Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kfence/core.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* KFENCE guarded object allocator and fault handling.
4
*
5
* Copyright (C) 2020, Google LLC.
6
*/
7
8
#define pr_fmt(fmt) "kfence: " fmt
9
10
#include <linux/atomic.h>
11
#include <linux/bug.h>
12
#include <linux/debugfs.h>
13
#include <linux/hash.h>
14
#include <linux/irq_work.h>
15
#include <linux/jhash.h>
16
#include <linux/kcsan-checks.h>
17
#include <linux/kfence.h>
18
#include <linux/kmemleak.h>
19
#include <linux/list.h>
20
#include <linux/lockdep.h>
21
#include <linux/log2.h>
22
#include <linux/memblock.h>
23
#include <linux/moduleparam.h>
24
#include <linux/nodemask.h>
25
#include <linux/notifier.h>
26
#include <linux/panic_notifier.h>
27
#include <linux/random.h>
28
#include <linux/rcupdate.h>
29
#include <linux/sched/clock.h>
30
#include <linux/seq_file.h>
31
#include <linux/slab.h>
32
#include <linux/spinlock.h>
33
#include <linux/string.h>
34
35
#include <asm/kfence.h>
36
37
#include "kfence.h"
38
39
/* Disables KFENCE on the first warning assuming an irrecoverable error. */
40
#define KFENCE_WARN_ON(cond) \
41
({ \
42
const bool __cond = WARN_ON(cond); \
43
if (unlikely(__cond)) { \
44
WRITE_ONCE(kfence_enabled, false); \
45
disabled_by_warn = true; \
46
} \
47
__cond; \
48
})
49
50
/* === Data ================================================================= */
51
52
static bool kfence_enabled __read_mostly;
53
static bool disabled_by_warn __read_mostly;
54
55
unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56
EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58
#ifdef MODULE_PARAM_PREFIX
59
#undef MODULE_PARAM_PREFIX
60
#endif
61
#define MODULE_PARAM_PREFIX "kfence."
62
63
static int kfence_enable_late(void);
64
static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65
{
66
unsigned long num;
67
int ret = kstrtoul(val, 0, &num);
68
69
if (ret < 0)
70
return ret;
71
72
/* Using 0 to indicate KFENCE is disabled. */
73
if (!num && READ_ONCE(kfence_enabled)) {
74
pr_info("disabled\n");
75
WRITE_ONCE(kfence_enabled, false);
76
}
77
78
*((unsigned long *)kp->arg) = num;
79
80
if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81
return disabled_by_warn ? -EINVAL : kfence_enable_late();
82
return 0;
83
}
84
85
static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86
{
87
if (!READ_ONCE(kfence_enabled))
88
return sprintf(buffer, "0\n");
89
90
return param_get_ulong(buffer, kp);
91
}
92
93
static const struct kernel_param_ops sample_interval_param_ops = {
94
.set = param_set_sample_interval,
95
.get = param_get_sample_interval,
96
};
97
module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99
/* Pool usage% threshold when currently covered allocations are skipped. */
100
static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101
module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103
/* Allocation burst count: number of excess KFENCE allocations per sample. */
104
static unsigned int kfence_burst __read_mostly;
105
module_param_named(burst, kfence_burst, uint, 0644);
106
107
/* If true, use a deferrable timer. */
108
static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
109
module_param_named(deferrable, kfence_deferrable, bool, 0444);
110
111
/* If true, check all canary bytes on panic. */
112
static bool kfence_check_on_panic __read_mostly;
113
module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
114
115
/* The pool of pages used for guard pages and objects. */
116
char *__kfence_pool __read_mostly;
117
EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
118
119
/*
120
* Per-object metadata, with one-to-one mapping of object metadata to
121
* backing pages (in __kfence_pool).
122
*/
123
static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
124
struct kfence_metadata *kfence_metadata __read_mostly;
125
126
/*
127
* If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
128
* So introduce kfence_metadata_init to initialize metadata, and then make
129
* kfence_metadata visible after initialization is successful. This prevents
130
* potential UAF or access to uninitialized metadata.
131
*/
132
static struct kfence_metadata *kfence_metadata_init __read_mostly;
133
134
/* Freelist with available objects. */
135
static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
136
static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
137
138
/*
139
* The static key to set up a KFENCE allocation; or if static keys are not used
140
* to gate allocations, to avoid a load and compare if KFENCE is disabled.
141
*/
142
DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
143
144
/* Gates the allocation, ensuring only one succeeds in a given period. */
145
atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
146
147
/*
148
* A Counting Bloom filter of allocation coverage: limits currently covered
149
* allocations of the same source filling up the pool.
