Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/ksm.c
29271 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Memory merging support.
4
*
5
* This code enables dynamic sharing of identical pages found in different
6
* memory areas, even if they are not shared by fork()
7
*
8
* Copyright (C) 2008-2009 Red Hat, Inc.
9
* Authors:
10
* Izik Eidus
11
* Andrea Arcangeli
12
* Chris Wright
13
* Hugh Dickins
14
*/
15
16
#include <linux/errno.h>
17
#include <linux/mm.h>
18
#include <linux/mm_inline.h>
19
#include <linux/fs.h>
20
#include <linux/mman.h>
21
#include <linux/sched.h>
22
#include <linux/sched/mm.h>
23
#include <linux/sched/cputime.h>
24
#include <linux/rwsem.h>
25
#include <linux/pagemap.h>
26
#include <linux/rmap.h>
27
#include <linux/spinlock.h>
28
#include <linux/xxhash.h>
29
#include <linux/delay.h>
30
#include <linux/kthread.h>
31
#include <linux/wait.h>
32
#include <linux/slab.h>
33
#include <linux/rbtree.h>
34
#include <linux/memory.h>
35
#include <linux/mmu_notifier.h>
36
#include <linux/swap.h>
37
#include <linux/ksm.h>
38
#include <linux/hashtable.h>
39
#include <linux/freezer.h>
40
#include <linux/oom.h>
41
#include <linux/numa.h>
42
#include <linux/pagewalk.h>
43
44
#include <asm/tlbflush.h>
45
#include "internal.h"
46
#include "mm_slot.h"
47
48
#define CREATE_TRACE_POINTS
49
#include <trace/events/ksm.h>
50
51
#ifdef CONFIG_NUMA
52
#define NUMA(x) (x)
53
#define DO_NUMA(x) do { (x); } while (0)
54
#else
55
#define NUMA(x) (0)
56
#define DO_NUMA(x) do { } while (0)
57
#endif
58
59
typedef u8 rmap_age_t;
60
61
/**
62
* DOC: Overview
63
*
64
* A few notes about the KSM scanning process,
65
* to make it easier to understand the data structures below:
66
*
67
* In order to reduce excessive scanning, KSM sorts the memory pages by their
68
* contents into a data structure that holds pointers to the pages' locations.
69
*
70
* Since the contents of the pages may change at any moment, KSM cannot just
71
* insert the pages into a normal sorted tree and expect it to find anything.
72
* Therefore KSM uses two data structures - the stable and the unstable tree.
73
*
74
* The stable tree holds pointers to all the merged pages (ksm pages), sorted
75
* by their contents. Because each such page is write-protected, searching on
76
* this tree is fully assured to be working (except when pages are unmapped),
77
* and therefore this tree is called the stable tree.
78
*
79
* The stable tree node includes information required for reverse
80
* mapping from a KSM page to virtual addresses that map this page.
81
*
82
* In order to avoid large latencies of the rmap walks on KSM pages,
83
* KSM maintains two types of nodes in the stable tree:
84
*
85
* * the regular nodes that keep the reverse mapping structures in a
86
* linked list
87
* * the "chains" that link nodes ("dups") that represent the same
88
* write protected memory content, but each "dup" corresponds to a
89
* different KSM page copy of that content
90
*
91
* Internally, the regular nodes, "dups" and "chains" are represented
92
* using the same struct ksm_stable_node structure.
93
*
94
* In addition to the stable tree, KSM uses a second data structure called the
95
* unstable tree: this tree holds pointers to pages which have been found to
96
* be "unchanged for a period of time". The unstable tree sorts these pages
97
* by their contents, but since they are not write-protected, KSM cannot rely
98
* upon the unstable tree to work correctly - the unstable tree is liable to
99
* be corrupted as its contents are modified, and so it is called unstable.
100
*
101
* KSM solves this problem by several techniques:
102
*
103
* 1) The unstable tree is flushed every time KSM completes scanning all
104
* memory areas, and then the tree is rebuilt again from the beginning.
105
* 2) KSM will only insert into the unstable tree, pages whose hash value
106
* has not changed since the previous scan of all memory areas.
107
* 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108
* colors of the nodes and not on their contents, assuring that even when
109
* the tree gets "corrupted" it won't get out of balance, so scanning time
110
* remains the same (also, searching and inserting nodes in an rbtree uses
111
* the same algorithm, so we have no overhead when we flush and rebuild).
112
* 4) KSM never flushes the stable tree, which means that even if it were to
113
* take 10 attempts to find a page in the unstable tree, once it is found,
114
* it is secured in the stable tree. (When we scan a new page, we first
115
* compare it against the stable tree, and then against the unstable tree.)
116
*
117
* If the merge_across_nodes tunable is unset, then KSM maintains multiple
118
* stable trees and multiple unstable trees: one of each for each NUMA node.
119
*/
120
121
/**
122
* struct ksm_mm_slot - ksm information per mm that is being scanned
123
* @slot: hash lookup from mm to mm_slot
124
* @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125
*/
126
struct ksm_mm_slot {
127
struct mm_slot slot;
128
struct ksm_rmap_item *rmap_list;
129
};
130
131
/**
132
* struct ksm_scan - cursor for scanning
133
* @mm_slot: the current mm_slot we are scanning
134
* @address: the next address inside that to be scanned
135
* @rmap_list: link to the next rmap to be scanned in the rmap_list
136
* @seqnr: count of completed full scans (needed when removing unstable node)
137
*
138
* There is only the one ksm_scan instance of this cursor structure.
139
*/
140
struct ksm_scan {
141
struct ksm_mm_slot *mm_slot;
142
unsigned long address;
143
struct ksm_rmap_item **rmap_list;
144
unsigned long seqnr;
145
};
146
147
/**
148
* struct ksm_stable_node - node of the stable rbtree
149
* @node: rb node of this ksm page in the stable tree
150
* @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151
* @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152
* @list: linked into migrate_nodes, pending placement in the proper node tree
153
* @hlist: hlist head of rmap_items using this ksm page
154
* @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155
* @chain_prune_time: time of the last full garbage collection
156
* @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157
* @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158
*/
159
struct ksm_stable_node {
160
union {
161
struct rb_node node; /* when node of stable tree */
162
struct { /* when listed for migration */
163
struct list_head *head;
164
struct {
165
struct hlist_node hlist_dup;
166
struct list_head list;
167
};
168
};
169
};
170
struct hlist_head hlist;
171
union {
172
unsigned long kpfn;
173
unsigned long chain_prune_time;
174
};
175
/*
176
* STABLE_NODE_CHAIN can be any negative number in
177
* rmap_hlist_len negative range, but better not -1 to be able
178
* to reliably detect underflows.
179
*/
180
#define STABLE_NODE_CHAIN -1024
181
int rmap_hlist_len;
182
#ifdef CONFIG_NUMA
183
int nid;
184
#endif
185
};
186
187
/**
188
* struct ksm_rmap_item - reverse mapping item for virtual addresses
189
* @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190
* @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191
* @nid: NUMA node id of unstable tree in which linked (may not match page)
192
* @mm: the memory structure this rmap_item is pointing into
193
* @address: the virtual address this rmap_item tracks (+ flags in low bits)
194
* @oldchecksum: previous checksum of the page at that virtual address
195
* @node: rb node of this rmap_item in the unstable tree
196
* @head: pointer to stable_node heading this list in the stable tree
197
* @hlist: link into hlist of rmap_items hanging off that stable_node
198
* @age: number of scan iterations since creation
199
* @remaining_skips: how many scans to skip
200
*/
201
struct ksm_rmap_item {
202
struct ksm_rmap_item *rmap_list;
203
union {
204
struct anon_vma *anon_vma; /* when stable */
205
#ifdef CONFIG_NUMA
206
int nid; /* when node of unstable tree */
207
#endif
208
};
209
struct mm_struct *mm;
210
unsigned long address; /* + low bits used for flags below */
211
unsigned int oldchecksum; /* when unstable */
212
rmap_age_t age;
213
rmap_age_t remaining_skips;
214
union {
215
struct rb_node node; /* when node of unstable tree */
216
struct { /* when listed from stable tree */
217
struct ksm_stable_node *head;
218
struct hlist_node hlist;
219
};
220
};
221
};
222
223
#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224
#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225
#define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227
/* The stable and unstable tree heads */
228
static struct rb_root one_stable_tree[1] = { RB_ROOT };
229
static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230
static struct rb_root *root_stable_tree = one_stable_tree;
231
static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233
/* Recently migrated nodes of stable tree, pending proper placement */
234
static LIST_HEAD(migrate_nodes);
235
#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237
#define MM_SLOTS_HASH_BITS 10
238
static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240
static struct ksm_mm_slot ksm_mm_head = {
241
.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242
};
243
static struct ksm_scan ksm_scan = {
244
.mm_slot = &ksm_mm_head,
245
};
246
247
static struct kmem_cache *rmap_item_cache;
248
static struct kmem_cache *stable_node_cache;
249
static struct kmem_cache *mm_slot_cache;
250
251
/* Default number of pages to scan per batch */
252
#define DEFAULT_PAGES_TO_SCAN 100
253
254
/* The number of pages scanned */
255
static unsigned long ksm_pages_scanned;
256
257
/* The number of nodes in the stable tree */
258
static unsigned long ksm_pages_shared;
259
260
/* The number of page slots additionally sharing those nodes */
261
static unsigned long ksm_pages_sharing;
262
263
/* The number of nodes in the unstable tree */
264
static unsigned long ksm_pages_unshared;
265
266
/* The number of rmap_items in use: to calculate pages_volatile */
267
static unsigned long ksm_rmap_items;
268
269
/* The number of stable_node chains */
270
static unsigned long ksm_stable_node_chains;
271
272
/* The number of stable_node dups linked to the stable_node chains */
273
static unsigned long ksm_stable_node_dups;
274
275
/* Delay in pruning stale stable_node_dups in the stable_node_chains */
276
static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277
278
/* Maximum number of page slots sharing a stable node */
279
static int ksm_max_page_sharing = 256;
280
281
/* Number of pages ksmd should scan in one batch */
282
static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283
284
/* Milliseconds ksmd should sleep between batches */
285
static unsigned int ksm_thread_sleep_millisecs = 20;
286
287
/* Checksum of an empty (zeroed) page */
288
static unsigned int zero_checksum __read_mostly;
289
290
/* Whether to merge empty (zeroed) pages with actual zero pages */
291
static bool ksm_use_zero_pages __read_mostly;
292
293
/* Skip pages that couldn't be de-duplicated previously */
294
/* Default to true at least temporarily, for testing */
295
static bool ksm_smart_scan = true;
296
297
/* The number of zero pages which is placed by KSM */
298
atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299
300
/* The number of pages that have been skipped due to "smart scanning" */
301
static unsigned long ksm_pages_skipped;
302
303
/* Don't scan more than max pages per batch. */
304
static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305
306
/* Min CPU for scanning pages per scan */
307
#define KSM_ADVISOR_MIN_CPU 10
308
309
/* Max CPU for scanning pages per scan */
310
static unsigned int ksm_advisor_max_cpu = 70;
311
312
/* Target scan time in seconds to analyze all KSM candidate pages. */
313
static unsigned long ksm_advisor_target_scan_time = 200;
314
315
/* Exponentially weighted moving average. */
316
#define EWMA_WEIGHT 30
317
318
/**
319
* struct advisor_ctx - metadata for KSM advisor
320
* @start_scan: start time of the current scan
321
* @scan_time: scan time of previous scan
322
* @change: change in percent to pages_to_scan parameter
323
* @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324
*/
325
struct advisor_ctx {
326
ktime_t start_scan;
327
unsigned long scan_time;
328
unsigned long change;
329
unsigned long long cpu_time;
330
};
331
static struct advisor_ctx advisor_ctx;
332
333
/* Define different advisor's */
334
enum ksm_advisor_type {
335
KSM_ADVISOR_NONE,
336
KSM_ADVISOR_SCAN_TIME,
337
};
338
static enum ksm_advisor_type ksm_advisor;
339
340
#ifdef CONFIG_SYSFS
341
/*
342
* Only called through the sysfs control interface:
343
*/
344
345
/* At least scan this many pages per batch. */
346
static unsigned long ksm_advisor_min_pages_to_scan = 500;
347
348
static void set_advisor_defaults(void)
349
{
350
if (ksm_advisor == KSM_ADVISOR_NONE) {
351
ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352
} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353
advisor_ctx = (const struct advisor_ctx){ 0 };
354
ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355
}
356
}
357
#endif /* CONFIG_SYSFS */
358
359
static inline void advisor_start_scan(void)
360
{
361
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362
advisor_ctx.start_scan = ktime_get();
363
}
364
365
/*
366
* Use previous scan time if available, otherwise use current scan time as an
367
* approximation for the previous scan time.
368
*/
369
static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370
unsigned long scan_time)
371
{
372
return ctx->scan_time ? ctx->scan_time : scan_time;
373
}
374
375
/* Calculate exponential weighted moving average */
376
static unsigned long ewma(unsigned long prev, unsigned long curr)
377
{
378
return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379
}
380
381
/*
382
* The scan time advisor is based on the current scan rate and the target
383
* scan rate.
384
*
385
* new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386
*
387
* To avoid perturbations it calculates a change factor of previous changes.
388
* A new change factor is calculated for each iteration and it uses an
389
* exponentially weighted moving average. The new pages_to_scan value is
390
* multiplied with that change factor:
391
*
392
* new_pages_to_scan *= change facor
393
*
394
* The new_pages_to_scan value is limited by the cpu min and max values. It
395
* calculates the cpu percent for the last scan and calculates the new
396
* estimated cpu percent cost for the next scan. That value is capped by the
397
* cpu min and max setting.
398
*
399
* In addition the new pages_to_scan value is capped by the max and min
400
* limits.
