Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/huge_memory.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2009 Red Hat, Inc.
4
*/
5
6
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8
#include <linux/mm.h>
9
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/numa_balancing.h>
12
#include <linux/highmem.h>
13
#include <linux/hugetlb.h>
14
#include <linux/mmu_notifier.h>
15
#include <linux/rmap.h>
16
#include <linux/swap.h>
17
#include <linux/shrinker.h>
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
20
#include <linux/backing-dev.h>
21
#include <linux/dax.h>
22
#include <linux/mm_types.h>
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38
#include <linux/memory-tiers.h>
39
#include <linux/compat.h>
40
#include <linux/pgalloc_tag.h>
41
#include <linux/pagewalk.h>
42
43
#include <asm/tlb.h>
44
#include <asm/pgalloc.h>
45
#include "internal.h"
46
#include "swap.h"
47
48
#define CREATE_TRACE_POINTS
49
#include <trace/events/thp.h>
50
51
/*
52
* By default, transparent hugepage support is disabled in order to avoid
53
* risking an increased memory footprint for applications that are not
54
* guaranteed to benefit from it. When transparent hugepage support is
55
* enabled, it is for all mappings, and khugepaged scans all mappings.
56
* Defrag is invoked by khugepaged hugepage allocations and by page faults
57
* for all hugepage allocations.
58
*/
59
unsigned long transparent_hugepage_flags __read_mostly =
60
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
62
#endif
63
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65
#endif
66
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69
70
static struct shrinker *deferred_split_shrinker;
71
static unsigned long deferred_split_count(struct shrinker *shrink,
72
struct shrink_control *sc);
73
static unsigned long deferred_split_scan(struct shrinker *shrink,
74
struct shrink_control *sc);
75
static bool split_underused_thp = true;
76
77
static atomic_t huge_zero_refcount;
78
struct folio *huge_zero_folio __read_mostly;
79
unsigned long huge_zero_pfn __read_mostly = ~0UL;
80
unsigned long huge_anon_orders_always __read_mostly;
81
unsigned long huge_anon_orders_madvise __read_mostly;
82
unsigned long huge_anon_orders_inherit __read_mostly;
83
static bool anon_orders_configured __initdata;
84
85
static inline bool file_thp_enabled(struct vm_area_struct *vma)
86
{
87
struct inode *inode;
88
89
if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90
return false;
91
92
if (!vma->vm_file)
93
return false;
94
95
inode = file_inode(vma->vm_file);
96
97
return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98
}
99
100
unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101
vm_flags_t vm_flags,
102
enum tva_type type,
103
unsigned long orders)
104
{
105
const bool smaps = type == TVA_SMAPS;
106
const bool in_pf = type == TVA_PAGEFAULT;
107
const bool forced_collapse = type == TVA_FORCED_COLLAPSE;
108
unsigned long supported_orders;
109
110
/* Check the intersection of requested and supported orders. */
111
if (vma_is_anonymous(vma))
112
supported_orders = THP_ORDERS_ALL_ANON;
113
else if (vma_is_special_huge(vma))
114
supported_orders = THP_ORDERS_ALL_SPECIAL;
115
else
116
supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117
118
orders &= supported_orders;
119
if (!orders)
120
return 0;
121
122
if (!vma->vm_mm) /* vdso */
123
return 0;
124
125
if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse))
126
return 0;
127
128
/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129
if (vma_is_dax(vma))
130
return in_pf ? orders : 0;
131
132
/*
133
* khugepaged special VMA and hugetlb VMA.
134
* Must be checked after dax since some dax mappings may have
135
* VM_MIXEDMAP set.
136
*/
137
if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138
return 0;
139
140
/*
141
* Check alignment for file vma and size for both file and anon vma by
142
* filtering out the unsuitable orders.
143
*
144
* Skip the check for page fault. Huge fault does the check in fault
145
* handlers.
146
*/
147
if (!in_pf) {
148
int order = highest_order(orders);
149
unsigned long addr;
150
151
while (orders) {
152
addr = vma->vm_end - (PAGE_SIZE << order);
153
if (thp_vma_suitable_order(vma, addr, order))
154
break;
155
order = next_order(&orders, order);
156
}
157
158
if (!orders)
159
return 0;
160
}
161
162
/*
163
* Enabled via shmem mount options or sysfs settings.
164
* Must be done before hugepage flags check since shmem has its
165
* own flags.
166
*/
167
if (!in_pf && shmem_file(vma->vm_file))
168
return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169
vma, vma->vm_pgoff, 0,
170
forced_collapse);
171
172
if (!vma_is_anonymous(vma)) {
173
/*
174
* Enforce THP collapse requirements as necessary. Anonymous vmas
175
* were already handled in thp_vma_allowable_orders().
176
*/
177
if (!forced_collapse &&
178
(!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179
!hugepage_global_always())))
180
return 0;
181
182
/*
183
* Trust that ->huge_fault() handlers know what they are doing
184
* in fault path.
185
*/
186
if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187
return orders;
188
/* Only regular file is valid in collapse path */
189
if (((!in_pf || smaps)) && file_thp_enabled(vma))
190
return orders;
191
return 0;
192
}
193
194
if (vma_is_temporary_stack(vma))
195
return 0;
196
197
/*
198
* THPeligible bit of smaps should show 1 for proper VMAs even
199
* though anon_vma is not initialized yet.
200
*
201
* Allow page fault since anon_vma may be not initialized until
202
* the first page fault.
203
*/
204
if (!vma->anon_vma)
205
return (smaps || in_pf) ? orders : 0;
206
207
return orders;
208
}
209
210
static bool get_huge_zero_folio(void)
211
{
212
struct folio *zero_folio;
213
retry:
214
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215
return true;
216
217
zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
218
HPAGE_PMD_ORDER);
219
if (!zero_folio) {
220
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
221
return false;
222
}
223
/* Ensure zero folio won't have large_rmappable flag set. */
224
folio_clear_large_rmappable(zero_folio);
225
preempt_disable();
226
if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
227
preempt_enable();
228
folio_put(zero_folio);
229
goto retry;
230
}
231
WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
232
233
/* We take additional reference here. It will be put back by shrinker */
234
atomic_set(&huge_zero_refcount, 2);
235
preempt_enable();
236
count_vm_event(THP_ZERO_PAGE_ALLOC);
237
return true;
238
}
239
240
static void put_huge_zero_folio(void)
241
{
242
/*
243
* Counter should never go to zero here. Only shrinker can put
244
* last reference.
245
*/
246
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
247
}
248
249
struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
250
{
251
if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
252
return huge_zero_folio;
253
254
if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
255
return READ_ONCE(huge_zero_folio);
256
257
if (!get_huge_zero_folio())
258
return NULL;
259
260
if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm))
261
put_huge_zero_folio();
262
263
return READ_ONCE(huge_zero_folio);
264
}
265
266
void mm_put_huge_zero_folio(struct mm_struct *mm)
267
{
268
if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
269
return;
270
271
if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
272
put_huge_zero_folio();
273
}
274
275
static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink,
276
struct shrink_control *sc)
277
{
278
/* we can free zero page only if last reference remains */
279
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
280
}
281
282
static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink,
283
struct shrink_control *sc)
284
{
285
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
286
struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
287
BUG_ON(zero_folio == NULL);
288
WRITE_ONCE(huge_zero_pfn, ~0UL);
289
folio_put(zero_folio);
290
return HPAGE_PMD_NR;
291
}
292
293
return 0;
294
}
295
296
static struct shrinker *huge_zero_folio_shrinker;
297
298
#ifdef CONFIG_SYSFS
299
static ssize_t enabled_show(struct kobject *kobj,
300
struct kobj_attribute *attr, char *buf)
301
{
302
const char *output;
303
304
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
305
output = "[always] madvise never";
306
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
307
&transparent_hugepage_flags))
308
output = "always [madvise] never";
309
else
310
output = "always madvise [never]";
311
312
return sysfs_emit(buf, "%s\n", output);
313
}
314
315
static ssize_t enabled_store(struct kobject *kobj,
316
struct kobj_attribute *attr,
317
const char *buf, size_t count)
318
{
319
ssize_t ret = count;
320
321
if (sysfs_streq(buf, "always")) {
322
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
323
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324
} else if (sysfs_streq(buf, "madvise")) {
325
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
326
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
327
} else if (sysfs_streq(buf, "never")) {
328
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
329
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
330
} else
331
ret = -EINVAL;
332
333
if (ret > 0) {
334
int err = start_stop_khugepaged();
335
if (err)
336
ret = err;
337
}
338
return ret;
339
}
340
341
static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
342
343
ssize_t single_hugepage_flag_show(struct kobject *kobj,
344
struct kobj_attribute *attr, char *buf,
345
enum transparent_hugepage_flag flag)
346
{
347
return sysfs_emit(buf, "%d\n",
348
!!test_bit(flag, &transparent_hugepage_flags));
349
}
350
351
ssize_t single_hugepage_flag_store(struct kobject *kobj,
352
struct kobj_attribute *attr,
353
const char *buf, size_t count,
354
enum transparent_hugepage_flag flag)
355
{
356
unsigned long value;
357
int ret;
358
359
ret = kstrtoul(buf, 10, &value);
360
if (ret < 0)
361
return ret;
362
if (value > 1)
363
return -EINVAL;
364
365
if (value)
366
set_bit(flag, &transparent_hugepage_flags);
367
else
368
clear_bit(flag, &transparent_hugepage_flags);
369
370
return count;
371
}
372
373
static ssize_t defrag_show(struct kobject *kobj,
374
struct kobj_attribute *attr, char *buf)
375
{
376
const char *output;
377
378
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
379
&transparent_hugepage_flags))
380
output = "[always] defer defer+madvise madvise never";
381
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
382
&transparent_hugepage_flags))
383
output = "always [defer] defer+madvise madvise never";
384
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
385
&transparent_hugepage_flags))
386
output = "always defer [defer+madvise] madvise never";
387
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
388
&transparent_hugepage_flags))
389
output = "always defer defer+madvise [madvise] never";
390
else
391
output = "always defer defer+madvise madvise [never]";
392
393
return sysfs_emit(buf, "%s\n", output);
394
}
395
396
static ssize_t defrag_store(struct kobject *kobj,
397
struct kobj_attribute *attr,
398
const char *buf, size_t count)
399
{
400
if (sysfs_streq(buf, "always")) {
401
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
402
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
403
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
405
} else if (sysfs_streq(buf, "defer+madvise")) {
406
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
408
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
410
} else if (sysfs_streq(buf, "defer")) {
411
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
413
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
414
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
415
} else if (sysfs_streq(buf, "madvise")) {
416
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420
} else if (sysfs_streq(buf, "never")) {
421
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
422
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
423
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
424
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
425
} else
426
return -EINVAL;
427
428
return count;
429
}
430
static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
431
432
static ssize_t use_zero_page_show(struct kobject *kobj,
433
struct kobj_attribute *attr, char *buf)
434
{
435
return single_hugepage_flag_show(kobj, attr, buf,
436
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
437
}
438
static ssize_t use_zero_page_store(struct kobject *kobj,
439
struct kobj_attribute *attr, const char *buf, size_t count)
440
{
441
return single_hugepage_flag_store(kobj, attr, buf, count,
442
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
443
}
444
static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
445
446
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
447
struct kobj_attribute *attr, char *buf)
448
{
449
return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
450
}
451
static struct kobj_attribute hpage_pmd_size_attr =
452
__ATTR_RO(hpage_pmd_size);
453
454
static ssize_t split_underused_thp_show(struct kobject *kobj,
455
struct kobj_attribute *attr, char *buf)
456
{
457
return sysfs_emit(buf, "%d\n", split_underused_thp);
458
}
459
460
static ssize_t split_underused_thp_store(struct kobject *kobj,
461
struct kobj_attribute *attr,
462
const char *buf, size_t count)
463
{
464
int err = kstrtobool(buf, &split_underused_thp);
465
466
if (err < 0)
467
return err;
468
469
return count;
470
}
471
472
static struct kobj_attribute split_underused_thp_attr = __ATTR(
473
shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
474
475
static struct attribute *hugepage_attr[] = {
476
&enabled_attr.attr,
477
&defrag_attr.attr,
478
&use_zero_page_attr.attr,
479
&hpage_pmd_size_attr.attr,
480
#ifdef CONFIG_SHMEM
481
&shmem_enabled_attr.attr,
482
#endif
483
&split_underused_thp_attr.attr,
484
NULL,
485
};
486
487
static const struct attribute_group hugepage_attr_group = {
488
.attrs = hugepage_attr,
489
};
490
491
static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
492
static void thpsize_release(struct kobject *kobj);
493
static DEFINE_SPINLOCK(huge_anon_orders_lock);
494
static LIST_HEAD(thpsize_list);
495
496
static ssize_t anon_enabled_show(struct kobject *kobj,
497
struct kobj_attribute *attr, char *buf)
498
{
499
int order = to_thpsize(kobj)->order;
500
const char *output;
501
502
if (test_bit(order, &huge_anon_orders_always))
503
output = "[always] inherit madvise never";
504
else if (test_bit(order, &huge_anon_orders_inherit))
505
output = "always [inherit] madvise never";
506
else if (test_bit(order, &huge_anon_orders_madvise))
507
output = "always inherit [madvise] never";
508
else
509
output = "always inherit madvise [never]";
510
511
return sysfs_emit(buf, "%s\n", output);
512
}
513
514
static ssize_t anon_enabled_store(struct kobject *kobj,
515
struct kobj_attribute *attr,
516
const char *buf, size_t count)
517
{
518
int order = to_thpsize(kobj)->order;
519
ssize_t ret = count;
520
521
if (sysfs_streq(buf, "always")) {
522
spin_lock(&huge_anon_orders_lock);
523
clear_bit(order, &huge_anon_orders_inherit);
524
clear_bit(order, &huge_anon_orders_madvise);
525
set_bit(order, &huge_anon_orders_always);
526
spin_unlock(&huge_anon_orders_lock);
527
} else if (sysfs_streq(buf, "inherit")) {
528
spin_lock(&huge_anon_orders_lock);
529
clear_bit(order, &huge_anon_orders_always);
530
clear_bit(order, &huge_anon_orders_madvise);
531
set_bit(order, &huge_anon_orders_inherit);
532
spin_unlock(&huge_anon_orders_lock);
533
} else if (sysfs_streq(buf, "madvise")) {
534
spin_lock(&huge_anon_orders_lock);
535
clear_bit(order, &huge_anon_orders_always);
536
clear_bit(order, &huge_anon_orders_inherit);
537
set_bit(order, &huge_anon_orders_madvise);
538
spin_unlock(&huge_anon_orders_lock);
539
} else if (sysfs_streq(buf, "never")) {
540
spin_lock(&huge_anon_orders_lock);
541
clear_bit(order, &huge_anon_orders_always);
542
clear_bit(order, &huge_anon_orders_inherit);
543
clear_bit(order, &huge_anon_orders_madvise);
544
spin_unlock(&huge_anon_orders_lock);
545
} else
546
ret = -EINVAL;
547
548
if (ret > 0) {
549
int err;
550
551
err = start_stop_khugepaged();
552
if (err)
553
ret = err;
554
}
555
return ret;
556
}
557
558
static struct kobj_attribute anon_enabled_attr =
559
__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
560
561
static struct attribute *anon_ctrl_attrs[] = {
562
&anon_enabled_attr.attr,
563
NULL,
564
};
565
566
static const struct attribute_group anon_ctrl_attr_grp = {
567
.attrs = anon_ctrl_attrs,
568
};
569
570
static struct attribute *file_ctrl_attrs[] = {
571
#ifdef CONFIG_SHMEM
572
&thpsize_shmem_enabled_attr.attr,
573
#endif
574
NULL,
575
};
576
577
static const struct attribute_group file_ctrl_attr_grp = {
578
.attrs = file_ctrl_attrs,
579
};
580
581
static struct attribute *any_ctrl_attrs[] = {
582
NULL,
583
};
584
585
static const struct attribute_group any_ctrl_attr_grp = {
586
.attrs = any_ctrl_attrs,
587
};
588
589
static const struct kobj_type thpsize_ktype = {
590
.release = &thpsize_release,
591
.sysfs_ops = &kobj_sysfs_ops,
592
};
593
594
DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
595
596
static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
597
{
598
unsigned long sum = 0;
599
int cpu;
600
601
for_each_possible_cpu(cpu) {
602
struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
603
604
sum += this->stats[order][item];
605
}
606
607
return sum;
608
}
609
610
#define DEFINE_MTHP_STAT_ATTR(_name, _index) \
611
static ssize_t _name##_show(struct kobject *kobj, \
612
struct kobj_attribute *attr, char *buf) \
613
{ \
614
int order = to_thpsize(kobj)->order; \
615
\
616
return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
617
} \
618
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
619
620
DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
621
DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
622
DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
623
DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
624
DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
625
DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
626
DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
627
DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
628
DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
629
#ifdef CONFIG_SHMEM
630
DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
631
DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
632
DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
633
#endif
634
DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
635
DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
636
DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
637
DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
638
DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
639
640
static struct attribute *anon_stats_attrs[] = {
641
&anon_fault_alloc_attr.attr,
642
&anon_fault_fallback_attr.attr,
643
&anon_fault_fallback_charge_attr.attr,
644
#ifndef CONFIG_SHMEM
645
&zswpout_attr.attr,
646
&swpin_attr.attr,
647
&swpin_fallback_attr.attr,
648
&swpin_fallback_charge_attr.attr,
649
&swpout_attr.attr,
650
&swpout_fallback_attr.attr,
651
#endif
652
&split_deferred_attr.attr,
653
&nr_anon_attr.attr,
654
&nr_anon_partially_mapped_attr.attr,
655
NULL,
656
};
657
658
static struct attribute_group anon_stats_attr_grp = {
659
.name = "stats",
660
.attrs = anon_stats_attrs,
661
};
662
663
static struct attribute *file_stats_attrs[] = {
664
#ifdef CONFIG_SHMEM
665
&shmem_alloc_attr.attr,
666
&shmem_fallback_attr.attr,
667
&shmem_fallback_charge_attr.attr,
668
#endif
669
NULL,
670
};
671
672
static struct attribute_group file_stats_attr_grp = {
673
.name = "stats",
674
.attrs = file_stats_attrs,
675
};
676
677
static struct attribute *any_stats_attrs[] = {
678
#ifdef CONFIG_SHMEM
679
&zswpout_attr.attr,
680
&swpin_attr.attr,
681
&swpin_fallback_attr.attr,
682
&swpin_fallback_charge_attr.attr,
683
&swpout_attr.attr,
684
&swpout_fallback_attr.attr,
685
#endif
686
&split_attr.attr,
687
&split_failed_attr.attr,
688
NULL,
689
};
690
691
static struct attribute_group any_stats_attr_grp = {
692
.name = "stats",
693
.attrs = any_stats_attrs,
694
};
695
696
static int sysfs_add_group(struct kobject *kobj,
697
const struct attribute_group *grp)
698
{
699
int ret = -ENOENT;
700
701
/*
702
* If the group is named, try to merge first, assuming the subdirectory
703
* was already created. This avoids the warning emitted by
704
* sysfs_create_group() if the directory already exists.
