Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kasan/generic.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* This file contains core generic KASAN code.
4
*
5
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
6
* Author: Andrey Ryabinin <[email protected]>
7
*
8
* Some code borrowed from https://github.com/xairy/kasan-prototype by
9
* Andrey Konovalov <[email protected]>
10
*/
11
12
#include <linux/export.h>
13
#include <linux/interrupt.h>
14
#include <linux/init.h>
15
#include <linux/kasan.h>
16
#include <linux/kernel.h>
17
#include <linux/kfence.h>
18
#include <linux/kmemleak.h>
19
#include <linux/linkage.h>
20
#include <linux/memblock.h>
21
#include <linux/memory.h>
22
#include <linux/mm.h>
23
#include <linux/module.h>
24
#include <linux/printk.h>
25
#include <linux/sched.h>
26
#include <linux/sched/task_stack.h>
27
#include <linux/slab.h>
28
#include <linux/spinlock.h>
29
#include <linux/stackdepot.h>
30
#include <linux/stacktrace.h>
31
#include <linux/string.h>
32
#include <linux/types.h>
33
#include <linux/vmalloc.h>
34
#include <linux/bug.h>
35
36
#include "kasan.h"
37
#include "../slab.h"
38
39
/*
40
* Initialize Generic KASAN and enable runtime checks.
41
* This should be called from arch kasan_init() once shadow memory is ready.
42
*/
43
void __init kasan_init_generic(void)
44
{
45
kasan_enable();
46
47
pr_info("KernelAddressSanitizer initialized (generic)\n");
48
}
49
50
/*
51
* All functions below always inlined so compiler could
52
* perform better optimizations in each of __asan_loadX/__assn_storeX
53
* depending on memory access size X.
54
*/
55
56
static __always_inline bool memory_is_poisoned_1(const void *addr)
57
{
58
s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
59
60
if (unlikely(shadow_value)) {
61
s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
62
return unlikely(last_accessible_byte >= shadow_value);
63
}
64
65
return false;
66
}
67
68
static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
69
unsigned long size)
70
{
71
u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
72
73
/*
74
* Access crosses 8(shadow size)-byte boundary. Such access maps
75
* into 2 shadow bytes, so we need to check them both.
76
*/
77
if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
78
return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
79
80
return memory_is_poisoned_1(addr + size - 1);
81
}
82
83
static __always_inline bool memory_is_poisoned_16(const void *addr)
84
{
85
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
86
87
/* Unaligned 16-bytes access maps into 3 shadow bytes. */
88
if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
89
return *shadow_addr || memory_is_poisoned_1(addr + 15);
90
91
return *shadow_addr;
92
}
93
94
static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
95
size_t size)
96
{
97
while (size) {
98
if (unlikely(*start))
99
return (unsigned long)start;
100
start++;
101
size--;
102
}
103
104
return 0;
105
}
106
107
static __always_inline unsigned long memory_is_nonzero(const void *start,
108
const void *end)
109
{
110
unsigned int words;
111
unsigned long ret;
112
unsigned int prefix = (unsigned long)start % 8;
113
114
if (end - start <= 16)
115
return bytes_is_nonzero(start, end - start);
116
117
if (prefix) {
118
prefix = 8 - prefix;
119
ret = bytes_is_nonzero(start, prefix);
120
if (unlikely(ret))
121
return ret;
122
start += prefix;
123
}
124
125
words = (end - start) / 8;
126
while (words) {
127
if (unlikely(*(u64 *)start))
128
return bytes_is_nonzero(start, 8);
129
start += 8;
130
words--;
131
}
132
133
return bytes_is_nonzero(start, (end - start) % 8);
134
}
135
136
static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
137
{
138
unsigned long ret;
139
140
ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
141
kasan_mem_to_shadow(addr + size - 1) + 1);
142
143
if (unlikely(ret)) {
144
const void *last_byte = addr + size - 1;
145
s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
146
s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
147
148
if (unlikely(ret != (unsigned long)last_shadow ||
149
last_accessible_byte >= *last_shadow))
150
return true;
151
}
152
return false;
153
}
154
155
static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
156
{
157
if (__builtin_constant_p(size)) {
158
switch (size) {
159
case 1:
160
return memory_is_poisoned_1(addr);
161
case 2:
162
case 4:
163
case 8:
164
return memory_is_poisoned_2_4_8(addr, size);
165
case 16:
166
return memory_is_poisoned_16(addr);
167
default:
168
BUILD_BUG();
169
}
170
}
171
172
return memory_is_poisoned_n(addr, size);
173
}
174
175
static __always_inline bool check_region_inline(const void *addr,
176
size_t size, bool write,
177
unsigned long ret_ip)
178
{
179
if (!kasan_enabled())
180
return true;
181
182
if (unlikely(size == 0))
183
return true;
184
185
if (unlikely(addr + size < addr))
186
return !kasan_report(addr, size, write, ret_ip);