150
*
151
* Assuming a range of 15%-85% unique allocations in the pool at any point in
152
* time, the below parameters provide a probablity of 0.02-0.33 for false
153
* positive hits respectively:
154
*
155
* P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
156
*/
157
#define ALLOC_COVERED_HNUM 2
158
#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
159
#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
160
#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
161
#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
162
static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
163
164
/* Stack depth used to determine uniqueness of an allocation. */
165
#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
166
167
/*
168
* Randomness for stack hashes, making the same collisions across reboots and
169
* different machines less likely.
170
*/
171
static u32 stack_hash_seed __ro_after_init;
172
173
/* Statistics counters for debugfs. */
174
enum kfence_counter_id {
175
KFENCE_COUNTER_ALLOCATED,
176
KFENCE_COUNTER_ALLOCS,
177
KFENCE_COUNTER_FREES,
178
KFENCE_COUNTER_ZOMBIES,
179
KFENCE_COUNTER_BUGS,
180
KFENCE_COUNTER_SKIP_INCOMPAT,
181
KFENCE_COUNTER_SKIP_CAPACITY,
182
KFENCE_COUNTER_SKIP_COVERED,
183
KFENCE_COUNTER_COUNT,
184
};
185
static atomic_long_t counters[KFENCE_COUNTER_COUNT];
186
static const char *const counter_names[] = {
187
[KFENCE_COUNTER_ALLOCATED] = "currently allocated",
188
[KFENCE_COUNTER_ALLOCS] = "total allocations",
189
[KFENCE_COUNTER_FREES] = "total frees",
190
[KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
191
[KFENCE_COUNTER_BUGS] = "total bugs",
192
[KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
193
[KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
194
[KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
195
};
196
static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
197
198
/* === Internals ============================================================ */
199
200
static inline bool should_skip_covered(void)
201
{
202
unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
203
204
return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
205
}
206
207
static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
208
{
209
num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
210
num_entries = filter_irq_stacks(stack_entries, num_entries);
211
return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
212
}
213
214
/*
215
* Adds (or subtracts) count @val for allocation stack trace hash
216
* @alloc_stack_hash from Counting Bloom filter.
217
*/
218
static void alloc_covered_add(u32 alloc_stack_hash, int val)
219
{
220
int i;
221
222
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
223
atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
224
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
225
}
226
}
227
228
/*
229
* Returns true if the allocation stack trace hash @alloc_stack_hash is
230
* currently contained (non-zero count) in Counting Bloom filter.
231
*/
232
static bool alloc_covered_contains(u32 alloc_stack_hash)
233
{
234
int i;
235
236
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
237
if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
238
return false;
239
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
240
}
241
242
return true;
243
}
244
245
static bool kfence_protect(unsigned long addr)
246
{
247
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
248
}
249
250
static bool kfence_unprotect(unsigned long addr)
251
{
252
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
253
}
254
255
static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256
{
257
unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258
unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259
260
/* The checks do not affect performance; only called from slow-paths. */
261
262
/* Only call with a pointer into kfence_metadata. */
263
if (KFENCE_WARN_ON(meta < kfence_metadata ||
264
meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265
return 0;
266
267
/*
268
* This metadata object only ever maps to 1 page; verify that the stored
269
* address is in the expected range.
270
*/
271
if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272
return 0;
273
274
return pageaddr;
275
}
276
277
static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
278
{
279
enum kfence_object_state state = READ_ONCE(meta->state);
280
281
return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
282
}
283
284
/*
285
* Update the object's metadata state, including updating the alloc/free stacks
286
* depending on the state transition.
287
*/
288
static noinline void
289
metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
290
unsigned long *stack_entries, size_t num_stack_entries)
291
{
292
struct kfence_track *track =
293
next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
294
295
lockdep_assert_held(&meta->lock);
296
297
/* Stack has been saved when calling rcu, skip. */
298
if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
299
goto out;
300
301
if (stack_entries) {
302
memcpy(track->stack_entries, stack_entries,
303
num_stack_entries * sizeof(stack_entries[0]));
304
} else {
305
/*
306
* Skip over 1 (this) functions; noinline ensures we do not
307
* accidentally skip over the caller by never inlining.
308
*/
309
num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
310
}
311
track->num_stack_entries = num_stack_entries;
312
track->pid = task_pid_nr(current);
313
track->cpu = raw_smp_processor_id();
314
track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
315
316
out:
317
/*
318
* Pairs with READ_ONCE() in
319
* kfence_shutdown_cache(),
320
* kfence_handle_page_fault().