705
*/
706
if (grp->name)
707
ret = sysfs_merge_group(kobj, grp);
708
if (ret)
709
ret = sysfs_create_group(kobj, grp);
710
711
return ret;
712
}
713
714
static struct thpsize *thpsize_create(int order, struct kobject *parent)
715
{
716
unsigned long size = (PAGE_SIZE << order) / SZ_1K;
717
struct thpsize *thpsize;
718
int ret = -ENOMEM;
719
720
thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
721
if (!thpsize)
722
goto err;
723
724
thpsize->order = order;
725
726
ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
727
"hugepages-%lukB", size);
728
if (ret) {
729
kfree(thpsize);
730
goto err;
731
}
732
733
734
ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
735
if (ret)
736
goto err_put;
737
738
ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
739
if (ret)
740
goto err_put;
741
742
if (BIT(order) & THP_ORDERS_ALL_ANON) {
743
ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
744
if (ret)
745
goto err_put;
746
747
ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
748
if (ret)
749
goto err_put;
750
}
751
752
if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
753
ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
754
if (ret)
755
goto err_put;
756
757
ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
758
if (ret)
759
goto err_put;
760
}
761
762
return thpsize;
763
err_put:
764
kobject_put(&thpsize->kobj);
765
err:
766
return ERR_PTR(ret);
767
}
768
769
static void thpsize_release(struct kobject *kobj)
770
{
771
kfree(to_thpsize(kobj));
772
}
773
774
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
775
{
776
int err;
777
struct thpsize *thpsize;
778
unsigned long orders;
779
int order;
780
781
/*
782
* Default to setting PMD-sized THP to inherit the global setting and
783
* disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
784
* constant so we have to do this here.
785
*/
786
if (!anon_orders_configured)
787
huge_anon_orders_inherit = BIT(PMD_ORDER);
788
789
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
790
if (unlikely(!*hugepage_kobj)) {
791
pr_err("failed to create transparent hugepage kobject\n");
792
return -ENOMEM;
793
}
794
795
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
796
if (err) {
797
pr_err("failed to register transparent hugepage group\n");
798
goto delete_obj;
799
}
800
801
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
802
if (err) {
803
pr_err("failed to register transparent hugepage group\n");
804
goto remove_hp_group;
805
}
806
807
orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
808
order = highest_order(orders);
809
while (orders) {
810
thpsize = thpsize_create(order, *hugepage_kobj);
811
if (IS_ERR(thpsize)) {
812
pr_err("failed to create thpsize for order %d\n", order);
813
err = PTR_ERR(thpsize);
814
goto remove_all;
815
}
816
list_add(&thpsize->node, &thpsize_list);
817
order = next_order(&orders, order);
818
}
819
820
return 0;
821
822
remove_all:
823
hugepage_exit_sysfs(*hugepage_kobj);
824
return err;
825
remove_hp_group:
826
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
827
delete_obj:
828
kobject_put(*hugepage_kobj);
829
return err;
830
}
831
832
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
833
{
834
struct thpsize *thpsize, *tmp;
835
836
list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
837
list_del(&thpsize->node);
838
kobject_put(&thpsize->kobj);
839
}
840
841
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
842
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
843
kobject_put(hugepage_kobj);
844
}
845
#else
846
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
847
{
848
return 0;
849
}
850
851
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
852
{
853
}
854
#endif /* CONFIG_SYSFS */
855
856
static int __init thp_shrinker_init(void)
857
{
858
deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
859
SHRINKER_MEMCG_AWARE |
860
SHRINKER_NONSLAB,
861
"thp-deferred_split");
862
if (!deferred_split_shrinker)
863
return -ENOMEM;
864
865
deferred_split_shrinker->count_objects = deferred_split_count;
866
deferred_split_shrinker->scan_objects = deferred_split_scan;
867
shrinker_register(deferred_split_shrinker);
868
869
if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) {
870
/*
871
* Bump the reference of the huge_zero_folio and do not
872
* initialize the shrinker.
873
*
874
* huge_zero_folio will always be NULL on failure. We assume
875
* that get_huge_zero_folio() will most likely not fail as
876
* thp_shrinker_init() is invoked early on during boot.
877
*/
878
if (!get_huge_zero_folio())
879
pr_warn("Allocating persistent huge zero folio failed\n");
880
return 0;
881
}
882
883
huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero");
884
if (!huge_zero_folio_shrinker) {
885
shrinker_free(deferred_split_shrinker);
886
return -ENOMEM;
887
}
888
889
huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count;
890
huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan;
891
shrinker_register(huge_zero_folio_shrinker);
892
893
return 0;
894
}
895
896
static void __init thp_shrinker_exit(void)
897
{
898
shrinker_free(huge_zero_folio_shrinker);
899
shrinker_free(deferred_split_shrinker);
900
}
901
902
static int __init hugepage_init(void)
903
{
904
int err;
905
struct kobject *hugepage_kobj;
906
907
if (!has_transparent_hugepage()) {
908
transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
909
return -EINVAL;
910
}
911
912
/*
913
* hugepages can't be allocated by the buddy allocator
914
*/
915
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
916
917
err = hugepage_init_sysfs(&hugepage_kobj);
918
if (err)
919
goto err_sysfs;
920
921
err = khugepaged_init();
922
if (err)
923
goto err_slab;
924
925
err = thp_shrinker_init();
926
if (err)
927
goto err_shrinker;
928
929
/*
930
* By default disable transparent hugepages on smaller systems,
931
* where the extra memory used could hurt more than TLB overhead
932
* is likely to save. The admin can still enable it through /sys.
933
*/
934
if (totalram_pages() < MB_TO_PAGES(512)) {
935
transparent_hugepage_flags = 0;
936
return 0;
937
}
938
939
err = start_stop_khugepaged();
940
if (err)
941
goto err_khugepaged;
942
943
return 0;
944
err_khugepaged:
945
thp_shrinker_exit();
946
err_shrinker:
947
khugepaged_destroy();
948
err_slab:
949
hugepage_exit_sysfs(hugepage_kobj);
950
err_sysfs:
951
return err;
952
}
953
subsys_initcall(hugepage_init);
954
955
static int __init setup_transparent_hugepage(char *str)
956
{
957
int ret = 0;
958
if (!str)
959
goto out;
960
if (!strcmp(str, "always")) {
961
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
962
&transparent_hugepage_flags);
963
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
964
&transparent_hugepage_flags);
965
ret = 1;
966
} else if (!strcmp(str, "madvise")) {
967
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
968
&transparent_hugepage_flags);
969
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
970
&transparent_hugepage_flags);
971
ret = 1;
972
} else if (!strcmp(str, "never")) {
973
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
974
&transparent_hugepage_flags);
975
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
976
&transparent_hugepage_flags);
977
ret = 1;
978
}
979
out:
980
if (!ret)
981
pr_warn("transparent_hugepage= cannot parse, ignored\n");
982
return ret;
983
}
984
__setup("transparent_hugepage=", setup_transparent_hugepage);
985
986
static char str_dup[PAGE_SIZE] __initdata;
987
static int __init setup_thp_anon(char *str)
988
{
989
char *token, *range, *policy, *subtoken;
990
unsigned long always, inherit, madvise;
991
char *start_size, *end_size;
992
int start, end, nr;
993
char *p;
994
995
if (!str || strlen(str) + 1 > PAGE_SIZE)
996
goto err;
997
strscpy(str_dup, str);
998
999
always = huge_anon_orders_always;
1000
madvise = huge_anon_orders_madvise;
1001
inherit = huge_anon_orders_inherit;
1002
p = str_dup;
1003
while ((token = strsep(&p, ";")) != NULL) {
1004
range = strsep(&token, ":");
1005
policy = token;
1006
1007
if (!policy)
1008
goto err;
1009
1010
while ((subtoken = strsep(&range, ",")) != NULL) {
1011
if (strchr(subtoken, '-')) {
1012
start_size = strsep(&subtoken, "-");
1013
end_size = subtoken;
1014
1015
start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
1016
end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
1017
} else {
1018
start_size = end_size = subtoken;
1019
start = end = get_order_from_str(subtoken,
1020
THP_ORDERS_ALL_ANON);
1021
}
1022
1023
if (start == -EINVAL) {
1024
pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1025
goto err;
1026
}
1027
1028
if (end == -EINVAL) {
1029
pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1030
goto err;
1031
}
1032
1033
if (start < 0 || end < 0 || start > end)
1034
goto err;
1035
1036
nr = end - start + 1;
1037
if (!strcmp(policy, "always")) {
1038
bitmap_set(&always, start, nr);
1039
bitmap_clear(&inherit, start, nr);
1040
bitmap_clear(&madvise, start, nr);
1041
} else if (!strcmp(policy, "madvise")) {
1042
bitmap_set(&madvise, start, nr);
1043
bitmap_clear(&inherit, start, nr);
1044
bitmap_clear(&always, start, nr);
1045
} else if (!strcmp(policy, "inherit")) {
1046
bitmap_set(&inherit, start, nr);
1047
bitmap_clear(&madvise, start, nr);
1048
bitmap_clear(&always, start, nr);
1049
} else if (!strcmp(policy, "never")) {
1050
bitmap_clear(&inherit, start, nr);
1051
bitmap_clear(&madvise, start, nr);
1052
bitmap_clear(&always, start, nr);
1053
} else {
1054
pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1055
goto err;
1056
}
1057
}
1058
}
1059
1060
huge_anon_orders_always = always;
1061
huge_anon_orders_madvise = madvise;
1062
huge_anon_orders_inherit = inherit;
1063
anon_orders_configured = true;
1064
return 1;
1065
1066
err:
1067
pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1068
return 0;
1069
}
1070
__setup("thp_anon=", setup_thp_anon);
1071
1072
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1073
{
1074
if (likely(vma->vm_flags & VM_WRITE))
1075
pmd = pmd_mkwrite(pmd, vma);
1076
return pmd;
1077
}
1078
1079
#ifdef CONFIG_MEMCG
1080
static inline
1081
struct deferred_split *get_deferred_split_queue(struct folio *folio)
1082
{
1083
struct mem_cgroup *memcg = folio_memcg(folio);
1084
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1085
1086
if (memcg)
1087
return &memcg->deferred_split_queue;
1088
else
1089
return &pgdat->deferred_split_queue;
1090
}
1091
#else
1092
static inline
1093
struct deferred_split *get_deferred_split_queue(struct folio *folio)
1094
{
1095
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1096
1097
return &pgdat->deferred_split_queue;
1098
}
1099
#endif
1100
1101
static inline bool is_transparent_hugepage(const struct folio *folio)
1102
{
1103
if (!folio_test_large(folio))
1104
return false;
1105
1106
return is_huge_zero_folio(folio) ||
1107
folio_test_large_rmappable(folio);
1108
}
1109
1110
static unsigned long __thp_get_unmapped_area(struct file *filp,
1111
unsigned long addr, unsigned long len,
1112
loff_t off, unsigned long flags, unsigned long size,
1113
vm_flags_t vm_flags)
1114
{
1115
loff_t off_end = off + len;
1116
loff_t off_align = round_up(off, size);
1117
unsigned long len_pad, ret, off_sub;
1118
1119
if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1120
return 0;
1121
1122
if (off_end <= off_align || (off_end - off_align) < size)
1123
return 0;
1124
1125
len_pad = len + size;
1126
if (len_pad < len || (off + len_pad) < off)
1127
return 0;
1128
1129
ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1130
off >> PAGE_SHIFT, flags, vm_flags);
1131
1132
/*
1133
* The failure might be due to length padding. The caller will retry
1134
* without the padding.
1135
*/
1136
if (IS_ERR_VALUE(ret))
1137
return 0;
1138
1139
/*
1140
* Do not try to align to THP boundary if allocation at the address
1141
* hint succeeds.
1142
*/
1143
if (ret == addr)
1144
return addr;
1145
1146
off_sub = (off - ret) & (size - 1);
1147
1148
if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub)
1149
return ret + size;
1150
1151
ret += off_sub;
1152
return ret;
1153
}
1154
1155
unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1156
unsigned long len, unsigned long pgoff, unsigned long flags,
1157
vm_flags_t vm_flags)
1158
{
1159
unsigned long ret;
1160
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1161
1162
ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1163
if (ret)
1164
return ret;
1165
1166
return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1167
vm_flags);
1168
}
1169
1170
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1171
unsigned long len, unsigned long pgoff, unsigned long flags)
1172
{
1173
return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1174
}
1175
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1176
1177
static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1178
unsigned long addr)
1179
{
1180
gfp_t gfp = vma_thp_gfp_mask(vma);
1181
const int order = HPAGE_PMD_ORDER;
1182
struct folio *folio;
1183
1184
folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1185
1186
if (unlikely(!folio)) {
1187
count_vm_event(THP_FAULT_FALLBACK);
1188
count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1189
return NULL;
1190
}
1191
1192
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1193
if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1194
folio_put(folio);
1195
count_vm_event(THP_FAULT_FALLBACK);
1196
count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1197
count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1198
count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1199
return NULL;
1200
}
1201
folio_throttle_swaprate(folio, gfp);
1202
1203
/*
1204
* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1205
* or user folios require special handling, folio_zero_user() is used to
1206
* make sure that the page corresponding to the faulting address will be
1207
* hot in the cache after zeroing.
1208
*/
1209
if (user_alloc_needs_zeroing())
1210
folio_zero_user(folio, addr);
1211
/*
1212
* The memory barrier inside __folio_mark_uptodate makes sure that
1213
* folio_zero_user writes become visible before the set_pmd_at()
1214
* write.
