
1694
if (!(flags & FOLL_UNLOCKABLE)) {
1695
/* VM_FAULT_RETRY couldn't trigger, bypass */
1696
pages_done = ret;
1697
break;
1698
}
1699
1700
/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1701
VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1702
1703
if (ret > 0) {
1704
nr_pages -= ret;
1705
pages_done += ret;
1706
if (!nr_pages)
1707
break;
1708
}
1709
if (*locked) {
1710
/*
1711
* VM_FAULT_RETRY didn't trigger or it was a
1712
* FOLL_NOWAIT.
1713
*/
1714
if (!pages_done)
1715
pages_done = ret;
1716
break;
1717
}
1718
/*
1719
* VM_FAULT_RETRY triggered, so seek to the faulting offset.
1720
* For the prefault case (!pages) we only update counts.
1721
*/
1722
if (likely(pages))
1723
pages += ret;
1724
start += ret << PAGE_SHIFT;
1725
1726
/* The lock was temporarily dropped, so we must unlock later */
1727
must_unlock = true;
1728
1729
retry:
1730
/*
1731
* Repeat on the address that fired VM_FAULT_RETRY
1732
* with both FAULT_FLAG_ALLOW_RETRY and
1733
* FAULT_FLAG_TRIED. Note that GUP can be interrupted
1734
* by fatal signals of even common signals, depending on
1735
* the caller's request. So we need to check it before we
1736
* start trying again otherwise it can loop forever.
1737
*/
1738
if (gup_signal_pending(flags)) {
1739
if (!pages_done)
1740
pages_done = -EINTR;
1741
break;
1742
}
1743
1744
ret = mmap_read_lock_killable(mm);
1745
if (ret) {
1746
if (!pages_done)
1747
pages_done = ret;
1748
break;
1749
}
1750
1751
*locked = 1;
1752
ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1753
pages, locked);
1754
if (!*locked) {
1755
/* Continue to retry until we succeeded */
1756
VM_WARN_ON_ONCE(ret != 0);
1757
goto retry;
1758
}
1759
if (ret != 1) {
1760
VM_WARN_ON_ONCE(ret > 1);
1761
if (!pages_done)
1762
pages_done = ret;
1763
break;
1764
}
1765
nr_pages--;
1766
pages_done++;
1767
if (!nr_pages)
1768
break;
1769
if (likely(pages))
1770
pages++;
1771
start += PAGE_SIZE;
1772
}
1773
if (must_unlock && *locked) {
1774
/*
1775
* We either temporarily dropped the lock, or the caller
1776
* requested that we both acquire and drop the lock. Either way,
1777
* we must now unlock, and notify the caller of that state.
1778
*/
1779
mmap_read_unlock(mm);
1780
*locked = 0;
1781
}
1782
1783
/*
1784
* Failing to pin anything implies something has gone wrong (except when
1785
* FOLL_NOWAIT is specified).
1786
*/
1787
if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1788
return -EFAULT;
1789
1790
return pages_done;
1791
}
1792
1793
/**
1794
* populate_vma_page_range() - populate a range of pages in the vma.
1795
* @vma: target vma
1796
* @start: start address
1797
* @end: end address
1798
* @locked: whether the mmap_lock is still held
1799
*
1800
* This takes care of mlocking the pages too if VM_LOCKED is set.
1801
*
1802
* Return either number of pages pinned in the vma, or a negative error
1803
* code on error.
1804
*
1805
* vma->vm_mm->mmap_lock must be held.
1806
*
1807
* If @locked is NULL, it may be held for read or write and will
1808
* be unperturbed.
1809
*
1810
* If @locked is non-NULL, it must held for read only and may be
1811
* released. If it's released, *@locked will be set to 0.
1812
*/
1813
long populate_vma_page_range(struct vm_area_struct *vma,
1814
unsigned long start, unsigned long end, int *locked)
1815
{
1816
struct mm_struct *mm = vma->vm_mm;
1817
unsigned long nr_pages = (end - start) / PAGE_SIZE;
1818
int local_locked = 1;
1819
int gup_flags;
1820
long ret;
1821
1822
VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1823
VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1824
VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1825
VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma);
1826
mmap_assert_locked(mm);
1827
1828
/*
1829
* Rightly or wrongly, the VM_LOCKONFAULT case has never used
1830
* faultin_page() to break COW, so it has no work to do here.
1831
*/
1832
if (vma->vm_flags & VM_LOCKONFAULT)
1833
return nr_pages;
1834
1835
/* ... similarly, we've never faulted in PROT_NONE pages */
1836
if (!vma_is_accessible(vma))
1837
return -EFAULT;
1838
1839
gup_flags = FOLL_TOUCH;
1840
/*
1841
* We want to touch writable mappings with a write fault in order
1842
* to break COW, except for shared mappings because these don't COW
1843
* and we would not want to dirty them for nothing.
1844
*
1845
* Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1846
* readable (ie write-only or executable).
1847
*/
1848
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1849
gup_flags |= FOLL_WRITE;
1850
else
1851
gup_flags |= FOLL_FORCE;
1852
1853
if (locked)
1854
gup_flags |= FOLL_UNLOCKABLE;
1855
1856
/*
1857
* We made sure addr is within a VMA, so the following will
1858
* not result in a stack expansion that recurses back here.
1859
*/
1860
ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1861
NULL, locked ? locked : &local_locked);
1862
lru_add_drain();
1863
return ret;
1864
}
1865
1866
/*
1867
* faultin_page_range() - populate (prefault) page tables inside the
1868
* given range readable/writable
1869
*
1870
* This takes care of mlocking the pages, too, if VM_LOCKED is set.
1871
*
1872
* @mm: the mm to populate page tables in
1873
* @start: start address
1874
* @end: end address
1875
* @write: whether to prefault readable or writable
1876
* @locked: whether the mmap_lock is still held
1877
*
1878
* Returns either number of processed pages in the MM, or a negative error
1879
* code on error (see __get_user_pages()). Note that this function reports
1880
* errors related to VMAs, such as incompatible mappings, as expected by
1881
* MADV_POPULATE_(READ|WRITE).
1882
*
1883
* The range must be page-aligned.
1884
*
1885
* mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1886
*/
1887
long faultin_page_range(struct mm_struct *mm, unsigned long start,
1888
unsigned long end, bool write, int *locked)
1889
{
1890
unsigned long nr_pages = (end - start) / PAGE_SIZE;
1891
int gup_flags;
1892
long ret;
1893
1894
VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1895
VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1896
mmap_assert_locked(mm);
1897
1898
/*
1899
* FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1900
* the page dirty with FOLL_WRITE -- which doesn't make a
1901
* difference with !FOLL_FORCE, because the page is writable
1902
* in the page table.
1903
* FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1904
* a poisoned page.
1905
* !FOLL_FORCE: Require proper access permissions.
1906
*/
1907
gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1908
FOLL_MADV_POPULATE;
1909
if (write)
1910
gup_flags |= FOLL_WRITE;
1911
1912
ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1913
gup_flags);
1914
lru_add_drain();
1915
return ret;
1916
}
1917
1918
/*
1919
* __mm_populate - populate and/or mlock pages within a range of address space.
1920
*
1921
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1922
* flags. VMAs must be already marked with the desired vm_flags, and
1923
* mmap_lock must not be held.
1924
*/
1925
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1926
{
1927
struct mm_struct *mm = current->mm;
1928
unsigned long end, nstart, nend;
1929
struct vm_area_struct *vma = NULL;
1930
int locked = 0;
1931
long ret = 0;
1932
1933
end = start + len;
1934
1935
for (nstart = start; nstart < end; nstart = nend) {
1936
/*
1937
* We want to fault in pages for [nstart; end) address range.