401
*/
402
static void scan_time_advisor(void)
403
{
404
unsigned int cpu_percent;
405
unsigned long cpu_time;
406
unsigned long cpu_time_diff;
407
unsigned long cpu_time_diff_ms;
408
unsigned long pages;
409
unsigned long per_page_cost;
410
unsigned long factor;
411
unsigned long change;
412
unsigned long last_scan_time;
413
unsigned long scan_time;
414
415
/* Convert scan time to seconds */
416
scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417
MSEC_PER_SEC);
418
scan_time = scan_time ? scan_time : 1;
419
420
/* Calculate CPU consumption of ksmd background thread */
421
cpu_time = task_sched_runtime(current);
422
cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423
cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424
425
cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426
cpu_percent = cpu_percent ? cpu_percent : 1;
427
last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428
429
/* Calculate scan time as percentage of target scan time */
430
factor = ksm_advisor_target_scan_time * 100 / scan_time;
431
factor = factor ? factor : 1;
432
433
/*
434
* Calculate scan time as percentage of last scan time and use
435
* exponentially weighted average to smooth it
436
*/
437
change = scan_time * 100 / last_scan_time;
438
change = change ? change : 1;
439
change = ewma(advisor_ctx.change, change);
440
441
/* Calculate new scan rate based on target scan rate. */
442
pages = ksm_thread_pages_to_scan * 100 / factor;
443
/* Update pages_to_scan by weighted change percentage. */
444
pages = pages * change / 100;
445
446
/* Cap new pages_to_scan value */
447
per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448
per_page_cost = per_page_cost ? per_page_cost : 1;
449
450
pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451
pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452
pages = min(pages, ksm_advisor_max_pages_to_scan);
453
454
/* Update advisor context */
455
advisor_ctx.change = change;
456
advisor_ctx.scan_time = scan_time;
457
advisor_ctx.cpu_time = cpu_time;
458
459
ksm_thread_pages_to_scan = pages;
460
trace_ksm_advisor(scan_time, pages, cpu_percent);
461
}
462
463
static void advisor_stop_scan(void)
464
{
465
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466
scan_time_advisor();
467
}
468
469
#ifdef CONFIG_NUMA
470
/* Zeroed when merging across nodes is not allowed */
471
static unsigned int ksm_merge_across_nodes = 1;
472
static int ksm_nr_node_ids = 1;
473
#else
474
#define ksm_merge_across_nodes 1U
475
#define ksm_nr_node_ids 1
476
#endif
477
478
#define KSM_RUN_STOP 0
479
#define KSM_RUN_MERGE 1
480
#define KSM_RUN_UNMERGE 2
481
#define KSM_RUN_OFFLINE 4
482
static unsigned long ksm_run = KSM_RUN_STOP;
483
static void wait_while_offlining(void);
484
485
static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486
static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487
static DEFINE_MUTEX(ksm_thread_mutex);
488
static DEFINE_SPINLOCK(ksm_mmlist_lock);
489
490
static int __init ksm_slab_init(void)
491
{
492
rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493
if (!rmap_item_cache)
494
goto out;
495
496
stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497
if (!stable_node_cache)
498
goto out_free1;
499
500
mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501
if (!mm_slot_cache)
502
goto out_free2;
503
504
return 0;
505
506
out_free2:
507
kmem_cache_destroy(stable_node_cache);
508
out_free1:
509
kmem_cache_destroy(rmap_item_cache);
510
out:
511
return -ENOMEM;
512
}
513
514
static void __init ksm_slab_free(void)
515
{
516
kmem_cache_destroy(mm_slot_cache);
517
kmem_cache_destroy(stable_node_cache);
518
kmem_cache_destroy(rmap_item_cache);
519
mm_slot_cache = NULL;
520
}
521
522
static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523
{
524
return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525
}
526
527
static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528
{
529
return dup->head == STABLE_NODE_DUP_HEAD;
530
}
531
532
static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533
struct ksm_stable_node *chain)
534
{
535
VM_BUG_ON(is_stable_node_dup(dup));
536
dup->head = STABLE_NODE_DUP_HEAD;
537
VM_BUG_ON(!is_stable_node_chain(chain));
538
hlist_add_head(&dup->hlist_dup, &chain->hlist);
539
ksm_stable_node_dups++;
540
}
541
542
static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543
{
544
VM_BUG_ON(!is_stable_node_dup(dup));
545
hlist_del(&dup->hlist_dup);
546
ksm_stable_node_dups--;
547
}
548
549
static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550
{
551
VM_BUG_ON(is_stable_node_chain(dup));
552
if (is_stable_node_dup(dup))
553
__stable_node_dup_del(dup);
554
else
555
rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556
#ifdef CONFIG_DEBUG_VM
557
dup->head = NULL;
558
#endif
559
}
560
561
static inline struct ksm_rmap_item *alloc_rmap_item(void)
562
{
563
struct ksm_rmap_item *rmap_item;
564
565
rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566
__GFP_NORETRY | __GFP_NOWARN);
567
if (rmap_item)
568
ksm_rmap_items++;
569
return rmap_item;
570
}
571
572
static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573
{
574
ksm_rmap_items--;
575
rmap_item->mm->ksm_rmap_items--;
576
rmap_item->mm = NULL; /* debug safety */
577
kmem_cache_free(rmap_item_cache, rmap_item);
578
}
579
580
static inline struct ksm_stable_node *alloc_stable_node(void)
581
{
582
/*
583
* The allocation can take too long with GFP_KERNEL when memory is under
584
* pressure, which may lead to hung task warnings. Adding __GFP_HIGH
585
* grants access to memory reserves, helping to avoid this problem.
586
*/
587
return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588
}
589
590
static inline void free_stable_node(struct ksm_stable_node *stable_node)
591
{
592
VM_BUG_ON(stable_node->rmap_hlist_len &&
593
!is_stable_node_chain(stable_node));
594
kmem_cache_free(stable_node_cache, stable_node);
595
}
596
597
/*
598
* ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599
* page tables after it has passed through ksm_exit() - which, if necessary,
600
* takes mmap_lock briefly to serialize against them. ksm_exit() does not set
601
* a special flag: they can just back out as soon as mm_users goes to zero.
602
* ksm_test_exit() is used throughout to make this test for exit: in some
603
* places for correctness, in some places just to avoid unnecessary work.
604
*/
605
static inline bool ksm_test_exit(struct mm_struct *mm)
606
{
607
return atomic_read(&mm->mm_users) == 0;
608
}
609
610
/*
611
* We use break_ksm to break COW on a ksm page by triggering unsharing,
612
* such that the ksm page will get replaced by an exclusive anonymous page.
613
*
614
* We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615
* in case the application has unmapped and remapped mm,addr meanwhile.
616
* Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
617
* mmap of /dev/mem, where we would not want to touch it.
618
*
619
* FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620
* of the process that owns 'vma'. We also do not want to enforce
621
* protection keys here anyway.
622
*/
623
static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624
{
625
vm_fault_t ret = 0;
626
627
if (lock_vma)
628
vma_start_write(vma);
629
630
do {
631
bool ksm_page = false;
632
struct folio_walk fw;
633
struct folio *folio;
634
635
cond_resched();
636
folio = folio_walk_start(&fw, vma, addr,
637
FW_MIGRATION | FW_ZEROPAGE);
638
if (folio) {
639
/* Small folio implies FW_LEVEL_PTE. */
640
if (!folio_test_large(folio) &&
641
(folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642
ksm_page = true;
643
folio_walk_end(&fw, vma);
644
}
645
646
if (!ksm_page)
647
return 0;
648
ret = handle_mm_fault(vma, addr,
649
FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650
NULL);
651
} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652
/*
653
* We must loop until we no longer find a KSM page because
654
* handle_mm_fault() may back out if there's any difficulty e.g. if
655
* pte accessed bit gets updated concurrently.
656
*
657
* VM_FAULT_SIGBUS could occur if we race with truncation of the
658
* backing file, which also invalidates anonymous pages: that's
659
* okay, that truncation will have unmapped the KSM page for us.
660
*
661
* VM_FAULT_OOM: at the time of writing (late July 2009), setting
662
* aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663
* current task has TIF_MEMDIE set, and will be OOM killed on return
664
* to user; and ksmd, having no mm, would never be chosen for that.
665
*
666
* But if the mm is in a limited mem_cgroup, then the fault may fail
667
* with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668
* even ksmd can fail in this way - though it's usually breaking ksm
669
* just to undo a merge it made a moment before, so unlikely to oom.
670
*
671
* That's a pity: we might therefore have more kernel pages allocated
672
* than we're counting as nodes in the stable tree; but ksm_do_scan
673
* will retry to break_cow on each pass, so should recover the page
674
* in due course. The important thing is to not let VM_MERGEABLE
675
* be cleared while any such pages might remain in the area.
676
*/
677
return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678
}
679
680
static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
681
{
682
if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL |
683
VM_HUGETLB | VM_DROPPABLE))
684
return false; /* just ignore the advice */
685
686
if (file_is_dax(file))
687
return false;
688
689
#ifdef VM_SAO
690
if (vm_flags & VM_SAO)
691
return false;
692
#endif
693
#ifdef VM_SPARC_ADI
694
if (vm_flags & VM_SPARC_ADI)
695
return false;
696
#endif
697
698
return true;
699
}
700
701
static bool vma_ksm_compatible(struct vm_area_struct *vma)
702
{
703
return ksm_compatible(vma->vm_file, vma->vm_flags);
704
}
705
706
static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
707
unsigned long addr)
708
{
709
struct vm_area_struct *vma;
710
if (ksm_test_exit(mm))
711
return NULL;
712
vma = vma_lookup(mm, addr);
713
if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
714
return NULL;
715
return vma;
716
}
717
718
static void break_cow(struct ksm_rmap_item *rmap_item)
719
{
720
struct mm_struct *mm = rmap_item->mm;
721
unsigned long addr = rmap_item->address;
722
struct vm_area_struct *vma;
723
724
/*
725
* It is not an accident that whenever we want to break COW
726
* to undo, we also need to drop a reference to the anon_vma.
727
*/
728
put_anon_vma(rmap_item->anon_vma);
729
730
mmap_read_lock(mm);
731
vma = find_mergeable_vma(mm, addr);
732
if (vma)
733
break_ksm(vma, addr, false);
734
mmap_read_unlock(mm);
735
}
736
737
static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
738
{
739
struct mm_struct *mm = rmap_item->mm;
740
unsigned long addr = rmap_item->address;
741
struct vm_area_struct *vma;
742
struct page *page = NULL;
743
struct folio_walk fw;
744
struct folio *folio;
745
746
mmap_read_lock(mm);
747
vma = find_mergeable_vma(mm, addr);
748
if (!vma)
749
goto out;
750
751
folio = folio_walk_start(&fw, vma, addr, 0);
752
if (folio) {
753
if (!folio_is_zone_device(folio) &&
754
folio_test_anon(folio)) {
755
folio_get(folio);
756
page = fw.page;
757
}
758
folio_walk_end(&fw, vma);
759
}
760
out:
761
if (page) {
762
flush_anon_page(vma, page, addr);
763
flush_dcache_page(page);
764
}
765
mmap_read_unlock(mm);
766
return page;
767
}
768
769
/*
770
* This helper is used for getting right index into array of tree roots.
771
* When merge_across_nodes knob is set to 1, there are only two rb-trees for
772
* stable and unstable pages from all nodes with roots in index 0. Otherwise,
773
* every node has its own stable and unstable tree.
774
*/
775
static inline int get_kpfn_nid(unsigned long kpfn)
776
{
777
return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
778
}
779
780
static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
781
struct rb_root *root)
782
{
783
struct ksm_stable_node *chain = alloc_stable_node();
784
VM_BUG_ON(is_stable_node_chain(dup));
785
if (likely(chain)) {
786
INIT_HLIST_HEAD(&chain->hlist);
787
chain->chain_prune_time = jiffies;
788
chain->rmap_hlist_len = STABLE_NODE_CHAIN;
789
#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
790
chain->nid = NUMA_NO_NODE; /* debug */
791
#endif
792
ksm_stable_node_chains++;
793
794
/*
795
* Put the stable node chain in the first dimension of
796
* the stable tree and at the same time remove the old
797
* stable node.
798
*/
799
rb_replace_node(&dup->node, &chain->node, root);
800
801
/*
802
* Move the old stable node to the second dimension
803
* queued in the hlist_dup. The invariant is that all
804
* dup stable_nodes in the chain->hlist point to pages
805
* that are write protected and have the exact same
806
* content.
807
*/
808
stable_node_chain_add_dup(dup, chain);
809
}
810
return chain;
811
}
812
813
static inline void free_stable_node_chain(struct ksm_stable_node *chain,
814
struct rb_root *root)
815
{
816
rb_erase(&chain->node, root);
817
free_stable_node(chain);
818
ksm_stable_node_chains--;
819
}
820
821
static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
822
{
823
struct ksm_rmap_item *rmap_item;
824
825
/* check it's not STABLE_NODE_CHAIN or negative */
826
BUG_ON(stable_node->rmap_hlist_len < 0);
827
828
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
829
if (rmap_item->hlist.next) {
830
ksm_pages_sharing--;
831
trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
832
} else {
833
ksm_pages_shared--;
834
}
835
836
rmap_item->mm->ksm_merging_pages--;
837
838
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
839
stable_node->rmap_hlist_len--;
840
put_anon_vma(rmap_item->anon_vma);
841
rmap_item->address &= PAGE_MASK;
842
cond_resched();
843
}
844
845
/*
846
* We need the second aligned pointer of the migrate_nodes
847
* list_head to stay clear from the rb_parent_color union
848
* (aligned and different than any node) and also different
849
* from &migrate_nodes. This will verify that future list.h changes
850
* don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
851
*/
852
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
853
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
854
855
trace_ksm_remove_ksm_page(stable_node->kpfn);
856
if (stable_node->head == &migrate_nodes)
857
list_del(&stable_node->list);
858
else
859
stable_node_dup_del(stable_node);
860
free_stable_node(stable_node);
861
}
862
863
enum ksm_get_folio_flags {
864
KSM_GET_FOLIO_NOLOCK,
865
KSM_GET_FOLIO_LOCK,
866
KSM_GET_FOLIO_TRYLOCK
867
};
868
869
/*
870
* ksm_get_folio: checks if the page indicated by the stable node
871
* is still its ksm page, despite having held no reference to it.
872
* In which case we can trust the content of the page, and it
873
* returns the gotten page; but if the page has now been zapped,
874
* remove the stale node from the stable tree and return NULL.
875
* But beware, the stable node's page might be being migrated.
876
*
877
* You would expect the stable_node to hold a reference to the ksm page.
878
* But if it increments the page's count, swapping out has to wait for
879
* ksmd to come around again before it can free the page, which may take
880
* seconds or even minutes: much too unresponsive. So instead we use a
881
* "keyhole reference": access to the ksm page from the stable node peeps
882
* out through its keyhole to see if that page still holds the right key,
883
* pointing back to this stable node. This relies on freeing a PageAnon
884
* page to reset its page->mapping to NULL, and relies on no other use of
885
* a page to put something that might look like our key in page->mapping.
886
* is on its way to being freed; but it is an anomaly to bear in mind.
887
*/
888
static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
889
enum ksm_get_folio_flags flags)
890
{
891
struct folio *folio;
892
void *expected_mapping;
893
unsigned long kpfn;
894
895
expected_mapping = (void *)((unsigned long)stable_node |
896
FOLIO_MAPPING_KSM);
897
again:
898
kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
899
folio = pfn_folio(kpfn);
900
if (READ_ONCE(folio->mapping) != expected_mapping)
901
goto stale;
902
903
/*
904
* We cannot do anything with the page while its refcount is 0.
905
* Usually 0 means free, or tail of a higher-order page: in which
906
* case this node is no longer referenced, and should be freed;
907
* however, it might mean that the page is under page_ref_freeze().
908
* The __remove_mapping() case is easy, again the node is now stale;
909
* the same is in reuse_ksm_page() case; but if page is swapcache
910
* in folio_migrate_mapping(), it might still be our page,
911
* in which case it's essential to keep the node.