1215
*/
1216
__folio_mark_uptodate(folio);
1217
return folio;
1218
}
1219
1220
static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1221
struct vm_area_struct *vma, unsigned long haddr)
1222
{
1223
pmd_t entry;
1224
1225
entry = folio_mk_pmd(folio, vma->vm_page_prot);
1226
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1227
folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1228
folio_add_lru_vma(folio, vma);
1229
set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1230
update_mmu_cache_pmd(vma, haddr, pmd);
1231
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1232
count_vm_event(THP_FAULT_ALLOC);
1233
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1234
count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1235
}
1236
1237
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1238
{
1239
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1240
struct vm_area_struct *vma = vmf->vma;
1241
struct folio *folio;
1242
pgtable_t pgtable;
1243
vm_fault_t ret = 0;
1244
1245
folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1246
if (unlikely(!folio))
1247
return VM_FAULT_FALLBACK;
1248
1249
pgtable = pte_alloc_one(vma->vm_mm);
1250
if (unlikely(!pgtable)) {
1251
ret = VM_FAULT_OOM;
1252
goto release;
1253
}
1254
1255
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1256
if (unlikely(!pmd_none(*vmf->pmd))) {
1257
goto unlock_release;
1258
} else {
1259
ret = check_stable_address_space(vma->vm_mm);
1260
if (ret)
1261
goto unlock_release;
1262
1263
/* Deliver the page fault to userland */
1264
if (userfaultfd_missing(vma)) {
1265
spin_unlock(vmf->ptl);
1266
folio_put(folio);
1267
pte_free(vma->vm_mm, pgtable);
1268
ret = handle_userfault(vmf, VM_UFFD_MISSING);
1269
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1270
return ret;
1271
}
1272
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1273
map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1274
mm_inc_nr_ptes(vma->vm_mm);
1275
deferred_split_folio(folio, false);
1276
spin_unlock(vmf->ptl);
1277
}
1278
1279
return 0;
1280
unlock_release:
1281
spin_unlock(vmf->ptl);
1282
release:
1283
if (pgtable)
1284
pte_free(vma->vm_mm, pgtable);
1285
folio_put(folio);
1286
return ret;
1287
1288
}
1289
1290
/*
1291
* always: directly stall for all thp allocations
1292
* defer: wake kswapd and fail if not immediately available
1293
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1294
* fail if not immediately available
1295
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1296
* available
1297
* never: never stall for any thp allocation
1298
*/
1299
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1300
{
1301
const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1302
1303
/* Always do synchronous compaction */
1304
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1305
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1306
1307
/* Kick kcompactd and fail quickly */
1308
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1309
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1310
1311
/* Synchronous compaction if madvised, otherwise kick kcompactd */
1312
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1313
return GFP_TRANSHUGE_LIGHT |
1314
(vma_madvised ? __GFP_DIRECT_RECLAIM :
1315
__GFP_KSWAPD_RECLAIM);
1316
1317
/* Only do synchronous compaction if madvised */
1318
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1319
return GFP_TRANSHUGE_LIGHT |
1320
(vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1321
1322
return GFP_TRANSHUGE_LIGHT;
1323
}
1324
1325
/* Caller must hold page table lock. */
1326
static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1327
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1328
struct folio *zero_folio)
1329
{
1330
pmd_t entry;
1331
entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1332
entry = pmd_mkspecial(entry);
1333
pgtable_trans_huge_deposit(mm, pmd, pgtable);
1334
set_pmd_at(mm, haddr, pmd, entry);
1335
mm_inc_nr_ptes(mm);
1336
}
1337
1338
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1339
{
1340
struct vm_area_struct *vma = vmf->vma;
1341
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1342
vm_fault_t ret;
1343
1344
if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1345
return VM_FAULT_FALLBACK;
1346
ret = vmf_anon_prepare(vmf);
1347
if (ret)
1348
return ret;
1349
khugepaged_enter_vma(vma, vma->vm_flags);
1350
1351
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1352
!mm_forbids_zeropage(vma->vm_mm) &&
1353
transparent_hugepage_use_zero_page()) {
1354
pgtable_t pgtable;
1355
struct folio *zero_folio;
1356
vm_fault_t ret;
1357
1358
pgtable = pte_alloc_one(vma->vm_mm);
1359
if (unlikely(!pgtable))
1360
return VM_FAULT_OOM;
1361
zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1362
if (unlikely(!zero_folio)) {
1363
pte_free(vma->vm_mm, pgtable);
1364
count_vm_event(THP_FAULT_FALLBACK);
1365
return VM_FAULT_FALLBACK;
1366
}
1367
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1368
ret = 0;
1369
if (pmd_none(*vmf->pmd)) {
1370
ret = check_stable_address_space(vma->vm_mm);
1371
if (ret) {
1372
spin_unlock(vmf->ptl);
1373
pte_free(vma->vm_mm, pgtable);
1374
} else if (userfaultfd_missing(vma)) {
1375
spin_unlock(vmf->ptl);
1376
pte_free(vma->vm_mm, pgtable);
1377
ret = handle_userfault(vmf, VM_UFFD_MISSING);
1378
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1379
} else {
1380
set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1381
haddr, vmf->pmd, zero_folio);
1382
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1383
spin_unlock(vmf->ptl);
1384
}
1385
} else {
1386
spin_unlock(vmf->ptl);
1387
pte_free(vma->vm_mm, pgtable);
1388
}
1389
return ret;
1390
}
1391
1392
return __do_huge_pmd_anonymous_page(vmf);
1393
}
1394
1395
struct folio_or_pfn {
1396
union {
1397
struct folio *folio;
1398
unsigned long pfn;
1399
};
1400
bool is_folio;
1401
};
1402
1403
static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1404
pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1405
bool write)
1406
{
1407
struct mm_struct *mm = vma->vm_mm;
1408
pgtable_t pgtable = NULL;
1409
spinlock_t *ptl;
1410
pmd_t entry;
1411
1412
if (addr < vma->vm_start || addr >= vma->vm_end)
1413
return VM_FAULT_SIGBUS;
1414
1415
if (arch_needs_pgtable_deposit()) {
1416
pgtable = pte_alloc_one(vma->vm_mm);
1417
if (!pgtable)
1418
return VM_FAULT_OOM;
1419
}
1420
1421
ptl = pmd_lock(mm, pmd);
1422
if (!pmd_none(*pmd)) {
1423
const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1424
fop.pfn;
1425
1426
if (write) {
1427
if (pmd_pfn(*pmd) != pfn) {
1428
WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1429
goto out_unlock;
1430
}
1431
entry = pmd_mkyoung(*pmd);
1432
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1433
if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1434
update_mmu_cache_pmd(vma, addr, pmd);
1435
}
1436
goto out_unlock;
1437
}
1438
1439
if (fop.is_folio) {
1440
entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1441
1442
if (is_huge_zero_folio(fop.folio)) {
1443
entry = pmd_mkspecial(entry);
1444
} else {
1445
folio_get(fop.folio);
1446
folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1447
add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1448
}
1449
} else {
1450
entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1451
entry = pmd_mkspecial(entry);
1452
}
1453
if (write) {
1454
entry = pmd_mkyoung(pmd_mkdirty(entry));
1455
entry = maybe_pmd_mkwrite(entry, vma);
1456
}
1457
1458
if (pgtable) {
1459
pgtable_trans_huge_deposit(mm, pmd, pgtable);
1460
mm_inc_nr_ptes(mm);
1461
pgtable = NULL;
1462
}
1463
1464
set_pmd_at(mm, addr, pmd, entry);
1465
update_mmu_cache_pmd(vma, addr, pmd);
1466
1467
out_unlock:
1468
spin_unlock(ptl);
1469
if (pgtable)
1470
pte_free(mm, pgtable);
1471
return VM_FAULT_NOPAGE;
1472
}
1473
1474
/**
1475
* vmf_insert_pfn_pmd - insert a pmd size pfn
1476
* @vmf: Structure describing the fault
1477
* @pfn: pfn to insert
1478
* @write: whether it's a write fault
1479
*
1480
* Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1481
*
1482
* Return: vm_fault_t value.
1483
*/
1484
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1485
bool write)
1486
{
1487
unsigned long addr = vmf->address & PMD_MASK;
1488
struct vm_area_struct *vma = vmf->vma;
1489
pgprot_t pgprot = vma->vm_page_prot;
1490
struct folio_or_pfn fop = {
1491
.pfn = pfn,
1492
};
1493
1494
/*
1495
* If we had pmd_special, we could avoid all these restrictions,
1496
* but we need to be consistent with PTEs and architectures that
1497
* can't support a 'special' bit.
1498
*/
1499
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1500
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1501
(VM_PFNMAP|VM_MIXEDMAP));
1502
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1503
1504
pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1505
1506
return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write);
1507
}
1508
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1509
1510
vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1511
bool write)
1512
{
1513
struct vm_area_struct *vma = vmf->vma;
1514
unsigned long addr = vmf->address & PMD_MASK;
1515
struct folio_or_pfn fop = {
1516
.folio = folio,
1517
.is_folio = true,
1518
};
1519
1520
if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1521
return VM_FAULT_SIGBUS;
1522
1523
return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write);
1524
}
1525
EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1526
1527
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1528
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1529
{
1530
if (likely(vma->vm_flags & VM_WRITE))
1531
pud = pud_mkwrite(pud);
1532
return pud;
1533
}
1534
1535
static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr,
1536
pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1537
{
1538
struct mm_struct *mm = vma->vm_mm;
1539
spinlock_t *ptl;
1540
pud_t entry;
1541
1542
if (addr < vma->vm_start || addr >= vma->vm_end)
1543
return VM_FAULT_SIGBUS;
1544
1545
ptl = pud_lock(mm, pud);
1546
if (!pud_none(*pud)) {
1547
const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1548
fop.pfn;
1549
1550
if (write) {
1551
if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1552
goto out_unlock;
1553
entry = pud_mkyoung(*pud);
1554
entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1555
if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1556
update_mmu_cache_pud(vma, addr, pud);
1557
}
1558
goto out_unlock;
1559
}
1560
1561
if (fop.is_folio) {
1562
entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1563
1564
folio_get(fop.folio);
1565
folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1566
add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1567
} else {
1568
entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1569
entry = pud_mkspecial(entry);
1570
}
1571
if (write) {
1572
entry = pud_mkyoung(pud_mkdirty(entry));
1573
entry = maybe_pud_mkwrite(entry, vma);
1574
}
1575
set_pud_at(mm, addr, pud, entry);
1576
update_mmu_cache_pud(vma, addr, pud);
1577
out_unlock:
1578
spin_unlock(ptl);
1579
return VM_FAULT_NOPAGE;
1580
}
1581
1582
/**
1583
* vmf_insert_pfn_pud - insert a pud size pfn
1584
* @vmf: Structure describing the fault
1585
* @pfn: pfn to insert
1586
* @write: whether it's a write fault
1587
*
1588
* Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1589
*
1590
* Return: vm_fault_t value.
1591
*/
1592
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1593
bool write)
1594
{
1595
unsigned long addr = vmf->address & PUD_MASK;
1596
struct vm_area_struct *vma = vmf->vma;
1597
pgprot_t pgprot = vma->vm_page_prot;
1598
struct folio_or_pfn fop = {
1599
.pfn = pfn,
1600
};
1601
1602
/*
1603
* If we had pud_special, we could avoid all these restrictions,
1604
* but we need to be consistent with PTEs and architectures that
1605
* can't support a 'special' bit.
1606
*/
1607
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1608
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1609
(VM_PFNMAP|VM_MIXEDMAP));
1610
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1611
1612
pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1613
1614
return insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1615
}
1616
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1617
1618
/**
1619
* vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1620
* @vmf: Structure describing the fault
1621
* @folio: folio to insert
1622
* @write: whether it's a write fault
1623
*
1624
* Return: vm_fault_t value.
1625
*/
1626
vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1627
bool write)
1628
{
1629
struct vm_area_struct *vma = vmf->vma;
1630
unsigned long addr = vmf->address & PUD_MASK;
1631
struct folio_or_pfn fop = {
1632
.folio = folio,
1633
.is_folio = true,
1634
};
1635
1636
if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1637
return VM_FAULT_SIGBUS;
1638
1639
return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1640
}
1641
EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1642
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1643
1644
void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1645
pmd_t *pmd, bool write)
1646
{
1647
pmd_t _pmd;
1648
1649
_pmd = pmd_mkyoung(*pmd);
1650
if (write)
1651
_pmd = pmd_mkdirty(_pmd);
1652
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1653
pmd, _pmd, write))
1654
update_mmu_cache_pmd(vma, addr, pmd);
1655
}
1656
1657
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1658
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1659
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1660
{
1661
spinlock_t *dst_ptl, *src_ptl;
1662
struct page *src_page;
1663
struct folio *src_folio;
1664
pmd_t pmd;
1665
pgtable_t pgtable = NULL;
1666
int ret = -ENOMEM;
1667
1668
pmd = pmdp_get_lockless(src_pmd);
1669
if (unlikely(pmd_present(pmd) && pmd_special(pmd) &&
1670
!is_huge_zero_pmd(pmd))) {
1671
dst_ptl = pmd_lock(dst_mm, dst_pmd);
1672
src_ptl = pmd_lockptr(src_mm, src_pmd);
1673
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1674
/*
1675
* No need to recheck the pmd, it can't change with write
1676
* mmap lock held here.
1677
*
1678
* Meanwhile, making sure it's not a CoW VMA with writable
1679
* mapping, otherwise it means either the anon page wrongly
1680
* applied special bit, or we made the PRIVATE mapping be
1681
* able to wrongly write to the backend MMIO.
1682
*/
1683
VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1684
goto set_pmd;
1685
}
1686
1687
/* Skip if can be re-fill on fault */
1688
if (!vma_is_anonymous(dst_vma))
1689
return 0;
1690
1691
pgtable = pte_alloc_one(dst_mm);
1692
if (unlikely(!pgtable))
1693
goto out;
1694
1695
dst_ptl = pmd_lock(dst_mm, dst_pmd);
1696
src_ptl = pmd_lockptr(src_mm, src_pmd);
1697
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1698
1699
ret = -EAGAIN;
1700
pmd = *src_pmd;
1701
1702
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1703
if (unlikely(is_swap_pmd(pmd))) {
1704
swp_entry_t entry = pmd_to_swp_entry(pmd);
1705
1706
VM_BUG_ON(!is_pmd_migration_entry(pmd));
1707
if (!is_readable_migration_entry(entry)) {
1708
entry = make_readable_migration_entry(
1709
swp_offset(entry));
1710
pmd = swp_entry_to_pmd(entry);
1711
if (pmd_swp_soft_dirty(*src_pmd))
1712
pmd = pmd_swp_mksoft_dirty(pmd);
1713
if (pmd_swp_uffd_wp(*src_pmd))
1714
pmd = pmd_swp_mkuffd_wp(pmd);
1715
set_pmd_at(src_mm, addr, src_pmd, pmd);
1716
}
1717
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1718
mm_inc_nr_ptes(dst_mm);
1719
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1720
if (!userfaultfd_wp(dst_vma))
1721
pmd = pmd_swp_clear_uffd_wp(pmd);
1722
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1723
ret = 0;
1724
goto out_unlock;
1725
}
1726
#endif
1727
1728
if (unlikely(!pmd_trans_huge(pmd))) {
1729
pte_free(dst_mm, pgtable);
1730
goto out_unlock;
1731
}
1732
/*
1733
* When page table lock is held, the huge zero pmd should not be
1734
* under splitting since we don't split the page itself, only pmd to
1735
* a page table.
1736
*/
1737
if (is_huge_zero_pmd(pmd)) {
1738
/*
1739
* mm_get_huge_zero_folio() will never allocate a new
1740
* folio here, since we already have a zero page to
1741
* copy. It just takes a reference.
1742
*/
1743
mm_get_huge_zero_folio(dst_mm);
1744
goto out_zero_page;
1745
}
1746
1747
src_page = pmd_page(pmd);
1748
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1749
src_folio = page_folio(src_page);
1750
1751
folio_get(src_folio);
1752
if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1753
/* Page maybe pinned: split and retry the fault on PTEs. */
1754
folio_put(src_folio);
1755
pte_free(dst_mm, pgtable);
1756
spin_unlock(src_ptl);
1757
spin_unlock(dst_ptl);
1758
__split_huge_pmd(src_vma, src_pmd, addr, false);
1759
return -EAGAIN;
1760
}
1761
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1762
out_zero_page:
1763
mm_inc_nr_ptes(dst_mm);
1764
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1765
pmdp_set_wrprotect(src_mm, addr, src_pmd);
1766
if (!userfaultfd_wp(dst_vma))
1767
pmd = pmd_clear_uffd_wp(pmd);
1768
pmd = pmd_wrprotect(pmd);
1769
set_pmd:
1770
pmd = pmd_mkold(pmd);
1771
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1772
1773
ret = 0;
1774
out_unlock:
1775
spin_unlock(src_ptl);
1776
spin_unlock(dst_ptl);
1777
out:
1778
return ret;
1779
}
1780
1781
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1782
void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1783
pud_t *pud, bool write)
1784
{
1785
pud_t _pud;
1786
1787
_pud = pud_mkyoung(*pud);
1788
if (write)
1789
_pud = pud_mkdirty(_pud);
1790
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1791
pud, _pud, write))
1792
update_mmu_cache_pud(vma, addr, pud);
1793
}
1794
1795
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1796
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1797
struct vm_area_struct *vma)
1798
{
1799
spinlock_t *dst_ptl, *src_ptl;
1800
pud_t pud;
1801
int ret;
1802
1803
dst_ptl = pud_lock(dst_mm, dst_pud);
1804
src_ptl = pud_lockptr(src_mm, src_pud);
1805
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1806
1807
ret = -EAGAIN;
1808
pud = *src_pud;
1809
if (unlikely(!pud_trans_huge(pud)))
1810
goto out_unlock;
1811
1812
/*
1813
* TODO: once we support anonymous pages, use
1814
* folio_try_dup_anon_rmap_*() and split if duplicating fails.
1815
*/
1816
if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1817
pudp_set_wrprotect(src_mm, addr, src_pud);
1818
pud = pud_wrprotect(pud);
1819
}
1820
pud = pud_mkold(pud);
1821
set_pud_at(dst_mm, addr, dst_pud, pud);
1822
1823
ret = 0;
1824
out_unlock:
1825
spin_unlock(src_ptl);
1826
spin_unlock(dst_ptl);
1827
return ret;
1828
}
1829
1830
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1831
{
1832
bool write = vmf->flags & FAULT_FLAG_WRITE;
1833
1834
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1835
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1836
goto unlock;
1837
1838
touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1839
unlock:
1840
spin_unlock(vmf->ptl);
1841
}
1842
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1843
1844
void huge_pmd_set_accessed(struct vm_fault *vmf)
1845
{
1846
bool write = vmf->flags & FAULT_FLAG_WRITE;
1847
1848
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1849
if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1850
goto unlock;
1851
1852
touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1853
1854
unlock:
1855
spin_unlock(vmf->ptl);
1856
}
1857
1858
static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1859
{
1860
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1861
struct vm_area_struct *vma = vmf->vma;
1862
struct mmu_notifier_range range;
1863
struct folio *folio;
1864
vm_fault_t ret = 0;
1865
1866
folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1867
if (unlikely(!folio))
1868
return VM_FAULT_FALLBACK;
1869
1870
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1871
haddr + HPAGE_PMD_SIZE);
1872
mmu_notifier_invalidate_range_start(&range);
1873
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1874
if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1875
goto release;
1876
ret = check_stable_address_space(vma->vm_mm);
1877
if (ret)
1878
goto release;
1879
(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1880
map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1881
goto unlock;
1882
release:
1883
folio_put(folio);
1884
unlock:
1885
spin_unlock(vmf->ptl);
1886
mmu_notifier_invalidate_range_end(&range);
1887
return ret;
1888
}
1889
1890
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1891
{
1892
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1893
struct vm_area_struct *vma = vmf->vma;
1894
struct folio *folio;
1895
struct page *page;
1896
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1897
pmd_t orig_pmd = vmf->orig_pmd;
1898
1899
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1900
VM_BUG_ON_VMA(!vma->anon_vma, vma);
1901
1902
if (is_huge_zero_pmd(orig_pmd)) {
1903
vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1904
1905
if (!(ret & VM_FAULT_FALLBACK))
1906
return ret;
1907
1908
/* Fallback to splitting PMD if THP cannot be allocated */
1909
goto fallback;
1910
}
1911
1912
spin_lock(vmf->ptl);
1913
1914
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1915
spin_unlock(vmf->ptl);
1916
return 0;
1917
}
1918
1919
page = pmd_page(orig_pmd);
1920
folio = page_folio(page);
1921
VM_BUG_ON_PAGE(!PageHead(page), page);
1922
1923
/* Early check when only holding the PT lock. */
1924
if (PageAnonExclusive(page))
1925
goto reuse;
1926
1927
if (!folio_trylock(folio)) {
1928
folio_get(folio);
1929
spin_unlock(vmf->ptl);
1930
folio_lock(folio);
1931
spin_lock(vmf->ptl);
1932
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1933
spin_unlock(vmf->ptl);
1934
folio_unlock(folio);
1935
folio_put(folio);
1936
return 0;
1937
}
1938
folio_put(folio);
1939
}
1940
1941
/* Recheck after temporarily dropping the PT lock. */
1942
if (PageAnonExclusive(page)) {
1943
folio_unlock(folio);
1944
goto reuse;
1945
}
1946
1947
/*
1948
* See do_wp_page(): we can only reuse the folio exclusively if
1949
* there are no additional references. Note that we always drain
1950
* the LRU cache immediately after adding a THP.