1938
* Find first corresponding VMA.
1939
*/
1940
if (!locked) {
1941
locked = 1;
1942
mmap_read_lock(mm);
1943
vma = find_vma_intersection(mm, nstart, end);
1944
} else if (nstart >= vma->vm_end)
1945
vma = find_vma_intersection(mm, vma->vm_end, end);
1946
1947
if (!vma)
1948
break;
1949
/*
1950
* Set [nstart; nend) to intersection of desired address
1951
* range with the first VMA. Also, skip undesirable VMA types.
1952
*/
1953
nend = min(end, vma->vm_end);
1954
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1955
continue;
1956
if (nstart < vma->vm_start)
1957
nstart = vma->vm_start;
1958
/*
1959
* Now fault in a range of pages. populate_vma_page_range()
1960
* double checks the vma flags, so that it won't mlock pages
1961
* if the vma was already munlocked.
1962
*/
1963
ret = populate_vma_page_range(vma, nstart, nend, &locked);
1964
if (ret < 0) {
1965
if (ignore_errors) {
1966
ret = 0;
1967
continue; /* continue at next VMA */
1968
}
1969
break;
1970
}
1971
nend = nstart + ret * PAGE_SIZE;
1972
ret = 0;
1973
}
1974
if (locked)
1975
mmap_read_unlock(mm);
1976
return ret; /* 0 or negative error code */
1977
}
1978
#else /* CONFIG_MMU */
1979
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1980
unsigned long nr_pages, struct page **pages,
1981
int *locked, unsigned int foll_flags)
1982
{
1983
struct vm_area_struct *vma;
1984
bool must_unlock = false;
1985
vm_flags_t vm_flags;
1986
long i;
1987
1988
if (!nr_pages)
1989
return 0;
1990
1991
/*
1992
* The internal caller expects GUP to manage the lock internally and the
1993
* lock must be released when this returns.
1994
*/
1995
if (!*locked) {
1996
if (mmap_read_lock_killable(mm))
1997
return -EAGAIN;
1998
must_unlock = true;
1999
*locked = 1;
2000
}
2001
2002
/* calculate required read or write permissions.
2003
* If FOLL_FORCE is set, we only require the "MAY" flags.
2004
*/
2005
vm_flags = (foll_flags & FOLL_WRITE) ?
2006
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2007
vm_flags &= (foll_flags & FOLL_FORCE) ?
2008
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2009
2010
for (i = 0; i < nr_pages; i++) {
2011
vma = find_vma(mm, start);
2012
if (!vma)
2013
break;
2014
2015
/* protect what we can, including chardevs */
2016
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2017
!(vm_flags & vma->vm_flags))
2018
break;
2019
2020
if (pages) {
2021
pages[i] = virt_to_page((void *)start);
2022
if (pages[i])
2023
get_page(pages[i]);
2024
}
2025
2026
start = (start + PAGE_SIZE) & PAGE_MASK;
2027
}
2028
2029
if (must_unlock && *locked) {
2030
mmap_read_unlock(mm);
2031
*locked = 0;
2032
}
2033
2034
return i ? : -EFAULT;
2035
}
2036
#endif /* !CONFIG_MMU */
2037
2038
/**
2039
* fault_in_writeable - fault in userspace address range for writing
2040
* @uaddr: start of address range
2041
* @size: size of address range
2042
*
2043
* Returns the number of bytes not faulted in (like copy_to_user() and
2044
* copy_from_user()).
2045
*/
2046
size_t fault_in_writeable(char __user *uaddr, size_t size)
2047
{
2048
const unsigned long start = (unsigned long)uaddr;
2049
const unsigned long end = start + size;
2050
unsigned long cur;
2051
2052
if (unlikely(size == 0))
2053
return 0;
2054
if (!user_write_access_begin(uaddr, size))
2055
return size;
2056
2057
/* Stop once we overflow to 0. */
2058
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2059
unsafe_put_user(0, (char __user *)cur, out);
2060
out:
2061
user_write_access_end();
2062
if (size > cur - start)
2063
return size - (cur - start);
2064
return 0;
2065
}
2066
EXPORT_SYMBOL(fault_in_writeable);
2067
2068
/**
2069
* fault_in_subpage_writeable - fault in an address range for writing
2070
* @uaddr: start of address range
2071
* @size: size of address range
2072
*
2073
* Fault in a user address range for writing while checking for permissions at
2074
* sub-page granularity (e.g. arm64 MTE). This function should be used when
2075
* the caller cannot guarantee forward progress of a copy_to_user() loop.
2076
*
2077
* Returns the number of bytes not faulted in (like copy_to_user() and
2078
* copy_from_user()).
2079
*/
2080
size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2081
{
2082
size_t faulted_in;
2083
2084
/*
2085
* Attempt faulting in at page granularity first for page table
2086
* permission checking. The arch-specific probe_subpage_writeable()
2087
* functions may not check for this.
2088
*/
2089
faulted_in = size - fault_in_writeable(uaddr, size);
2090
if (faulted_in)
2091
faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2092
2093
return size - faulted_in;
2094
}
2095
EXPORT_SYMBOL(fault_in_subpage_writeable);
2096
2097
/*
2098
* fault_in_safe_writeable - fault in an address range for writing
2099
* @uaddr: start of address range
2100
* @size: length of address range
2101
*
2102
* Faults in an address range for writing. This is primarily useful when we
2103
* already know that some or all of the pages in the address range aren't in
2104
* memory.
2105
*
2106
* Unlike fault_in_writeable(), this function is non-destructive.
2107
*
2108
* Note that we don't pin or otherwise hold the pages referenced that we fault
2109
* in. There's no guarantee that they'll stay in memory for any duration of
2110
* time.
2111
*
2112
* Returns the number of bytes not faulted in, like copy_to_user() and
2113
* copy_from_user().
2114
*/
2115
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2116
{
2117
const unsigned long start = (unsigned long)uaddr;
2118
const unsigned long end = start + size;
2119
unsigned long cur;
2120
struct mm_struct *mm = current->mm;
2121
bool unlocked = false;
2122
2123
if (unlikely(size == 0))
2124
return 0;
2125
2126
mmap_read_lock(mm);
2127
/* Stop once we overflow to 0. */
2128
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2129
if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2130
break;
2131
mmap_read_unlock(mm);
2132
2133
if (size > cur - start)
2134
return size - (cur - start);
2135
return 0;
2136
}
2137
EXPORT_SYMBOL(fault_in_safe_writeable);
2138
2139
/**
2140
* fault_in_readable - fault in userspace address range for reading
2141
* @uaddr: start of user address range
2142
* @size: size of user address range
2143
*
2144
* Returns the number of bytes not faulted in (like copy_to_user() and
2145
* copy_from_user()).
2146
*/
2147
size_t fault_in_readable(const char __user *uaddr, size_t size)
2148
{
2149
const unsigned long start = (unsigned long)uaddr;
2150
const unsigned long end = start + size;
2151
unsigned long cur;
2152
volatile char c;
2153
2154
if (unlikely(size == 0))
2155
return 0;
2156
if (!user_read_access_begin(uaddr, size))
2157
return size;
2158
2159
/* Stop once we overflow to 0. */
2160
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2161
unsafe_get_user(c, (const char __user *)cur, out);
2162
out:
2163
user_read_access_end();
2164
(void)c;
2165
if (size > cur - start)
2166
return size - (cur - start);
2167
return 0;
2168
}
2169
EXPORT_SYMBOL(fault_in_readable);
2170
2171
/**
2172
* get_dump_page() - pin user page in memory while writing it to core dump
2173
* @addr: user address
2174
* @locked: a pointer to an int denoting whether the mmap sem is held
2175
*
2176
* Returns struct page pointer of user page pinned for dump,
2177
* to be freed afterwards by put_page().