321
*/
322
WRITE_ONCE(meta->state, next);
323
}
324
325
#ifdef CONFIG_KMSAN
326
#define check_canary_attributes noinline __no_kmsan_checks
327
#else
328
#define check_canary_attributes inline
329
#endif
330
331
/* Check canary byte at @addr. */
332
static check_canary_attributes bool check_canary_byte(u8 *addr)
333
{
334
struct kfence_metadata *meta;
335
unsigned long flags;
336
337
if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
338
return true;
339
340
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
341
342
meta = addr_to_metadata((unsigned long)addr);
343
raw_spin_lock_irqsave(&meta->lock, flags);
344
kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
345
raw_spin_unlock_irqrestore(&meta->lock, flags);
346
347
return false;
348
}
349
350
static inline void set_canary(const struct kfence_metadata *meta)
351
{
352
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
353
unsigned long addr = pageaddr;
354
355
/*
356
* The canary may be written to part of the object memory, but it does
357
* not affect it. The user should initialize the object before using it.
358
*/
359
for (; addr < meta->addr; addr += sizeof(u64))
360
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
361
362
addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
363
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
364
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
365
}
366
367
static check_canary_attributes void
368
check_canary(const struct kfence_metadata *meta)
369
{
370
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
371
unsigned long addr = pageaddr;
372
373
/*
374
* We'll iterate over each canary byte per-side until a corrupted byte
375
* is found. However, we'll still iterate over the canary bytes to the
376
* right of the object even if there was an error in the canary bytes to
377
* the left of the object. Specifically, if check_canary_byte()
378
* generates an error, showing both sides might give more clues as to
379
* what the error is about when displaying which bytes were corrupted.
380
*/
381
382
/* Apply to left of object. */
383
for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
384
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
385
break;
386
}
387
388
/*
389
* If the canary is corrupted in a certain 64 bytes, or the canary
390
* memory cannot be completely covered by multiple consecutive 64 bytes,
391
* it needs to be checked one by one.
392
*/
393
for (; addr < meta->addr; addr++) {
394
if (unlikely(!check_canary_byte((u8 *)addr)))
395
break;
396
}
397
398
/* Apply to right of object. */
399
for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
400
if (unlikely(!check_canary_byte((u8 *)addr)))
401
return;
402
}
403
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
404
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
405
406
for (; addr - pageaddr < PAGE_SIZE; addr++) {
407
if (!check_canary_byte((u8 *)addr))
408
return;
409
}
410
}
411
}
412
}
413
414
static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
415
unsigned long *stack_entries, size_t num_stack_entries,
416
u32 alloc_stack_hash)
417
{
418
struct kfence_metadata *meta = NULL;
419
unsigned long flags;
420
struct slab *slab;
421
void *addr;
422
const bool random_right_allocate = get_random_u32_below(2);
423
const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
424
!get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
425
426
/* Try to obtain a free object. */
427
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
428
if (!list_empty(&kfence_freelist)) {
429
meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
430
list_del_init(&meta->list);
431
}
432
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
433
if (!meta) {
434
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
435
return NULL;
436
}
437
438
if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
439
/*
440
* This is extremely unlikely -- we are reporting on a
441
* use-after-free, which locked meta->lock, and the reporting
442
* code via printk calls kmalloc() which ends up in
443
* kfence_alloc() and tries to grab the same object that we're
444
* reporting on. While it has never been observed, lockdep does
445
* report that there is a possibility of deadlock. Fix it by
446
* using trylock and bailing out gracefully.
447
*/
448
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
449
/* Put the object back on the freelist. */
450
list_add_tail(&meta->list, &kfence_freelist);
451
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
452
453
return NULL;
454
}
455
456
meta->addr = metadata_to_pageaddr(meta);
457
/* Unprotect if we're reusing this page. */
458
if (meta->state == KFENCE_OBJECT_FREED)
459
kfence_unprotect(meta->addr);
460
461
/*
462
* Note: for allocations made before RNG initialization, will always
463
* return zero. We still benefit from enabling KFENCE as early as
464
* possible, even when the RNG is not yet available, as this will allow
465
* KFENCE to detect bugs due to earlier allocations. The only downside
466
* is that the out-of-bounds accesses detected are deterministic for
467
* such allocations.
