Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kasan/common.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* This file contains common KASAN code.
4
*
5
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
6
* Author: Andrey Ryabinin <[email protected]>
7
*
8
* Some code borrowed from https://github.com/xairy/kasan-prototype by
9
* Andrey Konovalov <[email protected]>
10
*/
11
12
#include <linux/export.h>
13
#include <linux/init.h>
14
#include <linux/kasan.h>
15
#include <linux/kernel.h>
16
#include <linux/linkage.h>
17
#include <linux/memblock.h>
18
#include <linux/memory.h>
19
#include <linux/mm.h>
20
#include <linux/module.h>
21
#include <linux/printk.h>
22
#include <linux/sched.h>
23
#include <linux/sched/clock.h>
24
#include <linux/sched/task_stack.h>
25
#include <linux/slab.h>
26
#include <linux/stackdepot.h>
27
#include <linux/stacktrace.h>
28
#include <linux/string.h>
29
#include <linux/types.h>
30
#include <linux/bug.h>
31
32
#include "kasan.h"
33
#include "../slab.h"
34
35
#if defined(CONFIG_ARCH_DEFER_KASAN) || defined(CONFIG_KASAN_HW_TAGS)
36
/*
37
* Definition of the unified static key declared in kasan-enabled.h.
38
* This provides consistent runtime enable/disable across KASAN modes.
39
*/
40
DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled);
41
EXPORT_SYMBOL_GPL(kasan_flag_enabled);
42
#endif
43
44
struct slab *kasan_addr_to_slab(const void *addr)
45
{
46
if (virt_addr_valid(addr))
47
return virt_to_slab(addr);
48
return NULL;
49
}
50
51
depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
52
{
53
unsigned long entries[KASAN_STACK_DEPTH];
54
unsigned int nr_entries;
55
56
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
57
return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
58
}
59
60
void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
61
{
62
#ifdef CONFIG_KASAN_EXTRA_INFO
63
u32 cpu = raw_smp_processor_id();
64
u64 ts_nsec = local_clock();
65
66
track->cpu = cpu;
67
track->timestamp = ts_nsec >> 9;
68
#endif /* CONFIG_KASAN_EXTRA_INFO */
69
track->pid = current->pid;
70
track->stack = stack;
71
}
72
73
void kasan_save_track(struct kasan_track *track, gfp_t flags)
74
{
75
depot_stack_handle_t stack;
76
77
stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
78
kasan_set_track(track, stack);
79
}
80
81
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
82
void kasan_enable_current(void)
83
{
84
current->kasan_depth++;
85
}
86
EXPORT_SYMBOL(kasan_enable_current);
87
88
void kasan_disable_current(void)
89
{
90
current->kasan_depth--;
91
}
92
EXPORT_SYMBOL(kasan_disable_current);
93
94
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
95
96
void __kasan_unpoison_range(const void *address, size_t size)
97
{
98
if (is_kfence_address(address))
99
return;
100
101
kasan_unpoison(address, size, false);
102
}
103
104
#ifdef CONFIG_KASAN_STACK
105
/* Unpoison the entire stack for a task. */
106
void kasan_unpoison_task_stack(struct task_struct *task)
107
{
108
void *base = task_stack_page(task);
109
110
kasan_unpoison(base, THREAD_SIZE, false);
111
}
112
113
/* Unpoison the stack for the current task beyond a watermark sp value. */
114
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
115
{
116
/*
117
* Calculate the task stack base address. Avoid using 'current'
118
* because this function is called by early resume code which hasn't
119
* yet set up the percpu register (%gs).