2178
*
2179
* Returns NULL on any kind of failure - a hole must then be inserted into
2180
* the corefile, to preserve alignment with its headers; and also returns
2181
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2182
* allowing a hole to be left in the corefile to save disk space.
2183
*
2184
* Called without mmap_lock (takes and releases the mmap_lock by itself).
2185
*/
2186
#ifdef CONFIG_ELF_CORE
2187
struct page *get_dump_page(unsigned long addr, int *locked)
2188
{
2189
struct page *page;
2190
int ret;
2191
2192
ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2193
FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2194
return (ret == 1) ? page : NULL;
2195
}
2196
#endif /* CONFIG_ELF_CORE */
2197
2198
#ifdef CONFIG_MIGRATION
2199
2200
/*
2201
* An array of either pages or folios ("pofs"). Although it may seem tempting to
2202
* avoid this complication, by simply interpreting a list of folios as a list of
2203
* pages, that approach won't work in the longer term, because eventually the
2204
* layouts of struct page and struct folio will become completely different.
2205
* Furthermore, this pof approach avoids excessive page_folio() calls.
2206
*/
2207
struct pages_or_folios {
2208
union {
2209
struct page **pages;
2210
struct folio **folios;
2211
void **entries;
2212
};
2213
bool has_folios;
2214
long nr_entries;
2215
};
2216
2217
static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2218
{
2219
if (pofs->has_folios)
2220
return pofs->folios[i];
2221
return page_folio(pofs->pages[i]);
2222
}
2223
2224
static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2225
{
2226
pofs->entries[i] = NULL;
2227
}
2228
2229
static void pofs_unpin(struct pages_or_folios *pofs)
2230
{
2231
if (pofs->has_folios)
2232
unpin_folios(pofs->folios, pofs->nr_entries);
2233
else
2234
unpin_user_pages(pofs->pages, pofs->nr_entries);
2235
}
2236
2237
static struct folio *pofs_next_folio(struct folio *folio,
2238
struct pages_or_folios *pofs, long *index_ptr)
2239
{
2240
long i = *index_ptr + 1;
2241
2242
if (!pofs->has_folios && folio_test_large(folio)) {
2243
const unsigned long start_pfn = folio_pfn(folio);
2244
const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2245
2246
for (; i < pofs->nr_entries; i++) {
2247
unsigned long pfn = page_to_pfn(pofs->pages[i]);
2248
2249
/* Is this page part of this folio? */
2250
if (pfn < start_pfn || pfn >= end_pfn)
2251
break;
2252
}
2253
}
2254
2255
if (unlikely(i == pofs->nr_entries))
2256
return NULL;
2257
*index_ptr = i;
2258
2259
return pofs_get_folio(pofs, i);
2260
}
2261
2262
/*
2263
* Returns the number of collected folios. Return value is always >= 0.
2264
*/
2265
static unsigned long collect_longterm_unpinnable_folios(
2266
struct list_head *movable_folio_list,
2267
struct pages_or_folios *pofs)
2268
{
2269
unsigned long collected = 0;
2270
struct folio *folio;
2271
int drained = 0;
2272
long i = 0;
2273
2274
for (folio = pofs_get_folio(pofs, i); folio;
2275
folio = pofs_next_folio(folio, pofs, &i)) {
2276
2277
if (folio_is_longterm_pinnable(folio))
2278
continue;
2279
2280
collected++;
2281
2282
if (folio_is_device_coherent(folio))
2283
continue;
2284
2285
if (folio_test_hugetlb(folio)) {
2286
folio_isolate_hugetlb(folio, movable_folio_list);
2287
continue;
2288
}
2289
2290
if (drained == 0 && folio_may_be_lru_cached(folio) &&
2291
folio_ref_count(folio) !=
2292
folio_expected_ref_count(folio) + 1) {
2293
lru_add_drain();
2294
drained = 1;
2295
}
2296
if (drained == 1 && folio_may_be_lru_cached(folio) &&
2297
folio_ref_count(folio) !=
2298
folio_expected_ref_count(folio) + 1) {
2299
lru_add_drain_all();
2300
drained = 2;
2301
}
2302
2303
if (!folio_isolate_lru(folio))
2304
continue;
2305
2306
list_add_tail(&folio->lru, movable_folio_list);
2307
node_stat_mod_folio(folio,
2308
NR_ISOLATED_ANON + folio_is_file_lru(folio),
2309
folio_nr_pages(folio));
2310
}
2311
2312
return collected;
2313
}
2314
2315
/*
2316
* Unpins all folios and migrates device coherent folios and movable_folio_list.
2317
* Returns -EAGAIN if all folios were successfully migrated or -errno for
2318
* failure (or partial success).
2319
*/
2320
static int
2321
migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2322
struct pages_or_folios *pofs)
2323
{
2324
int ret;
2325
unsigned long i;
2326
2327
for (i = 0; i < pofs->nr_entries; i++) {
2328
struct folio *folio = pofs_get_folio(pofs, i);
2329
2330
if (folio_is_device_coherent(folio)) {
2331
/*
2332
* Migration will fail if the folio is pinned, so
2333
* convert the pin on the source folio to a normal
2334
* reference.
2335
*/
2336
pofs_clear_entry(pofs, i);
2337
folio_get(folio);
2338
gup_put_folio(folio, 1, FOLL_PIN);
2339
2340
if (migrate_device_coherent_folio(folio)) {
2341
ret = -EBUSY;
2342
goto err;
2343
}
2344
2345
continue;
2346
}
2347
2348
/*
2349
* We can't migrate folios with unexpected references, so drop
2350
* the reference obtained by __get_user_pages_locked().
2351
* Migrating folios have been added to movable_folio_list after
2352
* calling folio_isolate_lru() which takes a reference so the
2353
* folio won't be freed if it's migrating.
2354
*/
2355
unpin_folio(folio);
2356
pofs_clear_entry(pofs, i);
2357
}
2358
2359
if (!list_empty(movable_folio_list)) {
2360
struct migration_target_control mtc = {
2361
.nid = NUMA_NO_NODE,
2362
.gfp_mask = GFP_USER | __GFP_NOWARN,
2363
.reason = MR_LONGTERM_PIN,
2364
};
2365
2366
if (migrate_pages(movable_folio_list, alloc_migration_target,
2367
NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2368
MR_LONGTERM_PIN, NULL)) {
2369
ret = -ENOMEM;
2370
goto err;
2371
}
2372
}
2373
2374
putback_movable_pages(movable_folio_list);
2375
2376
return -EAGAIN;
2377
2378
err:
2379
pofs_unpin(pofs);
2380
putback_movable_pages(movable_folio_list);
2381
2382
return ret;
2383
}
2384
2385
static long
2386
check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2387
{
2388
LIST_HEAD(movable_folio_list);
2389
unsigned long collected;
2390
2391
collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2392
pofs);
2393
if (!collected)
2394
return 0;
2395
2396
return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2397
}
2398
2399
/*
2400
* Check whether all folios are *allowed* to be pinned indefinitely (long term).
2401
* Rather confusingly, all folios in the range are required to be pinned via
2402
* FOLL_PIN, before calling this routine.
2403
*
2404
* Return values:
2405
*
2406
* 0: if everything is OK and all folios in the range are allowed to be pinned,
2407
* then this routine leaves all folios pinned and returns zero for success.
2408
*
2409
* -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2410
* routine will migrate those folios away, unpin all the folios in the range. If
2411
* migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2412
* caller should re-pin the entire range with FOLL_PIN and then call this
2413
* routine again.