912
*/
913
while (!folio_try_get(folio)) {
914
/*
915
* Another check for folio->mapping != expected_mapping
916
* would work here too. We have chosen to test the
917
* swapcache flag to optimize the common case, when the
918
* folio is or is about to be freed: the swapcache flag
919
* is cleared (under spin_lock_irq) in the ref_freeze
920
* section of __remove_mapping(); but anon folio->mapping
921
* is reset to NULL later, in free_pages_prepare().
922
*/
923
if (!folio_test_swapcache(folio))
924
goto stale;
925
cpu_relax();
926
}
927
928
if (READ_ONCE(folio->mapping) != expected_mapping) {
929
folio_put(folio);
930
goto stale;
931
}
932
933
if (flags == KSM_GET_FOLIO_TRYLOCK) {
934
if (!folio_trylock(folio)) {
935
folio_put(folio);
936
return ERR_PTR(-EBUSY);
937
}
938
} else if (flags == KSM_GET_FOLIO_LOCK)
939
folio_lock(folio);
940
941
if (flags != KSM_GET_FOLIO_NOLOCK) {
942
if (READ_ONCE(folio->mapping) != expected_mapping) {
943
folio_unlock(folio);
944
folio_put(folio);
945
goto stale;
946
}
947
}
948
return folio;
949
950
stale:
951
/*
952
* We come here from above when folio->mapping or the swapcache flag
953
* suggests that the node is stale; but it might be under migration.
954
* We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
955
* before checking whether node->kpfn has been changed.
956
*/
957
smp_rmb();
958
if (READ_ONCE(stable_node->kpfn) != kpfn)
959
goto again;
960
remove_node_from_stable_tree(stable_node);
961
return NULL;
962
}
963
964
/*
965
* Removing rmap_item from stable or unstable tree.
966
* This function will clean the information from the stable/unstable tree.
967
*/
968
static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
969
{
970
if (rmap_item->address & STABLE_FLAG) {
971
struct ksm_stable_node *stable_node;
972
struct folio *folio;
973
974
stable_node = rmap_item->head;
975
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
976
if (!folio)
977
goto out;
978
979
hlist_del(&rmap_item->hlist);
980
folio_unlock(folio);
981
folio_put(folio);
982
983
if (!hlist_empty(&stable_node->hlist))
984
ksm_pages_sharing--;
985
else
986
ksm_pages_shared--;
987
988
rmap_item->mm->ksm_merging_pages--;
989
990
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
991
stable_node->rmap_hlist_len--;
992
993
put_anon_vma(rmap_item->anon_vma);
994
rmap_item->head = NULL;
995
rmap_item->address &= PAGE_MASK;
996
997
} else if (rmap_item->address & UNSTABLE_FLAG) {
998
unsigned char age;
999
/*
1000
* Usually ksmd can and must skip the rb_erase, because
1001
* root_unstable_tree was already reset to RB_ROOT.
1002
* But be careful when an mm is exiting: do the rb_erase
1003
* if this rmap_item was inserted by this scan, rather
1004
* than left over from before.
1005
*/
1006
age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1007
BUG_ON(age > 1);
1008
if (!age)
1009
rb_erase(&rmap_item->node,
1010
root_unstable_tree + NUMA(rmap_item->nid));
1011
ksm_pages_unshared--;
1012
rmap_item->address &= PAGE_MASK;
1013
}
1014
out:
1015
cond_resched(); /* we're called from many long loops */
1016
}
1017
1018
static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1019
{
1020
while (*rmap_list) {
1021
struct ksm_rmap_item *rmap_item = *rmap_list;
1022
*rmap_list = rmap_item->rmap_list;
1023
remove_rmap_item_from_tree(rmap_item);
1024
free_rmap_item(rmap_item);
1025
}
1026
}
1027
1028
/*
1029
* Though it's very tempting to unmerge rmap_items from stable tree rather
1030
* than check every pte of a given vma, the locking doesn't quite work for
1031
* that - an rmap_item is assigned to the stable tree after inserting ksm
1032
* page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
1033
* rmap_items from parent to child at fork time (so as not to waste time
1034
* if exit comes before the next scan reaches it).
1035
*
1036
* Similarly, although we'd like to remove rmap_items (so updating counts
1037
* and freeing memory) when unmerging an area, it's easier to leave that
1038
* to the next pass of ksmd - consider, for example, how ksmd might be
1039
* in cmp_and_merge_page on one of the rmap_items we would be removing.
1040
*/
1041
static int unmerge_ksm_pages(struct vm_area_struct *vma,
1042
unsigned long start, unsigned long end, bool lock_vma)
1043
{
1044
unsigned long addr;
1045
int err = 0;
1046
1047
for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1048
if (ksm_test_exit(vma->vm_mm))
1049
break;
1050
if (signal_pending(current))
1051
err = -ERESTARTSYS;
1052
else
1053
err = break_ksm(vma, addr, lock_vma);
1054
}
1055
return err;
1056
}
1057
1058
static inline
1059
struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1060
{
1061
return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1062
}
1063
1064
static inline void folio_set_stable_node(struct folio *folio,
1065
struct ksm_stable_node *stable_node)
1066
{
1067
VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1068
folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1069
}
1070
1071
#ifdef CONFIG_SYSFS
1072
/*
1073
* Only called through the sysfs control interface:
1074
*/
1075
static int remove_stable_node(struct ksm_stable_node *stable_node)
1076
{
1077
struct folio *folio;
1078
int err;
1079
1080
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1081
if (!folio) {
1082
/*
1083
* ksm_get_folio did remove_node_from_stable_tree itself.
1084
*/
1085
return 0;
1086
}
1087
1088
/*
1089
* Page could be still mapped if this races with __mmput() running in
1090
* between ksm_exit() and exit_mmap(). Just refuse to let
1091
* merge_across_nodes/max_page_sharing be switched.
1092
*/
1093
err = -EBUSY;
1094
if (!folio_mapped(folio)) {
1095
/*
1096
* The stable node did not yet appear stale to ksm_get_folio(),
1097
* since that allows for an unmapped ksm folio to be recognized
1098
* right up until it is freed; but the node is safe to remove.
1099
* This folio might be in an LRU cache waiting to be freed,
1100
* or it might be in the swapcache (perhaps under writeback),
1101
* or it might have been removed from swapcache a moment ago.
1102
*/
1103
folio_set_stable_node(folio, NULL);
1104
remove_node_from_stable_tree(stable_node);
1105
err = 0;
1106
}
1107
1108
folio_unlock(folio);
1109
folio_put(folio);
1110
return err;
1111
}
1112
1113
static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1114
struct rb_root *root)
1115
{
1116
struct ksm_stable_node *dup;
1117
struct hlist_node *hlist_safe;
1118
1119
if (!is_stable_node_chain(stable_node)) {
1120
VM_BUG_ON(is_stable_node_dup(stable_node));
1121
if (remove_stable_node(stable_node))
1122
return true;
1123
else
1124
return false;
1125
}
1126
1127
hlist_for_each_entry_safe(dup, hlist_safe,
1128
&stable_node->hlist, hlist_dup) {
1129
VM_BUG_ON(!is_stable_node_dup(dup));
1130
if (remove_stable_node(dup))
1131
return true;
1132
}
1133
BUG_ON(!hlist_empty(&stable_node->hlist));
1134
free_stable_node_chain(stable_node, root);
1135
return false;
1136
}
1137
1138
static int remove_all_stable_nodes(void)
1139
{
1140
struct ksm_stable_node *stable_node, *next;
1141
int nid;
1142
int err = 0;
1143
1144
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1145
while (root_stable_tree[nid].rb_node) {
1146
stable_node = rb_entry(root_stable_tree[nid].rb_node,
1147
struct ksm_stable_node, node);
1148
if (remove_stable_node_chain(stable_node,
1149
root_stable_tree + nid)) {
1150
err = -EBUSY;
1151
break; /* proceed to next nid */
1152
}
1153
cond_resched();
1154
}
1155
}
1156
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1157
if (remove_stable_node(stable_node))
1158
err = -EBUSY;
1159
cond_resched();
1160
}
1161
return err;
1162
}
1163
1164
static int unmerge_and_remove_all_rmap_items(void)
1165
{
1166
struct ksm_mm_slot *mm_slot;
1167
struct mm_slot *slot;
1168
struct mm_struct *mm;
1169
struct vm_area_struct *vma;
1170
int err = 0;
1171
1172
spin_lock(&ksm_mmlist_lock);
1173
slot = list_entry(ksm_mm_head.slot.mm_node.next,
1174
struct mm_slot, mm_node);
1175
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1176
spin_unlock(&ksm_mmlist_lock);
1177
1178
for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1179
mm_slot = ksm_scan.mm_slot) {
1180
VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1181
1182
mm = mm_slot->slot.mm;
1183
mmap_read_lock(mm);
1184
1185
/*
1186
* Exit right away if mm is exiting to avoid lockdep issue in
1187
* the maple tree
1188
*/
1189
if (ksm_test_exit(mm))
1190
goto mm_exiting;
1191
1192
for_each_vma(vmi, vma) {
1193
if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1194
continue;
1195
err = unmerge_ksm_pages(vma,
1196
vma->vm_start, vma->vm_end, false);
1197
if (err)
1198
goto error;
1199
}
1200
1201
mm_exiting:
1202
remove_trailing_rmap_items(&mm_slot->rmap_list);
1203
mmap_read_unlock(mm);
1204
1205
spin_lock(&ksm_mmlist_lock);
1206
slot = list_entry(mm_slot->slot.mm_node.next,
1207
struct mm_slot, mm_node);
1208
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209
if (ksm_test_exit(mm)) {
1210
hash_del(&mm_slot->slot.hash);
1211
list_del(&mm_slot->slot.mm_node);
1212
spin_unlock(&ksm_mmlist_lock);
1213
1214
mm_slot_free(mm_slot_cache, mm_slot);
1215
mm_flags_clear(MMF_VM_MERGEABLE, mm);
1216
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1217
mmdrop(mm);
1218
} else
1219
spin_unlock(&ksm_mmlist_lock);
1220
}
1221
1222
/* Clean up stable nodes, but don't worry if some are still busy */
1223
remove_all_stable_nodes();
1224
ksm_scan.seqnr = 0;
1225
return 0;
1226
1227
error:
1228
mmap_read_unlock(mm);
1229
spin_lock(&ksm_mmlist_lock);
1230
ksm_scan.mm_slot = &ksm_mm_head;
1231
spin_unlock(&ksm_mmlist_lock);
1232
return err;
1233
}
1234
#endif /* CONFIG_SYSFS */
1235
1236
static u32 calc_checksum(struct page *page)
1237
{
1238
u32 checksum;
1239
void *addr = kmap_local_page(page);
1240
checksum = xxhash(addr, PAGE_SIZE, 0);
1241
kunmap_local(addr);
1242
return checksum;
1243
}
1244
1245
static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1246
pte_t *orig_pte)
1247
{
1248
struct mm_struct *mm = vma->vm_mm;
1249
DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1250
int swapped;
1251
int err = -EFAULT;
1252
struct mmu_notifier_range range;
1253
bool anon_exclusive;
1254
pte_t entry;
1255
1256
if (WARN_ON_ONCE(folio_test_large(folio)))
1257
return err;
1258
1259
pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1260
if (pvmw.address == -EFAULT)
1261
goto out;
1262
1263
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1264
pvmw.address + PAGE_SIZE);
1265
mmu_notifier_invalidate_range_start(&range);
1266
1267
if (!page_vma_mapped_walk(&pvmw))
1268
goto out_mn;
1269
if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1270
goto out_unlock;
1271
1272
entry = ptep_get(pvmw.pte);
1273
/*
1274
* Handle PFN swap PTEs, such as device-exclusive ones, that actually
1275
* map pages: give up just like the next folio_walk would.
1276
*/
1277
if (unlikely(!pte_present(entry)))
1278
goto out_unlock;
1279
1280
anon_exclusive = PageAnonExclusive(&folio->page);
1281
if (pte_write(entry) || pte_dirty(entry) ||
1282
anon_exclusive || mm_tlb_flush_pending(mm)) {
1283
swapped = folio_test_swapcache(folio);
1284
flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1285
/*
1286
* Ok this is tricky, when get_user_pages_fast() run it doesn't
1287
* take any lock, therefore the check that we are going to make
1288
* with the pagecount against the mapcount is racy and
1289
* O_DIRECT can happen right after the check.
1290
* So we clear the pte and flush the tlb before the check
1291
* this assure us that no O_DIRECT can happen after the check
1292
* or in the middle of the check.
1293
*
1294
* No need to notify as we are downgrading page table to read
1295
* only not changing it to point to a new page.
1296
*
1297
* See Documentation/mm/mmu_notifier.rst
1298
*/
1299
entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1300
/*
1301
* Check that no O_DIRECT or similar I/O is in progress on the
1302
* page
1303
*/
1304
if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1305
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1306
goto out_unlock;
1307
}
1308
1309
/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1310
if (anon_exclusive &&
1311
folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1312
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1313
goto out_unlock;
1314
}
1315
1316
if (pte_dirty(entry))
1317
folio_mark_dirty(folio);
1318
entry = pte_mkclean(entry);
1319
1320
if (pte_write(entry))
1321
entry = pte_wrprotect(entry);
1322
1323
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1324
}
1325
*orig_pte = entry;
1326
err = 0;
1327
1328
out_unlock:
1329
page_vma_mapped_walk_done(&pvmw);
1330
out_mn:
1331
mmu_notifier_invalidate_range_end(&range);
1332
out:
1333
return err;
1334
}
1335
1336
/**
1337
* replace_page - replace page in vma by new ksm page
1338
* @vma: vma that holds the pte pointing to page
1339
* @page: the page we are replacing by kpage
1340
* @kpage: the ksm page we replace page by
1341
* @orig_pte: the original value of the pte
1342
*
1343
* Returns 0 on success, -EFAULT on failure.
1344
*/
1345
static int replace_page(struct vm_area_struct *vma, struct page *page,
1346
struct page *kpage, pte_t orig_pte)
1347
{
1348
struct folio *kfolio = page_folio(kpage);
1349
struct mm_struct *mm = vma->vm_mm;
1350
struct folio *folio = page_folio(page);
1351
pmd_t *pmd;
1352
pmd_t pmde;
1353
pte_t *ptep;
1354
pte_t newpte;
1355
spinlock_t *ptl;
1356
unsigned long addr;
1357
int err = -EFAULT;
1358
struct mmu_notifier_range range;
1359
1360
addr = page_address_in_vma(folio, page, vma);
1361
if (addr == -EFAULT)
1362
goto out;
1363
1364
pmd = mm_find_pmd(mm, addr);
1365
if (!pmd)
1366
goto out;
1367
/*
1368
* Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1369
* without holding anon_vma lock for write. So when looking for a
1370
* genuine pmde (in which to find pte), test present and !THP together.