468
*/
469
if (random_right_allocate) {
470
/* Allocate on the "right" side, re-calculate address. */
471
meta->addr += PAGE_SIZE - size;
472
meta->addr = ALIGN_DOWN(meta->addr, cache->align);
473
}
474
475
addr = (void *)meta->addr;
476
477
/* Update remaining metadata. */
478
metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
479
/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
480
WRITE_ONCE(meta->cache, cache);
481
meta->size = size;
482
meta->alloc_stack_hash = alloc_stack_hash;
483
raw_spin_unlock_irqrestore(&meta->lock, flags);
484
485
alloc_covered_add(alloc_stack_hash, 1);
486
487
/* Set required slab fields. */
488
slab = virt_to_slab((void *)meta->addr);
489
slab->slab_cache = cache;
490
slab->objects = 1;
491
492
/* Memory initialization. */
493
set_canary(meta);
494
495
/*
496
* We check slab_want_init_on_alloc() ourselves, rather than letting
497
* SL*B do the initialization, as otherwise we might overwrite KFENCE's
498
* redzone.
499
*/
500
if (unlikely(slab_want_init_on_alloc(gfp, cache)))
501
memzero_explicit(addr, size);
502
if (cache->ctor)
503
cache->ctor(addr);
504
505
if (random_fault)
506
kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
507
508
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
509
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
510
511
return addr;
512
}
513
514
static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
515
{
516
struct kcsan_scoped_access assert_page_exclusive;
517
unsigned long flags;
518
bool init;
519
520
raw_spin_lock_irqsave(&meta->lock, flags);
521
522
if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
523
/* Invalid or double-free, bail out. */
524
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
525
kfence_report_error((unsigned long)addr, false, NULL, meta,
526
KFENCE_ERROR_INVALID_FREE);
527
raw_spin_unlock_irqrestore(&meta->lock, flags);
528
return;
529
}
530
531
/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
532
kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
533
KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
534
&assert_page_exclusive);
535
536
if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
537
kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
538
539
/* Restore page protection if there was an OOB access. */
540
if (meta->unprotected_page) {
541
memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
542
kfence_protect(meta->unprotected_page);
543
meta->unprotected_page = 0;
544
}
545
546
/* Mark the object as freed. */
547
metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
548
init = slab_want_init_on_free(meta->cache);
549
raw_spin_unlock_irqrestore(&meta->lock, flags);
550
551
alloc_covered_add(meta->alloc_stack_hash, -1);
552
553
/* Check canary bytes for memory corruption. */
554
check_canary(meta);
555
556
/*
557
* Clear memory if init-on-free is set. While we protect the page, the
558
* data is still there, and after a use-after-free is detected, we
559
* unprotect the page, so the data is still accessible.
560
*/
561
if (!zombie && unlikely(init))
562
memzero_explicit(addr, meta->size);
563
564
/* Protect to detect use-after-frees. */
565
kfence_protect((unsigned long)addr);
566
567
kcsan_end_scoped_access(&assert_page_exclusive);
568
if (!zombie) {
569
/* Add it to the tail of the freelist for reuse. */
570
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
571
KFENCE_WARN_ON(!list_empty(&meta->list));
572
list_add_tail(&meta->list, &kfence_freelist);
573
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
574
575
atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
576
atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
577
} else {
578
/* See kfence_shutdown_cache(). */
579
atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
580
}
581
}
582
583
static void rcu_guarded_free(struct rcu_head *h)
584
{
585
struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
586
587
kfence_guarded_free((void *)meta->addr, meta, false);
588
}
589
590
/*
591
* Initialization of the KFENCE pool after its allocation.
592
* Returns 0 on success; otherwise returns the address up to
593
* which partial initialization succeeded.
594
*/
595
static unsigned long kfence_init_pool(void)
596
{
597
unsigned long addr, start_pfn;
598
int i;
599
600
if (!arch_kfence_init_pool())
601
return (unsigned long)__kfence_pool;
602
603
addr = (unsigned long)__kfence_pool;
604
start_pfn = PHYS_PFN(virt_to_phys(__kfence_pool));
605
606
/*
607
* Set up object pages: they must have PGTY_slab set to avoid freeing
608
* them as real pages.
609
*
610
* We also want to avoid inserting kfence_free() in the kfree()
611
* fast-path in SLUB, and therefore need to ensure kfree() correctly
612
* enters __slab_free() slow-path.
613
*/
614
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
615
struct slab *slab;
616
617
if (!i || (i % 2))
618
continue;
619
620
slab = page_slab(pfn_to_page(start_pfn + i));
621
__folio_set_slab(slab_folio(slab));
622
#ifdef CONFIG_MEMCG
623
slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
624
MEMCG_DATA_OBJEXTS;
625
#endif
626
}
627
628
/*
629
* Protect the first 2 pages. The first page is mostly unnecessary, and
630
* merely serves as an extended guard page. However, adding one
631
* additional page in the beginning gives us an even number of pages,
632
* which simplifies the mapping of address to metadata index.