1951
*/
1952
if (folio_ref_count(folio) >
1953
1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1954
goto unlock_fallback;
1955
if (folio_test_swapcache(folio))
1956
folio_free_swap(folio);
1957
if (folio_ref_count(folio) == 1) {
1958
pmd_t entry;
1959
1960
folio_move_anon_rmap(folio, vma);
1961
SetPageAnonExclusive(page);
1962
folio_unlock(folio);
1963
reuse:
1964
if (unlikely(unshare)) {
1965
spin_unlock(vmf->ptl);
1966
return 0;
1967
}
1968
entry = pmd_mkyoung(orig_pmd);
1969
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1970
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1971
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1972
spin_unlock(vmf->ptl);
1973
return 0;
1974
}
1975
1976
unlock_fallback:
1977
folio_unlock(folio);
1978
spin_unlock(vmf->ptl);
1979
fallback:
1980
__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
1981
return VM_FAULT_FALLBACK;
1982
}
1983
1984
static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1985
unsigned long addr, pmd_t pmd)
1986
{
1987
struct page *page;
1988
1989
if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1990
return false;
1991
1992
/* Don't touch entries that are not even readable (NUMA hinting). */
1993
if (pmd_protnone(pmd))
1994
return false;
1995
1996
/* Do we need write faults for softdirty tracking? */
1997
if (pmd_needs_soft_dirty_wp(vma, pmd))
1998
return false;
1999
2000
/* Do we need write faults for uffd-wp tracking? */
2001
if (userfaultfd_huge_pmd_wp(vma, pmd))
2002
return false;
2003
2004
if (!(vma->vm_flags & VM_SHARED)) {
2005
/* See can_change_pte_writable(). */
2006
page = vm_normal_page_pmd(vma, addr, pmd);
2007
return page && PageAnon(page) && PageAnonExclusive(page);
2008
}
2009
2010
/* See can_change_pte_writable(). */
2011
return pmd_dirty(pmd);
2012
}
2013
2014
/* NUMA hinting page fault entry point for trans huge pmds */
2015
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2016
{
2017
struct vm_area_struct *vma = vmf->vma;
2018
struct folio *folio;
2019
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2020
int nid = NUMA_NO_NODE;
2021
int target_nid, last_cpupid;
2022
pmd_t pmd, old_pmd;
2023
bool writable = false;
2024
int flags = 0;
2025
2026
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2027
old_pmd = pmdp_get(vmf->pmd);
2028
2029
if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2030
spin_unlock(vmf->ptl);
2031
return 0;
2032
}
2033
2034
pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2035
2036
/*
2037
* Detect now whether the PMD could be writable; this information
2038
* is only valid while holding the PT lock.
2039
*/
2040
writable = pmd_write(pmd);
2041
if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2042
can_change_pmd_writable(vma, vmf->address, pmd))
2043
writable = true;
2044
2045
folio = vm_normal_folio_pmd(vma, haddr, pmd);
2046
if (!folio)
2047
goto out_map;
2048
2049
nid = folio_nid(folio);
2050
2051
target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2052
&last_cpupid);
2053
if (target_nid == NUMA_NO_NODE)
2054
goto out_map;
2055
if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2056
flags |= TNF_MIGRATE_FAIL;
2057
goto out_map;
2058
}
2059
/* The folio is isolated and isolation code holds a folio reference. */
2060
spin_unlock(vmf->ptl);
2061
writable = false;
2062
2063
if (!migrate_misplaced_folio(folio, target_nid)) {
2064
flags |= TNF_MIGRATED;
2065
nid = target_nid;
2066
task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2067
return 0;
2068
}
2069
2070
flags |= TNF_MIGRATE_FAIL;
2071
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2072
if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2073
spin_unlock(vmf->ptl);
2074
return 0;
2075
}
2076
out_map:
2077
/* Restore the PMD */
2078
pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2079
pmd = pmd_mkyoung(pmd);
2080
if (writable)
2081
pmd = pmd_mkwrite(pmd, vma);
2082
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2083
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2084
spin_unlock(vmf->ptl);
2085
2086
if (nid != NUMA_NO_NODE)
2087
task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2088
return 0;
2089
}
2090
2091
/*
2092
* Return true if we do MADV_FREE successfully on entire pmd page.
2093
* Otherwise, return false.
2094
*/
2095
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2096
pmd_t *pmd, unsigned long addr, unsigned long next)
2097
{
2098
spinlock_t *ptl;
2099
pmd_t orig_pmd;
2100
struct folio *folio;
2101
struct mm_struct *mm = tlb->mm;
2102
bool ret = false;
2103
2104
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2105
2106
ptl = pmd_trans_huge_lock(pmd, vma);
2107
if (!ptl)
2108
goto out_unlocked;
2109
2110
orig_pmd = *pmd;
2111
if (is_huge_zero_pmd(orig_pmd))
2112
goto out;
2113
2114
if (unlikely(!pmd_present(orig_pmd))) {
2115
VM_BUG_ON(thp_migration_supported() &&
2116
!is_pmd_migration_entry(orig_pmd));
2117
goto out;
2118
}
2119
2120
folio = pmd_folio(orig_pmd);
2121
/*
2122
* If other processes are mapping this folio, we couldn't discard
2123
* the folio unless they all do MADV_FREE so let's skip the folio.
2124
*/
2125
if (folio_maybe_mapped_shared(folio))
2126
goto out;
2127
2128
if (!folio_trylock(folio))
2129
goto out;
2130
2131
/*
2132
* If user want to discard part-pages of THP, split it so MADV_FREE
2133
* will deactivate only them.
2134
*/
2135
if (next - addr != HPAGE_PMD_SIZE) {
2136
folio_get(folio);
2137
spin_unlock(ptl);
2138
split_folio(folio);
2139
folio_unlock(folio);
2140
folio_put(folio);
2141
goto out_unlocked;
2142
}
2143
2144
if (folio_test_dirty(folio))
2145
folio_clear_dirty(folio);
2146
folio_unlock(folio);
2147
2148
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2149
pmdp_invalidate(vma, addr, pmd);
2150
orig_pmd = pmd_mkold(orig_pmd);
2151
orig_pmd = pmd_mkclean(orig_pmd);
2152
2153
set_pmd_at(mm, addr, pmd, orig_pmd);
2154
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2155
}
2156
2157
folio_mark_lazyfree(folio);
2158
ret = true;
2159
out:
2160
spin_unlock(ptl);
2161
out_unlocked:
2162
return ret;
2163
}
2164
2165
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2166
{
2167
pgtable_t pgtable;
2168
2169
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2170
pte_free(mm, pgtable);
2171
mm_dec_nr_ptes(mm);
2172
}
2173
2174
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2175
pmd_t *pmd, unsigned long addr)
2176
{
2177
pmd_t orig_pmd;
2178
spinlock_t *ptl;
2179
2180
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2181
2182
ptl = __pmd_trans_huge_lock(pmd, vma);
2183
if (!ptl)
2184
return 0;
2185
/*
2186
* For architectures like ppc64 we look at deposited pgtable
2187
* when calling pmdp_huge_get_and_clear. So do the
2188
* pgtable_trans_huge_withdraw after finishing pmdp related
2189
* operations.
2190
*/
2191
orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2192
tlb->fullmm);
2193
arch_check_zapped_pmd(vma, orig_pmd);
2194
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2195
if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2196
if (arch_needs_pgtable_deposit())
2197
zap_deposited_table(tlb->mm, pmd);
2198
spin_unlock(ptl);
2199
} else if (is_huge_zero_pmd(orig_pmd)) {
2200
if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2201
zap_deposited_table(tlb->mm, pmd);
2202
spin_unlock(ptl);
2203
} else {
2204
struct folio *folio = NULL;
2205
int flush_needed = 1;
2206
2207
if (pmd_present(orig_pmd)) {
2208
struct page *page = pmd_page(orig_pmd);
2209
2210
folio = page_folio(page);
2211
folio_remove_rmap_pmd(folio, page, vma);
2212
WARN_ON_ONCE(folio_mapcount(folio) < 0);
2213
VM_BUG_ON_PAGE(!PageHead(page), page);
2214
} else if (thp_migration_supported()) {
2215
swp_entry_t entry;
2216
2217
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2218
entry = pmd_to_swp_entry(orig_pmd);
2219
folio = pfn_swap_entry_folio(entry);
2220
flush_needed = 0;
2221
} else
2222
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2223
2224
if (folio_test_anon(folio)) {
2225
zap_deposited_table(tlb->mm, pmd);
2226
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2227
} else {
2228
if (arch_needs_pgtable_deposit())
2229
zap_deposited_table(tlb->mm, pmd);
2230
add_mm_counter(tlb->mm, mm_counter_file(folio),
2231
-HPAGE_PMD_NR);
2232
2233
/*
2234
* Use flush_needed to indicate whether the PMD entry
2235
* is present, instead of checking pmd_present() again.
2236
*/
2237
if (flush_needed && pmd_young(orig_pmd) &&
2238
likely(vma_has_recency(vma)))
2239
folio_mark_accessed(folio);
2240
}
2241
2242
spin_unlock(ptl);
2243
if (flush_needed)
2244
tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2245
}
2246
return 1;
2247
}
2248
2249
#ifndef pmd_move_must_withdraw
2250
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2251
spinlock_t *old_pmd_ptl,
2252
struct vm_area_struct *vma)
2253
{
2254
/*
2255
* With split pmd lock we also need to move preallocated
2256
* PTE page table if new_pmd is on different PMD page table.
2257
*
2258
* We also don't deposit and withdraw tables for file pages.
2259
*/
2260
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2261
}
2262
#endif
2263
2264
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2265
{
2266
#ifdef CONFIG_MEM_SOFT_DIRTY
2267
if (unlikely(is_pmd_migration_entry(pmd)))
2268
pmd = pmd_swp_mksoft_dirty(pmd);
2269
else if (pmd_present(pmd))
2270
pmd = pmd_mksoft_dirty(pmd);
2271
#endif
2272
return pmd;
2273
}
2274
2275
static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2276
{
2277
if (pmd_present(pmd))
2278
pmd = pmd_clear_uffd_wp(pmd);
2279
else if (is_swap_pmd(pmd))
2280
pmd = pmd_swp_clear_uffd_wp(pmd);
2281
2282
return pmd;
2283
}
2284
2285
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2286
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2287
{
2288
spinlock_t *old_ptl, *new_ptl;
2289
pmd_t pmd;
2290
struct mm_struct *mm = vma->vm_mm;
2291
bool force_flush = false;
2292
2293
/*
2294
* The destination pmd shouldn't be established, free_pgtables()
2295
* should have released it; but move_page_tables() might have already
2296
* inserted a page table, if racing against shmem/file collapse.
2297
*/
2298
if (!pmd_none(*new_pmd)) {
2299
VM_BUG_ON(pmd_trans_huge(*new_pmd));
2300
return false;
2301
}
2302
2303
/*
2304
* We don't have to worry about the ordering of src and dst
2305
* ptlocks because exclusive mmap_lock prevents deadlock.
2306
*/
2307
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2308
if (old_ptl) {
2309
new_ptl = pmd_lockptr(mm, new_pmd);
2310
if (new_ptl != old_ptl)
2311
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2312
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2313
if (pmd_present(pmd))
2314
force_flush = true;
2315
VM_BUG_ON(!pmd_none(*new_pmd));
2316
2317
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2318
pgtable_t pgtable;
2319
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2320
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2321
}
2322
pmd = move_soft_dirty_pmd(pmd);
2323
if (vma_has_uffd_without_event_remap(vma))
2324
pmd = clear_uffd_wp_pmd(pmd);
2325
set_pmd_at(mm, new_addr, new_pmd, pmd);
2326
if (force_flush)
2327
flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2328
if (new_ptl != old_ptl)
2329
spin_unlock(new_ptl);
2330
spin_unlock(old_ptl);
2331
return true;
2332
}
2333
return false;
2334
}
2335
2336
/*
2337
* Returns
2338
* - 0 if PMD could not be locked
2339
* - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2340
* or if prot_numa but THP migration is not supported
2341
* - HPAGE_PMD_NR if protections changed and TLB flush necessary
2342
*/
2343
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2344
pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2345
unsigned long cp_flags)
2346
{
2347
struct mm_struct *mm = vma->vm_mm;
2348
spinlock_t *ptl;
2349
pmd_t oldpmd, entry;
2350
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2351
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2352
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2353
int ret = 1;
2354
2355
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2356
2357
if (prot_numa && !thp_migration_supported())
2358
return 1;
2359
2360
ptl = __pmd_trans_huge_lock(pmd, vma);
2361
if (!ptl)
2362
return 0;
2363
2364
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2365
if (is_swap_pmd(*pmd)) {
2366
swp_entry_t entry = pmd_to_swp_entry(*pmd);
2367
struct folio *folio = pfn_swap_entry_folio(entry);
2368
pmd_t newpmd;
2369
2370
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2371
if (is_writable_migration_entry(entry)) {
2372
/*
2373
* A protection check is difficult so
2374
* just be safe and disable write
2375
*/
2376
if (folio_test_anon(folio))
2377
entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2378
else
2379
entry = make_readable_migration_entry(swp_offset(entry));
2380
newpmd = swp_entry_to_pmd(entry);
2381
if (pmd_swp_soft_dirty(*pmd))
2382
newpmd = pmd_swp_mksoft_dirty(newpmd);
2383
} else {
2384
newpmd = *pmd;
2385
}
2386
2387
if (uffd_wp)
2388
newpmd = pmd_swp_mkuffd_wp(newpmd);
2389
else if (uffd_wp_resolve)
2390
newpmd = pmd_swp_clear_uffd_wp(newpmd);
2391
if (!pmd_same(*pmd, newpmd))
2392
set_pmd_at(mm, addr, pmd, newpmd);
2393
goto unlock;
2394
}
2395
#endif
2396
2397
if (prot_numa) {
2398
struct folio *folio;
2399
bool toptier;
2400
/*
2401
* Avoid trapping faults against the zero page. The read-only
2402
* data is likely to be read-cached on the local CPU and
2403
* local/remote hits to the zero page are not interesting.
2404
*/
2405
if (is_huge_zero_pmd(*pmd))
2406
goto unlock;
2407
2408
if (pmd_protnone(*pmd))
2409
goto unlock;
2410
2411
folio = pmd_folio(*pmd);
2412
toptier = node_is_toptier(folio_nid(folio));
2413
/*
2414
* Skip scanning top tier node if normal numa
2415
* balancing is disabled
2416
*/
2417
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2418
toptier)
2419
goto unlock;
2420
2421
if (folio_use_access_time(folio))
2422
folio_xchg_access_time(folio,
2423
jiffies_to_msecs(jiffies));
2424
}
2425
/*
2426
* In case prot_numa, we are under mmap_read_lock(mm). It's critical
2427
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
2428
* which is also under mmap_read_lock(mm):
2429
*
2430
* CPU0: CPU1:
2431
* change_huge_pmd(prot_numa=1)
2432
* pmdp_huge_get_and_clear_notify()
2433
* madvise_dontneed()
2434
* zap_pmd_range()
2435
* pmd_trans_huge(*pmd) == 0 (without ptl)
2436
* // skip the pmd
2437
* set_pmd_at();
2438
* // pmd is re-established
2439
*
2440
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2441
* which may break userspace.
2442
*
2443
* pmdp_invalidate_ad() is required to make sure we don't miss
2444
* dirty/young flags set by hardware.
2445
*/
2446
oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2447
2448
entry = pmd_modify(oldpmd, newprot);
2449
if (uffd_wp)
2450
entry = pmd_mkuffd_wp(entry);
2451
else if (uffd_wp_resolve)
2452
/*
2453
* Leave the write bit to be handled by PF interrupt
2454
* handler, then things like COW could be properly
2455
* handled.