187
188
if (unlikely(!addr_has_metadata(addr)))
189
return !kasan_report(addr, size, write, ret_ip);
190
191
if (likely(!memory_is_poisoned(addr, size)))
192
return true;
193
194
return !kasan_report(addr, size, write, ret_ip);
195
}
196
197
bool kasan_check_range(const void *addr, size_t size, bool write,
198
unsigned long ret_ip)
199
{
200
return check_region_inline(addr, size, write, ret_ip);
201
}
202
203
bool kasan_byte_accessible(const void *addr)
204
{
205
s8 shadow_byte;
206
207
if (!kasan_enabled())
208
return true;
209
210
shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
211
212
return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
213
}
214
215
void kasan_cache_shrink(struct kmem_cache *cache)
216
{
217
kasan_quarantine_remove_cache(cache);
218
}
219
220
void kasan_cache_shutdown(struct kmem_cache *cache)
221
{
222
if (!__kmem_cache_empty(cache))
223
kasan_quarantine_remove_cache(cache);
224
}
225
226
static void register_global(struct kasan_global *global)
227
{
228
size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
229
230
kasan_unpoison(global->beg, global->size, false);
231
232
kasan_poison(global->beg + aligned_size,
233
global->size_with_redzone - aligned_size,
234
KASAN_GLOBAL_REDZONE, false);
235
}
236
237
void __asan_register_globals(void *ptr, ssize_t size)
238
{
239
int i;
240
struct kasan_global *globals = ptr;
241
242
for (i = 0; i < size; i++)
243
register_global(&globals[i]);
244
}
245
EXPORT_SYMBOL(__asan_register_globals);
246
247
void __asan_unregister_globals(void *ptr, ssize_t size)
248
{
249
}
250
EXPORT_SYMBOL(__asan_unregister_globals);
251
252
#define DEFINE_ASAN_LOAD_STORE(size) \
253
void __asan_load##size(void *addr) \
254
{ \
255
check_region_inline(addr, size, false, _RET_IP_); \
256
} \
257
EXPORT_SYMBOL(__asan_load##size); \
258
__alias(__asan_load##size) \
259
void __asan_load##size##_noabort(void *); \
260
EXPORT_SYMBOL(__asan_load##size##_noabort); \
261
void __asan_store##size(void *addr) \
262
{ \
263
check_region_inline(addr, size, true, _RET_IP_); \
264
} \
265
EXPORT_SYMBOL(__asan_store##size); \
266
__alias(__asan_store##size) \
267
void __asan_store##size##_noabort(void *); \
268
EXPORT_SYMBOL(__asan_store##size##_noabort)
269
270
DEFINE_ASAN_LOAD_STORE(1);
271
DEFINE_ASAN_LOAD_STORE(2);
272
DEFINE_ASAN_LOAD_STORE(4);
273
DEFINE_ASAN_LOAD_STORE(8);
274
DEFINE_ASAN_LOAD_STORE(16);
275
276
void __asan_loadN(void *addr, ssize_t size)
277
{
278
kasan_check_range(addr, size, false, _RET_IP_);
279
}
280
EXPORT_SYMBOL(__asan_loadN);
281
282
__alias(__asan_loadN)
283
void __asan_loadN_noabort(void *, ssize_t);
284
EXPORT_SYMBOL(__asan_loadN_noabort);
285
286
void __asan_storeN(void *addr, ssize_t size)
287
{
288
kasan_check_range(addr, size, true, _RET_IP_);
289
}
290
EXPORT_SYMBOL(__asan_storeN);
291
292
__alias(__asan_storeN)
293
void __asan_storeN_noabort(void *, ssize_t);
294
EXPORT_SYMBOL(__asan_storeN_noabort);
295
296
/* to shut up compiler complaints */
297
void __asan_handle_no_return(void) {}
298
EXPORT_SYMBOL(__asan_handle_no_return);
299
300
/* Emitted by compiler to poison alloca()ed objects. */
301
void __asan_alloca_poison(void *addr, ssize_t size)
302
{
303
size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
304
size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
305
rounded_up_size;
306
size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
307
308
const void *left_redzone = (const void *)(addr -
309
KASAN_ALLOCA_REDZONE_SIZE);
310
const void *right_redzone = (const void *)(addr + rounded_up_size);
311
312
WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
313
314
kasan_unpoison((const void *)(addr + rounded_down_size),
315
size - rounded_down_size, false);
316
kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
317
KASAN_ALLOCA_LEFT, false);
318
kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
319
KASAN_ALLOCA_RIGHT, false);
320
}
321
EXPORT_SYMBOL(__asan_alloca_poison);
322
323
/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
324
void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
325
{
326
if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
327
return;
328
329
kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
330
}
331
EXPORT_SYMBOL(__asan_allocas_unpoison);
332
333
/* Emitted by the compiler to [un]poison local variables. */
334
#define DEFINE_ASAN_SET_SHADOW(byte) \
335
void __asan_set_shadow_##byte(const void *addr, ssize_t size) \
336
{ \
337
__memset((void *)addr, 0x##byte, size); \
338
} \
339
EXPORT_SYMBOL(__asan_set_shadow_##byte)
340
341
DEFINE_ASAN_SET_SHADOW(00);
342
DEFINE_ASAN_SET_SHADOW(f1);
343
DEFINE_ASAN_SET_SHADOW(f2);
344
DEFINE_ASAN_SET_SHADOW(f3);
345
DEFINE_ASAN_SET_SHADOW(f5);
346
DEFINE_ASAN_SET_SHADOW(f8);
347
348
/*
349
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
350
* For larger allocations larger redzones are used.