633
*/
634
for (i = 0; i < 2; i++) {
635
if (unlikely(!kfence_protect(addr)))
636
return addr;
637
638
addr += PAGE_SIZE;
639
}
640
641
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
642
struct kfence_metadata *meta = &kfence_metadata_init[i];
643
644
/* Initialize metadata. */
645
INIT_LIST_HEAD(&meta->list);
646
raw_spin_lock_init(&meta->lock);
647
meta->state = KFENCE_OBJECT_UNUSED;
648
meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
649
list_add_tail(&meta->list, &kfence_freelist);
650
651
/* Protect the right redzone. */
652
if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
653
goto reset_slab;
654
655
addr += 2 * PAGE_SIZE;
656
}
657
658
/*
659
* Make kfence_metadata visible only when initialization is successful.
660
* Otherwise, if the initialization fails and kfence_metadata is freed,
661
* it may cause UAF in kfence_shutdown_cache().
662
*/
663
smp_store_release(&kfence_metadata, kfence_metadata_init);
664
return 0;
665
666
reset_slab:
667
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
668
struct slab *slab;
669
670
if (!i || (i % 2))
671
continue;
672
673
slab = page_slab(pfn_to_page(start_pfn + i));
674
#ifdef CONFIG_MEMCG
675
slab->obj_exts = 0;
676
#endif
677
__folio_clear_slab(slab_folio(slab));
678
}
679
680
return addr;
681
}
682
683
static bool __init kfence_init_pool_early(void)
684
{
685
unsigned long addr;
686
687
if (!__kfence_pool)
688
return false;
689
690
addr = kfence_init_pool();
691
692
if (!addr) {
693
/*
694
* The pool is live and will never be deallocated from this point on.
695
* Ignore the pool object from the kmemleak phys object tree, as it would
696
* otherwise overlap with allocations returned by kfence_alloc(), which
697
* are registered with kmemleak through the slab post-alloc hook.
698
*/
699
kmemleak_ignore_phys(__pa(__kfence_pool));
700
return true;
701
}
702
703
/*
704
* Only release unprotected pages, and do not try to go back and change
705
* page attributes due to risk of failing to do so as well. If changing
706
* page attributes for some pages fails, it is very likely that it also
707
* fails for the first page, and therefore expect addr==__kfence_pool in
708
* most failure cases.
709
*/
710
memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
711
__kfence_pool = NULL;
712
713
memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
714
kfence_metadata_init = NULL;
715
716
return false;
717
}
718
719
/* === DebugFS Interface ==================================================== */
720
721
static int stats_show(struct seq_file *seq, void *v)
722
{
723
int i;
724
725
seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
726
for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
727
seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
728
729
return 0;
730
}
731
DEFINE_SHOW_ATTRIBUTE(stats);
732
733
/*
734
* debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
735
* start_object() and next_object() return the object index + 1, because NULL is used
736
* to stop iteration.
737
*/
738
static void *start_object(struct seq_file *seq, loff_t *pos)
739
{
740
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
741
return (void *)((long)*pos + 1);
742
return NULL;
743
}
744
745
static void stop_object(struct seq_file *seq, void *v)
746
{
747
}
748
749
static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
750
{
751
++*pos;
752
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
753
return (void *)((long)*pos + 1);
754
return NULL;
755
}
756
757
static int show_object(struct seq_file *seq, void *v)
758
{
759
struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
760
unsigned long flags;
761
762
raw_spin_lock_irqsave(&meta->lock, flags);
763
kfence_print_object(seq, meta);
764
raw_spin_unlock_irqrestore(&meta->lock, flags);
765
seq_puts(seq, "---------------------------------\n");
766
767
return 0;
768
}
769
770
static const struct seq_operations objects_sops = {
771
.start = start_object,
772
.next = next_object,
773
.stop = stop_object,
774
.show = show_object,
775
};
776
DEFINE_SEQ_ATTRIBUTE(objects);
777
778
static int kfence_debugfs_init(void)
779
{
780
struct dentry *kfence_dir;
781
782
if (!READ_ONCE(kfence_enabled))
783
return 0;
784
785
kfence_dir = debugfs_create_dir("kfence", NULL);
786
debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
787
debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
788
return 0;
789
}
790
791
late_initcall(kfence_debugfs_init);
792
793
/* === Panic Notifier ====================================================== */
794
795
static void kfence_check_all_canary(void)
796
{
797
int i;
798
799
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
800
struct kfence_metadata *meta = &kfence_metadata[i];
801
802
if (kfence_obj_allocated(meta))
803
check_canary(meta);
804
}
805
}
806
807
static int kfence_check_canary_callback(struct notifier_block *nb,
808
unsigned long reason, void *arg)
809
{
810
kfence_check_all_canary();
811
return NOTIFY_OK;
812
}
813
814
static struct notifier_block kfence_check_canary_notifier = {
815
.notifier_call = kfence_check_canary_callback,
816
};
817
818
/* === Allocation Gate Timer ================================================ */
819
820
static struct delayed_work kfence_timer;
821
822
#ifdef CONFIG_KFENCE_STATIC_KEYS
823
/* Wait queue to wake up allocation-gate timer task. */
824
static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
825
826
static void wake_up_kfence_timer(struct irq_work *work)
827
{
828
wake_up(&allocation_wait);
829
}
830
static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
831
#endif
832
833
/*
834
* Set up delayed work, which will enable and disable the static key. We need to
835
* use a work queue (rather than a simple timer), since enabling and disabling a
836
* static key cannot be done from an interrupt.