2414
*
2415
* -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2416
* indicates a migration failure. The caller should give up, and propagate the
2417
* error back up the call stack. The caller does not need to unpin any folios in
2418
* that case, because this routine will do the unpinning.
2419
*/
2420
static long check_and_migrate_movable_folios(unsigned long nr_folios,
2421
struct folio **folios)
2422
{
2423
struct pages_or_folios pofs = {
2424
.folios = folios,
2425
.has_folios = true,
2426
.nr_entries = nr_folios,
2427
};
2428
2429
return check_and_migrate_movable_pages_or_folios(&pofs);
2430
}
2431
2432
/*
2433
* Return values and behavior are the same as those for
2434
* check_and_migrate_movable_folios().
2435
*/
2436
static long check_and_migrate_movable_pages(unsigned long nr_pages,
2437
struct page **pages)
2438
{
2439
struct pages_or_folios pofs = {
2440
.pages = pages,
2441
.has_folios = false,
2442
.nr_entries = nr_pages,
2443
};
2444
2445
return check_and_migrate_movable_pages_or_folios(&pofs);
2446
}
2447
#else
2448
static long check_and_migrate_movable_pages(unsigned long nr_pages,
2449
struct page **pages)
2450
{
2451
return 0;
2452
}
2453
2454
static long check_and_migrate_movable_folios(unsigned long nr_folios,
2455
struct folio **folios)
2456
{
2457
return 0;
2458
}
2459
#endif /* CONFIG_MIGRATION */
2460
2461
/*
2462
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2463
* allows us to process the FOLL_LONGTERM flag.
2464
*/
2465
static long __gup_longterm_locked(struct mm_struct *mm,
2466
unsigned long start,
2467
unsigned long nr_pages,
2468
struct page **pages,
2469
int *locked,
2470
unsigned int gup_flags)
2471
{
2472
unsigned int flags;
2473
long rc, nr_pinned_pages;
2474
2475
if (!(gup_flags & FOLL_LONGTERM))
2476
return __get_user_pages_locked(mm, start, nr_pages, pages,
2477
locked, gup_flags);
2478
2479
flags = memalloc_pin_save();
2480
do {
2481
nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2482
pages, locked,
2483
gup_flags);
2484
if (nr_pinned_pages <= 0) {
2485
rc = nr_pinned_pages;
2486
break;
2487
}
2488
2489
/* FOLL_LONGTERM implies FOLL_PIN */
2490
rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2491
} while (rc == -EAGAIN);
2492
memalloc_pin_restore(flags);
2493
return rc ? rc : nr_pinned_pages;
2494
}
2495
2496
/*
2497
* Check that the given flags are valid for the exported gup/pup interface, and
2498
* update them with the required flags that the caller must have set.
2499
*/
2500
static bool is_valid_gup_args(struct page **pages, int *locked,
2501
unsigned int *gup_flags_p, unsigned int to_set)
2502
{
2503
unsigned int gup_flags = *gup_flags_p;
2504
2505
/*
2506
* These flags not allowed to be specified externally to the gup
2507
* interfaces:
2508
* - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2509
* - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2510
* - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2511
*/
2512
if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2513
return false;
2514
2515
gup_flags |= to_set;
2516
if (locked) {
2517
/* At the external interface locked must be set */
2518
if (WARN_ON_ONCE(*locked != 1))
2519
return false;
2520
2521
gup_flags |= FOLL_UNLOCKABLE;
2522
}
2523
2524
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2525
if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2526
(FOLL_PIN | FOLL_GET)))
2527
return false;
2528
2529
/* LONGTERM can only be specified when pinning */
2530
if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2531
return false;
2532
2533
/* Pages input must be given if using GET/PIN */
2534
if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2535
return false;
2536
2537
/* We want to allow the pgmap to be hot-unplugged at all times */
2538
if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2539
(gup_flags & FOLL_PCI_P2PDMA)))
2540
return false;
2541
2542
*gup_flags_p = gup_flags;
2543
return true;
2544
}
2545
2546
#ifdef CONFIG_MMU
2547
/**
2548
* get_user_pages_remote() - pin user pages in memory
2549
* @mm: mm_struct of target mm
2550
* @start: starting user address
2551
* @nr_pages: number of pages from start to pin
2552
* @gup_flags: flags modifying lookup behaviour
2553
* @pages: array that receives pointers to the pages pinned.
2554
* Should be at least nr_pages long. Or NULL, if caller
2555
* only intends to ensure the pages are faulted in.
2556
* @locked: pointer to lock flag indicating whether lock is held and
2557
* subsequently whether VM_FAULT_RETRY functionality can be
2558
* utilised. Lock must initially be held.
2559
*
2560
* Returns either number of pages pinned (which may be less than the
2561
* number requested), or an error. Details about the return value:
2562
*
2563
* -- If nr_pages is 0, returns 0.
2564
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
2565
* -- If nr_pages is >0, and some pages were pinned, returns the number of
2566
* pages pinned. Again, this may be less than nr_pages.
2567
*
2568
* The caller is responsible for releasing returned @pages, via put_page().
2569
*
2570
* Must be called with mmap_lock held for read or write.
2571
*
2572
* get_user_pages_remote walks a process's page tables and takes a reference
2573
* to each struct page that each user address corresponds to at a given
2574
* instant. That is, it takes the page that would be accessed if a user
2575
* thread accesses the given user virtual address at that instant.
2576
*
2577
* This does not guarantee that the page exists in the user mappings when
2578
* get_user_pages_remote returns, and there may even be a completely different
2579
* page there in some cases (eg. if mmapped pagecache has been invalidated
2580
* and subsequently re-faulted). However it does guarantee that the page
2581
* won't be freed completely. And mostly callers simply care that the page
2582
* contains data that was valid *at some point in time*. Typically, an IO
2583
* or similar operation cannot guarantee anything stronger anyway because
2584
* locks can't be held over the syscall boundary.
2585
*
2586
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2587
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2588
* be called after the page is finished with, and before put_page is called.
2589
*
2590
* get_user_pages_remote is typically used for fewer-copy IO operations,
2591
* to get a handle on the memory by some means other than accesses
2592
* via the user virtual addresses. The pages may be submitted for
2593
* DMA to devices or accessed via their kernel linear mapping (via the
2594
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
2595
*
2596
* See also get_user_pages_fast, for performance critical applications.
2597
*
2598
* get_user_pages_remote should be phased out in favor of
2599
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2600
* should use get_user_pages_remote because it cannot pass
2601
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2602
*/
2603
long get_user_pages_remote(struct mm_struct *mm,
2604
unsigned long start, unsigned long nr_pages,
2605
unsigned int gup_flags, struct page **pages,
2606
int *locked)
2607
{
2608
int local_locked = 1;
2609
2610
if (!is_valid_gup_args(pages, locked, &gup_flags,
2611
FOLL_TOUCH | FOLL_REMOTE))
2612
return -EINVAL;
2613
2614
return __get_user_pages_locked(mm, start, nr_pages, pages,
2615
locked ? locked : &local_locked,
2616
gup_flags);
2617
}
2618
EXPORT_SYMBOL(get_user_pages_remote);
2619
2620
#else /* CONFIG_MMU */
2621
long get_user_pages_remote(struct mm_struct *mm,
2622
unsigned long start, unsigned long nr_pages,
2623
unsigned int gup_flags, struct page **pages,
2624
int *locked)
2625
{
2626
return 0;
2627
}
2628
#endif /* !CONFIG_MMU */
2629
2630
/**
2631
* get_user_pages() - pin user pages in memory
2632
* @start: starting user address
2633
* @nr_pages: number of pages from start to pin
2634
* @gup_flags: flags modifying lookup behaviour
2635
* @pages: array that receives pointers to the pages pinned.