351
*/
352
static inline unsigned int optimal_redzone(unsigned int object_size)
353
{
354
return
355
object_size <= 64 - 16 ? 16 :
356
object_size <= 128 - 32 ? 32 :
357
object_size <= 512 - 64 ? 64 :
358
object_size <= 4096 - 128 ? 128 :
359
object_size <= (1 << 14) - 256 ? 256 :
360
object_size <= (1 << 15) - 512 ? 512 :
361
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
362
}
363
364
void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
365
slab_flags_t *flags)
366
{
367
unsigned int ok_size;
368
unsigned int optimal_size;
369
unsigned int rem_free_meta_size;
370
unsigned int orig_alloc_meta_offset;
371
372
if (!kasan_requires_meta())
373
return;
374
375
/*
376
* SLAB_KASAN is used to mark caches that are sanitized by KASAN and
377
* that thus have per-object metadata. Currently, this flag is used in
378
* slab_ksize() to account for per-object metadata when calculating the
379
* size of the accessible memory within the object. Additionally, we use
380
* SLAB_NO_MERGE to prevent merging of caches with per-object metadata.
381
*/
382
*flags |= SLAB_KASAN | SLAB_NO_MERGE;
383
384
ok_size = *size;
385
386
/* Add alloc meta into the redzone. */
387
cache->kasan_info.alloc_meta_offset = *size;
388
*size += sizeof(struct kasan_alloc_meta);
389
390
/* If alloc meta doesn't fit, don't add it. */
391
if (*size > KMALLOC_MAX_SIZE) {
392
cache->kasan_info.alloc_meta_offset = 0;
393
*size = ok_size;
394
/* Continue, since free meta might still fit. */
395
}
396
397
ok_size = *size;
398
orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;
399
400
/*
401
* Store free meta in the redzone when it's not possible to store
402
* it in the object. This is the case when:
403
* 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
404
* be touched after it was freed, or
405
* 2. Object has a constructor, which means it's expected to
406
* retain its content until the next allocation, or
407
* 3. It is from a kmalloc cache which enables the debug option
408
* to store original size.
409
*/
410
if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
411
slub_debug_orig_size(cache)) {
412
cache->kasan_info.free_meta_offset = *size;
413
*size += sizeof(struct kasan_free_meta);
414
goto free_meta_added;
415
}
416
417
/*
418
* Otherwise, if the object is large enough to contain free meta,
419
* store it within the object.
420
*/
421
if (sizeof(struct kasan_free_meta) <= cache->object_size) {
422
/* cache->kasan_info.free_meta_offset = 0 is implied. */
423
goto free_meta_added;
424
}
425
426
/*
427
* For smaller objects, store the beginning of free meta within the
428
* object and the end in the redzone. And thus shift the location of
429
* alloc meta to free up space for free meta.
430
* This is only possible when slub_debug is disabled, as otherwise
431
* the end of free meta will overlap with slub_debug metadata.
432
*/
433
if (!__slub_debug_enabled()) {
434
rem_free_meta_size = sizeof(struct kasan_free_meta) -
435
cache->object_size;
436
*size += rem_free_meta_size;
437
if (cache->kasan_info.alloc_meta_offset != 0)
438
cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
439
goto free_meta_added;
440
}
441
442
/*
443
* If the object is small and slub_debug is enabled, store free meta
444
* in the redzone after alloc meta.