837
*
838
* Note: Toggling a static branch currently causes IPIs, and here we'll end up
839
* with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
840
* more aggressive sampling intervals), we could get away with a variant that
841
* avoids IPIs, at the cost of not immediately capturing allocations if the
842
* instructions remain cached.
843
*/
844
static void toggle_allocation_gate(struct work_struct *work)
845
{
846
if (!READ_ONCE(kfence_enabled))
847
return;
848
849
atomic_set(&kfence_allocation_gate, -kfence_burst);
850
#ifdef CONFIG_KFENCE_STATIC_KEYS
851
/* Enable static key, and await allocation to happen. */
852
static_branch_enable(&kfence_allocation_key);
853
854
wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
855
856
/* Disable static key and reset timer. */
857
static_branch_disable(&kfence_allocation_key);
858
#endif
859
queue_delayed_work(system_unbound_wq, &kfence_timer,
860
msecs_to_jiffies(kfence_sample_interval));
861
}
862
863
/* === Public interface ===================================================== */
864
865
void __init kfence_alloc_pool_and_metadata(void)
866
{
867
if (!kfence_sample_interval)
868
return;
869
870
/*
871
* If the pool has already been initialized by arch, there is no need to
872
* re-allocate the memory pool.
873
*/
874
if (!__kfence_pool)
875
__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
876
877
if (!__kfence_pool) {
878
pr_err("failed to allocate pool\n");
879
return;
880
}
881
882
/* The memory allocated by memblock has been zeroed out. */
883
kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
884
if (!kfence_metadata_init) {
885
pr_err("failed to allocate metadata\n");
886
memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
887
__kfence_pool = NULL;
888
}
889
}
890
891
static void kfence_init_enable(void)
892
{
893
if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
894
static_branch_enable(&kfence_allocation_key);
895
896
if (kfence_deferrable)
897
INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
898
else
899
INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
900
901
if (kfence_check_on_panic)
902
atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
903
904
WRITE_ONCE(kfence_enabled, true);
905
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
906
907
pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
908
CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
909
(void *)(__kfence_pool + KFENCE_POOL_SIZE));
910
}
911
912
void __init kfence_init(void)
913
{
914
stack_hash_seed = get_random_u32();
915
916
/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
917
if (!kfence_sample_interval)
918
return;
919
920
if (!kfence_init_pool_early()) {
921
pr_err("%s failed\n", __func__);
922
return;
923
}
924
925
kfence_init_enable();
926
}
927
928
static int kfence_init_late(void)
929
{
930
const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
931
const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
932
unsigned long addr = (unsigned long)__kfence_pool;
933
unsigned long free_size = KFENCE_POOL_SIZE;
934
int err = -ENOMEM;
935
936
#ifdef CONFIG_CONTIG_ALLOC
937
struct page *pages;
938
939
pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
940
NULL);
941
if (!pages)
942
return -ENOMEM;
943
944
__kfence_pool = page_to_virt(pages);
945
pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
946
NULL);
947
if (pages)
948
kfence_metadata_init = page_to_virt(pages);
949
#else
950
if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
951
nr_pages_meta > MAX_ORDER_NR_PAGES) {
952
pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
953
return -EINVAL;
954
}
955
956
__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
957
if (!__kfence_pool)
958
return -ENOMEM;
959
960
kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
961
#endif
962
963
if (!kfence_metadata_init)
964
goto free_pool;
965
966
memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
967
addr = kfence_init_pool();
968
if (!addr) {
969
kfence_init_enable();
970
kfence_debugfs_init();
971
return 0;
972
}
973
974
pr_err("%s failed\n", __func__);
975
free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
976
err = -EBUSY;
977
978
#ifdef CONFIG_CONTIG_ALLOC
979
free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
980
nr_pages_meta);