2636
* Should be at least nr_pages long. Or NULL, if caller
2637
* only intends to ensure the pages are faulted in.
2638
*
2639
* This is the same as get_user_pages_remote(), just with a less-flexible
2640
* calling convention where we assume that the mm being operated on belongs to
2641
* the current task, and doesn't allow passing of a locked parameter. We also
2642
* obviously don't pass FOLL_REMOTE in here.
2643
*/
2644
long get_user_pages(unsigned long start, unsigned long nr_pages,
2645
unsigned int gup_flags, struct page **pages)
2646
{
2647
int locked = 1;
2648
2649
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2650
return -EINVAL;
2651
2652
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2653
&locked, gup_flags);
2654
}
2655
EXPORT_SYMBOL(get_user_pages);
2656
2657
/*
2658
* get_user_pages_unlocked() is suitable to replace the form:
2659
*
2660
* mmap_read_lock(mm);
2661
* get_user_pages(mm, ..., pages, NULL);
2662
* mmap_read_unlock(mm);
2663
*
2664
* with:
2665
*
2666
* get_user_pages_unlocked(mm, ..., pages);
2667
*
2668
* It is functionally equivalent to get_user_pages_fast so
2669
* get_user_pages_fast should be used instead if specific gup_flags
2670
* (e.g. FOLL_FORCE) are not required.
2671
*/
2672
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2673
struct page **pages, unsigned int gup_flags)
2674
{
2675
int locked = 0;
2676
2677
if (!is_valid_gup_args(pages, NULL, &gup_flags,
2678
FOLL_TOUCH | FOLL_UNLOCKABLE))
2679
return -EINVAL;
2680
2681
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2682
&locked, gup_flags);
2683
}
2684
EXPORT_SYMBOL(get_user_pages_unlocked);
2685
2686
/*
2687
* GUP-fast
2688
*
2689
* get_user_pages_fast attempts to pin user pages by walking the page
2690
* tables directly and avoids taking locks. Thus the walker needs to be
2691
* protected from page table pages being freed from under it, and should
2692
* block any THP splits.
2693
*
2694
* One way to achieve this is to have the walker disable interrupts, and
2695
* rely on IPIs from the TLB flushing code blocking before the page table
2696
* pages are freed. This is unsuitable for architectures that do not need
2697
* to broadcast an IPI when invalidating TLBs.
2698
*
2699
* Another way to achieve this is to batch up page table containing pages
2700
* belonging to more than one mm_user, then rcu_sched a callback to free those
2701
* pages. Disabling interrupts will allow the gup_fast() walker to both block
2702
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2703
* (which is a relatively rare event). The code below adopts this strategy.
2704
*
2705
* Before activating this code, please be aware that the following assumptions
2706
* are currently made:
2707
*
2708
* *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2709
* free pages containing page tables or TLB flushing requires IPI broadcast.
2710
*
2711
* *) ptes can be read atomically by the architecture.
2712
*
2713
* *) valid user addesses are below TASK_MAX_SIZE
2714
*
2715
* The last two assumptions can be relaxed by the addition of helper functions.
2716
*
2717
* This code is based heavily on the PowerPC implementation by Nick Piggin.
2718
*/
2719
#ifdef CONFIG_HAVE_GUP_FAST
2720
/*
2721
* Used in the GUP-fast path to determine whether GUP is permitted to work on
2722
* a specific folio.
2723
*
2724
* This call assumes the caller has pinned the folio, that the lowest page table
2725
* level still points to this folio, and that interrupts have been disabled.
2726
*
2727
* GUP-fast must reject all secretmem folios.
2728
*
2729
* Writing to pinned file-backed dirty tracked folios is inherently problematic
2730
* (see comment describing the writable_file_mapping_allowed() function). We
2731
* therefore try to avoid the most egregious case of a long-term mapping doing
2732
* so.
2733
*
2734
* This function cannot be as thorough as that one as the VMA is not available
2735
* in the fast path, so instead we whitelist known good cases and if in doubt,
2736
* fall back to the slow path.
2737
*/
2738
static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2739
{
2740
bool reject_file_backed = false;
2741
struct address_space *mapping;
2742
bool check_secretmem = false;
2743
unsigned long mapping_flags;
2744
2745
/*
2746
* If we aren't pinning then no problematic write can occur. A long term
2747
* pin is the most egregious case so this is the one we disallow.
2748
*/
2749
if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2750
(FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2751
reject_file_backed = true;
2752
2753
/* We hold a folio reference, so we can safely access folio fields. */
2754
2755
/* secretmem folios are always order-0 folios. */
2756
if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2757
check_secretmem = true;
2758
2759
if (!reject_file_backed && !check_secretmem)
2760
return true;
2761
2762
if (WARN_ON_ONCE(folio_test_slab(folio)))
2763
return false;
2764
2765
/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2766
if (folio_test_hugetlb(folio))
2767
return true;
2768
2769
/*
2770
* GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2771
* cannot proceed, which means no actions performed under RCU can
2772
* proceed either.
2773
*
2774
* inodes and thus their mappings are freed under RCU, which means the
2775
* mapping cannot be freed beneath us and thus we can safely dereference
2776
* it.
2777
*/
2778
lockdep_assert_irqs_disabled();
2779
2780
/*
2781
* However, there may be operations which _alter_ the mapping, so ensure
2782
* we read it once and only once.
2783
*/
2784
mapping = READ_ONCE(folio->mapping);
2785
2786
/*
2787
* The mapping may have been truncated, in any case we cannot determine
2788
* if this mapping is safe - fall back to slow path to determine how to
2789
* proceed.
2790
*/
2791
if (!mapping)
2792
return false;
2793
2794
/* Anonymous folios pose no problem. */
2795
mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2796
if (mapping_flags)
2797
return mapping_flags & FOLIO_MAPPING_ANON;
2798
2799
/*
2800
* At this point, we know the mapping is non-null and points to an
2801
* address_space object.
2802
*/
2803
if (check_secretmem && secretmem_mapping(mapping))
2804
return false;
2805
/* The only remaining allowed file system is shmem. */
2806
return !reject_file_backed || shmem_mapping(mapping);
2807
}
2808
2809
static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2810
unsigned int flags, struct page **pages)
2811
{
2812
while ((*nr) - nr_start) {
2813
struct folio *folio = page_folio(pages[--(*nr)]);
2814
2815
folio_clear_referenced(folio);
2816
gup_put_folio(folio, 1, flags);
2817
}
2818
}
2819
2820
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2821
/*
2822
* GUP-fast relies on pte change detection to avoid concurrent pgtable
2823
* operations.
2824
*
2825
* To pin the page, GUP-fast needs to do below in order:
2826
* (1) pin the page (by prefetching pte), then (2) check pte not changed.
2827
*
2828
* For the rest of pgtable operations where pgtable updates can be racy
2829
* with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2830
* is pinned.
2831
*
2832
* Above will work for all pte-level operations, including THP split.
2833
*
2834
* For THP collapse, it's a bit more complicated because GUP-fast may be
2835
* walking a pgtable page that is being freed (pte is still valid but pmd
2836
* can be cleared already). To avoid race in such condition, we need to
2837
* also check pmd here to make sure pmd doesn't change (corresponds to
2838
* pmdp_collapse_flush() in the THP collapse code path).