1371
*/
1372
pmde = pmdp_get_lockless(pmd);
1373
if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1374
goto out;
1375
1376
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1377
addr + PAGE_SIZE);
1378
mmu_notifier_invalidate_range_start(&range);
1379
1380
ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1381
if (!ptep)
1382
goto out_mn;
1383
if (!pte_same(ptep_get(ptep), orig_pte)) {
1384
pte_unmap_unlock(ptep, ptl);
1385
goto out_mn;
1386
}
1387
VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1388
VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1389
kfolio);
1390
1391
/*
1392
* No need to check ksm_use_zero_pages here: we can only have a
1393
* zero_page here if ksm_use_zero_pages was enabled already.
1394
*/
1395
if (!is_zero_pfn(page_to_pfn(kpage))) {
1396
folio_get(kfolio);
1397
folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1398
newpte = mk_pte(kpage, vma->vm_page_prot);
1399
} else {
1400
/*
1401
* Use pte_mkdirty to mark the zero page mapped by KSM, and then
1402
* we can easily track all KSM-placed zero pages by checking if
1403
* the dirty bit in zero page's PTE is set.
1404
*/
1405
newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1406
ksm_map_zero_page(mm);
1407
/*
1408
* We're replacing an anonymous page with a zero page, which is
1409
* not anonymous. We need to do proper accounting otherwise we
1410
* will get wrong values in /proc, and a BUG message in dmesg
1411
* when tearing down the mm.
1412
*/
1413
dec_mm_counter(mm, MM_ANONPAGES);
1414
}
1415
1416
flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1417
/*
1418
* No need to notify as we are replacing a read only page with another
1419
* read only page with the same content.
1420
*
1421
* See Documentation/mm/mmu_notifier.rst
1422
*/
1423
ptep_clear_flush(vma, addr, ptep);
1424
set_pte_at(mm, addr, ptep, newpte);
1425
1426
folio_remove_rmap_pte(folio, page, vma);
1427
if (!folio_mapped(folio))
1428
folio_free_swap(folio);
1429
folio_put(folio);
1430
1431
pte_unmap_unlock(ptep, ptl);
1432
err = 0;
1433
out_mn:
1434
mmu_notifier_invalidate_range_end(&range);
1435
out:
1436
return err;
1437
}
1438
1439
/*
1440
* try_to_merge_one_page - take two pages and merge them into one
1441
* @vma: the vma that holds the pte pointing to page
1442
* @page: the PageAnon page that we want to replace with kpage
1443
* @kpage: the KSM page that we want to map instead of page,
1444
* or NULL the first time when we want to use page as kpage.
1445
*
1446
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1447
*/
1448
static int try_to_merge_one_page(struct vm_area_struct *vma,
1449
struct page *page, struct page *kpage)
1450
{
1451
struct folio *folio = page_folio(page);
1452
pte_t orig_pte = __pte(0);
1453
int err = -EFAULT;
1454
1455
if (page == kpage) /* ksm page forked */
1456
return 0;
1457
1458
if (!folio_test_anon(folio))
1459
goto out;
1460
1461
/*
1462
* We need the folio lock to read a stable swapcache flag in
1463
* write_protect_page(). We trylock because we don't want to wait
1464
* here - we prefer to continue scanning and merging different
1465
* pages, then come back to this page when it is unlocked.
1466
*/
1467
if (!folio_trylock(folio))
1468
goto out;
1469
1470
if (folio_test_large(folio)) {
1471
if (split_huge_page(page))
1472
goto out_unlock;
1473
folio = page_folio(page);
1474
}
1475
1476
/*
1477
* If this anonymous page is mapped only here, its pte may need
1478
* to be write-protected. If it's mapped elsewhere, all of its
1479
* ptes are necessarily already write-protected. But in either
1480
* case, we need to lock and check page_count is not raised.
1481
*/
1482
if (write_protect_page(vma, folio, &orig_pte) == 0) {
1483
if (!kpage) {
1484
/*
1485
* While we hold folio lock, upgrade folio from
1486
* anon to a NULL stable_node with the KSM flag set:
1487
* stable_tree_insert() will update stable_node.
1488
*/
1489
folio_set_stable_node(folio, NULL);
1490
folio_mark_accessed(folio);
1491
/*
1492
* Page reclaim just frees a clean folio with no dirty
1493
* ptes: make sure that the ksm page would be swapped.
1494
*/
1495
if (!folio_test_dirty(folio))
1496
folio_mark_dirty(folio);
1497
err = 0;
1498
} else if (pages_identical(page, kpage))
1499
err = replace_page(vma, page, kpage, orig_pte);
1500
}
1501
1502
out_unlock:
1503
folio_unlock(folio);
1504
out:
1505
return err;
1506
}
1507
1508
/*
1509
* This function returns 0 if the pages were merged or if they are
1510
* no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1511
*/
1512
static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1513
struct page *page)
1514
{
1515
struct mm_struct *mm = rmap_item->mm;
1516
int err = -EFAULT;
1517
1518
/*
1519
* Same checksum as an empty page. We attempt to merge it with the
1520
* appropriate zero page if the user enabled this via sysfs.
1521
*/
1522
if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1523
struct vm_area_struct *vma;
1524
1525
mmap_read_lock(mm);
1526
vma = find_mergeable_vma(mm, rmap_item->address);
1527
if (vma) {
1528
err = try_to_merge_one_page(vma, page,
1529
ZERO_PAGE(rmap_item->address));
1530
trace_ksm_merge_one_page(
1531
page_to_pfn(ZERO_PAGE(rmap_item->address)),
1532
rmap_item, mm, err);
1533
} else {
1534
/*
1535
* If the vma is out of date, we do not need to
1536
* continue.
1537
*/
1538
err = 0;
1539
}
1540
mmap_read_unlock(mm);
1541
}
1542
1543
return err;
1544
}
1545
1546
/*
1547
* try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1548
* but no new kernel page is allocated: kpage must already be a ksm page.
1549
*
1550
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1551
*/
1552
static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1553
struct page *page, struct page *kpage)
1554
{
1555
struct mm_struct *mm = rmap_item->mm;
1556
struct vm_area_struct *vma;
1557
int err = -EFAULT;
1558
1559
mmap_read_lock(mm);
1560
vma = find_mergeable_vma(mm, rmap_item->address);
1561
if (!vma)
1562
goto out;
1563
1564
err = try_to_merge_one_page(vma, page, kpage);
1565
if (err)
1566
goto out;
1567
1568
/* Unstable nid is in union with stable anon_vma: remove first */
1569
remove_rmap_item_from_tree(rmap_item);
1570
1571
/* Must get reference to anon_vma while still holding mmap_lock */
1572
rmap_item->anon_vma = vma->anon_vma;
1573
get_anon_vma(vma->anon_vma);
1574
out:
1575
mmap_read_unlock(mm);
1576
trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1577
rmap_item, mm, err);
1578
return err;
1579
}
1580
1581
/*
1582
* try_to_merge_two_pages - take two identical pages and prepare them
1583
* to be merged into one page.
1584
*
1585
* This function returns the kpage if we successfully merged two identical
1586
* pages into one ksm page, NULL otherwise.
1587
*
1588
* Note that this function upgrades page to ksm page: if one of the pages
1589
* is already a ksm page, try_to_merge_with_ksm_page should be used.
1590
*/
1591
static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1592
struct page *page,
1593
struct ksm_rmap_item *tree_rmap_item,
1594
struct page *tree_page)
1595
{
1596
int err;
1597
1598
err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1599
if (!err) {
1600
err = try_to_merge_with_ksm_page(tree_rmap_item,
1601
tree_page, page);
1602
/*
1603
* If that fails, we have a ksm page with only one pte
1604
* pointing to it: so break it.
1605
*/
1606
if (err)
1607
break_cow(rmap_item);
1608
}
1609
return err ? NULL : page_folio(page);
1610
}
1611
1612
static __always_inline
1613
bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1614
{
1615
VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1616
/*
1617
* Check that at least one mapping still exists, otherwise
1618
* there's no much point to merge and share with this
1619
* stable_node, as the underlying tree_page of the other
1620
* sharer is going to be freed soon.
1621
*/
1622
return stable_node->rmap_hlist_len &&
1623
stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1624
}
1625
1626
static __always_inline
1627
bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1628
{
1629
return __is_page_sharing_candidate(stable_node, 0);
1630
}
1631
1632
static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1633
struct ksm_stable_node **_stable_node,
1634
struct rb_root *root,
1635
bool prune_stale_stable_nodes)
1636
{
1637
struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1638
struct hlist_node *hlist_safe;
1639
struct folio *folio, *tree_folio = NULL;
1640
int found_rmap_hlist_len;
1641
1642
if (!prune_stale_stable_nodes ||
1643
time_before(jiffies, stable_node->chain_prune_time +
1644
msecs_to_jiffies(
1645
ksm_stable_node_chains_prune_millisecs)))
1646
prune_stale_stable_nodes = false;
1647
else
1648
stable_node->chain_prune_time = jiffies;
1649
1650
hlist_for_each_entry_safe(dup, hlist_safe,
1651
&stable_node->hlist, hlist_dup) {
1652
cond_resched();
1653
/*
1654
* We must walk all stable_node_dup to prune the stale
1655
* stable nodes during lookup.
1656
*
1657
* ksm_get_folio can drop the nodes from the
1658
* stable_node->hlist if they point to freed pages
1659
* (that's why we do a _safe walk). The "dup"
1660
* stable_node parameter itself will be freed from
1661
* under us if it returns NULL.
1662
*/
1663
folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1664
if (!folio)
1665
continue;
1666
/* Pick the best candidate if possible. */
1667
if (!found || (is_page_sharing_candidate(dup) &&
1668
(!is_page_sharing_candidate(found) ||
1669
dup->rmap_hlist_len > found_rmap_hlist_len))) {
1670
if (found)
1671
folio_put(tree_folio);
1672
found = dup;
1673
found_rmap_hlist_len = found->rmap_hlist_len;
1674
tree_folio = folio;
1675
/* skip put_page for found candidate */
1676
if (!prune_stale_stable_nodes &&
1677
is_page_sharing_candidate(found))
1678
break;
1679
continue;
1680
}
1681
folio_put(folio);
1682
}
1683
1684
if (found) {
1685
if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1686
/*
1687
* If there's not just one entry it would
1688
* corrupt memory, better BUG_ON. In KSM
1689
* context with no lock held it's not even
1690
* fatal.
1691
*/
1692
BUG_ON(stable_node->hlist.first->next);
1693
1694
/*
1695
* There's just one entry and it is below the
1696
* deduplication limit so drop the chain.
1697
*/
1698
rb_replace_node(&stable_node->node, &found->node,
1699
root);
1700
free_stable_node(stable_node);
1701
ksm_stable_node_chains--;
1702
ksm_stable_node_dups--;
1703
/*
1704
* NOTE: the caller depends on the stable_node
1705
* to be equal to stable_node_dup if the chain
1706
* was collapsed.
1707
*/
1708
*_stable_node = found;
1709
/*
1710
* Just for robustness, as stable_node is
1711
* otherwise left as a stable pointer, the
1712
* compiler shall optimize it away at build
1713
* time.
1714
*/
1715
stable_node = NULL;
1716
} else if (stable_node->hlist.first != &found->hlist_dup &&
1717
__is_page_sharing_candidate(found, 1)) {
1718
/*
1719
* If the found stable_node dup can accept one
1720
* more future merge (in addition to the one
1721
* that is underway) and is not at the head of
1722
* the chain, put it there so next search will
1723
* be quicker in the !prune_stale_stable_nodes
1724
* case.
1725
*
1726
* NOTE: it would be inaccurate to use nr > 1
1727
* instead of checking the hlist.first pointer
1728
* directly, because in the
1729
* prune_stale_stable_nodes case "nr" isn't
1730
* the position of the found dup in the chain,
1731
* but the total number of dups in the chain.
1732
*/
1733
hlist_del(&found->hlist_dup);
1734
hlist_add_head(&found->hlist_dup,
1735
&stable_node->hlist);
1736
}
1737
} else {
1738
/* Its hlist must be empty if no one found. */
1739
free_stable_node_chain(stable_node, root);
1740
}
1741
1742
*_stable_node_dup = found;
1743
return tree_folio;
1744
}
1745
1746
/*
1747
* Like for ksm_get_folio, this function can free the *_stable_node and
1748
* *_stable_node_dup if the returned tree_page is NULL.
1749
*
1750
* It can also free and overwrite *_stable_node with the found
1751
* stable_node_dup if the chain is collapsed (in which case
1752
* *_stable_node will be equal to *_stable_node_dup like if the chain
1753
* never existed). It's up to the caller to verify tree_page is not
1754
* NULL before dereferencing *_stable_node or *_stable_node_dup.
1755
*
1756
* *_stable_node_dup is really a second output parameter of this
1757
* function and will be overwritten in all cases, the caller doesn't
1758
* need to initialize it.
1759
*/
1760
static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1761
struct ksm_stable_node **_stable_node,
1762
struct rb_root *root,
1763
bool prune_stale_stable_nodes)
1764
{
1765
struct ksm_stable_node *stable_node = *_stable_node;
1766
1767
if (!is_stable_node_chain(stable_node)) {
1768
*_stable_node_dup = stable_node;
1769
return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1770
}
1771
return stable_node_dup(_stable_node_dup, _stable_node, root,
1772
prune_stale_stable_nodes);
1773
}
1774
1775
static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1776
struct ksm_stable_node **s_n,
1777
struct rb_root *root)
1778
{
1779
return __stable_node_chain(s_n_d, s_n, root, true);
1780
}
1781
1782
static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1783
struct ksm_stable_node **s_n,
1784
struct rb_root *root)
1785
{
1786
return __stable_node_chain(s_n_d, s_n, root, false);
1787
}
1788
1789
/*
1790
* stable_tree_search - search for page inside the stable tree
1791
*
1792
* This function checks if there is a page inside the stable tree
1793
* with identical content to the page that we are scanning right now.
1794
*
1795
* This function returns the stable tree node of identical content if found,
1796
* -EBUSY if the stable node's page is being migrated, NULL otherwise.
1797
*/
1798
static struct folio *stable_tree_search(struct page *page)
1799
{
1800
int nid;
1801
struct rb_root *root;
1802
struct rb_node **new;
1803
struct rb_node *parent;
1804
struct ksm_stable_node *stable_node, *stable_node_dup;
1805
struct ksm_stable_node *page_node;
1806
struct folio *folio;
1807
1808
folio = page_folio(page);
1809
page_node = folio_stable_node(folio);
1810
if (page_node && page_node->head != &migrate_nodes) {
1811
/* ksm page forked */
1812
folio_get(folio);
1813
return folio;
1814
}
1815
1816
nid = get_kpfn_nid(folio_pfn(folio));
1817
root = root_stable_tree + nid;
1818
again:
1819
new = &root->rb_node;
1820
parent = NULL;
1821
1822
while (*new) {
1823
struct folio *tree_folio;
1824
int ret;
1825
1826
cond_resched();
1827
stable_node = rb_entry(*new, struct ksm_stable_node, node);
1828
tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1829
if (!tree_folio) {
1830
/*
1831
* If we walked over a stale stable_node,
1832
* ksm_get_folio() will call rb_erase() and it
1833
* may rebalance the tree from under us. So
1834
* restart the search from scratch. Returning
1835
* NULL would be safe too, but we'd generate
1836
* false negative insertions just because some
1837
* stable_node was stale.