981
free_pool:
982
free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
983
free_size / PAGE_SIZE);
984
#else
985
free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
986
free_pool:
987
free_pages_exact((void *)addr, free_size);
988
#endif
989
990
kfence_metadata_init = NULL;
991
__kfence_pool = NULL;
992
return err;
993
}
994
995
static int kfence_enable_late(void)
996
{
997
if (!__kfence_pool)
998
return kfence_init_late();
999
1000
WRITE_ONCE(kfence_enabled, true);
1001
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1002
pr_info("re-enabled\n");
1003
return 0;
1004
}
1005
1006
void kfence_shutdown_cache(struct kmem_cache *s)
1007
{
1008
unsigned long flags;
1009
struct kfence_metadata *meta;
1010
int i;
1011
1012
/* Pairs with release in kfence_init_pool(). */
1013
if (!smp_load_acquire(&kfence_metadata))
1014
return;
1015
1016
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1017
bool in_use;
1018
1019
meta = &kfence_metadata[i];
1020
1021
/*
1022
* If we observe some inconsistent cache and state pair where we
1023
* should have returned false here, cache destruction is racing
1024
* with either kmem_cache_alloc() or kmem_cache_free(). Taking
1025
* the lock will not help, as different critical section
1026
* serialization will have the same outcome.
1027
*/
1028
if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1029
continue;
1030
1031
raw_spin_lock_irqsave(&meta->lock, flags);
1032
in_use = meta->cache == s && kfence_obj_allocated(meta);
1033
raw_spin_unlock_irqrestore(&meta->lock, flags);
1034
1035
if (in_use) {
1036
/*
1037
* This cache still has allocations, and we should not
1038
* release them back into the freelist so they can still
1039
* safely be used and retain the kernel's default
1040
* behaviour of keeping the allocations alive (leak the
1041
* cache); however, they effectively become "zombie
1042
* allocations" as the KFENCE objects are the only ones
1043
* still in use and the owning cache is being destroyed.
1044
*
1045
* We mark them freed, so that any subsequent use shows
1046
* more useful error messages that will include stack
1047
* traces of the user of the object, the original
1048
* allocation, and caller to shutdown_cache().
1049
*/
1050
kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1051
}
1052
}
1053
1054
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1055
meta = &kfence_metadata[i];
1056
1057
/* See above. */
1058
if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1059
continue;
1060
1061
raw_spin_lock_irqsave(&meta->lock, flags);
1062
if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1063
meta->cache = NULL;
1064
raw_spin_unlock_irqrestore(&meta->lock, flags);
1065
}
1066
}
1067
1068
void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1069
{
1070
unsigned long stack_entries[KFENCE_STACK_DEPTH];
1071
size_t num_stack_entries;
1072
u32 alloc_stack_hash;
1073
int allocation_gate;
1074
1075
/*
1076
* Perform size check before switching kfence_allocation_gate, so that
1077
* we don't disable KFENCE without making an allocation.
1078
*/
1079
if (size > PAGE_SIZE) {
1080
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1081
return NULL;
1082
}
1083
1084
/*
1085
* Skip allocations from non-default zones, including DMA. We cannot
1086
* guarantee that pages in the KFENCE pool will have the requested
1087
* properties (e.g. reside in DMAable memory).
1088
*/
1089
if ((flags & GFP_ZONEMASK) ||
1090
((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1091
(s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1092
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1093
return NULL;
1094
}
1095
1096
/*
1097
* Skip allocations for this slab, if KFENCE has been disabled for
1098
* this slab.
1099
*/
1100
if (s->flags & SLAB_SKIP_KFENCE)
1101
return NULL;
1102
1103
allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1104
if (allocation_gate > 1)
1105
return NULL;
1106
#ifdef CONFIG_KFENCE_STATIC_KEYS
1107
/*
1108
* waitqueue_active() is fully ordered after the update of
1109
* kfence_allocation_gate per atomic_inc_return().
1110
*/
1111
if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1112
/*
1113
* Calling wake_up() here may deadlock when allocations happen
1114
* from within timer code. Use an irq_work to defer it.