2456
*/
2457
entry = pmd_clear_uffd_wp(entry);
2458
2459
/* See change_pte_range(). */
2460
if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2461
can_change_pmd_writable(vma, addr, entry))
2462
entry = pmd_mkwrite(entry, vma);
2463
2464
ret = HPAGE_PMD_NR;
2465
set_pmd_at(mm, addr, pmd, entry);
2466
2467
if (huge_pmd_needs_flush(oldpmd, entry))
2468
tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2469
unlock:
2470
spin_unlock(ptl);
2471
return ret;
2472
}
2473
2474
/*
2475
* Returns:
2476
*
2477
* - 0: if pud leaf changed from under us
2478
* - 1: if pud can be skipped
2479
* - HPAGE_PUD_NR: if pud was successfully processed
2480
*/
2481
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2482
int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2483
pud_t *pudp, unsigned long addr, pgprot_t newprot,
2484
unsigned long cp_flags)
2485
{
2486
struct mm_struct *mm = vma->vm_mm;
2487
pud_t oldpud, entry;
2488
spinlock_t *ptl;
2489
2490
tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2491
2492
/* NUMA balancing doesn't apply to dax */
2493
if (cp_flags & MM_CP_PROT_NUMA)
2494
return 1;
2495
2496
/*
2497
* Huge entries on userfault-wp only works with anonymous, while we
2498
* don't have anonymous PUDs yet.
2499
*/
2500
if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2501
return 1;
2502
2503
ptl = __pud_trans_huge_lock(pudp, vma);
2504
if (!ptl)
2505
return 0;
2506
2507
/*
2508
* Can't clear PUD or it can race with concurrent zapping. See
2509
* change_huge_pmd().
2510
*/
2511
oldpud = pudp_invalidate(vma, addr, pudp);
2512
entry = pud_modify(oldpud, newprot);
2513
set_pud_at(mm, addr, pudp, entry);
2514
tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2515
2516
spin_unlock(ptl);
2517
return HPAGE_PUD_NR;
2518
}
2519
#endif
2520
2521
#ifdef CONFIG_USERFAULTFD
2522
/*
2523
* The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2524
* the caller, but it must return after releasing the page_table_lock.
2525
* Just move the page from src_pmd to dst_pmd if possible.
2526
* Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2527
* repeated by the caller, or other errors in case of failure.
2528
*/
2529
int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2530
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2531
unsigned long dst_addr, unsigned long src_addr)
2532
{
2533
pmd_t _dst_pmd, src_pmdval;
2534
struct page *src_page;
2535
struct folio *src_folio;
2536
struct anon_vma *src_anon_vma;
2537
spinlock_t *src_ptl, *dst_ptl;
2538
pgtable_t src_pgtable;
2539
struct mmu_notifier_range range;
2540
int err = 0;
2541
2542
src_pmdval = *src_pmd;
2543
src_ptl = pmd_lockptr(mm, src_pmd);
2544
2545
lockdep_assert_held(src_ptl);
2546
vma_assert_locked(src_vma);
2547
vma_assert_locked(dst_vma);
2548
2549
/* Sanity checks before the operation */
2550
if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2551
WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2552
spin_unlock(src_ptl);
2553
return -EINVAL;
2554
}
2555
2556
if (!pmd_trans_huge(src_pmdval)) {
2557
spin_unlock(src_ptl);
2558
if (is_pmd_migration_entry(src_pmdval)) {
2559
pmd_migration_entry_wait(mm, &src_pmdval);
2560
return -EAGAIN;
2561
}
2562
return -ENOENT;
2563
}
2564
2565
src_page = pmd_page(src_pmdval);
2566
2567
if (!is_huge_zero_pmd(src_pmdval)) {
2568
if (unlikely(!PageAnonExclusive(src_page))) {
2569
spin_unlock(src_ptl);
2570
return -EBUSY;
2571
}
2572
2573
src_folio = page_folio(src_page);
2574
folio_get(src_folio);
2575
} else
2576
src_folio = NULL;
2577
2578
spin_unlock(src_ptl);
2579
2580
flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2581
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2582
src_addr + HPAGE_PMD_SIZE);
2583
mmu_notifier_invalidate_range_start(&range);
2584
2585
if (src_folio) {
2586
folio_lock(src_folio);
2587
2588
/*
2589
* split_huge_page walks the anon_vma chain without the page
2590
* lock. Serialize against it with the anon_vma lock, the page
2591
* lock is not enough.
2592
*/
2593
src_anon_vma = folio_get_anon_vma(src_folio);
2594
if (!src_anon_vma) {
2595
err = -EAGAIN;
2596
goto unlock_folio;
2597
}
2598
anon_vma_lock_write(src_anon_vma);
2599
} else
2600
src_anon_vma = NULL;
2601
2602
dst_ptl = pmd_lockptr(mm, dst_pmd);
2603
double_pt_lock(src_ptl, dst_ptl);
2604
if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2605
!pmd_same(*dst_pmd, dst_pmdval))) {
2606
err = -EAGAIN;
2607
goto unlock_ptls;
2608
}
2609
if (src_folio) {
2610
if (folio_maybe_dma_pinned(src_folio) ||
2611
!PageAnonExclusive(&src_folio->page)) {
2612
err = -EBUSY;
2613
goto unlock_ptls;
2614
}
2615
2616
if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2617
WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2618
err = -EBUSY;
2619
goto unlock_ptls;
2620
}
2621
2622
src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2623
/* Folio got pinned from under us. Put it back and fail the move. */
2624
if (folio_maybe_dma_pinned(src_folio)) {
2625
set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2626
err = -EBUSY;
2627
goto unlock_ptls;
2628
}
2629
2630
folio_move_anon_rmap(src_folio, dst_vma);
2631
src_folio->index = linear_page_index(dst_vma, dst_addr);
2632
2633
_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2634
/* Follow mremap() behavior and treat the entry dirty after the move */
2635
_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2636
} else {
2637
src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2638
_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2639
}
2640
set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2641
2642
src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2643
pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2644
unlock_ptls:
2645
double_pt_unlock(src_ptl, dst_ptl);
2646
if (src_anon_vma) {
2647
anon_vma_unlock_write(src_anon_vma);
2648
put_anon_vma(src_anon_vma);
2649
}
2650
unlock_folio:
2651
/* unblock rmap walks */
2652
if (src_folio)
2653
folio_unlock(src_folio);
2654
mmu_notifier_invalidate_range_end(&range);
2655
if (src_folio)
2656
folio_put(src_folio);
2657
return err;
2658
}
2659
#endif /* CONFIG_USERFAULTFD */
2660
2661
/*
2662
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2663
*
2664
* Note that if it returns page table lock pointer, this routine returns without
2665
* unlocking page table lock. So callers must unlock it.
2666
*/
2667
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2668
{
2669
spinlock_t *ptl;
2670
ptl = pmd_lock(vma->vm_mm, pmd);
2671
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)))
2672
return ptl;
2673
spin_unlock(ptl);
2674
return NULL;
2675
}
2676
2677
/*
2678
* Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2679
*
2680
* Note that if it returns page table lock pointer, this routine returns without
2681
* unlocking page table lock. So callers must unlock it.
2682
*/
2683
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2684
{
2685
spinlock_t *ptl;
2686
2687
ptl = pud_lock(vma->vm_mm, pud);
2688
if (likely(pud_trans_huge(*pud)))
2689
return ptl;
2690
spin_unlock(ptl);
2691
return NULL;
2692
}
2693
2694
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2695
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2696
pud_t *pud, unsigned long addr)
2697
{
2698
spinlock_t *ptl;
2699
pud_t orig_pud;
2700
2701
ptl = __pud_trans_huge_lock(pud, vma);
2702
if (!ptl)
2703
return 0;
2704
2705
orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2706
arch_check_zapped_pud(vma, orig_pud);
2707
tlb_remove_pud_tlb_entry(tlb, pud, addr);
2708
if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2709
spin_unlock(ptl);
2710
/* No zero page support yet */
2711
} else {
2712
struct page *page = NULL;
2713
struct folio *folio;
2714
2715
/* No support for anonymous PUD pages or migration yet */
2716
VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2717
!pud_present(orig_pud));
2718
2719
page = pud_page(orig_pud);
2720
folio = page_folio(page);
2721
folio_remove_rmap_pud(folio, page, vma);
2722
add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2723
2724
spin_unlock(ptl);
2725
tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2726
}
2727
return 1;
2728
}
2729
2730
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2731
unsigned long haddr)
2732
{
2733
struct folio *folio;
2734
struct page *page;
2735
pud_t old_pud;
2736
2737
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2738
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2739
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2740
VM_BUG_ON(!pud_trans_huge(*pud));
2741
2742
count_vm_event(THP_SPLIT_PUD);
2743
2744
old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2745
2746
if (!vma_is_dax(vma))
2747
return;
2748
2749
page = pud_page(old_pud);
2750
folio = page_folio(page);
2751
2752
if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2753
folio_mark_dirty(folio);
2754
if (!folio_test_referenced(folio) && pud_young(old_pud))
2755
folio_set_referenced(folio);
2756
folio_remove_rmap_pud(folio, page, vma);
2757
folio_put(folio);
2758
add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2759
-HPAGE_PUD_NR);
2760
}
2761
2762
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2763
unsigned long address)
2764
{
2765
spinlock_t *ptl;
2766
struct mmu_notifier_range range;
2767
2768
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2769
address & HPAGE_PUD_MASK,
2770
(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2771
mmu_notifier_invalidate_range_start(&range);
2772
ptl = pud_lock(vma->vm_mm, pud);
2773
if (unlikely(!pud_trans_huge(*pud)))
2774
goto out;
2775
__split_huge_pud_locked(vma, pud, range.start);
2776
2777
out:
2778
spin_unlock(ptl);
2779
mmu_notifier_invalidate_range_end(&range);
2780
}
2781
#else
2782
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2783
unsigned long address)
2784
{
2785
}
2786
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2787
2788
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2789
unsigned long haddr, pmd_t *pmd)
2790
{
2791
struct mm_struct *mm = vma->vm_mm;
2792
pgtable_t pgtable;
2793
pmd_t _pmd, old_pmd;
2794
unsigned long addr;
2795
pte_t *pte;
2796
int i;
2797
2798
/*
2799
* Leave pmd empty until pte is filled note that it is fine to delay
2800
* notification until mmu_notifier_invalidate_range_end() as we are
2801
* replacing a zero pmd write protected page with a zero pte write
2802
* protected page.
2803
*
2804
* See Documentation/mm/mmu_notifier.rst
2805
*/
2806
old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2807
2808
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2809
pmd_populate(mm, &_pmd, pgtable);
2810
2811
pte = pte_offset_map(&_pmd, haddr);
2812
VM_BUG_ON(!pte);
2813
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2814
pte_t entry;
2815
2816
entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2817
entry = pte_mkspecial(entry);
2818
if (pmd_uffd_wp(old_pmd))
2819
entry = pte_mkuffd_wp(entry);
2820
VM_BUG_ON(!pte_none(ptep_get(pte)));
2821
set_pte_at(mm, addr, pte, entry);
2822
pte++;
2823
}
2824
pte_unmap(pte - 1);
2825
smp_wmb(); /* make pte visible before pmd */
2826
pmd_populate(mm, pmd, pgtable);
2827
}
2828
2829
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2830
unsigned long haddr, bool freeze)
2831
{
2832
struct mm_struct *mm = vma->vm_mm;
2833
struct folio *folio;
2834
struct page *page;
2835
pgtable_t pgtable;
2836
pmd_t old_pmd, _pmd;
2837
bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2838
bool anon_exclusive = false, dirty = false;
2839
unsigned long addr;
2840
pte_t *pte;
2841
int i;
2842
2843
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2844
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2845
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2846
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd));
2847
2848
count_vm_event(THP_SPLIT_PMD);
2849
2850
if (!vma_is_anonymous(vma)) {
2851
old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2852
/*
2853
* We are going to unmap this huge page. So
2854
* just go ahead and zap it
2855
*/
2856
if (arch_needs_pgtable_deposit())
2857
zap_deposited_table(mm, pmd);
2858
if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2859
return;
2860
if (unlikely(is_pmd_migration_entry(old_pmd))) {
2861
swp_entry_t entry;
2862
2863
entry = pmd_to_swp_entry(old_pmd);
2864
folio = pfn_swap_entry_folio(entry);
2865
} else if (is_huge_zero_pmd(old_pmd)) {
2866
return;
2867
} else {
2868
page = pmd_page(old_pmd);
2869
folio = page_folio(page);
2870
if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2871
folio_mark_dirty(folio);
2872
if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2873
folio_set_referenced(folio);
2874
folio_remove_rmap_pmd(folio, page, vma);
2875
folio_put(folio);
2876
}
2877
add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2878
return;
2879
}
2880
2881
if (is_huge_zero_pmd(*pmd)) {
2882
/*
2883
* FIXME: Do we want to invalidate secondary mmu by calling
2884
* mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2885
* inside __split_huge_pmd() ?
2886
*
2887
* We are going from a zero huge page write protected to zero
2888
* small page also write protected so it does not seems useful
2889
* to invalidate secondary mmu at this time.
2890
*/
2891
return __split_huge_zero_page_pmd(vma, haddr, pmd);
2892
}
2893
2894
pmd_migration = is_pmd_migration_entry(*pmd);
2895
if (unlikely(pmd_migration)) {
2896
swp_entry_t entry;
2897
2898
old_pmd = *pmd;
2899
entry = pmd_to_swp_entry(old_pmd);
2900
page = pfn_swap_entry_to_page(entry);
2901
write = is_writable_migration_entry(entry);
2902
if (PageAnon(page))
2903
anon_exclusive = is_readable_exclusive_migration_entry(entry);
2904
young = is_migration_entry_young(entry);
2905
dirty = is_migration_entry_dirty(entry);
2906
soft_dirty = pmd_swp_soft_dirty(old_pmd);
2907
uffd_wp = pmd_swp_uffd_wp(old_pmd);
2908
} else {
2909
/*
2910
* Up to this point the pmd is present and huge and userland has
2911
* the whole access to the hugepage during the split (which
2912
* happens in place). If we overwrite the pmd with the not-huge
2913
* version pointing to the pte here (which of course we could if
2914
* all CPUs were bug free), userland could trigger a small page
2915
* size TLB miss on the small sized TLB while the hugepage TLB
2916
* entry is still established in the huge TLB. Some CPU doesn't
2917
* like that. See
2918
* http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2919
* 383 on page 105. Intel should be safe but is also warns that
2920
* it's only safe if the permission and cache attributes of the
2921
* two entries loaded in the two TLB is identical (which should
2922
* be the case here). But it is generally safer to never allow
2923
* small and huge TLB entries for the same virtual address to be
2924
* loaded simultaneously. So instead of doing "pmd_populate();
2925
* flush_pmd_tlb_range();" we first mark the current pmd
2926
* notpresent (atomically because here the pmd_trans_huge must
2927
* remain set at all times on the pmd until the split is
2928
* complete for this pmd), then we flush the SMP TLB and finally
2929
* we write the non-huge version of the pmd entry with
2930
* pmd_populate.
2931
*/
2932
old_pmd = pmdp_invalidate(vma, haddr, pmd);
2933
page = pmd_page(old_pmd);
2934
folio = page_folio(page);
2935
if (pmd_dirty(old_pmd)) {
2936
dirty = true;
2937
folio_set_dirty(folio);
2938
}
2939
write = pmd_write(old_pmd);
2940
young = pmd_young(old_pmd);
2941
soft_dirty = pmd_soft_dirty(old_pmd);
2942
uffd_wp = pmd_uffd_wp(old_pmd);
2943
2944
VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2945
VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2946
2947
/*
2948
* Without "freeze", we'll simply split the PMD, propagating the
2949
* PageAnonExclusive() flag for each PTE by setting it for
2950
* each subpage -- no need to (temporarily) clear.
2951
*
2952
* With "freeze" we want to replace mapped pages by
2953
* migration entries right away. This is only possible if we
2954
* managed to clear PageAnonExclusive() -- see
2955
* set_pmd_migration_entry().
2956
*
2957
* In case we cannot clear PageAnonExclusive(), split the PMD
2958
* only and let try_to_migrate_one() fail later.
2959
*
2960
* See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2961
*/
2962
anon_exclusive = PageAnonExclusive(page);
2963
if (freeze && anon_exclusive &&
2964
folio_try_share_anon_rmap_pmd(folio, page))
2965
freeze = false;
2966
if (!freeze) {
2967
rmap_t rmap_flags = RMAP_NONE;
2968
2969
folio_ref_add(folio, HPAGE_PMD_NR - 1);
2970
if (anon_exclusive)
2971
rmap_flags |= RMAP_EXCLUSIVE;
2972
folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2973
vma, haddr, rmap_flags);
2974
}
2975
}
2976
2977
/*
2978
* Withdraw the table only after we mark the pmd entry invalid.
2979
* This's critical for some architectures (Power).
2980
*/
2981
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2982
pmd_populate(mm, &_pmd, pgtable);
2983
2984
pte = pte_offset_map(&_pmd, haddr);
2985
VM_BUG_ON(!pte);
2986
2987
/*
2988
* Note that NUMA hinting access restrictions are not transferred to
2989
* avoid any possibility of altering permissions across VMAs.