120
*/
121
void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
122
123
kasan_unpoison(base, watermark - base, false);
124
}
125
#endif /* CONFIG_KASAN_STACK */
126
127
bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
128
{
129
u8 tag;
130
unsigned long i;
131
132
if (unlikely(PageHighMem(page)))
133
return false;
134
135
if (!kasan_sample_page_alloc(order))
136
return false;
137
138
tag = kasan_random_tag();
139
kasan_unpoison(set_tag(page_address(page), tag),
140
PAGE_SIZE << order, init);
141
for (i = 0; i < (1 << order); i++)
142
page_kasan_tag_set(page + i, tag);
143
144
return true;
145
}
146
147
void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
148
{
149
if (likely(!PageHighMem(page)))
150
kasan_poison(page_address(page), PAGE_SIZE << order,
151
KASAN_PAGE_FREE, init);
152
}
153
154
void __kasan_poison_slab(struct slab *slab)
155
{
156
struct page *page = slab_page(slab);
157
unsigned long i;
158
159
for (i = 0; i < compound_nr(page); i++)
160
page_kasan_tag_reset(page + i);
161
kasan_poison(page_address(page), page_size(page),
162
KASAN_SLAB_REDZONE, false);
163
}
164
165
void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
166
{
167
kasan_unpoison(object, cache->object_size, false);
168
}
169
170
void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
171
{
172
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
173
KASAN_SLAB_REDZONE, false);
174
}
175
176
/*
177
* This function assigns a tag to an object considering the following:
178
* 1. A cache might have a constructor, which might save a pointer to a slab
179
* object somewhere (e.g. in the object itself). We preassign a tag for
180
* each object in caches with constructors during slab creation and reuse
181
* the same tag each time a particular object is allocated.
182
* 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
183
* accessed after being freed. We preassign tags for objects in these
184
* caches as well.
185
*/
186
static inline u8 assign_tag(struct kmem_cache *cache,
187
const void *object, bool init)
188
{
189
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
190
return 0xff;
191
192
/*
193
* If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
194
* set, assign a tag when the object is being allocated (init == false).
195
*/
196
if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
197
return init ? KASAN_TAG_KERNEL : kasan_random_tag();
198
199
/*
200
* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
201
* assign a random tag during slab creation, otherwise reuse
202
* the already assigned tag.
203
*/
204
return init ? kasan_random_tag() : get_tag(object);
205
}
206
207
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
208
const void *object)
209
{
210
/* Initialize per-object metadata if it is present. */
211
if (kasan_requires_meta())
212
kasan_init_object_meta(cache, object);
213
214
/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
215
object = set_tag(object, assign_tag(cache, object, true));
216
217
return (void *)object;
218
}
219
220
/* Returns true when freeing the object is not safe. */
221
static bool check_slab_allocation(struct kmem_cache *cache, void *object,
222
unsigned long ip)
223
{
224
void *tagged_object = object;
225
226
object = kasan_reset_tag(object);
227
228
if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
229
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
230
return true;
231
}
232
233
if (!kasan_byte_accessible(tagged_object)) {
234
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
235
return true;
236
}
237
238
return false;
239
}
240
241
static inline void poison_slab_object(struct kmem_cache *cache, void *object,
242
bool init)
243
{
244
void *tagged_object = object;
245
246
object = kasan_reset_tag(object);
247
248
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
249
KASAN_SLAB_FREE, init);
250
251
if (kasan_stack_collection_enabled())
252
kasan_save_free_info(cache, tagged_object);
253
}
254
255
bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
256
unsigned long ip)
257
{
258
if (is_kfence_address(object))
259
return false;
260
return check_slab_allocation(cache, object, ip);
261
}
262
263
bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
264
bool still_accessible, bool no_quarantine)
265
{
266
if (is_kfence_address(object))
267
return false;
268
269
/*
270
* If this point is reached with an object that must still be
271
* accessible under RCU, we can't poison it; in that case, also skip the
272
* quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG
273
* has been disabled manually.
274
*
275
* Putting the object on the quarantine wouldn't help catch UAFs (since
276
* we can't poison it here), and it would mask bugs caused by
277
* SLAB_TYPESAFE_BY_RCU users not being careful enough about object
278
* reuse; so overall, putting the object into the quarantine here would
279
* be counterproductive.