2839
*/
2840
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2841
unsigned long end, unsigned int flags, struct page **pages,
2842
int *nr)
2843
{
2844
int ret = 0;
2845
pte_t *ptep, *ptem;
2846
2847
ptem = ptep = pte_offset_map(&pmd, addr);
2848
if (!ptep)
2849
return 0;
2850
do {
2851
pte_t pte = ptep_get_lockless(ptep);
2852
struct page *page;
2853
struct folio *folio;
2854
2855
/*
2856
* Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2857
* pte_access_permitted() better should reject these pages
2858
* either way: otherwise, GUP-fast might succeed in
2859
* cases where ordinary GUP would fail due to VMA access
2860
* permissions.
2861
*/
2862
if (pte_protnone(pte))
2863
goto pte_unmap;
2864
2865
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2866
goto pte_unmap;
2867
2868
if (pte_special(pte))
2869
goto pte_unmap;
2870
2871
/* If it's not marked as special it must have a valid memmap. */
2872
VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2873
page = pte_page(pte);
2874
2875
folio = try_grab_folio_fast(page, 1, flags);
2876
if (!folio)
2877
goto pte_unmap;
2878
2879
if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2880
unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2881
gup_put_folio(folio, 1, flags);
2882
goto pte_unmap;
2883
}
2884
2885
if (!gup_fast_folio_allowed(folio, flags)) {
2886
gup_put_folio(folio, 1, flags);
2887
goto pte_unmap;
2888
}
2889
2890
if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2891
gup_put_folio(folio, 1, flags);
2892
goto pte_unmap;
2893
}
2894
2895
/*
2896
* We need to make the page accessible if and only if we are
2897
* going to access its content (the FOLL_PIN case). Please
2898
* see Documentation/core-api/pin_user_pages.rst for
2899
* details.
2900
*/
2901
if ((flags & FOLL_PIN) && arch_make_folio_accessible(folio)) {
2902
gup_put_folio(folio, 1, flags);
2903
goto pte_unmap;
2904
}
2905
folio_set_referenced(folio);
2906
pages[*nr] = page;
2907
(*nr)++;
2908
} while (ptep++, addr += PAGE_SIZE, addr != end);
2909
2910
ret = 1;
2911
2912
pte_unmap:
2913
pte_unmap(ptem);
2914
return ret;
2915
}
2916
#else
2917
2918
/*
2919
* If we can't determine whether or not a pte is special, then fail immediately
2920
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2921
* to be special.
2922
*
2923
* For a futex to be placed on a THP tail page, get_futex_key requires a
2924
* get_user_pages_fast_only implementation that can pin pages. Thus it's still
2925
* useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2926
*/
2927
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2928
unsigned long end, unsigned int flags, struct page **pages,
2929
int *nr)
2930
{
2931
return 0;
2932
}
2933
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2934
2935
static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2936
unsigned long end, unsigned int flags, struct page **pages,
2937
int *nr)
2938
{
2939
struct page *page;
2940
struct folio *folio;
2941
int refs;
2942
2943
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2944
return 0;
2945
2946
if (pmd_special(orig))
2947
return 0;
2948
2949
refs = (end - addr) >> PAGE_SHIFT;
2950
page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2951
2952
folio = try_grab_folio_fast(page, refs, flags);
2953
if (!folio)
2954
return 0;
2955
2956
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2957
gup_put_folio(folio, refs, flags);
2958
return 0;
2959
}
2960
2961
if (!gup_fast_folio_allowed(folio, flags)) {
2962
gup_put_folio(folio, refs, flags);
2963
return 0;
2964
}
2965
if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2966
gup_put_folio(folio, refs, flags);
2967
return 0;
2968
}
2969
2970
pages += *nr;
2971
*nr += refs;
2972
for (; refs; refs--)
2973
*(pages++) = page++;
2974
folio_set_referenced(folio);
2975
return 1;
2976
}
2977
2978
static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
2979
unsigned long end, unsigned int flags, struct page **pages,
2980
int *nr)
2981
{
2982
struct page *page;
2983
struct folio *folio;
2984
int refs;
2985
2986
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2987
return 0;
2988
2989
if (pud_special(orig))
2990
return 0;
2991
2992
refs = (end - addr) >> PAGE_SHIFT;
2993
page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2994
2995
folio = try_grab_folio_fast(page, refs, flags);
2996
if (!folio)
2997
return 0;
2998
2999
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3000
gup_put_folio(folio, refs, flags);
3001
return 0;
3002
}
3003
3004
if (!gup_fast_folio_allowed(folio, flags)) {
3005
gup_put_folio(folio, refs, flags);
3006
return 0;
3007
}
3008
3009
if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3010
gup_put_folio(folio, refs, flags);
3011
return 0;
3012
}
3013
3014
pages += *nr;
3015
*nr += refs;
3016
for (; refs; refs--)
3017
*(pages++) = page++;
3018
folio_set_referenced(folio);
3019
return 1;
3020
}
3021
3022
static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3023
unsigned long end, unsigned int flags, struct page **pages,
3024
int *nr)
3025
{
3026
unsigned long next;
3027
pmd_t *pmdp;
3028
3029
pmdp = pmd_offset_lockless(pudp, pud, addr);
3030
do {
3031
pmd_t pmd = pmdp_get_lockless(pmdp);
3032
3033
next = pmd_addr_end(addr, end);
3034
if (!pmd_present(pmd))
3035
return 0;
3036
3037
if (unlikely(pmd_leaf(pmd))) {
3038
/* See gup_fast_pte_range() */
3039
if (pmd_protnone(pmd))
3040
return 0;
3041
3042
if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3043
pages, nr))
3044
return 0;
3045
3046
} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3047
pages, nr))
3048
return 0;
3049
} while (pmdp++, addr = next, addr != end);
3050
3051
return 1;
3052
}
3053
3054
static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3055
unsigned long end, unsigned int flags, struct page **pages,
3056
int *nr)
3057
{
3058
unsigned long next;
3059
pud_t *pudp;
3060
3061
pudp = pud_offset_lockless(p4dp, p4d, addr);
3062
do {
3063
pud_t pud = READ_ONCE(*pudp);
3064
3065
next = pud_addr_end(addr, end);
3066
if (unlikely(!pud_present(pud)))
3067
return 0;
3068
if (unlikely(pud_leaf(pud))) {
3069
if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3070
pages, nr))
3071
return 0;
3072
} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3073
pages, nr))
3074
return 0;
3075
} while (pudp++, addr = next, addr != end);
3076
3077
return 1;
3078
}
3079
3080
static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3081
unsigned long end, unsigned int flags, struct page **pages,
3082
int *nr)
3083
{
3084
unsigned long next;
3085
p4d_t *p4dp;
3086
3087
p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3088
do {
3089
p4d_t p4d = READ_ONCE(*p4dp);
3090
3091
next = p4d_addr_end(addr, end);
3092
if (!p4d_present(p4d))
3093
return 0;
3094
BUILD_BUG_ON(p4d_leaf(p4d));
3095
if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3096
pages, nr))
3097
return 0;
3098
} while (p4dp++, addr = next, addr != end);
3099
3100
return 1;
3101
}
3102
3103
static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3104
unsigned int flags, struct page **pages, int *nr)
3105
{
3106
unsigned long next;
3107
pgd_t *pgdp;
3108
3109
pgdp = pgd_offset(current->mm, addr);
3110
do {
3111
pgd_t pgd = READ_ONCE(*pgdp);
3112
3113
next = pgd_addr_end(addr, end);
3114
if (pgd_none(pgd))
3115
return;
3116
BUILD_BUG_ON(pgd_leaf(pgd));
3117
if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3118
pages, nr))
3119
return;
3120
} while (pgdp++, addr = next, addr != end);
3121
}
3122
#else
3123
static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3124
unsigned int flags, struct page **pages, int *nr)
3125
{
3126
}
3127
#endif /* CONFIG_HAVE_GUP_FAST */
3128
3129
#ifndef gup_fast_permitted
3130
/*
3131
* Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132
* we need to fall back to the slow version:
3133
*/
3134
static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135
{
3136
return true;
3137
}
3138
#endif
3139
3140
static unsigned long gup_fast(unsigned long start, unsigned long end,
3141
unsigned int gup_flags, struct page **pages)
3142
{
3143
unsigned long flags;
3144
int nr_pinned = 0;
3145
unsigned seq;
3146
3147
if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3148
!gup_fast_permitted(start, end))
3149
return 0;
3150
3151
if (gup_flags & FOLL_PIN) {
3152
if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3153
return 0;
3154
}
3155
3156
/*
3157
* Disable interrupts. The nested form is used, in order to allow full,
3158
* general purpose use of this routine.