2990
*/
2991
if (freeze || pmd_migration) {
2992
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2993
pte_t entry;
2994
swp_entry_t swp_entry;
2995
2996
if (write)
2997
swp_entry = make_writable_migration_entry(
2998
page_to_pfn(page + i));
2999
else if (anon_exclusive)
3000
swp_entry = make_readable_exclusive_migration_entry(
3001
page_to_pfn(page + i));
3002
else
3003
swp_entry = make_readable_migration_entry(
3004
page_to_pfn(page + i));
3005
if (young)
3006
swp_entry = make_migration_entry_young(swp_entry);
3007
if (dirty)
3008
swp_entry = make_migration_entry_dirty(swp_entry);
3009
entry = swp_entry_to_pte(swp_entry);
3010
if (soft_dirty)
3011
entry = pte_swp_mksoft_dirty(entry);
3012
if (uffd_wp)
3013
entry = pte_swp_mkuffd_wp(entry);
3014
3015
VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3016
set_pte_at(mm, addr, pte + i, entry);
3017
}
3018
} else {
3019
pte_t entry;
3020
3021
entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3022
if (write)
3023
entry = pte_mkwrite(entry, vma);
3024
if (!young)
3025
entry = pte_mkold(entry);
3026
/* NOTE: this may set soft-dirty too on some archs */
3027
if (dirty)
3028
entry = pte_mkdirty(entry);
3029
if (soft_dirty)
3030
entry = pte_mksoft_dirty(entry);
3031
if (uffd_wp)
3032
entry = pte_mkuffd_wp(entry);
3033
3034
for (i = 0; i < HPAGE_PMD_NR; i++)
3035
VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3036
3037
set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3038
}
3039
pte_unmap(pte);
3040
3041
if (!pmd_migration)
3042
folio_remove_rmap_pmd(folio, page, vma);
3043
if (freeze)
3044
put_page(page);
3045
3046
smp_wmb(); /* make pte visible before pmd */
3047
pmd_populate(mm, pmd, pgtable);
3048
}
3049
3050
void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3051
pmd_t *pmd, bool freeze)
3052
{
3053
VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3054
if (pmd_trans_huge(*pmd) || is_pmd_migration_entry(*pmd))
3055
__split_huge_pmd_locked(vma, pmd, address, freeze);
3056
}
3057
3058
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3059
unsigned long address, bool freeze)
3060
{
3061
spinlock_t *ptl;
3062
struct mmu_notifier_range range;
3063
3064
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3065
address & HPAGE_PMD_MASK,
3066
(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3067
mmu_notifier_invalidate_range_start(&range);
3068
ptl = pmd_lock(vma->vm_mm, pmd);
3069
split_huge_pmd_locked(vma, range.start, pmd, freeze);
3070
spin_unlock(ptl);
3071
mmu_notifier_invalidate_range_end(&range);
3072
}
3073
3074
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3075
bool freeze)
3076
{
3077
pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3078
3079
if (!pmd)
3080
return;
3081
3082
__split_huge_pmd(vma, pmd, address, freeze);
3083
}
3084
3085
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3086
{
3087
/*
3088
* If the new address isn't hpage aligned and it could previously
3089
* contain an hugepage: check if we need to split an huge pmd.
3090
*/
3091
if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3092
range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3093
ALIGN(address, HPAGE_PMD_SIZE)))
3094
split_huge_pmd_address(vma, address, false);
3095
}
3096
3097
void vma_adjust_trans_huge(struct vm_area_struct *vma,
3098
unsigned long start,
3099
unsigned long end,
3100
struct vm_area_struct *next)
3101
{
3102
/* Check if we need to split start first. */
3103
split_huge_pmd_if_needed(vma, start);
3104
3105
/* Check if we need to split end next. */
3106
split_huge_pmd_if_needed(vma, end);
3107
3108
/* If we're incrementing next->vm_start, we might need to split it. */
3109
if (next)
3110
split_huge_pmd_if_needed(next, end);
3111
}
3112
3113
static void unmap_folio(struct folio *folio)
3114
{
3115
enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3116
TTU_BATCH_FLUSH;
3117
3118
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3119
3120
if (folio_test_pmd_mappable(folio))
3121
ttu_flags |= TTU_SPLIT_HUGE_PMD;
3122
3123
/*
3124
* Anon pages need migration entries to preserve them, but file
3125
* pages can simply be left unmapped, then faulted back on demand.
3126
* If that is ever changed (perhaps for mlock), update remap_page().
3127
*/
3128
if (folio_test_anon(folio))
3129
try_to_migrate(folio, ttu_flags);
3130
else
3131
try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3132
3133
try_to_unmap_flush();
3134
}
3135
3136
static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3137
unsigned long addr, pmd_t *pmdp,
3138
struct folio *folio)
3139
{
3140
struct mm_struct *mm = vma->vm_mm;
3141
int ref_count, map_count;
3142
pmd_t orig_pmd = *pmdp;
3143
3144
if (pmd_dirty(orig_pmd))
3145
folio_set_dirty(folio);
3146
if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3147
folio_set_swapbacked(folio);
3148
return false;
3149
}
3150
3151
orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3152
3153
/*
3154
* Syncing against concurrent GUP-fast:
3155
* - clear PMD; barrier; read refcount
3156
* - inc refcount; barrier; read PMD
3157
*/
3158
smp_mb();
3159
3160
ref_count = folio_ref_count(folio);
3161
map_count = folio_mapcount(folio);
3162
3163
/*
3164
* Order reads for folio refcount and dirty flag
3165
* (see comments in __remove_mapping()).
3166
*/
3167
smp_rmb();
3168
3169
/*
3170
* If the folio or its PMD is redirtied at this point, or if there
3171
* are unexpected references, we will give up to discard this folio
3172
* and remap it.
3173
*
3174
* The only folio refs must be one from isolation plus the rmap(s).
3175
*/
3176
if (pmd_dirty(orig_pmd))
3177
folio_set_dirty(folio);
3178
if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3179
folio_set_swapbacked(folio);
3180
set_pmd_at(mm, addr, pmdp, orig_pmd);
3181
return false;
3182
}
3183
3184
if (ref_count != map_count + 1) {
3185
set_pmd_at(mm, addr, pmdp, orig_pmd);
3186
return false;
3187
}
3188
3189
folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3190
zap_deposited_table(mm, pmdp);
3191
add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3192
if (vma->vm_flags & VM_LOCKED)
3193
mlock_drain_local();
3194
folio_put(folio);
3195
3196
return true;
3197
}
3198
3199
bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3200
pmd_t *pmdp, struct folio *folio)
3201
{
3202
VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3203
VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3204
VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3205
VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3206
VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3207
3208
return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3209
}
3210
3211
static void remap_page(struct folio *folio, unsigned long nr, int flags)
3212
{
3213
int i = 0;
3214
3215
/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3216
if (!folio_test_anon(folio))
3217
return;
3218
for (;;) {
3219
remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3220
i += folio_nr_pages(folio);
3221
if (i >= nr)
3222
break;
3223
folio = folio_next(folio);
3224
}
3225
}
3226
3227
static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3228
struct lruvec *lruvec, struct list_head *list)
3229
{
3230
VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3231
lockdep_assert_held(&lruvec->lru_lock);
3232
3233
if (list) {
3234
/* page reclaim is reclaiming a huge page */
3235
VM_WARN_ON(folio_test_lru(folio));
3236
folio_get(new_folio);
3237
list_add_tail(&new_folio->lru, list);
3238
} else {
3239
/* head is still on lru (and we have it frozen) */
3240
VM_WARN_ON(!folio_test_lru(folio));
3241
if (folio_test_unevictable(folio))
3242
new_folio->mlock_count = 0;
3243
else
3244
list_add_tail(&new_folio->lru, &folio->lru);
3245
folio_set_lru(new_folio);
3246
}
3247
}
3248
3249
/* Racy check whether the huge page can be split */
3250
bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3251
{
3252
int extra_pins;
3253
3254
/* Additional pins from page cache */
3255
if (folio_test_anon(folio))
3256
extra_pins = folio_test_swapcache(folio) ?
3257
folio_nr_pages(folio) : 0;
3258
else
3259
extra_pins = folio_nr_pages(folio);
3260
if (pextra_pins)
3261
*pextra_pins = extra_pins;
3262
return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3263
caller_pins;
3264
}
3265
3266
/*
3267
* It splits @folio into @new_order folios and copies the @folio metadata to
3268
* all the resulting folios.
3269
*/
3270
static void __split_folio_to_order(struct folio *folio, int old_order,
3271
int new_order)
3272
{
3273
long new_nr_pages = 1 << new_order;
3274
long nr_pages = 1 << old_order;
3275
long i;
3276
3277
/*
3278
* Skip the first new_nr_pages, since the new folio from them have all
3279
* the flags from the original folio.
3280
*/
3281
for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3282
struct page *new_head = &folio->page + i;
3283
3284
/*
3285
* Careful: new_folio is not a "real" folio before we cleared PageTail.
3286
* Don't pass it around before clear_compound_head().
3287
*/
3288
struct folio *new_folio = (struct folio *)new_head;
3289
3290
VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3291
3292
/*
3293
* Clone page flags before unfreezing refcount.
3294
*
3295
* After successful get_page_unless_zero() might follow flags change,
3296
* for example lock_page() which set PG_waiters.
3297
*
3298
* Note that for mapped sub-pages of an anonymous THP,
3299
* PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3300
* the migration entry instead from where remap_page() will restore it.
3301
* We can still have PG_anon_exclusive set on effectively unmapped and
3302
* unreferenced sub-pages of an anonymous THP: we can simply drop
3303
* PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3304
*/
3305
new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
3306
new_folio->flags.f |= (folio->flags.f &
3307
((1L << PG_referenced) |
3308
(1L << PG_swapbacked) |
3309
(1L << PG_swapcache) |
3310
(1L << PG_mlocked) |
3311
(1L << PG_uptodate) |
3312
(1L << PG_active) |
3313
(1L << PG_workingset) |
3314
(1L << PG_locked) |
3315
(1L << PG_unevictable) |
3316
#ifdef CONFIG_ARCH_USES_PG_ARCH_2
3317
(1L << PG_arch_2) |
3318
#endif
3319
#ifdef CONFIG_ARCH_USES_PG_ARCH_3
3320
(1L << PG_arch_3) |
3321
#endif
3322
(1L << PG_dirty) |
3323
LRU_GEN_MASK | LRU_REFS_MASK));
3324
3325
new_folio->mapping = folio->mapping;
3326
new_folio->index = folio->index + i;
3327
3328
/*
3329
* page->private should not be set in tail pages. Fix up and warn once
3330
* if private is unexpectedly set.
3331
*/
3332
if (unlikely(new_folio->private)) {
3333
VM_WARN_ON_ONCE_PAGE(true, new_head);
3334
new_folio->private = NULL;
3335
}
3336
3337
if (folio_test_swapcache(folio))
3338
new_folio->swap.val = folio->swap.val + i;
3339
3340
/* Page flags must be visible before we make the page non-compound. */
3341
smp_wmb();
3342
3343
/*
3344
* Clear PageTail before unfreezing page refcount.
3345
*
3346
* After successful get_page_unless_zero() might follow put_page()
3347
* which needs correct compound_head().
3348
*/
3349
clear_compound_head(new_head);
3350
if (new_order) {
3351
prep_compound_page(new_head, new_order);
3352
folio_set_large_rmappable(new_folio);
3353
}
3354
3355
if (folio_test_young(folio))
3356
folio_set_young(new_folio);
3357
if (folio_test_idle(folio))
3358
folio_set_idle(new_folio);
3359
#ifdef CONFIG_MEMCG
3360
new_folio->memcg_data = folio->memcg_data;
3361
#endif
3362
3363
folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3364
}
3365
3366
if (new_order)
3367
folio_set_order(folio, new_order);
3368
else
3369
ClearPageCompound(&folio->page);
3370
}
3371
3372
/*
3373
* It splits an unmapped @folio to lower order smaller folios in two ways.
3374
* @folio: the to-be-split folio
3375
* @new_order: the smallest order of the after split folios (since buddy
3376
* allocator like split generates folios with orders from @folio's
3377
* order - 1 to new_order).
3378
* @split_at: in buddy allocator like split, the folio containing @split_at
3379
* will be split until its order becomes @new_order.
3380
* @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3381
* @mapping: @folio->mapping
3382
* @uniform_split: if the split is uniform or not (buddy allocator like split)
3383
*
3384
*
3385
* 1. uniform split: the given @folio into multiple @new_order small folios,
3386
* where all small folios have the same order. This is done when
3387
* uniform_split is true.
3388
* 2. buddy allocator like (non-uniform) split: the given @folio is split into
3389
* half and one of the half (containing the given page) is split into half
3390
* until the given @page's order becomes @new_order. This is done when
3391
* uniform_split is false.
3392
*
3393
* The high level flow for these two methods are:
3394
* 1. uniform split: a single __split_folio_to_order() is called to split the
3395
* @folio into @new_order, then we traverse all the resulting folios one by
3396
* one in PFN ascending order and perform stats, unfreeze, adding to list,
3397
* and file mapping index operations.
3398
* 2. non-uniform split: in general, folio_order - @new_order calls to
3399
* __split_folio_to_order() are made in a for loop to split the @folio
3400
* to one lower order at a time. The resulting small folios are processed
3401
* like what is done during the traversal in 1, except the one containing
3402
* @page, which is split in next for loop.
3403
*
3404
* After splitting, the caller's folio reference will be transferred to the
3405
* folio containing @page. The caller needs to unlock and/or free after-split
3406
* folios if necessary.
3407
*
3408
* For !uniform_split, when -ENOMEM is returned, the original folio might be
3409
* split. The caller needs to check the input folio.
3410
*/
3411
static int __split_unmapped_folio(struct folio *folio, int new_order,
3412
struct page *split_at, struct xa_state *xas,
3413
struct address_space *mapping, bool uniform_split)
3414
{
3415
int order = folio_order(folio);
3416
int start_order = uniform_split ? new_order : order - 1;
3417
bool stop_split = false;
3418
struct folio *next;
3419
int split_order;
3420
int ret = 0;
3421
3422
if (folio_test_anon(folio))
3423
mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3424
3425
folio_clear_has_hwpoisoned(folio);
3426
3427
/*
3428
* split to new_order one order at a time. For uniform split,
3429
* folio is split to new_order directly.
3430
*/
3431
for (split_order = start_order;
3432
split_order >= new_order && !stop_split;
3433
split_order--) {
3434
struct folio *end_folio = folio_next(folio);
3435
int old_order = folio_order(folio);
3436
struct folio *new_folio;
3437
3438
/* order-1 anonymous folio is not supported */
3439
if (folio_test_anon(folio) && split_order == 1)
3440
continue;
3441
if (uniform_split && split_order != new_order)
3442
continue;
3443
3444
if (mapping) {
3445
/*
3446
* uniform split has xas_split_alloc() called before
3447
* irq is disabled to allocate enough memory, whereas
3448
* non-uniform split can handle ENOMEM.
3449
*/
3450
if (uniform_split)
3451
xas_split(xas, folio, old_order);
3452
else {
3453
xas_set_order(xas, folio->index, split_order);
3454
xas_try_split(xas, folio, old_order);
3455
if (xas_error(xas)) {
3456
ret = xas_error(xas);
3457
stop_split = true;
3458
}
3459
}
3460
}
3461
3462
if (!stop_split) {
3463
folio_split_memcg_refs(folio, old_order, split_order);
3464
split_page_owner(&folio->page, old_order, split_order);
3465
pgalloc_tag_split(folio, old_order, split_order);
3466
3467
__split_folio_to_order(folio, old_order, split_order);
3468
}
3469
3470
/*
3471
* Iterate through after-split folios and update folio stats.
3472
* But in buddy allocator like split, the folio
3473
* containing the specified page is skipped until its order
3474
* is new_order, since the folio will be worked on in next
3475
* iteration.
3476
*/
3477
for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3478
next = folio_next(new_folio);
3479
/*
3480
* for buddy allocator like split, new_folio containing
3481
* @split_at page could be split again, thus do not
3482
* change stats yet. Wait until new_folio's order is
3483
* @new_order or stop_split is set to true by the above
3484
* xas_split() failure.
3485
*/
3486
if (new_folio == page_folio(split_at)) {
3487
folio = new_folio;
3488
if (split_order != new_order && !stop_split)
3489
continue;
3490
}
3491
if (folio_test_anon(new_folio))
3492
mod_mthp_stat(folio_order(new_folio),
3493
MTHP_STAT_NR_ANON, 1);
3494
}
3495
}
3496
3497
return ret;
3498
}
3499
3500
bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3501
bool warns)
3502
{
3503
if (folio_test_anon(folio)) {
3504
/* order-1 is not supported for anonymous THP. */
3505
VM_WARN_ONCE(warns && new_order == 1,
3506
"Cannot split to order-1 folio");
3507
return new_order != 1;
3508
} else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3509
!mapping_large_folio_support(folio->mapping)) {
3510
/*
3511
* No split if the file system does not support large folio.
3512
* Note that we might still have THPs in such mappings due to
3513
* CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3514
* does not actually support large folios properly.
3515
*/
3516
VM_WARN_ONCE(warns,
3517
"Cannot split file folio to non-0 order");
3518
return false;
3519
}
3520
3521
/* Only swapping a whole PMD-mapped folio is supported */
3522
if (folio_test_swapcache(folio)) {
3523
VM_WARN_ONCE(warns,
3524
"Cannot split swapcache folio to non-0 order");
3525
return false;
3526
}
3527
3528
return true;
3529
}
3530
3531
/* See comments in non_uniform_split_supported() */
3532
bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3533
bool warns)
3534
{
3535
if (folio_test_anon(folio)) {
3536
VM_WARN_ONCE(warns && new_order == 1,
3537
"Cannot split to order-1 folio");
3538
return new_order != 1;
3539
} else if (new_order) {
3540
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3541
!mapping_large_folio_support(folio->mapping)) {
3542
VM_WARN_ONCE(warns,
3543
"Cannot split file folio to non-0 order");
3544
return false;
3545
}
3546
}
3547
3548
if (new_order && folio_test_swapcache(folio)) {
3549
VM_WARN_ONCE(warns,
3550
"Cannot split swapcache folio to non-0 order");
3551
return false;
3552
}
3553
3554
return true;
3555
}
3556
3557
/*
3558
* __folio_split: split a folio at @split_at to a @new_order folio
3559
* @folio: folio to split
3560
* @new_order: the order of the new folio
3561
* @split_at: a page within the new folio
3562
* @lock_at: a page within @folio to be left locked to caller
3563
* @list: after-split folios will be put on it if non NULL
3564
* @uniform_split: perform uniform split or not (non-uniform split)
3565
*
3566
* It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3567
* It is in charge of checking whether the split is supported or not and
3568
* preparing @folio for __split_unmapped_folio().