445
*/
446
cache->kasan_info.free_meta_offset = *size;
447
*size += sizeof(struct kasan_free_meta);
448
449
free_meta_added:
450
/* If free meta doesn't fit, don't add it. */
451
if (*size > KMALLOC_MAX_SIZE) {
452
cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
453
cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
454
*size = ok_size;
455
}
456
457
/* Calculate size with optimal redzone. */
458
optimal_size = cache->object_size + optimal_redzone(cache->object_size);
459
/* Limit it with KMALLOC_MAX_SIZE. */
460
if (optimal_size > KMALLOC_MAX_SIZE)
461
optimal_size = KMALLOC_MAX_SIZE;
462
/* Use optimal size if the size with added metas is not large enough. */
463
if (*size < optimal_size)
464
*size = optimal_size;
465
}
466
467
struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
468
const void *object)
469
{
470
if (!cache->kasan_info.alloc_meta_offset)
471
return NULL;
472
return (void *)object + cache->kasan_info.alloc_meta_offset;
473
}
474
475
struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
476
const void *object)
477
{
478
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
479
if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
480
return NULL;
481
return (void *)object + cache->kasan_info.free_meta_offset;
482
}
483
484
void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
485
{
486
struct kasan_alloc_meta *alloc_meta;
487
488
alloc_meta = kasan_get_alloc_meta(cache, object);
489
if (alloc_meta) {
490
/* Zero out alloc meta to mark it as invalid. */
491
__memset(alloc_meta, 0, sizeof(*alloc_meta));
492
}
493
494
/*
495
* Explicitly marking free meta as invalid is not required: the shadow
496
* value for the first 8 bytes of a newly allocated object is not
497
* KASAN_SLAB_FREE_META.
498
*/
499
}
500
501
static void release_alloc_meta(struct kasan_alloc_meta *meta)
502
{
503
/* Zero out alloc meta to mark it as invalid. */
504
__memset(meta, 0, sizeof(*meta));
505
}
506
507
static void release_free_meta(const void *object, struct kasan_free_meta *meta)
508
{
509
if (!kasan_enabled())
510
return;
511
512
/* Check if free meta is valid. */
513
if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
514
return;
515
516
/* Mark free meta as invalid. */
517
*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
518
}
519
520
size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
521
{
522
struct kasan_cache *info = &cache->kasan_info;
523
524
if (!kasan_requires_meta())
525
return 0;
526
527
if (in_object)
528
return (info->free_meta_offset ?
529
0 : sizeof(struct kasan_free_meta));
530
else
531
return (info->alloc_meta_offset ?
532
sizeof(struct kasan_alloc_meta) : 0) +
533
((info->free_meta_offset &&
534
info->free_meta_offset != KASAN_NO_FREE_META) ?
535
sizeof(struct kasan_free_meta) : 0);
536
}
537
538
/*
539
* This function avoids dynamic memory allocations and thus can be called from
540
* contexts that do not allow allocating memory.
541
*/
542
void kasan_record_aux_stack(void *addr)
543
{
544
struct slab *slab = kasan_addr_to_slab(addr);
545
struct kmem_cache *cache;
546
struct kasan_alloc_meta *alloc_meta;
547
void *object;
548
549
if (is_kfence_address(addr) || !slab)
550
return;
551
552
cache = slab->slab_cache;
553
object = nearest_obj(cache, slab, addr);
554
alloc_meta = kasan_get_alloc_meta(cache, object);
555
if (!alloc_meta)
556
return;
557
558
alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
559
alloc_meta->aux_stack[0] = kasan_save_stack(0, 0);
560
}
561
562
void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
563
{
564
struct kasan_alloc_meta *alloc_meta;
565
566
alloc_meta = kasan_get_alloc_meta(cache, object);
567
if (!alloc_meta)
568
return;
569
570
/* Invalidate previous stack traces (might exist for krealloc or mempool). */
571
release_alloc_meta(alloc_meta);
572
573
kasan_save_track(&alloc_meta->alloc_track, flags);
574
}
575
576
void __kasan_save_free_info(struct kmem_cache *cache, void *object)
577
{
578
struct kasan_free_meta *free_meta;
579
580
free_meta = kasan_get_free_meta(cache, object);
581
if (!free_meta)
582
return;
583
584
/* Invalidate previous stack trace (might exist for mempool). */
585
release_free_meta(object, free_meta);
586
587
kasan_save_track(&free_meta->free_track, 0);
588
589
/* Mark free meta as valid. */
590
*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
591
}
592
593