3159
*
3160
* With interrupts disabled, we block page table pages from being freed
3161
* from under us. See struct mmu_table_batch comments in
3162
* include/asm-generic/tlb.h for more details.
3163
*
3164
* We do not adopt an rcu_read_lock() here as we also want to block IPIs
3165
* that come from callers of tlb_remove_table_sync_one().
3166
*/
3167
local_irq_save(flags);
3168
gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3169
local_irq_restore(flags);
3170
3171
/*
3172
* When pinning pages for DMA there could be a concurrent write protect
3173
* from fork() via copy_page_range(), in this case always fail GUP-fast.
3174
*/
3175
if (gup_flags & FOLL_PIN) {
3176
if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3177
gup_fast_unpin_user_pages(pages, nr_pinned);
3178
return 0;
3179
} else {
3180
sanity_check_pinned_pages(pages, nr_pinned);
3181
}
3182
}
3183
return nr_pinned;
3184
}
3185
3186
static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3187
unsigned int gup_flags, struct page **pages)
3188
{
3189
unsigned long len, end;
3190
unsigned long nr_pinned;
3191
int locked = 0;
3192
int ret;
3193
3194
if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3195
FOLL_FORCE | FOLL_PIN | FOLL_GET |
3196
FOLL_FAST_ONLY | FOLL_NOFAULT |
3197
FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3198
return -EINVAL;
3199
3200
if (gup_flags & FOLL_PIN)
3201
mm_set_has_pinned_flag(current->mm);
3202
3203
if (!(gup_flags & FOLL_FAST_ONLY))
3204
might_lock_read(&current->mm->mmap_lock);
3205
3206
start = untagged_addr(start) & PAGE_MASK;
3207
len = nr_pages << PAGE_SHIFT;
3208
if (check_add_overflow(start, len, &end))
3209
return -EOVERFLOW;
3210
if (end > TASK_SIZE_MAX)
3211
return -EFAULT;
3212
3213
nr_pinned = gup_fast(start, end, gup_flags, pages);
3214
if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3215
return nr_pinned;
3216
3217
/* Slow path: try to get the remaining pages with get_user_pages */
3218
start += nr_pinned << PAGE_SHIFT;
3219
pages += nr_pinned;
3220
ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3221
pages, &locked,
3222
gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3223
if (ret < 0) {
3224
/*
3225
* The caller has to unpin the pages we already pinned so
3226
* returning -errno is not an option
3227
*/
3228
if (nr_pinned)
3229
return nr_pinned;
3230
return ret;
3231
}
3232
return ret + nr_pinned;
3233
}
3234
3235
/**
3236
* get_user_pages_fast_only() - pin user pages in memory
3237
* @start: starting user address
3238
* @nr_pages: number of pages from start to pin
3239
* @gup_flags: flags modifying pin behaviour
3240
* @pages: array that receives pointers to the pages pinned.
3241
* Should be at least nr_pages long.
3242
*
3243
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3244
* the regular GUP.
3245
*
3246
* If the architecture does not support this function, simply return with no
3247
* pages pinned.
3248
*
3249
* Careful, careful! COW breaking can go either way, so a non-write
3250
* access can get ambiguous page results. If you call this function without
3251
* 'write' set, you'd better be sure that you're ok with that ambiguity.
3252
*/
3253
int get_user_pages_fast_only(unsigned long start, int nr_pages,
3254
unsigned int gup_flags, struct page **pages)
3255
{
3256
/*
3257
* Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3258
* because gup fast is always a "pin with a +1 page refcount" request.
3259
*
3260
* FOLL_FAST_ONLY is required in order to match the API description of
3261
* this routine: no fall back to regular ("slow") GUP.
3262
*/
3263
if (!is_valid_gup_args(pages, NULL, &gup_flags,
3264
FOLL_GET | FOLL_FAST_ONLY))
3265
return -EINVAL;
3266
3267
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3268
}
3269
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3270
3271
/**
3272
* get_user_pages_fast() - pin user pages in memory
3273
* @start: starting user address
3274
* @nr_pages: number of pages from start to pin
3275
* @gup_flags: flags modifying pin behaviour
3276
* @pages: array that receives pointers to the pages pinned.
3277
* Should be at least nr_pages long.
3278
*
3279
* Attempt to pin user pages in memory without taking mm->mmap_lock.
3280
* If not successful, it will fall back to taking the lock and
3281
* calling get_user_pages().
3282
*
3283
* Returns number of pages pinned. This may be fewer than the number requested.
3284
* If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3285
* -errno.
3286
*/
3287
int get_user_pages_fast(unsigned long start, int nr_pages,
3288
unsigned int gup_flags, struct page **pages)
3289
{
3290
/*
3291
* The caller may or may not have explicitly set FOLL_GET; either way is
3292
* OK. However, internally (within mm/gup.c), gup fast variants must set
3293
* FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3294
* request.
3295
*/
3296
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3297
return -EINVAL;
3298
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3299
}
3300
EXPORT_SYMBOL_GPL(get_user_pages_fast);
3301
3302
/**
3303
* pin_user_pages_fast() - pin user pages in memory without taking locks
3304
*
3305
* @start: starting user address
3306
* @nr_pages: number of pages from start to pin
3307
* @gup_flags: flags modifying pin behaviour
3308
* @pages: array that receives pointers to the pages pinned.
3309
* Should be at least nr_pages long.
3310
*
3311
* Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3312
* get_user_pages_fast() for documentation on the function arguments, because
3313
* the arguments here are identical.
3314
*
3315
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3316
* see Documentation/core-api/pin_user_pages.rst for further details.
3317
*
3318
* Note that if a zero_page is amongst the returned pages, it will not have
3319
* pins in it and unpin_user_page() will not remove pins from it.
3320
*/
3321
int pin_user_pages_fast(unsigned long start, int nr_pages,
3322
unsigned int gup_flags, struct page **pages)
3323
{
3324
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3325
return -EINVAL;
3326
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3327
}
3328
EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3329
3330
/**
3331
* pin_user_pages_remote() - pin pages of a remote process
3332
*
3333
* @mm: mm_struct of target mm
3334
* @start: starting user address
3335
* @nr_pages: number of pages from start to pin
3336
* @gup_flags: flags modifying lookup behaviour
3337
* @pages: array that receives pointers to the pages pinned.
3338
* Should be at least nr_pages long.
3339
* @locked: pointer to lock flag indicating whether lock is held and
3340
* subsequently whether VM_FAULT_RETRY functionality can be
3341
* utilised. Lock must initially be held.
3342
*
3343
* Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3344
* get_user_pages_remote() for documentation on the function arguments, because
3345
* the arguments here are identical.
3346
*
3347
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3348
* see Documentation/core-api/pin_user_pages.rst for details.
3349
*
3350
* Note that if a zero_page is amongst the returned pages, it will not have
3351
* pins in it and unpin_user_page*() will not remove pins from it.