3569
*
3570
* After splitting, the after-split folio containing @lock_at remains locked
3571
* and others are unlocked:
3572
* 1. for uniform split, @lock_at points to one of @folio's subpages;
3573
* 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3574
*
3575
* return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3576
* split but not to @new_order, the caller needs to check)
3577
*/
3578
static int __folio_split(struct folio *folio, unsigned int new_order,
3579
struct page *split_at, struct page *lock_at,
3580
struct list_head *list, bool uniform_split)
3581
{
3582
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3583
XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3584
struct folio *end_folio = folio_next(folio);
3585
bool is_anon = folio_test_anon(folio);
3586
struct address_space *mapping = NULL;
3587
struct anon_vma *anon_vma = NULL;
3588
int order = folio_order(folio);
3589
struct folio *new_folio, *next;
3590
int nr_shmem_dropped = 0;
3591
int remap_flags = 0;
3592
int extra_pins, ret;
3593
pgoff_t end;
3594
bool is_hzp;
3595
3596
VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3597
VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3598
3599
if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3600
return -EINVAL;
3601
3602
if (new_order >= folio_order(folio))
3603
return -EINVAL;
3604
3605
if (uniform_split && !uniform_split_supported(folio, new_order, true))
3606
return -EINVAL;
3607
3608
if (!uniform_split &&
3609
!non_uniform_split_supported(folio, new_order, true))
3610
return -EINVAL;
3611
3612
is_hzp = is_huge_zero_folio(folio);
3613
if (is_hzp) {
3614
pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3615
return -EBUSY;
3616
}
3617
3618
if (folio_test_writeback(folio))
3619
return -EBUSY;
3620
3621
if (is_anon) {
3622
/*
3623
* The caller does not necessarily hold an mmap_lock that would
3624
* prevent the anon_vma disappearing so we first we take a
3625
* reference to it and then lock the anon_vma for write. This
3626
* is similar to folio_lock_anon_vma_read except the write lock
3627
* is taken to serialise against parallel split or collapse
3628
* operations.
3629
*/
3630
anon_vma = folio_get_anon_vma(folio);
3631
if (!anon_vma) {
3632
ret = -EBUSY;
3633
goto out;
3634
}
3635
mapping = NULL;
3636
anon_vma_lock_write(anon_vma);
3637
} else {
3638
unsigned int min_order;
3639
gfp_t gfp;
3640
3641
mapping = folio->mapping;
3642
3643
/* Truncated ? */
3644
/*
3645
* TODO: add support for large shmem folio in swap cache.
3646
* When shmem is in swap cache, mapping is NULL and
3647
* folio_test_swapcache() is true.
3648
*/
3649
if (!mapping) {
3650
ret = -EBUSY;
3651
goto out;
3652
}
3653
3654
min_order = mapping_min_folio_order(folio->mapping);
3655
if (new_order < min_order) {
3656
VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3657
min_order);
3658
ret = -EINVAL;
3659
goto out;
3660
}
3661
3662
gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3663
GFP_RECLAIM_MASK);
3664
3665
if (!filemap_release_folio(folio, gfp)) {
3666
ret = -EBUSY;
3667
goto out;
3668
}
3669
3670
if (uniform_split) {
3671
xas_set_order(&xas, folio->index, new_order);
3672
xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3673
if (xas_error(&xas)) {
3674
ret = xas_error(&xas);
3675
goto out;
3676
}
3677
}
3678
3679
anon_vma = NULL;
3680
i_mmap_lock_read(mapping);
3681
3682
/*
3683
*__split_unmapped_folio() may need to trim off pages beyond
3684
* EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3685
* seqlock, which cannot be nested inside the page tree lock.
3686
* So note end now: i_size itself may be changed at any moment,
3687
* but folio lock is good enough to serialize the trimming.
3688
*/
3689
end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3690
if (shmem_mapping(mapping))
3691
end = shmem_fallocend(mapping->host, end);
3692
}
3693
3694
/*
3695
* Racy check if we can split the page, before unmap_folio() will
3696
* split PMDs
3697
*/
3698
if (!can_split_folio(folio, 1, &extra_pins)) {
3699
ret = -EAGAIN;
3700
goto out_unlock;
3701
}
3702
3703
unmap_folio(folio);
3704
3705
/* block interrupt reentry in xa_lock and spinlock */
3706
local_irq_disable();
3707
if (mapping) {
3708
/*
3709
* Check if the folio is present in page cache.
3710
* We assume all tail are present too, if folio is there.
3711
*/
3712
xas_lock(&xas);
3713
xas_reset(&xas);
3714
if (xas_load(&xas) != folio) {
3715
ret = -EAGAIN;
3716
goto fail;
3717
}
3718
}
3719
3720
/* Prevent deferred_split_scan() touching ->_refcount */
3721
spin_lock(&ds_queue->split_queue_lock);
3722
if (folio_ref_freeze(folio, 1 + extra_pins)) {
3723
struct swap_cluster_info *ci = NULL;
3724
struct lruvec *lruvec;
3725
int expected_refs;
3726
3727
if (folio_order(folio) > 1 &&
3728
!list_empty(&folio->_deferred_list)) {
3729
ds_queue->split_queue_len--;
3730
if (folio_test_partially_mapped(folio)) {
3731
folio_clear_partially_mapped(folio);
3732
mod_mthp_stat(folio_order(folio),
3733
MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3734
}
3735
/*
3736
* Reinitialize page_deferred_list after removing the
3737
* page from the split_queue, otherwise a subsequent
3738
* split will see list corruption when checking the
3739
* page_deferred_list.
3740
*/
3741
list_del_init(&folio->_deferred_list);
3742
}
3743
spin_unlock(&ds_queue->split_queue_lock);
3744
if (mapping) {
3745
int nr = folio_nr_pages(folio);
3746
3747
if (folio_test_pmd_mappable(folio) &&
3748
new_order < HPAGE_PMD_ORDER) {
3749
if (folio_test_swapbacked(folio)) {
3750
__lruvec_stat_mod_folio(folio,
3751
NR_SHMEM_THPS, -nr);
3752
} else {
3753
__lruvec_stat_mod_folio(folio,
3754
NR_FILE_THPS, -nr);
3755
filemap_nr_thps_dec(mapping);
3756
}
3757
}
3758
}
3759
3760
if (folio_test_swapcache(folio)) {
3761
if (mapping) {
3762
VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3763
ret = -EINVAL;
3764
goto fail;
3765
}
3766
3767
ci = swap_cluster_get_and_lock(folio);
3768
}
3769
3770
/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3771
lruvec = folio_lruvec_lock(folio);
3772
3773
ret = __split_unmapped_folio(folio, new_order, split_at, &xas,
3774
mapping, uniform_split);
3775
3776
/*
3777
* Unfreeze after-split folios and put them back to the right
3778
* list. @folio should be kept frozon until page cache
3779
* entries are updated with all the other after-split folios
3780
* to prevent others seeing stale page cache entries.
3781
* As a result, new_folio starts from the next folio of
3782
* @folio.
3783
*/
3784
for (new_folio = folio_next(folio); new_folio != end_folio;
3785
new_folio = next) {
3786
unsigned long nr_pages = folio_nr_pages(new_folio);
3787
3788
next = folio_next(new_folio);
3789
3790
expected_refs = folio_expected_ref_count(new_folio) + 1;
3791
folio_ref_unfreeze(new_folio, expected_refs);
3792
3793
lru_add_split_folio(folio, new_folio, lruvec, list);
3794
3795
/*
3796
* Anonymous folio with swap cache.
3797
* NOTE: shmem in swap cache is not supported yet.
3798
*/
3799
if (ci) {
3800
__swap_cache_replace_folio(ci, folio, new_folio);
3801
continue;
3802
}
3803
3804
/* Anonymous folio without swap cache */
3805
if (!mapping)
3806
continue;
3807
3808
/* Add the new folio to the page cache. */
3809
if (new_folio->index < end) {
3810
__xa_store(&mapping->i_pages, new_folio->index,
3811
new_folio, 0);
3812
continue;
3813
}
3814
3815
/* Drop folio beyond EOF: ->index >= end */
3816
if (shmem_mapping(mapping))
3817
nr_shmem_dropped += nr_pages;
3818
else if (folio_test_clear_dirty(new_folio))
3819
folio_account_cleaned(
3820
new_folio, inode_to_wb(mapping->host));
3821
__filemap_remove_folio(new_folio, NULL);
3822
folio_put_refs(new_folio, nr_pages);
3823
}
3824
/*
3825
* Unfreeze @folio only after all page cache entries, which
3826
* used to point to it, have been updated with new folios.
3827
* Otherwise, a parallel folio_try_get() can grab @folio
3828
* and its caller can see stale page cache entries.
3829
*/
3830
expected_refs = folio_expected_ref_count(folio) + 1;
3831
folio_ref_unfreeze(folio, expected_refs);
3832
3833
unlock_page_lruvec(lruvec);
3834
3835
if (ci)
3836
swap_cluster_unlock(ci);
3837
} else {
3838
spin_unlock(&ds_queue->split_queue_lock);
3839
ret = -EAGAIN;
3840
}
3841
fail:
3842
if (mapping)
3843
xas_unlock(&xas);
3844
3845
local_irq_enable();
3846
3847
if (nr_shmem_dropped)
3848
shmem_uncharge(mapping->host, nr_shmem_dropped);
3849
3850
if (!ret && is_anon)
3851
remap_flags = RMP_USE_SHARED_ZEROPAGE;
3852
remap_page(folio, 1 << order, remap_flags);
3853
3854
/*
3855
* Unlock all after-split folios except the one containing
3856
* @lock_at page. If @folio is not split, it will be kept locked.
3857
*/
3858
for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3859
next = folio_next(new_folio);
3860
if (new_folio == page_folio(lock_at))
3861
continue;
3862
3863
folio_unlock(new_folio);
3864
/*
3865
* Subpages may be freed if there wasn't any mapping
3866
* like if add_to_swap() is running on a lru page that
3867
* had its mapping zapped. And freeing these pages
3868
* requires taking the lru_lock so we do the put_page
3869
* of the tail pages after the split is complete.
3870
*/
3871
free_folio_and_swap_cache(new_folio);
3872
}
3873
3874
out_unlock:
3875
if (anon_vma) {
3876
anon_vma_unlock_write(anon_vma);
3877
put_anon_vma(anon_vma);
3878
}
3879
if (mapping)
3880
i_mmap_unlock_read(mapping);
3881
out:
3882
xas_destroy(&xas);
3883
if (order == HPAGE_PMD_ORDER)
3884
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3885
count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3886
return ret;
3887
}
3888
3889
/*
3890
* This function splits a large folio into smaller folios of order @new_order.
3891
* @page can point to any page of the large folio to split. The split operation
3892
* does not change the position of @page.
3893
*
3894
* Prerequisites:
3895
*
3896
* 1) The caller must hold a reference on the @page's owning folio, also known
3897
* as the large folio.
3898
*
3899
* 2) The large folio must be locked.
3900
*
3901
* 3) The folio must not be pinned. Any unexpected folio references, including
3902
* GUP pins, will result in the folio not getting split; instead, the caller
3903
* will receive an -EAGAIN.
3904
*
3905
* 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3906
* supported for non-file-backed folios, because folio->_deferred_list, which
3907
* is used by partially mapped folios, is stored in subpage 2, but an order-1
3908
* folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3909
* since they do not use _deferred_list.
3910
*
3911
* After splitting, the caller's folio reference will be transferred to @page,
3912
* resulting in a raised refcount of @page after this call. The other pages may
3913
* be freed if they are not mapped.
3914
*
3915
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3916
*
3917
* Pages in @new_order will inherit the mapping, flags, and so on from the
3918
* huge page.
3919
*
3920
* Returns 0 if the huge page was split successfully.
3921
*
3922
* Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3923
* the folio was concurrently removed from the page cache.
3924
*
3925
* Returns -EBUSY when trying to split the huge zeropage, if the folio is
3926
* under writeback, if fs-specific folio metadata cannot currently be
3927
* released, or if some unexpected race happened (e.g., anon VMA disappeared,
3928
* truncation).
3929
*
3930
* Callers should ensure that the order respects the address space mapping
3931
* min-order if one is set for non-anonymous folios.
3932
*
3933
* Returns -EINVAL when trying to split to an order that is incompatible
3934
* with the folio. Splitting to order 0 is compatible with all folios.
3935
*/
3936
int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3937
unsigned int new_order)
3938
{
3939
struct folio *folio = page_folio(page);
3940
3941
return __folio_split(folio, new_order, &folio->page, page, list, true);
3942
}
3943
3944
/*
3945
* folio_split: split a folio at @split_at to a @new_order folio
3946
* @folio: folio to split
3947
* @new_order: the order of the new folio
3948
* @split_at: a page within the new folio
3949
*
3950
* return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3951
* split but not to @new_order, the caller needs to check)
3952
*
3953
* It has the same prerequisites and returns as
3954
* split_huge_page_to_list_to_order().
3955
*
3956
* Split a folio at @split_at to a new_order folio, leave the
3957
* remaining subpages of the original folio as large as possible. For example,
3958
* in the case of splitting an order-9 folio at its third order-3 subpages to
3959
* an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3960
* After the split, there will be a group of folios with different orders and
3961
* the new folio containing @split_at is marked in bracket:
3962
* [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
3963
*
3964
* After split, folio is left locked for caller.
3965
*/
3966
int folio_split(struct folio *folio, unsigned int new_order,
3967
struct page *split_at, struct list_head *list)
3968
{
3969
return __folio_split(folio, new_order, split_at, &folio->page, list,
3970
false);
3971
}
3972
3973
int min_order_for_split(struct folio *folio)
3974
{
3975
if (folio_test_anon(folio))
3976
return 0;
3977
3978
if (!folio->mapping) {
3979
if (folio_test_pmd_mappable(folio))
3980
count_vm_event(THP_SPLIT_PAGE_FAILED);
3981
return -EBUSY;
3982
}
3983
3984
return mapping_min_folio_order(folio->mapping);
3985
}
3986
3987
int split_folio_to_list(struct folio *folio, struct list_head *list)
3988
{
3989
int ret = min_order_for_split(folio);
3990
3991
if (ret < 0)
3992
return ret;
3993
3994
return split_huge_page_to_list_to_order(&folio->page, list, ret);
3995
}
3996
3997
/*
3998
* __folio_unqueue_deferred_split() is not to be called directly:
3999
* the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4000
* limits its calls to those folios which may have a _deferred_list for
4001
* queueing THP splits, and that list is (racily observed to be) non-empty.
4002
*
4003
* It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4004
* zero: because even when split_queue_lock is held, a non-empty _deferred_list
4005
* might be in use on deferred_split_scan()'s unlocked on-stack list.
4006
*
4007
* If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4008
* therefore important to unqueue deferred split before changing folio memcg.
4009
*/
4010
bool __folio_unqueue_deferred_split(struct folio *folio)
4011
{
4012
struct deferred_split *ds_queue;
4013
unsigned long flags;
4014
bool unqueued = false;
4015
4016
WARN_ON_ONCE(folio_ref_count(folio));
4017
WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4018
4019
ds_queue = get_deferred_split_queue(folio);
4020
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4021
if (!list_empty(&folio->_deferred_list)) {
4022
ds_queue->split_queue_len--;
4023
if (folio_test_partially_mapped(folio)) {
4024
folio_clear_partially_mapped(folio);
4025
mod_mthp_stat(folio_order(folio),
4026
MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4027
}
4028
list_del_init(&folio->_deferred_list);
4029
unqueued = true;
4030
}
4031
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4032
4033
return unqueued; /* useful for debug warnings */
4034
}
4035
4036
/* partially_mapped=false won't clear PG_partially_mapped folio flag */
4037
void deferred_split_folio(struct folio *folio, bool partially_mapped)
4038
{
4039
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4040
#ifdef CONFIG_MEMCG
4041
struct mem_cgroup *memcg = folio_memcg(folio);
4042
#endif
4043
unsigned long flags;
4044
4045
/*
4046
* Order 1 folios have no space for a deferred list, but we also
4047
* won't waste much memory by not adding them to the deferred list.
4048
*/
4049
if (folio_order(folio) <= 1)
4050
return;
4051
4052
if (!partially_mapped && !split_underused_thp)
4053
return;
4054
4055
/*
4056
* Exclude swapcache: originally to avoid a corrupt deferred split
4057
* queue. Nowadays that is fully prevented by memcg1_swapout();
4058
* but if page reclaim is already handling the same folio, it is
4059
* unnecessary to handle it again in the shrinker, so excluding
4060
* swapcache here may still be a useful optimization.