280
*/
281
if (still_accessible)
282
return false;
283
284
poison_slab_object(cache, object, init);
285
286
if (no_quarantine)
287
return false;
288
289
/*
290
* If the object is put into quarantine, do not let slab put the object
291
* onto the freelist for now. The object's metadata is kept until the
292
* object gets evicted from quarantine.
293
*/
294
if (kasan_quarantine_put(cache, object))
295
return true;
296
297
/*
298
* Note: Keep per-object metadata to allow KASAN print stack traces for
299
* use-after-free-before-realloc bugs.
300
*/
301
302
/* Let slab put the object onto the freelist. */
303
return false;
304
}
305
306
static inline bool check_page_allocation(void *ptr, unsigned long ip)
307
{
308
if (!kasan_enabled())
309
return false;
310
311
if (ptr != page_address(virt_to_head_page(ptr))) {
312
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
313
return true;
314
}
315
316
if (!kasan_byte_accessible(ptr)) {
317
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
318
return true;
319
}
320
321
return false;
322
}
323
324
void __kasan_kfree_large(void *ptr, unsigned long ip)
325
{
326
check_page_allocation(ptr, ip);
327
328
/* The object will be poisoned by kasan_poison_pages(). */
329
}
330
331
static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
332
gfp_t flags, bool init)
333
{
334
/*
335
* Unpoison the whole object. For kmalloc() allocations,
336
* poison_kmalloc_redzone() will do precise poisoning.
337
*/
338
kasan_unpoison(object, cache->object_size, init);
339
340
/* Save alloc info (if possible) for non-kmalloc() allocations. */
341
if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
342
kasan_save_alloc_info(cache, object, flags);
343
}
344
345
void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
346
void *object, gfp_t flags, bool init)
347
{
348
u8 tag;
349
void *tagged_object;
350
351
if (gfpflags_allow_blocking(flags))
352
kasan_quarantine_reduce();
353
354
if (unlikely(object == NULL))
355
return NULL;
356
357
if (is_kfence_address(object))
358
return (void *)object;
359
360
/*
361
* Generate and assign random tag for tag-based modes.
362
* Tag is ignored in set_tag() for the generic mode.
363
*/
364
tag = assign_tag(cache, object, false);
365
tagged_object = set_tag(object, tag);
366
367
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
368
unpoison_slab_object(cache, tagged_object, flags, init);
369
370
return tagged_object;
371
}
372
373
static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
374
const void *object, size_t size, gfp_t flags)
375
{
376
unsigned long redzone_start;
377
unsigned long redzone_end;
378
379
/*
380
* The redzone has byte-level precision for the generic mode.
381
* Partially poison the last object granule to cover the unaligned
382
* part of the redzone.
383
*/
384
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
385
kasan_poison_last_granule((void *)object, size);
386
387
/* Poison the aligned part of the redzone. */
388
redzone_start = round_up((unsigned long)(object + size),
389
KASAN_GRANULE_SIZE);
390
redzone_end = round_up((unsigned long)(object + cache->object_size),
391
KASAN_GRANULE_SIZE);
392
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
393
KASAN_SLAB_REDZONE, false);
394
395
/*
396
* Save alloc info (if possible) for kmalloc() allocations.
397
* This also rewrites the alloc info when called from kasan_krealloc().
398
*/
399
if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
400
kasan_save_alloc_info(cache, (void *)object, flags);
401
402
}
403
404
void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
405
size_t size, gfp_t flags)
406
{
407
if (gfpflags_allow_blocking(flags))
408
kasan_quarantine_reduce();
409
410
if (unlikely(object == NULL))
411
return NULL;
412
413
if (is_kfence_address(object))
414
return (void *)object;
415
416
/* The object has already been unpoisoned by kasan_slab_alloc(). */
417
poison_kmalloc_redzone(cache, object, size, flags);
418
419
/* Keep the tag that was set by kasan_slab_alloc(). */
420
return (void *)object;
421
}
422
EXPORT_SYMBOL(__kasan_kmalloc);
423
424
static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
425
gfp_t flags)
426
{
427
unsigned long redzone_start;
428
unsigned long redzone_end;
429
430
/*
431
* The redzone has byte-level precision for the generic mode.