3352
*/
3353
long pin_user_pages_remote(struct mm_struct *mm,
3354
unsigned long start, unsigned long nr_pages,
3355
unsigned int gup_flags, struct page **pages,
3356
int *locked)
3357
{
3358
int local_locked = 1;
3359
3360
if (!is_valid_gup_args(pages, locked, &gup_flags,
3361
FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3362
return 0;
3363
return __gup_longterm_locked(mm, start, nr_pages, pages,
3364
locked ? locked : &local_locked,
3365
gup_flags);
3366
}
3367
EXPORT_SYMBOL(pin_user_pages_remote);
3368
3369
/**
3370
* pin_user_pages() - pin user pages in memory for use by other devices
3371
*
3372
* @start: starting user address
3373
* @nr_pages: number of pages from start to pin
3374
* @gup_flags: flags modifying lookup behaviour
3375
* @pages: array that receives pointers to the pages pinned.
3376
* Should be at least nr_pages long.
3377
*
3378
* Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3379
* FOLL_PIN is set.
3380
*
3381
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3382
* see Documentation/core-api/pin_user_pages.rst for details.
3383
*
3384
* Note that if a zero_page is amongst the returned pages, it will not have
3385
* pins in it and unpin_user_page*() will not remove pins from it.
3386
*/
3387
long pin_user_pages(unsigned long start, unsigned long nr_pages,
3388
unsigned int gup_flags, struct page **pages)
3389
{
3390
int locked = 1;
3391
3392
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3393
return 0;
3394
return __gup_longterm_locked(current->mm, start, nr_pages,
3395
pages, &locked, gup_flags);
3396
}
3397
EXPORT_SYMBOL(pin_user_pages);
3398
3399
/*
3400
* pin_user_pages_unlocked() is the FOLL_PIN variant of
3401
* get_user_pages_unlocked(). Behavior is the same, except that this one sets
3402
* FOLL_PIN and rejects FOLL_GET.
3403
*
3404
* Note that if a zero_page is amongst the returned pages, it will not have
3405
* pins in it and unpin_user_page*() will not remove pins from it.
3406
*/
3407
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3408
struct page **pages, unsigned int gup_flags)
3409
{
3410
int locked = 0;
3411
3412
if (!is_valid_gup_args(pages, NULL, &gup_flags,
3413
FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3414
return 0;
3415
3416
return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3417
&locked, gup_flags);
3418
}
3419
EXPORT_SYMBOL(pin_user_pages_unlocked);
3420
3421
/**
3422
* memfd_pin_folios() - pin folios associated with a memfd
3423
* @memfd: the memfd whose folios are to be pinned
3424
* @start: the first memfd offset
3425
* @end: the last memfd offset (inclusive)
3426
* @folios: array that receives pointers to the folios pinned
3427
* @max_folios: maximum number of entries in @folios
3428
* @offset: the offset into the first folio
3429
*
3430
* Attempt to pin folios associated with a memfd in the contiguous range
3431
* [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3432
* the folios can either be found in the page cache or need to be allocated
3433
* if necessary. Once the folios are located, they are all pinned via
3434
* FOLL_PIN and @offset is populatedwith the offset into the first folio.
3435
* And, eventually, these pinned folios must be released either using
3436
* unpin_folios() or unpin_folio().
3437
*
3438
* It must be noted that the folios may be pinned for an indefinite amount
3439
* of time. And, in most cases, the duration of time they may stay pinned
3440
* would be controlled by the userspace. This behavior is effectively the
3441
* same as using FOLL_LONGTERM with other GUP APIs.
3442
*
3443
* Returns number of folios pinned, which could be less than @max_folios
3444
* as it depends on the folio sizes that cover the range [start, end].
3445
* If no folios were pinned, it returns -errno.
3446
*/
3447
long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3448
struct folio **folios, unsigned int max_folios,
3449
pgoff_t *offset)
3450
{
3451
unsigned int flags, nr_folios, nr_found;
3452
unsigned int i, pgshift = PAGE_SHIFT;
3453
pgoff_t start_idx, end_idx;
3454
struct folio *folio = NULL;
3455
struct folio_batch fbatch;
3456
struct hstate *h;
3457
long ret = -EINVAL;
3458
3459
if (start < 0 || start > end || !max_folios)
3460
return -EINVAL;
3461
3462
if (!memfd)
3463
return -EINVAL;
3464
3465
if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3466
return -EINVAL;
3467
3468
if (end >= i_size_read(file_inode(memfd)))
3469
return -EINVAL;
3470
3471
if (is_file_hugepages(memfd)) {
3472
h = hstate_file(memfd);
3473
pgshift = huge_page_shift(h);
3474
}
3475
3476
flags = memalloc_pin_save();
3477
do {
3478
nr_folios = 0;
3479
start_idx = start >> pgshift;
3480
end_idx = end >> pgshift;
3481
if (is_file_hugepages(memfd)) {
3482
start_idx <<= huge_page_order(h);
3483
end_idx <<= huge_page_order(h);
3484
}
3485
3486
folio_batch_init(&fbatch);
3487
while (start_idx <= end_idx && nr_folios < max_folios) {
3488
/*
3489
* In most cases, we should be able to find the folios
3490
* in the page cache. If we cannot find them for some
3491
* reason, we try to allocate them and add them to the
3492
* page cache.
3493
*/
3494
nr_found = filemap_get_folios_contig(memfd->f_mapping,
3495
&start_idx,
3496
end_idx,
3497
&fbatch);
3498
if (folio) {
3499
folio_put(folio);
3500
folio = NULL;
3501
}
3502
3503
for (i = 0; i < nr_found; i++) {
3504
folio = fbatch.folios[i];
3505
3506
if (try_grab_folio(folio, 1, FOLL_PIN)) {
3507
folio_batch_release(&fbatch);
3508
ret = -EINVAL;
3509
goto err;
3510
}
3511
3512
if (nr_folios == 0)
3513
*offset = offset_in_folio(folio, start);
3514
3515
folios[nr_folios] = folio;
3516
if (++nr_folios == max_folios)
3517
break;
3518
}
3519
3520
folio = NULL;
3521
folio_batch_release(&fbatch);
3522
if (!nr_found) {
3523
folio = memfd_alloc_folio(memfd, start_idx);
3524
if (IS_ERR(folio)) {
3525
ret = PTR_ERR(folio);
3526
if (ret != -EEXIST)
3527
goto err;
3528
folio = NULL;
3529
}
3530
}
3531
}
3532
3533
ret = check_and_migrate_movable_folios(nr_folios, folios);
3534
} while (ret == -EAGAIN);
3535
3536
memalloc_pin_restore(flags);
3537
return ret ? ret : nr_folios;
3538
err:
3539
memalloc_pin_restore(flags);
3540
unpin_folios(folios, nr_folios);
3541
3542
return ret;
3543
}
3544
EXPORT_SYMBOL_GPL(memfd_pin_folios);
3545
3546
/**
3547
* folio_add_pins() - add pins to an already-pinned folio
3548
* @folio: the folio to add more pins to
3549
* @pins: number of pins to add
3550
*
3551
* Try to add more pins to an already-pinned folio. The semantics
3552
* of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3553
* be changed.
3554
*
3555
* This function is helpful when having obtained a pin on a large folio
3556
* using memfd_pin_folios(), but wanting to logically unpin parts
3557
* (e.g., individual pages) of the folio later, for example, using
3558
* unpin_user_page_range_dirty_lock().
3559
*
3560
* This is not the right interface to initially pin a folio.
3561
*/
3562
int folio_add_pins(struct folio *folio, unsigned int pins)
3563
{
3564
VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3565
3566
return try_grab_folio(folio, pins, FOLL_PIN);
3567
}
3568
EXPORT_SYMBOL_GPL(folio_add_pins);
3569
3570