1838
*/
1839
goto again;
1840
}
1841
1842
ret = memcmp_pages(page, &tree_folio->page);
1843
folio_put(tree_folio);
1844
1845
parent = *new;
1846
if (ret < 0)
1847
new = &parent->rb_left;
1848
else if (ret > 0)
1849
new = &parent->rb_right;
1850
else {
1851
if (page_node) {
1852
VM_BUG_ON(page_node->head != &migrate_nodes);
1853
/*
1854
* If the mapcount of our migrated KSM folio is
1855
* at most 1, we can merge it with another
1856
* KSM folio where we know that we have space
1857
* for one more mapping without exceeding the
1858
* ksm_max_page_sharing limit: see
1859
* chain_prune(). This way, we can avoid adding
1860
* this stable node to the chain.
1861
*/
1862
if (folio_mapcount(folio) > 1)
1863
goto chain_append;
1864
}
1865
1866
if (!is_page_sharing_candidate(stable_node_dup)) {
1867
/*
1868
* If the stable_node is a chain and
1869
* we got a payload match in memcmp
1870
* but we cannot merge the scanned
1871
* page in any of the existing
1872
* stable_node dups because they're
1873
* all full, we need to wait the
1874
* scanned page to find itself a match
1875
* in the unstable tree to create a
1876
* brand new KSM page to add later to
1877
* the dups of this stable_node.
1878
*/
1879
return NULL;
1880
}
1881
1882
/*
1883
* Lock and unlock the stable_node's page (which
1884
* might already have been migrated) so that page
1885
* migration is sure to notice its raised count.
1886
* It would be more elegant to return stable_node
1887
* than kpage, but that involves more changes.
1888
*/
1889
tree_folio = ksm_get_folio(stable_node_dup,
1890
KSM_GET_FOLIO_TRYLOCK);
1891
1892
if (PTR_ERR(tree_folio) == -EBUSY)
1893
return ERR_PTR(-EBUSY);
1894
1895
if (unlikely(!tree_folio))
1896
/*
1897
* The tree may have been rebalanced,
1898
* so re-evaluate parent and new.
1899
*/
1900
goto again;
1901
folio_unlock(tree_folio);
1902
1903
if (get_kpfn_nid(stable_node_dup->kpfn) !=
1904
NUMA(stable_node_dup->nid)) {
1905
folio_put(tree_folio);
1906
goto replace;
1907
}
1908
return tree_folio;
1909
}
1910
}
1911
1912
if (!page_node)
1913
return NULL;
1914
1915
list_del(&page_node->list);
1916
DO_NUMA(page_node->nid = nid);
1917
rb_link_node(&page_node->node, parent, new);
1918
rb_insert_color(&page_node->node, root);
1919
out:
1920
if (is_page_sharing_candidate(page_node)) {
1921
folio_get(folio);
1922
return folio;
1923
} else
1924
return NULL;
1925
1926
replace:
1927
/*
1928
* If stable_node was a chain and chain_prune collapsed it,
1929
* stable_node has been updated to be the new regular
1930
* stable_node. A collapse of the chain is indistinguishable
1931
* from the case there was no chain in the stable
1932
* rbtree. Otherwise stable_node is the chain and
1933
* stable_node_dup is the dup to replace.
1934
*/
1935
if (stable_node_dup == stable_node) {
1936
VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1937
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1938
/* there is no chain */
1939
if (page_node) {
1940
VM_BUG_ON(page_node->head != &migrate_nodes);
1941
list_del(&page_node->list);
1942
DO_NUMA(page_node->nid = nid);
1943
rb_replace_node(&stable_node_dup->node,
1944
&page_node->node,
1945
root);
1946
if (is_page_sharing_candidate(page_node))
1947
folio_get(folio);
1948
else
1949
folio = NULL;
1950
} else {
1951
rb_erase(&stable_node_dup->node, root);
1952
folio = NULL;
1953
}
1954
} else {
1955
VM_BUG_ON(!is_stable_node_chain(stable_node));
1956
__stable_node_dup_del(stable_node_dup);
1957
if (page_node) {
1958
VM_BUG_ON(page_node->head != &migrate_nodes);
1959
list_del(&page_node->list);
1960
DO_NUMA(page_node->nid = nid);
1961
stable_node_chain_add_dup(page_node, stable_node);
1962
if (is_page_sharing_candidate(page_node))
1963
folio_get(folio);
1964
else
1965
folio = NULL;
1966
} else {
1967
folio = NULL;
1968
}
1969
}
1970
stable_node_dup->head = &migrate_nodes;
1971
list_add(&stable_node_dup->list, stable_node_dup->head);
1972
return folio;
1973
1974
chain_append:
1975
/*
1976
* If stable_node was a chain and chain_prune collapsed it,
1977
* stable_node has been updated to be the new regular
1978
* stable_node. A collapse of the chain is indistinguishable
1979
* from the case there was no chain in the stable
1980
* rbtree. Otherwise stable_node is the chain and
1981
* stable_node_dup is the dup to replace.
1982
*/
1983
if (stable_node_dup == stable_node) {
1984
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1985
/* chain is missing so create it */
1986
stable_node = alloc_stable_node_chain(stable_node_dup,
1987
root);
1988
if (!stable_node)
1989
return NULL;
1990
}
1991
/*
1992
* Add this stable_node dup that was
1993
* migrated to the stable_node chain
1994
* of the current nid for this page
1995
* content.
1996
*/
1997
VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1998
VM_BUG_ON(page_node->head != &migrate_nodes);
1999
list_del(&page_node->list);
2000
DO_NUMA(page_node->nid = nid);
2001
stable_node_chain_add_dup(page_node, stable_node);
2002
goto out;
2003
}
2004
2005
/*
2006
* stable_tree_insert - insert stable tree node pointing to new ksm page
2007
* into the stable tree.
2008
*
2009
* This function returns the stable tree node just allocated on success,
2010
* NULL otherwise.
2011
*/
2012
static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2013
{
2014
int nid;
2015
unsigned long kpfn;
2016
struct rb_root *root;
2017
struct rb_node **new;
2018
struct rb_node *parent;
2019
struct ksm_stable_node *stable_node, *stable_node_dup;
2020
bool need_chain = false;
2021
2022
kpfn = folio_pfn(kfolio);
2023
nid = get_kpfn_nid(kpfn);
2024
root = root_stable_tree + nid;
2025
again:
2026
parent = NULL;
2027
new = &root->rb_node;
2028
2029
while (*new) {
2030
struct folio *tree_folio;
2031
int ret;
2032
2033
cond_resched();
2034
stable_node = rb_entry(*new, struct ksm_stable_node, node);
2035
tree_folio = chain(&stable_node_dup, &stable_node, root);
2036
if (!tree_folio) {
2037
/*
2038
* If we walked over a stale stable_node,
2039
* ksm_get_folio() will call rb_erase() and it
2040
* may rebalance the tree from under us. So
2041
* restart the search from scratch. Returning
2042
* NULL would be safe too, but we'd generate
2043
* false negative insertions just because some
2044
* stable_node was stale.
2045
*/
2046
goto again;
2047
}
2048
2049
ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2050
folio_put(tree_folio);
2051
2052
parent = *new;
2053
if (ret < 0)
2054
new = &parent->rb_left;
2055
else if (ret > 0)
2056
new = &parent->rb_right;
2057
else {
2058
need_chain = true;
2059
break;
2060
}
2061
}
2062
2063
stable_node_dup = alloc_stable_node();
2064
if (!stable_node_dup)
2065
return NULL;
2066
2067
INIT_HLIST_HEAD(&stable_node_dup->hlist);
2068
stable_node_dup->kpfn = kpfn;
2069
stable_node_dup->rmap_hlist_len = 0;
2070
DO_NUMA(stable_node_dup->nid = nid);
2071
if (!need_chain) {
2072
rb_link_node(&stable_node_dup->node, parent, new);
2073
rb_insert_color(&stable_node_dup->node, root);
2074
} else {
2075
if (!is_stable_node_chain(stable_node)) {
2076
struct ksm_stable_node *orig = stable_node;
2077
/* chain is missing so create it */
2078
stable_node = alloc_stable_node_chain(orig, root);
2079
if (!stable_node) {
2080
free_stable_node(stable_node_dup);
2081
return NULL;
2082
}
2083
}
2084
stable_node_chain_add_dup(stable_node_dup, stable_node);
2085
}
2086
2087
folio_set_stable_node(kfolio, stable_node_dup);
2088
2089
return stable_node_dup;
2090
}
2091
2092
/*
2093
* unstable_tree_search_insert - search for identical page,
2094
* else insert rmap_item into the unstable tree.
2095
*
2096
* This function searches for a page in the unstable tree identical to the
2097
* page currently being scanned; and if no identical page is found in the
2098
* tree, we insert rmap_item as a new object into the unstable tree.
2099
*
2100
* This function returns pointer to rmap_item found to be identical
2101
* to the currently scanned page, NULL otherwise.
2102
*
2103
* This function does both searching and inserting, because they share
2104
* the same walking algorithm in an rbtree.
2105
*/
2106
static
2107
struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2108
struct page *page,
2109
struct page **tree_pagep)
2110
{
2111
struct rb_node **new;
2112
struct rb_root *root;
2113
struct rb_node *parent = NULL;
2114
int nid;
2115
2116
nid = get_kpfn_nid(page_to_pfn(page));
2117
root = root_unstable_tree + nid;
2118
new = &root->rb_node;
2119
2120
while (*new) {
2121
struct ksm_rmap_item *tree_rmap_item;
2122
struct page *tree_page;
2123
int ret;
2124
2125
cond_resched();
2126
tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2127
tree_page = get_mergeable_page(tree_rmap_item);
2128
if (!tree_page)
2129
return NULL;
2130
2131
/*
2132
* Don't substitute a ksm page for a forked page.
2133
*/
2134
if (page == tree_page) {
2135
put_page(tree_page);
2136
return NULL;
2137
}
2138
2139
ret = memcmp_pages(page, tree_page);
2140
2141
parent = *new;
2142
if (ret < 0) {
2143
put_page(tree_page);
2144
new = &parent->rb_left;
2145
} else if (ret > 0) {
2146
put_page(tree_page);
2147
new = &parent->rb_right;
2148
} else if (!ksm_merge_across_nodes &&
2149
page_to_nid(tree_page) != nid) {
2150
/*
2151
* If tree_page has been migrated to another NUMA node,
2152
* it will be flushed out and put in the right unstable
2153
* tree next time: only merge with it when across_nodes.
2154
*/
2155
put_page(tree_page);
2156
return NULL;
2157
} else {
2158
*tree_pagep = tree_page;
2159
return tree_rmap_item;
2160
}
2161
}
2162
2163
rmap_item->address |= UNSTABLE_FLAG;
2164
rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2165
DO_NUMA(rmap_item->nid = nid);
2166
rb_link_node(&rmap_item->node, parent, new);
2167
rb_insert_color(&rmap_item->node, root);
2168
2169
ksm_pages_unshared++;
2170
return NULL;
2171
}
2172
2173
/*
2174
* stable_tree_append - add another rmap_item to the linked list of
2175
* rmap_items hanging off a given node of the stable tree, all sharing
2176
* the same ksm page.
2177
*/
2178
static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2179
struct ksm_stable_node *stable_node,
2180
bool max_page_sharing_bypass)
2181
{
2182
/*
2183
* rmap won't find this mapping if we don't insert the
2184
* rmap_item in the right stable_node
2185
* duplicate. page_migration could break later if rmap breaks,
2186
* so we can as well crash here. We really need to check for
2187
* rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2188
* for other negative values as an underflow if detected here
2189
* for the first time (and not when decreasing rmap_hlist_len)
2190
* would be sign of memory corruption in the stable_node.
2191
*/
2192
BUG_ON(stable_node->rmap_hlist_len < 0);
2193
2194
stable_node->rmap_hlist_len++;
2195
if (!max_page_sharing_bypass)
2196
/* possibly non fatal but unexpected overflow, only warn */
2197
WARN_ON_ONCE(stable_node->rmap_hlist_len >
2198
ksm_max_page_sharing);
2199
2200
rmap_item->head = stable_node;
2201
rmap_item->address |= STABLE_FLAG;
2202
hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2203
2204
if (rmap_item->hlist.next)
2205
ksm_pages_sharing++;
2206
else
2207
ksm_pages_shared++;
2208
2209
rmap_item->mm->ksm_merging_pages++;
2210
}
2211
2212
/*
2213
* cmp_and_merge_page - first see if page can be merged into the stable tree;
2214
* if not, compare checksum to previous and if it's the same, see if page can
2215
* be inserted into the unstable tree, or merged with a page already there and
2216
* both transferred to the stable tree.
2217
*
2218
* @page: the page that we are searching identical page to.
2219
* @rmap_item: the reverse mapping into the virtual address of this page
2220
*/
2221
static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2222
{
2223
struct folio *folio = page_folio(page);
2224
struct ksm_rmap_item *tree_rmap_item;
2225
struct page *tree_page = NULL;
2226
struct ksm_stable_node *stable_node;
2227
struct folio *kfolio;
2228
unsigned int checksum;
2229
int err;
2230
bool max_page_sharing_bypass = false;
2231
2232
stable_node = folio_stable_node(folio);
2233
if (stable_node) {
2234
if (stable_node->head != &migrate_nodes &&
2235
get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2236
NUMA(stable_node->nid)) {
2237
stable_node_dup_del(stable_node);
2238
stable_node->head = &migrate_nodes;
2239
list_add(&stable_node->list, stable_node->head);
2240
}
2241
if (stable_node->head != &migrate_nodes &&
2242
rmap_item->head == stable_node)
2243
return;
2244
/*
2245
* If it's a KSM fork, allow it to go over the sharing limit
2246
* without warnings.
2247
*/
2248
if (!is_page_sharing_candidate(stable_node))
2249
max_page_sharing_bypass = true;
2250
} else {
2251
remove_rmap_item_from_tree(rmap_item);
2252
2253
/*
2254
* If the hash value of the page has changed from the last time
2255
* we calculated it, this page is changing frequently: therefore we
2256
* don't want to insert it in the unstable tree, and we don't want
2257
* to waste our time searching for something identical to it there.
2258
*/
2259
checksum = calc_checksum(page);
2260
if (rmap_item->oldchecksum != checksum) {
2261
rmap_item->oldchecksum = checksum;
2262
return;
2263
}
2264
2265
if (!try_to_merge_with_zero_page(rmap_item, page))
2266
return;
2267
}
2268
2269
/* Start by searching for the folio in the stable tree */
2270
kfolio = stable_tree_search(page);
2271
if (kfolio == folio && rmap_item->head == stable_node) {
2272
folio_put(kfolio);
2273
return;
2274
}
2275
2276
remove_rmap_item_from_tree(rmap_item);
2277
2278
if (kfolio) {
2279
if (kfolio == ERR_PTR(-EBUSY))
2280
return;
2281
2282
err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2283
if (!err) {
2284
/*
2285
* The page was successfully merged:
2286
* add its rmap_item to the stable tree.