432
* Partially poison the last object granule to cover the unaligned
433
* part of the redzone.
434
*/
435
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
436
kasan_poison_last_granule(ptr, size);
437
438
/* Poison the aligned part of the redzone. */
439
redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
440
redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
441
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
442
KASAN_PAGE_REDZONE, false);
443
}
444
445
void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
446
gfp_t flags)
447
{
448
if (gfpflags_allow_blocking(flags))
449
kasan_quarantine_reduce();
450
451
if (unlikely(ptr == NULL))
452
return NULL;
453
454
/* The object has already been unpoisoned by kasan_unpoison_pages(). */
455
poison_kmalloc_large_redzone(ptr, size, flags);
456
457
/* Keep the tag that was set by alloc_pages(). */
458
return (void *)ptr;
459
}
460
461
void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
462
{
463
struct slab *slab;
464
465
if (gfpflags_allow_blocking(flags))
466
kasan_quarantine_reduce();
467
468
if (unlikely(object == ZERO_SIZE_PTR))
469
return (void *)object;
470
471
if (is_kfence_address(object))
472
return (void *)object;
473
474
/*
475
* Unpoison the object's data.
476
* Part of it might already have been unpoisoned, but it's unknown
477
* how big that part is.
478
*/
479
kasan_unpoison(object, size, false);
480
481
slab = virt_to_slab(object);
482
483
/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
484
if (unlikely(!slab))
485
poison_kmalloc_large_redzone(object, size, flags);
486
else
487
poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
488
489
return (void *)object;
490
}
491
492
bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
493
unsigned long ip)
494
{
495
unsigned long *ptr;
496
497
if (unlikely(PageHighMem(page)))
498
return true;
499
500
/* Bail out if allocation was excluded due to sampling. */
501
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
502
page_kasan_tag(page) == KASAN_TAG_KERNEL)
503
return true;
504
505
ptr = page_address(page);
506
507
if (check_page_allocation(ptr, ip))
508
return false;
509
510
kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
511
512
return true;
513
}
514
515
void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
516
unsigned long ip)
517
{
518
__kasan_unpoison_pages(page, order, false);
519
}
520
521
bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
522
{
523
struct folio *folio = virt_to_folio(ptr);
524
struct slab *slab;
525
526
/*
527
* This function can be called for large kmalloc allocation that get
528
* their memory from page_alloc. Thus, the folio might not be a slab.
529
*/
530
if (unlikely(!folio_test_slab(folio))) {
531
if (check_page_allocation(ptr, ip))
532
return false;
533
kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
534
return true;
535
}
536
537
if (is_kfence_address(ptr))
538
return true;
539
540
slab = folio_slab(folio);
541
542
if (check_slab_allocation(slab->slab_cache, ptr, ip))
543
return false;
544
545
poison_slab_object(slab->slab_cache, ptr, false);
546
return true;
547
}
548
549
void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
550
{
551
struct slab *slab;
552
gfp_t flags = 0; /* Might be executing under a lock. */
553
554
slab = virt_to_slab(ptr);
555
556
/*
557
* This function can be called for large kmalloc allocation that get
558
* their memory from page_alloc.
559
*/
560
if (unlikely(!slab)) {
561
kasan_unpoison(ptr, size, false);
562
poison_kmalloc_large_redzone(ptr, size, flags);
563
return;
564
}
565
566
if (is_kfence_address(ptr))
567
return;
568
569
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
570
unpoison_slab_object(slab->slab_cache, ptr, flags, false);
571
572
/* Poison the redzone and save alloc info for kmalloc() allocations. */
573
if (is_kmalloc_cache(slab->slab_cache))
574
poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
575
}
576
577
bool __kasan_check_byte(const void *address, unsigned long ip)
578
{
579
if (!kasan_byte_accessible(address)) {
580
kasan_report(address, 1, false, ip);
581
return false;
582
}
583
return true;
584
}
585
586