1115
*/
1116
irq_work_queue(&wake_up_kfence_timer_work);
1117
}
1118
#endif
1119
1120
if (!READ_ONCE(kfence_enabled))
1121
return NULL;
1122
1123
num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1124
1125
/*
1126
* Do expensive check for coverage of allocation in slow-path after
1127
* allocation_gate has already become non-zero, even though it might
1128
* mean not making any allocation within a given sample interval.
1129
*
1130
* This ensures reasonable allocation coverage when the pool is almost
1131
* full, including avoiding long-lived allocations of the same source
1132
* filling up the pool (e.g. pagecache allocations).
1133
*/
1134
alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1135
if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1136
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1137
return NULL;
1138
}
1139
1140
return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1141
alloc_stack_hash);
1142
}
1143
1144
size_t kfence_ksize(const void *addr)
1145
{
1146
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1147
1148
/*
1149
* Read locklessly -- if there is a race with __kfence_alloc(), this is
1150
* either a use-after-free or invalid access.
1151
*/
1152
return meta ? meta->size : 0;
1153
}
1154
1155
void *kfence_object_start(const void *addr)
1156
{
1157
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1158
1159
/*
1160
* Read locklessly -- if there is a race with __kfence_alloc(), this is
1161
* either a use-after-free or invalid access.
1162
*/
1163
return meta ? (void *)meta->addr : NULL;
1164
}
1165
1166
void __kfence_free(void *addr)
1167
{
1168
struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1169
1170
#ifdef CONFIG_MEMCG
1171
KFENCE_WARN_ON(meta->obj_exts.objcg);
1172
#endif
1173
/*
1174
* If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1175
* the object, as the object page may be recycled for other-typed
1176
* objects once it has been freed. meta->cache may be NULL if the cache
1177
* was destroyed.
1178
* Save the stack trace here so that reports show where the user freed
1179
* the object.
1180
*/
1181
if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1182
unsigned long flags;
1183
1184
raw_spin_lock_irqsave(&meta->lock, flags);
1185
metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1186
raw_spin_unlock_irqrestore(&meta->lock, flags);
1187
call_rcu(&meta->rcu_head, rcu_guarded_free);
1188
} else {
1189
kfence_guarded_free(addr, meta, false);
1190
}
1191
}
1192
1193
bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1194
{
1195
const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1196
struct kfence_metadata *to_report = NULL;
1197
enum kfence_error_type error_type;
1198
unsigned long flags;
1199
1200
if (!is_kfence_address((void *)addr))
1201
return false;
1202
1203
if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1204
return kfence_unprotect(addr); /* ... unprotect and proceed. */
1205
1206
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1207
1208
if (page_index % 2) {
1209
/* This is a redzone, report a buffer overflow. */
1210
struct kfence_metadata *meta;
1211
int distance = 0;
1212
1213
meta = addr_to_metadata(addr - PAGE_SIZE);
1214
if (meta && kfence_obj_allocated(meta)) {
1215
to_report = meta;
1216
/* Data race ok; distance calculation approximate. */
1217
distance = addr - data_race(meta->addr + meta->size);
1218
}
1219
1220
meta = addr_to_metadata(addr + PAGE_SIZE);
1221
if (meta && kfence_obj_allocated(meta)) {
1222
/* Data race ok; distance calculation approximate. */
1223
if (!to_report || distance > data_race(meta->addr) - addr)
1224
to_report = meta;
1225
}
1226
1227
if (!to_report)
1228
goto out;
1229
1230
raw_spin_lock_irqsave(&to_report->lock, flags);
1231
to_report->unprotected_page = addr;
1232
error_type = KFENCE_ERROR_OOB;
1233
1234
/*
1235
* If the object was freed before we took the look we can still
1236
* report this as an OOB -- the report will simply show the
1237
* stacktrace of the free as well.
1238
*/
1239
} else {
1240
to_report = addr_to_metadata(addr);
1241
if (!to_report)
1242
goto out;
1243
1244
raw_spin_lock_irqsave(&to_report->lock, flags);
1245
error_type = KFENCE_ERROR_UAF;
1246
/*
1247
* We may race with __kfence_alloc(), and it is possible that a
1248
* freed object may be reallocated. We simply report this as a
1249
* use-after-free, with the stack trace showing the place where
1250
* the object was re-allocated.
1251
*/
1252
}
1253
1254
out:
1255
if (to_report) {
1256
kfence_report_error(addr, is_write, regs, to_report, error_type);
1257
raw_spin_unlock_irqrestore(&to_report->lock, flags);
1258
} else {
1259
/* This may be a UAF or OOB access, but we can't be sure. */
1260
kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1261
}
1262
1263
return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1264
}
1265
1266