2287
*/
2288
folio_lock(kfolio);
2289
stable_tree_append(rmap_item, folio_stable_node(kfolio),
2290
max_page_sharing_bypass);
2291
folio_unlock(kfolio);
2292
}
2293
folio_put(kfolio);
2294
return;
2295
}
2296
2297
tree_rmap_item =
2298
unstable_tree_search_insert(rmap_item, page, &tree_page);
2299
if (tree_rmap_item) {
2300
bool split;
2301
2302
kfolio = try_to_merge_two_pages(rmap_item, page,
2303
tree_rmap_item, tree_page);
2304
/*
2305
* If both pages we tried to merge belong to the same compound
2306
* page, then we actually ended up increasing the reference
2307
* count of the same compound page twice, and split_huge_page
2308
* failed.
2309
* Here we set a flag if that happened, and we use it later to
2310
* try split_huge_page again. Since we call put_page right
2311
* afterwards, the reference count will be correct and
2312
* split_huge_page should succeed.
2313
*/
2314
split = PageTransCompound(page)
2315
&& compound_head(page) == compound_head(tree_page);
2316
put_page(tree_page);
2317
if (kfolio) {
2318
/*
2319
* The pages were successfully merged: insert new
2320
* node in the stable tree and add both rmap_items.
2321
*/
2322
folio_lock(kfolio);
2323
stable_node = stable_tree_insert(kfolio);
2324
if (stable_node) {
2325
stable_tree_append(tree_rmap_item, stable_node,
2326
false);
2327
stable_tree_append(rmap_item, stable_node,
2328
false);
2329
}
2330
folio_unlock(kfolio);
2331
2332
/*
2333
* If we fail to insert the page into the stable tree,
2334
* we will have 2 virtual addresses that are pointing
2335
* to a ksm page left outside the stable tree,
2336
* in which case we need to break_cow on both.
2337
*/
2338
if (!stable_node) {
2339
break_cow(tree_rmap_item);
2340
break_cow(rmap_item);
2341
}
2342
} else if (split) {
2343
/*
2344
* We are here if we tried to merge two pages and
2345
* failed because they both belonged to the same
2346
* compound page. We will split the page now, but no
2347
* merging will take place.
2348
* We do not want to add the cost of a full lock; if
2349
* the page is locked, it is better to skip it and
2350
* perhaps try again later.
2351
*/
2352
if (!folio_trylock(folio))
2353
return;
2354
split_huge_page(page);
2355
folio = page_folio(page);
2356
folio_unlock(folio);
2357
}
2358
}
2359
}
2360
2361
static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2362
struct ksm_rmap_item **rmap_list,
2363
unsigned long addr)
2364
{
2365
struct ksm_rmap_item *rmap_item;
2366
2367
while (*rmap_list) {
2368
rmap_item = *rmap_list;
2369
if ((rmap_item->address & PAGE_MASK) == addr)
2370
return rmap_item;
2371
if (rmap_item->address > addr)
2372
break;
2373
*rmap_list = rmap_item->rmap_list;
2374
remove_rmap_item_from_tree(rmap_item);
2375
free_rmap_item(rmap_item);
2376
}
2377
2378
rmap_item = alloc_rmap_item();
2379
if (rmap_item) {
2380
/* It has already been zeroed */
2381
rmap_item->mm = mm_slot->slot.mm;
2382
rmap_item->mm->ksm_rmap_items++;
2383
rmap_item->address = addr;
2384
rmap_item->rmap_list = *rmap_list;
2385
*rmap_list = rmap_item;
2386
}
2387
return rmap_item;
2388
}
2389
2390
/*
2391
* Calculate skip age for the ksm page age. The age determines how often
2392
* de-duplicating has already been tried unsuccessfully. If the age is
2393
* smaller, the scanning of this page is skipped for less scans.
2394
*
2395
* @age: rmap_item age of page
2396
*/
2397
static unsigned int skip_age(rmap_age_t age)
2398
{
2399
if (age <= 3)
2400
return 1;
2401
if (age <= 5)
2402
return 2;
2403
if (age <= 8)
2404
return 4;
2405
2406
return 8;
2407
}
2408
2409
/*
2410
* Determines if a page should be skipped for the current scan.
2411
*
2412
* @folio: folio containing the page to check
2413
* @rmap_item: associated rmap_item of page
2414
*/
2415
static bool should_skip_rmap_item(struct folio *folio,
2416
struct ksm_rmap_item *rmap_item)
2417
{
2418
rmap_age_t age;
2419
2420
if (!ksm_smart_scan)
2421
return false;
2422
2423
/*
2424
* Never skip pages that are already KSM; pages cmp_and_merge_page()
2425
* will essentially ignore them, but we still have to process them
2426
* properly.
2427
*/
2428
if (folio_test_ksm(folio))
2429
return false;
2430
2431
age = rmap_item->age;
2432
if (age != U8_MAX)
2433
rmap_item->age++;
2434
2435
/*
2436
* Smaller ages are not skipped, they need to get a chance to go
2437
* through the different phases of the KSM merging.
2438
*/
2439
if (age < 3)
2440
return false;
2441
2442
/*
2443
* Are we still allowed to skip? If not, then don't skip it
2444
* and determine how much more often we are allowed to skip next.
2445
*/
2446
if (!rmap_item->remaining_skips) {
2447
rmap_item->remaining_skips = skip_age(age);
2448
return false;
2449
}
2450
2451
/* Skip this page */
2452
ksm_pages_skipped++;
2453
rmap_item->remaining_skips--;
2454
remove_rmap_item_from_tree(rmap_item);
2455
return true;
2456
}
2457
2458
static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2459
{
2460
struct mm_struct *mm;
2461
struct ksm_mm_slot *mm_slot;
2462
struct mm_slot *slot;
2463
struct vm_area_struct *vma;
2464
struct ksm_rmap_item *rmap_item;
2465
struct vma_iterator vmi;
2466
int nid;
2467
2468
if (list_empty(&ksm_mm_head.slot.mm_node))
2469
return NULL;
2470
2471
mm_slot = ksm_scan.mm_slot;
2472
if (mm_slot == &ksm_mm_head) {
2473
advisor_start_scan();
2474
trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2475
2476
/*
2477
* A number of pages can hang around indefinitely in per-cpu
2478
* LRU cache, raised page count preventing write_protect_page
2479
* from merging them. Though it doesn't really matter much,
2480
* it is puzzling to see some stuck in pages_volatile until
2481
* other activity jostles them out, and they also prevented
2482
* LTP's KSM test from succeeding deterministically; so drain
2483
* them here (here rather than on entry to ksm_do_scan(),
2484
* so we don't IPI too often when pages_to_scan is set low).
2485
*/
2486
lru_add_drain_all();
2487
2488
/*
2489
* Whereas stale stable_nodes on the stable_tree itself
2490
* get pruned in the regular course of stable_tree_search(),
2491
* those moved out to the migrate_nodes list can accumulate:
2492
* so prune them once before each full scan.
2493
*/
2494
if (!ksm_merge_across_nodes) {
2495
struct ksm_stable_node *stable_node, *next;
2496
struct folio *folio;
2497
2498
list_for_each_entry_safe(stable_node, next,
2499
&migrate_nodes, list) {
2500
folio = ksm_get_folio(stable_node,
2501
KSM_GET_FOLIO_NOLOCK);
2502
if (folio)
2503
folio_put(folio);
2504
cond_resched();
2505
}
2506
}
2507
2508
for (nid = 0; nid < ksm_nr_node_ids; nid++)
2509
root_unstable_tree[nid] = RB_ROOT;
2510
2511
spin_lock(&ksm_mmlist_lock);
2512
slot = list_entry(mm_slot->slot.mm_node.next,
2513
struct mm_slot, mm_node);
2514
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2515
ksm_scan.mm_slot = mm_slot;
2516
spin_unlock(&ksm_mmlist_lock);
2517
/*
2518
* Although we tested list_empty() above, a racing __ksm_exit
2519
* of the last mm on the list may have removed it since then.
2520
*/
2521
if (mm_slot == &ksm_mm_head)
2522
return NULL;
2523
next_mm:
2524
ksm_scan.address = 0;
2525
ksm_scan.rmap_list = &mm_slot->rmap_list;
2526
}
2527
2528
slot = &mm_slot->slot;
2529
mm = slot->mm;
2530
vma_iter_init(&vmi, mm, ksm_scan.address);
2531
2532
mmap_read_lock(mm);
2533
if (ksm_test_exit(mm))
2534
goto no_vmas;
2535
2536
for_each_vma(vmi, vma) {
2537
if (!(vma->vm_flags & VM_MERGEABLE))
2538
continue;
2539
if (ksm_scan.address < vma->vm_start)
2540
ksm_scan.address = vma->vm_start;
2541
if (!vma->anon_vma)
2542
ksm_scan.address = vma->vm_end;
2543
2544
while (ksm_scan.address < vma->vm_end) {
2545
struct page *tmp_page = NULL;
2546
struct folio_walk fw;
2547
struct folio *folio;
2548
2549
if (ksm_test_exit(mm))
2550
break;
2551
2552
folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2553
if (folio) {
2554
if (!folio_is_zone_device(folio) &&
2555
folio_test_anon(folio)) {
2556
folio_get(folio);
2557
tmp_page = fw.page;
2558
}
2559
folio_walk_end(&fw, vma);
2560
}
2561
2562
if (tmp_page) {
2563
flush_anon_page(vma, tmp_page, ksm_scan.address);
2564
flush_dcache_page(tmp_page);
2565
rmap_item = get_next_rmap_item(mm_slot,
2566
ksm_scan.rmap_list, ksm_scan.address);
2567
if (rmap_item) {
2568
ksm_scan.rmap_list =
2569
&rmap_item->rmap_list;
2570
2571
if (should_skip_rmap_item(folio, rmap_item)) {
2572
folio_put(folio);
2573
goto next_page;
2574
}
2575
2576
ksm_scan.address += PAGE_SIZE;
2577
*page = tmp_page;
2578
} else {
2579
folio_put(folio);
2580
}
2581
mmap_read_unlock(mm);
2582
return rmap_item;
2583
}
2584
next_page:
2585
ksm_scan.address += PAGE_SIZE;
2586
cond_resched();
2587
}
2588
}
2589
2590
if (ksm_test_exit(mm)) {
2591
no_vmas:
2592
ksm_scan.address = 0;
2593
ksm_scan.rmap_list = &mm_slot->rmap_list;
2594
}
2595
/*
2596
* Nuke all the rmap_items that are above this current rmap:
2597
* because there were no VM_MERGEABLE vmas with such addresses.
2598
*/
2599
remove_trailing_rmap_items(ksm_scan.rmap_list);
2600
2601
spin_lock(&ksm_mmlist_lock);
2602
slot = list_entry(mm_slot->slot.mm_node.next,
2603
struct mm_slot, mm_node);
2604
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2605
if (ksm_scan.address == 0) {
2606
/*
2607
* We've completed a full scan of all vmas, holding mmap_lock
2608
* throughout, and found no VM_MERGEABLE: so do the same as
2609
* __ksm_exit does to remove this mm from all our lists now.
2610
* This applies either when cleaning up after __ksm_exit
2611
* (but beware: we can reach here even before __ksm_exit),
2612
* or when all VM_MERGEABLE areas have been unmapped (and
2613
* mmap_lock then protects against race with MADV_MERGEABLE).
2614
*/
2615
hash_del(&mm_slot->slot.hash);
2616
list_del(&mm_slot->slot.mm_node);
2617
spin_unlock(&ksm_mmlist_lock);
2618
2619
mm_slot_free(mm_slot_cache, mm_slot);
2620
mm_flags_clear(MMF_VM_MERGEABLE, mm);
2621
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2622
mmap_read_unlock(mm);
2623
mmdrop(mm);
2624
} else {
2625
mmap_read_unlock(mm);
2626
/*
2627
* mmap_read_unlock(mm) first because after
2628
* spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2629
* already have been freed under us by __ksm_exit()
2630
* because the "mm_slot" is still hashed and
2631
* ksm_scan.mm_slot doesn't point to it anymore.
2632
*/
2633
spin_unlock(&ksm_mmlist_lock);
2634
}
2635
2636
/* Repeat until we've completed scanning the whole list */
2637
mm_slot = ksm_scan.mm_slot;
2638
if (mm_slot != &ksm_mm_head)
2639
goto next_mm;
2640
2641
advisor_stop_scan();
2642
2643
trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2644
ksm_scan.seqnr++;
2645
return NULL;
2646
}
2647
2648
/**
2649
* ksm_do_scan - the ksm scanner main worker function.
2650
* @scan_npages: number of pages we want to scan before we return.
2651
*/
2652
static void ksm_do_scan(unsigned int scan_npages)
2653
{
2654
struct ksm_rmap_item *rmap_item;
2655
struct page *page;
2656
2657
while (scan_npages-- && likely(!freezing(current))) {
2658
cond_resched();
2659
rmap_item = scan_get_next_rmap_item(&page);
2660
if (!rmap_item)
2661
return;
2662
cmp_and_merge_page(page, rmap_item);
2663
put_page(page);
2664
ksm_pages_scanned++;
2665
}
2666
}
2667
2668
static int ksmd_should_run(void)
2669
{
2670
return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2671
}
2672
2673
static int ksm_scan_thread(void *nothing)
2674
{
2675
unsigned int sleep_ms;
2676
2677
set_freezable();
2678
set_user_nice(current, 5);
2679
2680
while (!kthread_should_stop()) {
2681
mutex_lock(&ksm_thread_mutex);
2682
wait_while_offlining();
2683
if (ksmd_should_run())
2684
ksm_do_scan(ksm_thread_pages_to_scan);
2685
mutex_unlock(&ksm_thread_mutex);
2686
2687
if (ksmd_should_run()) {
2688
sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2689
wait_event_freezable_timeout(ksm_iter_wait,
2690
sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2691
msecs_to_jiffies(sleep_ms));
2692
} else {
2693
wait_event_freezable(ksm_thread_wait,
2694
ksmd_should_run() || kthread_should_stop());
2695
}
2696
}
2697
return 0;
2698
}
2699
2700
static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2701
{
2702
if (vm_flags & VM_MERGEABLE)
2703
return false;
2704
2705
return ksm_compatible(file, vm_flags);
2706
}
2707
2708
static void __ksm_add_vma(struct vm_area_struct *vma)
2709
{
2710
if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2711
vm_flags_set(vma, VM_MERGEABLE);
2712
}
2713
2714
static int __ksm_del_vma(struct vm_area_struct *vma)
2715
{
2716
int err;
2717
2718
if (!(vma->vm_flags & VM_MERGEABLE))
2719
return 0;
2720
2721
if (vma->anon_vma) {
2722
err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2723
if (err)
2724
return err;
2725
}
2726
2727
vm_flags_clear(vma, VM_MERGEABLE);
2728
return 0;
2729
}
2730
/**
2731
* ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2732
*
2733
* @mm: Proposed VMA's mm_struct
2734
* @file: Proposed VMA's file-backed mapping, if any.