4061
*/
4062
if (folio_test_swapcache(folio))
4063
return;
4064
4065
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4066
if (partially_mapped) {
4067
if (!folio_test_partially_mapped(folio)) {
4068
folio_set_partially_mapped(folio);
4069
if (folio_test_pmd_mappable(folio))
4070
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4071
count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4072
mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4073
4074
}
4075
} else {
4076
/* partially mapped folios cannot become non-partially mapped */
4077
VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4078
}
4079
if (list_empty(&folio->_deferred_list)) {
4080
list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4081
ds_queue->split_queue_len++;
4082
#ifdef CONFIG_MEMCG
4083
if (memcg)
4084
set_shrinker_bit(memcg, folio_nid(folio),
4085
deferred_split_shrinker->id);
4086
#endif
4087
}
4088
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4089
}
4090
4091
static unsigned long deferred_split_count(struct shrinker *shrink,
4092
struct shrink_control *sc)
4093
{
4094
struct pglist_data *pgdata = NODE_DATA(sc->nid);
4095
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4096
4097
#ifdef CONFIG_MEMCG
4098
if (sc->memcg)
4099
ds_queue = &sc->memcg->deferred_split_queue;
4100
#endif
4101
return READ_ONCE(ds_queue->split_queue_len);
4102
}
4103
4104
static bool thp_underused(struct folio *folio)
4105
{
4106
int num_zero_pages = 0, num_filled_pages = 0;
4107
void *kaddr;
4108
int i;
4109
4110
if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4111
return false;
4112
4113
for (i = 0; i < folio_nr_pages(folio); i++) {
4114
kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4115
if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4116
num_zero_pages++;
4117
if (num_zero_pages > khugepaged_max_ptes_none) {
4118
kunmap_local(kaddr);
4119
return true;
4120
}
4121
} else {
4122
/*
4123
* Another path for early exit once the number
4124
* of non-zero filled pages exceeds threshold.
4125
*/
4126
num_filled_pages++;
4127
if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4128
kunmap_local(kaddr);
4129
return false;
4130
}
4131
}
4132
kunmap_local(kaddr);
4133
}
4134
return false;
4135
}
4136
4137
static unsigned long deferred_split_scan(struct shrinker *shrink,
4138
struct shrink_control *sc)
4139
{
4140
struct pglist_data *pgdata = NODE_DATA(sc->nid);
4141
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4142
unsigned long flags;
4143
LIST_HEAD(list);
4144
struct folio *folio, *next, *prev = NULL;
4145
int split = 0, removed = 0;
4146
4147
#ifdef CONFIG_MEMCG
4148
if (sc->memcg)
4149
ds_queue = &sc->memcg->deferred_split_queue;
4150
#endif
4151
4152
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4153
/* Take pin on all head pages to avoid freeing them under us */
4154
list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4155
_deferred_list) {
4156
if (folio_try_get(folio)) {
4157
list_move(&folio->_deferred_list, &list);
4158
} else {
4159
/* We lost race with folio_put() */
4160
if (folio_test_partially_mapped(folio)) {
4161
folio_clear_partially_mapped(folio);
4162
mod_mthp_stat(folio_order(folio),
4163
MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4164
}
4165
list_del_init(&folio->_deferred_list);
4166
ds_queue->split_queue_len--;
4167
}
4168
if (!--sc->nr_to_scan)
4169
break;
4170
}
4171
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4172
4173
list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4174
bool did_split = false;
4175
bool underused = false;
4176
4177
if (!folio_test_partially_mapped(folio)) {
4178
/*
4179
* See try_to_map_unused_to_zeropage(): we cannot
4180
* optimize zero-filled pages after splitting an
4181
* mlocked folio.
4182
*/
4183
if (folio_test_mlocked(folio))
4184
goto next;
4185
underused = thp_underused(folio);
4186
if (!underused)
4187
goto next;
4188
}
4189
if (!folio_trylock(folio))
4190
goto next;
4191
if (!split_folio(folio)) {
4192
did_split = true;
4193
if (underused)
4194
count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4195
split++;
4196
}
4197
folio_unlock(folio);
4198
next:
4199
/*
4200
* split_folio() removes folio from list on success.
4201
* Only add back to the queue if folio is partially mapped.
4202
* If thp_underused returns false, or if split_folio fails
4203
* in the case it was underused, then consider it used and
4204
* don't add it back to split_queue.
4205
*/
4206
if (did_split) {
4207
; /* folio already removed from list */
4208
} else if (!folio_test_partially_mapped(folio)) {
4209
list_del_init(&folio->_deferred_list);
4210
removed++;
4211
} else {
4212
/*
4213
* That unlocked list_del_init() above would be unsafe,
4214
* unless its folio is separated from any earlier folios
4215
* left on the list (which may be concurrently unqueued)
4216
* by one safe folio with refcount still raised.
4217
*/
4218
swap(folio, prev);
4219
}
4220
if (folio)
4221
folio_put(folio);
4222
}
4223
4224
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4225
list_splice_tail(&list, &ds_queue->split_queue);
4226
ds_queue->split_queue_len -= removed;
4227
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4228
4229
if (prev)
4230
folio_put(prev);
4231
4232
/*
4233
* Stop shrinker if we didn't split any page, but the queue is empty.
4234
* This can happen if pages were freed under us.
4235
*/
4236
if (!split && list_empty(&ds_queue->split_queue))
4237
return SHRINK_STOP;
4238
return split;
4239
}
4240
4241
#ifdef CONFIG_DEBUG_FS
4242
static void split_huge_pages_all(void)
4243
{
4244
struct zone *zone;
4245
struct page *page;
4246
struct folio *folio;
4247
unsigned long pfn, max_zone_pfn;
4248
unsigned long total = 0, split = 0;
4249
4250
pr_debug("Split all THPs\n");
4251
for_each_zone(zone) {
4252
if (!managed_zone(zone))
4253
continue;
4254
max_zone_pfn = zone_end_pfn(zone);
4255
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4256
int nr_pages;
4257
4258
page = pfn_to_online_page(pfn);
4259
if (!page || PageTail(page))
4260
continue;
4261
folio = page_folio(page);
4262
if (!folio_try_get(folio))
4263
continue;
4264
4265
if (unlikely(page_folio(page) != folio))
4266
goto next;
4267
4268
if (zone != folio_zone(folio))
4269
goto next;
4270
4271
if (!folio_test_large(folio)
4272
|| folio_test_hugetlb(folio)
4273
|| !folio_test_lru(folio))
4274
goto next;
4275
4276
total++;
4277
folio_lock(folio);
4278
nr_pages = folio_nr_pages(folio);
4279
if (!split_folio(folio))
4280
split++;
4281
pfn += nr_pages - 1;
4282
folio_unlock(folio);
4283
next:
4284
folio_put(folio);
4285
cond_resched();
4286
}
4287
}
4288
4289
pr_debug("%lu of %lu THP split\n", split, total);
4290
}
4291
4292
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4293
{
4294
return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4295
is_vm_hugetlb_page(vma);
4296
}
4297
4298
static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4299
unsigned long vaddr_end, unsigned int new_order,
4300
long in_folio_offset)
4301
{
4302
int ret = 0;
4303
struct task_struct *task;
4304
struct mm_struct *mm;
4305
unsigned long total = 0, split = 0;
4306
unsigned long addr;
4307
4308
vaddr_start &= PAGE_MASK;
4309
vaddr_end &= PAGE_MASK;
4310
4311
task = find_get_task_by_vpid(pid);
4312
if (!task) {
4313
ret = -ESRCH;
4314
goto out;
4315
}
4316
4317
/* Find the mm_struct */
4318
mm = get_task_mm(task);
4319
put_task_struct(task);
4320
4321
if (!mm) {
4322
ret = -EINVAL;
4323
goto out;
4324
}
4325
4326
pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4327
pid, vaddr_start, vaddr_end, new_order, in_folio_offset);
4328
4329
mmap_read_lock(mm);
4330
/*
4331
* always increase addr by PAGE_SIZE, since we could have a PTE page
4332
* table filled with PTE-mapped THPs, each of which is distinct.
4333
*/
4334
for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4335
struct vm_area_struct *vma = vma_lookup(mm, addr);
4336
struct folio_walk fw;
4337
struct folio *folio;
4338
struct address_space *mapping;
4339
unsigned int target_order = new_order;
4340
4341
if (!vma)
4342
break;
4343
4344
/* skip special VMA and hugetlb VMA */
4345
if (vma_not_suitable_for_thp_split(vma)) {
4346
addr = vma->vm_end;
4347
continue;
4348
}
4349
4350
folio = folio_walk_start(&fw, vma, addr, 0);
4351
if (!folio)
4352
continue;
4353
4354
if (!is_transparent_hugepage(folio))
4355
goto next;
4356
4357
if (!folio_test_anon(folio)) {
4358
mapping = folio->mapping;
4359
target_order = max(new_order,
4360
mapping_min_folio_order(mapping));
4361
}
4362
4363
if (target_order >= folio_order(folio))
4364
goto next;
4365
4366
total++;
4367
/*
4368
* For folios with private, split_huge_page_to_list_to_order()
4369
* will try to drop it before split and then check if the folio
4370
* can be split or not. So skip the check here.
4371
*/
4372
if (!folio_test_private(folio) &&
4373
!can_split_folio(folio, 0, NULL))
4374
goto next;
4375
4376
if (!folio_trylock(folio))
4377
goto next;
4378
folio_get(folio);
4379
folio_walk_end(&fw, vma);
4380
4381
if (!folio_test_anon(folio) && folio->mapping != mapping)
4382
goto unlock;
4383
4384
if (in_folio_offset < 0 ||
4385
in_folio_offset >= folio_nr_pages(folio)) {
4386
if (!split_folio_to_order(folio, target_order))
4387
split++;
4388
} else {
4389
struct page *split_at = folio_page(folio,
4390
in_folio_offset);
4391
if (!folio_split(folio, target_order, split_at, NULL))
4392
split++;
4393
}
4394
4395
unlock:
4396
4397
folio_unlock(folio);
4398
folio_put(folio);
4399
4400
cond_resched();
4401
continue;
4402
next:
4403
folio_walk_end(&fw, vma);
4404
cond_resched();
4405
}
4406
mmap_read_unlock(mm);
4407
mmput(mm);
4408
4409
pr_debug("%lu of %lu THP split\n", split, total);
4410
4411
out:
4412
return ret;
4413
}
4414
4415
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4416
pgoff_t off_end, unsigned int new_order,
4417
long in_folio_offset)
4418
{
4419
struct filename *file;
4420
struct file *candidate;
4421
struct address_space *mapping;
4422
int ret = -EINVAL;
4423
pgoff_t index;
4424
int nr_pages = 1;
4425
unsigned long total = 0, split = 0;
4426
unsigned int min_order;
4427
unsigned int target_order;
4428
4429
file = getname_kernel(file_path);
4430
if (IS_ERR(file))
4431
return ret;
4432
4433
candidate = file_open_name(file, O_RDONLY, 0);
4434
if (IS_ERR(candidate))
4435
goto out;
4436
4437
pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4438
file_path, off_start, off_end, new_order, in_folio_offset);
4439
4440
mapping = candidate->f_mapping;
4441
min_order = mapping_min_folio_order(mapping);
4442
target_order = max(new_order, min_order);
4443
4444
for (index = off_start; index < off_end; index += nr_pages) {
4445
struct folio *folio = filemap_get_folio(mapping, index);
4446
4447
nr_pages = 1;
4448
if (IS_ERR(folio))
4449
continue;
4450
4451
if (!folio_test_large(folio))
4452
goto next;
4453
4454
total++;
4455
nr_pages = folio_nr_pages(folio);
4456
4457
if (target_order >= folio_order(folio))
4458
goto next;
4459
4460
if (!folio_trylock(folio))
4461
goto next;
4462
4463
if (folio->mapping != mapping)
4464
goto unlock;
4465
4466
if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4467
if (!split_folio_to_order(folio, target_order))
4468
split++;
4469
} else {
4470
struct page *split_at = folio_page(folio,
4471
in_folio_offset);
4472
if (!folio_split(folio, target_order, split_at, NULL))
4473
split++;
4474
}
4475
4476
unlock:
4477
folio_unlock(folio);
4478
next:
4479
folio_put(folio);
4480
cond_resched();
4481
}
4482
4483
filp_close(candidate, NULL);
4484
ret = 0;
4485
4486
pr_debug("%lu of %lu file-backed THP split\n", split, total);
4487
out:
4488
putname(file);
4489
return ret;
4490
}
4491
4492
#define MAX_INPUT_BUF_SZ 255
4493
4494
static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4495
size_t count, loff_t *ppops)
4496
{
4497
static DEFINE_MUTEX(split_debug_mutex);
4498
ssize_t ret;
4499
/*
4500
* hold pid, start_vaddr, end_vaddr, new_order or
4501
* file_path, off_start, off_end, new_order
4502
*/
4503
char input_buf[MAX_INPUT_BUF_SZ];
4504
int pid;
4505
unsigned long vaddr_start, vaddr_end;
4506
unsigned int new_order = 0;
4507
long in_folio_offset = -1;
4508
4509
ret = mutex_lock_interruptible(&split_debug_mutex);
4510
if (ret)
4511
return ret;
4512
4513
ret = -EFAULT;
4514
4515
memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4516
if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4517
goto out;
4518
4519
input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4520
4521
if (input_buf[0] == '/') {
4522
char *tok;
4523
char *tok_buf = input_buf;
4524
char file_path[MAX_INPUT_BUF_SZ];
4525
pgoff_t off_start = 0, off_end = 0;
4526
size_t input_len = strlen(input_buf);
4527
4528
tok = strsep(&tok_buf, ",");
4529
if (tok && tok_buf) {
4530
strscpy(file_path, tok);
4531
} else {
4532
ret = -EINVAL;
4533
goto out;
4534
}
4535
4536
ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4537
&new_order, &in_folio_offset);
4538
if (ret != 2 && ret != 3 && ret != 4) {
4539
ret = -EINVAL;
4540
goto out;
4541
}
4542
ret = split_huge_pages_in_file(file_path, off_start, off_end,
4543
new_order, in_folio_offset);
4544
if (!ret)
4545
ret = input_len;
4546
4547
goto out;
4548
}
4549
4550
ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4551
&vaddr_end, &new_order, &in_folio_offset);
4552
if (ret == 1 && pid == 1) {
4553
split_huge_pages_all();
4554
ret = strlen(input_buf);
4555
goto out;
4556
} else if (ret != 3 && ret != 4 && ret != 5) {
4557
ret = -EINVAL;
4558
goto out;
4559
}
4560
4561
ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4562
in_folio_offset);
4563
if (!ret)
4564
ret = strlen(input_buf);
4565
out:
4566
mutex_unlock(&split_debug_mutex);
4567
return ret;
4568
4569
}
4570
4571
static const struct file_operations split_huge_pages_fops = {
4572
.owner = THIS_MODULE,
4573
.write = split_huge_pages_write,
4574
};
4575
4576
static int __init split_huge_pages_debugfs(void)
4577
{
4578
debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4579
&split_huge_pages_fops);
4580
return 0;
4581
}
4582
late_initcall(split_huge_pages_debugfs);
4583
#endif
4584
4585
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4586
int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4587
struct page *page)
4588
{
4589
struct folio *folio = page_folio(page);
4590
struct vm_area_struct *vma = pvmw->vma;
4591
struct mm_struct *mm = vma->vm_mm;
4592
unsigned long address = pvmw->address;
4593
bool anon_exclusive;
4594
pmd_t pmdval;
4595
swp_entry_t entry;
4596
pmd_t pmdswp;
4597
4598
if (!(pvmw->pmd && !pvmw->pte))
4599
return 0;
4600
4601
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4602
pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4603
4604
/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4605
anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4606
if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4607
set_pmd_at(mm, address, pvmw->pmd, pmdval);
4608
return -EBUSY;
4609
}
4610
4611
if (pmd_dirty(pmdval))
4612
folio_mark_dirty(folio);
4613
if (pmd_write(pmdval))
4614
entry = make_writable_migration_entry(page_to_pfn(page));
4615
else if (anon_exclusive)
4616
entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4617
else
4618
entry = make_readable_migration_entry(page_to_pfn(page));
4619
if (pmd_young(pmdval))
4620
entry = make_migration_entry_young(entry);
4621
if (pmd_dirty(pmdval))
4622
entry = make_migration_entry_dirty(entry);
4623
pmdswp = swp_entry_to_pmd(entry);
4624
if (pmd_soft_dirty(pmdval))
4625
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4626
if (pmd_uffd_wp(pmdval))
4627
pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4628
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4629
folio_remove_rmap_pmd(folio, page, vma);
4630
folio_put(folio);
4631
trace_set_migration_pmd(address, pmd_val(pmdswp));
4632
4633
return 0;
4634
}
4635
4636
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4637
{
4638
struct folio *folio = page_folio(new);
4639
struct vm_area_struct *vma = pvmw->vma;
4640
struct mm_struct *mm = vma->vm_mm;
4641
unsigned long address = pvmw->address;
4642
unsigned long haddr = address & HPAGE_PMD_MASK;
4643
pmd_t pmde;
4644
swp_entry_t entry;
4645
4646
if (!(pvmw->pmd && !pvmw->pte))
4647
return;
4648
4649
entry = pmd_to_swp_entry(*pvmw->pmd);
4650
folio_get(folio);
4651
pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4652
if (pmd_swp_soft_dirty(*pvmw->pmd))
4653
pmde = pmd_mksoft_dirty(pmde);
4654
if (is_writable_migration_entry(entry))
4655
pmde = pmd_mkwrite(pmde, vma);
4656
if (pmd_swp_uffd_wp(*pvmw->pmd))
4657
pmde = pmd_mkuffd_wp(pmde);
4658
if (!is_migration_entry_young(entry))
4659
pmde = pmd_mkold(pmde);
4660
/* NOTE: this may contain setting soft-dirty on some archs */
4661
if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4662
pmde = pmd_mkdirty(pmde);
4663
4664
if (folio_test_anon(folio)) {
4665
rmap_t rmap_flags = RMAP_NONE;
4666
4667
if (!is_readable_migration_entry(entry))
4668
rmap_flags |= RMAP_EXCLUSIVE;
4669
4670
folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4671
} else {
4672
folio_add_file_rmap_pmd(folio, new, vma);
4673
}
4674
VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4675
set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4676
4677
/* No need to invalidate - it was non-present before */
4678
update_mmu_cache_pmd(vma, address, pvmw->pmd);
4679
trace_remove_migration_pmd(address, pmd_val(pmde));
4680
}
4681
#endif
4682
4683