2735
* @vm_flags: Proposed VMA"s flags.
2736
*
2737
* Returns: @vm_flags possibly updated to mark mergeable.
2738
*/
2739
vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file,
2740
vm_flags_t vm_flags)
2741
{
2742
if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2743
__ksm_should_add_vma(file, vm_flags))
2744
vm_flags |= VM_MERGEABLE;
2745
2746
return vm_flags;
2747
}
2748
2749
static void ksm_add_vmas(struct mm_struct *mm)
2750
{
2751
struct vm_area_struct *vma;
2752
2753
VMA_ITERATOR(vmi, mm, 0);
2754
for_each_vma(vmi, vma)
2755
__ksm_add_vma(vma);
2756
}
2757
2758
static int ksm_del_vmas(struct mm_struct *mm)
2759
{
2760
struct vm_area_struct *vma;
2761
int err;
2762
2763
VMA_ITERATOR(vmi, mm, 0);
2764
for_each_vma(vmi, vma) {
2765
err = __ksm_del_vma(vma);
2766
if (err)
2767
return err;
2768
}
2769
return 0;
2770
}
2771
2772
/**
2773
* ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2774
* compatible VMA's
2775
*
2776
* @mm: Pointer to mm
2777
*
2778
* Returns 0 on success, otherwise error code
2779
*/
2780
int ksm_enable_merge_any(struct mm_struct *mm)
2781
{
2782
int err;
2783
2784
if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2785
return 0;
2786
2787
if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2788
err = __ksm_enter(mm);
2789
if (err)
2790
return err;
2791
}
2792
2793
mm_flags_set(MMF_VM_MERGE_ANY, mm);
2794
ksm_add_vmas(mm);
2795
2796
return 0;
2797
}
2798
2799
/**
2800
* ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2801
* previously enabled via ksm_enable_merge_any().
2802
*
2803
* Disabling merging implies unmerging any merged pages, like setting
2804
* MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2805
* merging on all compatible VMA's remains enabled.
2806
*
2807
* @mm: Pointer to mm
2808
*
2809
* Returns 0 on success, otherwise error code
2810
*/
2811
int ksm_disable_merge_any(struct mm_struct *mm)
2812
{
2813
int err;
2814
2815
if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2816
return 0;
2817
2818
err = ksm_del_vmas(mm);
2819
if (err) {
2820
ksm_add_vmas(mm);
2821
return err;
2822
}
2823
2824
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2825
return 0;
2826
}
2827
2828
int ksm_disable(struct mm_struct *mm)
2829
{
2830
mmap_assert_write_locked(mm);
2831
2832
if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2833
return 0;
2834
if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2835
return ksm_disable_merge_any(mm);
2836
return ksm_del_vmas(mm);
2837
}
2838
2839
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2840
unsigned long end, int advice, vm_flags_t *vm_flags)
2841
{
2842
struct mm_struct *mm = vma->vm_mm;
2843
int err;
2844
2845
switch (advice) {
2846
case MADV_MERGEABLE:
2847
if (vma->vm_flags & VM_MERGEABLE)
2848
return 0;
2849
if (!vma_ksm_compatible(vma))
2850
return 0;
2851
2852
if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2853
err = __ksm_enter(mm);
2854
if (err)
2855
return err;
2856
}
2857
2858
*vm_flags |= VM_MERGEABLE;
2859
break;
2860
2861
case MADV_UNMERGEABLE:
2862
if (!(*vm_flags & VM_MERGEABLE))
2863
return 0; /* just ignore the advice */
2864
2865
if (vma->anon_vma) {
2866
err = unmerge_ksm_pages(vma, start, end, true);
2867
if (err)
2868
return err;
2869
}
2870
2871
*vm_flags &= ~VM_MERGEABLE;
2872
break;
2873
}
2874
2875
return 0;
2876
}
2877
EXPORT_SYMBOL_GPL(ksm_madvise);
2878
2879
int __ksm_enter(struct mm_struct *mm)
2880
{
2881
struct ksm_mm_slot *mm_slot;
2882
struct mm_slot *slot;
2883
int needs_wakeup;
2884
2885
mm_slot = mm_slot_alloc(mm_slot_cache);
2886
if (!mm_slot)
2887
return -ENOMEM;
2888
2889
slot = &mm_slot->slot;
2890
2891
/* Check ksm_run too? Would need tighter locking */
2892
needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2893
2894
spin_lock(&ksm_mmlist_lock);
2895
mm_slot_insert(mm_slots_hash, mm, slot);
2896
/*
2897
* When KSM_RUN_MERGE (or KSM_RUN_STOP),
2898
* insert just behind the scanning cursor, to let the area settle
2899
* down a little; when fork is followed by immediate exec, we don't
2900
* want ksmd to waste time setting up and tearing down an rmap_list.
2901
*
2902
* But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2903
* scanning cursor, otherwise KSM pages in newly forked mms will be
2904
* missed: then we might as well insert at the end of the list.
2905
*/
2906
if (ksm_run & KSM_RUN_UNMERGE)
2907
list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2908
else
2909
list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2910
spin_unlock(&ksm_mmlist_lock);
2911
2912
mm_flags_set(MMF_VM_MERGEABLE, mm);
2913
mmgrab(mm);
2914
2915
if (needs_wakeup)
2916
wake_up_interruptible(&ksm_thread_wait);
2917
2918
trace_ksm_enter(mm);
2919
return 0;
2920
}
2921
2922
void __ksm_exit(struct mm_struct *mm)
2923
{
2924
struct ksm_mm_slot *mm_slot;
2925
struct mm_slot *slot;
2926
int easy_to_free = 0;
2927
2928
/*
2929
* This process is exiting: if it's straightforward (as is the
2930
* case when ksmd was never running), free mm_slot immediately.
2931
* But if it's at the cursor or has rmap_items linked to it, use
2932
* mmap_lock to synchronize with any break_cows before pagetables
2933
* are freed, and leave the mm_slot on the list for ksmd to free.
2934
* Beware: ksm may already have noticed it exiting and freed the slot.
2935
*/
2936
2937
spin_lock(&ksm_mmlist_lock);
2938
slot = mm_slot_lookup(mm_slots_hash, mm);
2939
if (slot) {
2940
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2941
if (ksm_scan.mm_slot != mm_slot) {
2942
if (!mm_slot->rmap_list) {
2943
hash_del(&slot->hash);
2944
list_del(&slot->mm_node);
2945
easy_to_free = 1;
2946
} else {
2947
list_move(&slot->mm_node,
2948
&ksm_scan.mm_slot->slot.mm_node);
2949
}
2950
}
2951
}
2952
spin_unlock(&ksm_mmlist_lock);
2953
2954
if (easy_to_free) {
2955
mm_slot_free(mm_slot_cache, mm_slot);
2956
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2957
mm_flags_clear(MMF_VM_MERGEABLE, mm);
2958
mmdrop(mm);
2959
} else if (mm_slot) {
2960
mmap_write_lock(mm);
2961
mmap_write_unlock(mm);
2962
}
2963
2964
trace_ksm_exit(mm);
2965
}
2966
2967
struct folio *ksm_might_need_to_copy(struct folio *folio,
2968
struct vm_area_struct *vma, unsigned long addr)
2969
{
2970
struct page *page = folio_page(folio, 0);
2971
struct anon_vma *anon_vma = folio_anon_vma(folio);
2972
struct folio *new_folio;
2973
2974
if (folio_test_large(folio))
2975
return folio;
2976
2977
if (folio_test_ksm(folio)) {
2978
if (folio_stable_node(folio) &&
2979
!(ksm_run & KSM_RUN_UNMERGE))
2980
return folio; /* no need to copy it */
2981
} else if (!anon_vma) {
2982
return folio; /* no need to copy it */
2983
} else if (folio->index == linear_page_index(vma, addr) &&
2984
anon_vma->root == vma->anon_vma->root) {
2985
return folio; /* still no need to copy it */
2986
}
2987
if (PageHWPoison(page))
2988
return ERR_PTR(-EHWPOISON);
2989
if (!folio_test_uptodate(folio))
2990
return folio; /* let do_swap_page report the error */
2991
2992
new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2993
if (new_folio &&
2994
mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2995
folio_put(new_folio);
2996
new_folio = NULL;
2997
}
2998
if (new_folio) {
2999
if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3000
addr, vma)) {
3001
folio_put(new_folio);
3002
return ERR_PTR(-EHWPOISON);
3003
}
3004
folio_set_dirty(new_folio);
3005
__folio_mark_uptodate(new_folio);
3006
__folio_set_locked(new_folio);
3007
#ifdef CONFIG_SWAP
3008
count_vm_event(KSM_SWPIN_COPY);
3009
#endif
3010
}
3011
3012
return new_folio;
3013
}
3014
3015
void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3016
{
3017
struct ksm_stable_node *stable_node;
3018
struct ksm_rmap_item *rmap_item;
3019
int search_new_forks = 0;
3020
3021
VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3022
3023
/*
3024
* Rely on the page lock to protect against concurrent modifications
3025
* to that page's node of the stable tree.
3026
*/
3027
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3028
3029
stable_node = folio_stable_node(folio);
3030
if (!stable_node)
3031
return;
3032
again:
3033
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3034
struct anon_vma *anon_vma = rmap_item->anon_vma;
3035
struct anon_vma_chain *vmac;
3036
struct vm_area_struct *vma;
3037
3038
cond_resched();
3039
if (!anon_vma_trylock_read(anon_vma)) {
3040
if (rwc->try_lock) {
3041
rwc->contended = true;
3042
return;
3043
}
3044
anon_vma_lock_read(anon_vma);
3045
}
3046
anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3047
0, ULONG_MAX) {
3048
unsigned long addr;
3049
3050
cond_resched();
3051
vma = vmac->vma;
3052
3053
/* Ignore the stable/unstable/sqnr flags */
3054
addr = rmap_item->address & PAGE_MASK;
3055
3056
if (addr < vma->vm_start || addr >= vma->vm_end)
3057
continue;
3058
/*
3059
* Initially we examine only the vma which covers this
3060
* rmap_item; but later, if there is still work to do,
3061
* we examine covering vmas in other mms: in case they
3062
* were forked from the original since ksmd passed.
3063
*/
3064
if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3065
continue;
3066
3067
if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3068
continue;
3069
3070
if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3071
anon_vma_unlock_read(anon_vma);
3072
return;
3073
}
3074
if (rwc->done && rwc->done(folio)) {
3075
anon_vma_unlock_read(anon_vma);
3076
return;
3077
}
3078
}
3079
anon_vma_unlock_read(anon_vma);
3080
}
3081
if (!search_new_forks++)
3082
goto again;
3083
}
3084
3085
#ifdef CONFIG_MEMORY_FAILURE
3086
/*
3087
* Collect processes when the error hit an ksm page.
3088
*/
3089
void collect_procs_ksm(const struct folio *folio, const struct page *page,
3090
struct list_head *to_kill, int force_early)
3091
{
3092
struct ksm_stable_node *stable_node;
3093
struct ksm_rmap_item *rmap_item;
3094
struct vm_area_struct *vma;
3095
struct task_struct *tsk;
3096
3097
stable_node = folio_stable_node(folio);
3098
if (!stable_node)
3099
return;
3100
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3101
struct anon_vma *av = rmap_item->anon_vma;
3102
3103
anon_vma_lock_read(av);
3104
rcu_read_lock();
3105
for_each_process(tsk) {
3106
struct anon_vma_chain *vmac;
3107
unsigned long addr;
3108
struct task_struct *t =
3109
task_early_kill(tsk, force_early);
3110
if (!t)
3111
continue;
3112
anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3113
ULONG_MAX)
3114
{
3115
vma = vmac->vma;
3116
if (vma->vm_mm == t->mm) {
3117
addr = rmap_item->address & PAGE_MASK;
3118
add_to_kill_ksm(t, page, vma, to_kill,
3119
addr);
3120
}
3121
}
3122
}
3123
rcu_read_unlock();
3124
anon_vma_unlock_read(av);
3125
}
3126
}
3127
#endif
3128
3129
#ifdef CONFIG_MIGRATION
3130
void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3131
{
3132
struct ksm_stable_node *stable_node;
3133
3134
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3135
VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3136
VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3137
3138
stable_node = folio_stable_node(folio);
3139
if (stable_node) {
3140
VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3141
stable_node->kpfn = folio_pfn(newfolio);
3142
/*
3143
* newfolio->mapping was set in advance; now we need smp_wmb()
3144
* to make sure that the new stable_node->kpfn is visible
3145
* to ksm_get_folio() before it can see that folio->mapping
3146
* has gone stale (or that the swapcache flag has been cleared).
3147
*/
3148
smp_wmb();
3149
folio_set_stable_node(folio, NULL);
3150
}
3151
}
3152
#endif /* CONFIG_MIGRATION */
3153
3154
#ifdef CONFIG_MEMORY_HOTREMOVE
3155
static void wait_while_offlining(void)
3156
{
3157
while (ksm_run & KSM_RUN_OFFLINE) {
3158
mutex_unlock(&ksm_thread_mutex);
3159
wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3160
TASK_UNINTERRUPTIBLE);
3161
mutex_lock(&ksm_thread_mutex);
3162
}
3163
}
3164
3165
static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3166
unsigned long start_pfn,
3167
unsigned long end_pfn)
3168
{
3169
if (stable_node->kpfn >= start_pfn &&
3170
stable_node->kpfn < end_pfn) {
3171
/*
3172
* Don't ksm_get_folio, page has already gone:
3173
* which is why we keep kpfn instead of page*
3174
*/
3175
remove_node_from_stable_tree(stable_node);
3176
return true;
3177
}
3178
return false;
3179
}
3180
3181
static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3182
unsigned long start_pfn,
3183
unsigned long end_pfn,
3184
struct rb_root *root)
3185
{
3186
struct ksm_stable_node *dup;
3187
struct hlist_node *hlist_safe;
3188
3189
if (!is_stable_node_chain(stable_node)) {
3190
VM_BUG_ON(is_stable_node_dup(stable_node));
3191
return stable_node_dup_remove_range(stable_node, start_pfn,
3192
end_pfn);
3193
}
3194
3195
hlist_for_each_entry_safe(dup, hlist_safe,
3196
&stable_node->hlist, hlist_dup) {
3197
VM_BUG_ON(!is_stable_node_dup(dup));
3198
stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3199
}
3200
if (hlist_empty(&stable_node->hlist)) {
3201
free_stable_node_chain(stable_node, root);
3202
return true; /* notify caller that tree was rebalanced */
3203
} else
3204
return false;
3205
}
3206
3207
static void ksm_check_stable_tree(unsigned long start_pfn,
3208
unsigned long end_pfn)
3209
{
3210
struct ksm_stable_node *stable_node, *next;
3211
struct rb_node *node;
3212
int nid;
3213
3214
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3215
node = rb_first(root_stable_tree + nid);
3216
while (node) {
3217
stable_node = rb_entry(node, struct ksm_stable_node, node);
3218
if (stable_node_chain_remove_range(stable_node,
3219
start_pfn, end_pfn,
3220
root_stable_tree +
3221
nid))
3222
node = rb_first(root_stable_tree + nid);
3223
else
3224
node = rb_next(node);
3225
cond_resched();
3226
}
3227
}
3228
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3229
if (stable_node->kpfn >= start_pfn &&
3230
stable_node->kpfn < end_pfn)
3231
remove_node_from_stable_tree(stable_node);
3232
cond_resched();
3233
}
3234
}
3235
3236
static int ksm_memory_callback(struct notifier_block *self,
3237
unsigned long action, void *arg)
3238
{
3239
struct memory_notify *mn = arg;
3240
3241
switch (action) {
3242
case MEM_GOING_OFFLINE:
3243
/*
3244
* Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3245
* and remove_all_stable_nodes() while memory is going offline:
3246
* it is unsafe for them to touch the stable tree at this time.
3247
* But unmerge_ksm_pages(), rmap lookups and other entry points
3248
* which do not need the ksm_thread_mutex are all safe.
3249
*/
3250
mutex_lock(&ksm_thread_mutex);
3251
ksm_run |= KSM_RUN_OFFLINE;
3252
mutex_unlock(&ksm_thread_mutex);
3253
break;
3254
3255
case MEM_OFFLINE:
3256
/*
3257
* Most of the work is done by page migration; but there might
3258
* be a few stable_nodes left over, still pointing to struct
3259
* pages which have been offlined: prune those from the tree,
3260
* otherwise ksm_get_folio() might later try to access a
3261
* non-existent struct page.
3262
*/
3263
ksm_check_stable_tree(mn->start_pfn,
3264
mn->start_pfn + mn->nr_pages);
3265
fallthrough;
3266
case MEM_CANCEL_OFFLINE:
3267
mutex_lock(&ksm_thread_mutex);
3268
ksm_run &= ~KSM_RUN_OFFLINE;
3269
mutex_unlock(&ksm_thread_mutex);
3270
3271
smp_mb(); /* wake_up_bit advises this */
3272
wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3273
break;
3274
}
3275
return NOTIFY_OK;
3276
}
3277
#else
3278
static void wait_while_offlining(void)
3279
{
3280
}
3281
#endif /* CONFIG_MEMORY_HOTREMOVE */
3282
3283
#ifdef CONFIG_PROC_FS
3284
/*
3285
* The process is mergeable only if any VMA is currently
3286
* applicable to KSM.
3287
*
3288
* The mmap lock must be held in read mode.
3289
*/
3290
bool ksm_process_mergeable(struct mm_struct *mm)
3291
{
3292
struct vm_area_struct *vma;
3293
3294
mmap_assert_locked(mm);
3295
VMA_ITERATOR(vmi, mm, 0);
3296
for_each_vma(vmi, vma)
3297
if (vma->vm_flags & VM_MERGEABLE)
3298
return true;
3299
3300
return false;
3301
}
3302
3303
long ksm_process_profit(struct mm_struct *mm)
3304
{
3305
return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3306
mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3307
}
3308
#endif /* CONFIG_PROC_FS */
3309
3310
#ifdef CONFIG_SYSFS
3311
/*
3312
* This all compiles without CONFIG_SYSFS, but is a waste of space.
3313
*/
3314
3315
#define KSM_ATTR_RO(_name) \
3316
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3317
#define KSM_ATTR(_name) \
3318
static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3319
3320
static ssize_t sleep_millisecs_show(struct kobject *kobj,
3321
struct kobj_attribute *attr, char *buf)
3322
{
3323
return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3324
}
3325
3326
static ssize_t sleep_millisecs_store(struct kobject *kobj,
3327
struct kobj_attribute *attr,
3328
const char *buf, size_t count)
3329
{
3330
unsigned int msecs;
3331
int err;
3332
3333
err = kstrtouint(buf, 10, &msecs);
3334
if (err)
3335
return -EINVAL;
3336
3337
ksm_thread_sleep_millisecs = msecs;
3338
wake_up_interruptible(&ksm_iter_wait);
3339
3340
return count;
3341
}
3342
KSM_ATTR(sleep_millisecs);
3343
3344
static ssize_t pages_to_scan_show(struct kobject *kobj,
3345
struct kobj_attribute *attr, char *buf)
3346
{
3347
return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3348
}
3349
3350
static ssize_t pages_to_scan_store(struct kobject *kobj,
3351
struct kobj_attribute *attr,
3352
const char *buf, size_t count)
3353
{
3354
unsigned int nr_pages;
3355
int err;
3356
3357
if (ksm_advisor != KSM_ADVISOR_NONE)
3358
return -EINVAL;
3359
3360
err = kstrtouint(buf, 10, &nr_pages);
3361
if (err)
3362
return -EINVAL;
3363
3364
ksm_thread_pages_to_scan = nr_pages;
3365
3366
return count;
3367
}
3368
KSM_ATTR(pages_to_scan);
3369
3370
static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3371
char *buf)
3372
{
3373
return sysfs_emit(buf, "%lu\n", ksm_run);
3374
}
3375
3376
static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3377
const char *buf, size_t count)
3378
{
3379
unsigned int flags;
3380
int err;
3381
3382
err = kstrtouint(buf, 10, &flags);
3383
if (err)
3384
return -EINVAL;
3385
if (flags > KSM_RUN_UNMERGE)
3386
return -EINVAL;
3387
3388
/*
3389
* KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3390
* KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3391
* breaking COW to free the pages_shared (but leaves mm_slots
3392
* on the list for when ksmd may be set running again).
3393
*/
3394
3395
mutex_lock(&ksm_thread_mutex);
3396
wait_while_offlining();
3397
if (ksm_run != flags) {
3398
ksm_run = flags;
3399
if (flags & KSM_RUN_UNMERGE) {
3400
set_current_oom_origin();
3401
err = unmerge_and_remove_all_rmap_items();
3402
clear_current_oom_origin();
3403
if (err) {
3404
ksm_run = KSM_RUN_STOP;
3405
count = err;
3406
}
3407
}
3408
}
3409
mutex_unlock(&ksm_thread_mutex);
3410
3411
if (flags & KSM_RUN_MERGE)
3412
wake_up_interruptible(&ksm_thread_wait);
3413
3414
return count;
3415
}
3416
KSM_ATTR(run);
3417
3418
#ifdef CONFIG_NUMA
3419
static ssize_t merge_across_nodes_show(struct kobject *kobj,
3420
struct kobj_attribute *attr, char *buf)
3421
{
3422
return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3423
}
3424
3425
static ssize_t merge_across_nodes_store(struct kobject *kobj,
3426
struct kobj_attribute *attr,
3427
const char *buf, size_t count)
3428
{
3429
int err;
3430
unsigned long knob;
3431
3432
err = kstrtoul(buf, 10, &knob);
3433
if (err)
3434
return err;
3435
if (knob > 1)
3436
return -EINVAL;
3437
3438
mutex_lock(&ksm_thread_mutex);
3439
wait_while_offlining();
3440
if (ksm_merge_across_nodes != knob) {
3441
if (ksm_pages_shared || remove_all_stable_nodes())
3442
err = -EBUSY;
3443
else if (root_stable_tree == one_stable_tree) {
3444
struct rb_root *buf;
3445
/*
3446
* This is the first time that we switch away from the
3447
* default of merging across nodes: must now allocate
3448
* a buffer to hold as many roots as may be needed.
3449
* Allocate stable and unstable together:
3450
* MAXSMP NODES_SHIFT 10 will use 16kB.
3451
*/
3452
buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3453
GFP_KERNEL);
3454
/* Let us assume that RB_ROOT is NULL is zero */
3455
if (!buf)
3456
err = -ENOMEM;
3457
else {
3458
root_stable_tree = buf;
3459
root_unstable_tree = buf + nr_node_ids;
3460
/* Stable tree is empty but not the unstable */
3461
root_unstable_tree[0] = one_unstable_tree[0];
3462
}
3463
}
3464
if (!err) {
3465
ksm_merge_across_nodes = knob;
3466
ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3467
}
3468
}
3469
mutex_unlock(&ksm_thread_mutex);
3470
3471
return err ? err : count;
3472
}
3473
KSM_ATTR(merge_across_nodes);
3474
#endif
3475
3476
static ssize_t use_zero_pages_show(struct kobject *kobj,
3477
struct kobj_attribute *attr, char *buf)
3478
{
3479
return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3480
}
3481
static ssize_t use_zero_pages_store(struct kobject *kobj,
3482
struct kobj_attribute *attr,
3483
const char *buf, size_t count)
3484
{
3485
int err;
3486
bool value;
3487
3488
err = kstrtobool(buf, &value);
3489
if (err)
3490
return -EINVAL;
3491
3492
ksm_use_zero_pages = value;
3493
3494
return count;
3495
}
3496
KSM_ATTR(use_zero_pages);
3497
3498
static ssize_t max_page_sharing_show(struct kobject *kobj,
3499
struct kobj_attribute *attr, char *buf)
3500
{
3501
return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3502
}
3503
3504
static ssize_t max_page_sharing_store(struct kobject *kobj,
3505
struct kobj_attribute *attr,
3506
const char *buf, size_t count)
3507
{
3508
int err;
3509
int knob;
3510
3511
err = kstrtoint(buf, 10, &knob);
3512
if (err)
3513
return err;
3514
/*
3515
* When a KSM page is created it is shared by 2 mappings. This
3516
* being a signed comparison, it implicitly verifies it's not
3517
* negative.
3518
*/
3519
if (knob < 2)
3520
return -EINVAL;
3521
3522
if (READ_ONCE(ksm_max_page_sharing) == knob)
3523
return count;
3524
3525
mutex_lock(&ksm_thread_mutex);
3526
wait_while_offlining();
3527
if (ksm_max_page_sharing != knob) {
3528
if (ksm_pages_shared || remove_all_stable_nodes())
3529
err = -EBUSY;
3530
else
3531
ksm_max_page_sharing = knob;
3532
}
3533
mutex_unlock(&ksm_thread_mutex);
3534
3535
return err ? err : count;
3536
}
3537
KSM_ATTR(max_page_sharing);
3538
3539
static ssize_t pages_scanned_show(struct kobject *kobj,
3540
struct kobj_attribute *attr, char *buf)
3541
{
3542
return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3543
}
3544
KSM_ATTR_RO(pages_scanned);
3545
3546
static ssize_t pages_shared_show(struct kobject *kobj,
3547
struct kobj_attribute *attr, char *buf)
3548
{
3549
return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3550
}
3551
KSM_ATTR_RO(pages_shared);
3552
3553
static ssize_t pages_sharing_show(struct kobject *kobj,
3554
struct kobj_attribute *attr, char *buf)
3555
{
3556
return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3557
}
3558
KSM_ATTR_RO(pages_sharing);
3559
3560
static ssize_t pages_unshared_show(struct kobject *kobj,
3561
struct kobj_attribute *attr, char *buf)
3562
{
3563
return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3564
}
3565
KSM_ATTR_RO(pages_unshared);
3566
3567
static ssize_t pages_volatile_show(struct kobject *kobj,
3568
struct kobj_attribute *attr, char *buf)
3569
{
3570
long ksm_pages_volatile;
3571
3572
ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3573
- ksm_pages_sharing - ksm_pages_unshared;
3574
/*
3575
* It was not worth any locking to calculate that statistic,
3576
* but it might therefore sometimes be negative: conceal that.
3577
*/
3578
if (ksm_pages_volatile < 0)
3579
ksm_pages_volatile = 0;
3580
return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3581
}
3582
KSM_ATTR_RO(pages_volatile);
3583
3584
static ssize_t pages_skipped_show(struct kobject *kobj,
3585
struct kobj_attribute *attr, char *buf)
3586
{
3587
return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3588
}
3589
KSM_ATTR_RO(pages_skipped);
3590
3591
static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3592
struct kobj_attribute *attr, char *buf)
3593
{
3594
return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3595
}
3596
KSM_ATTR_RO(ksm_zero_pages);
3597
3598
static ssize_t general_profit_show(struct kobject *kobj,
3599
struct kobj_attribute *attr, char *buf)
3600
{
3601
long general_profit;
3602
3603
general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3604
ksm_rmap_items * sizeof(struct ksm_rmap_item);
3605
3606
return sysfs_emit(buf, "%ld\n", general_profit);
3607
}
3608
KSM_ATTR_RO(general_profit);
3609
3610
static ssize_t stable_node_dups_show(struct kobject *kobj,
3611
struct kobj_attribute *attr, char *buf)
3612
{
3613
return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3614
}
3615
KSM_ATTR_RO(stable_node_dups);
3616
3617
static ssize_t stable_node_chains_show(struct kobject *kobj,
3618
struct kobj_attribute *attr, char *buf)
3619
{
3620
return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3621
}
3622
KSM_ATTR_RO(stable_node_chains);
3623
3624
static ssize_t
3625
stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3626
struct kobj_attribute *attr,
3627
char *buf)
3628
{
3629
return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3630
}
3631
3632
static ssize_t
3633
stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3634
struct kobj_attribute *attr,
3635
const char *buf, size_t count)
3636
{
3637
unsigned int msecs;
3638
int err;
3639
3640
err = kstrtouint(buf, 10, &msecs);
3641
if (err)
3642
return -EINVAL;
3643
3644
ksm_stable_node_chains_prune_millisecs = msecs;
3645
3646
return count;
3647
}
3648
KSM_ATTR(stable_node_chains_prune_millisecs);
3649
3650
static ssize_t full_scans_show(struct kobject *kobj,
3651
struct kobj_attribute *attr, char *buf)
3652
{
3653
return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3654
}
3655
KSM_ATTR_RO(full_scans);
3656
3657
static ssize_t smart_scan_show(struct kobject *kobj,
3658
struct kobj_attribute *attr, char *buf)
3659
{
3660
return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3661
}
3662
3663
static ssize_t smart_scan_store(struct kobject *kobj,
3664
struct kobj_attribute *attr,
3665
const char *buf, size_t count)
3666
{
3667
int err;
3668
bool value;
3669
3670
err = kstrtobool(buf, &value);
3671
if (err)
3672
return -EINVAL;
3673
3674
ksm_smart_scan = value;
3675
return count;
3676
}
3677
KSM_ATTR(smart_scan);
3678
3679
static ssize_t advisor_mode_show(struct kobject *kobj,
3680
struct kobj_attribute *attr, char *buf)
3681
{
3682
const char *output;
3683
3684
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3685
output = "none [scan-time]";
3686
else
3687
output = "[none] scan-time";
3688
3689
return sysfs_emit(buf, "%s\n", output);
3690
}
3691
3692
static ssize_t advisor_mode_store(struct kobject *kobj,
3693
struct kobj_attribute *attr, const char *buf,
3694
size_t count)
3695
{
3696
enum ksm_advisor_type curr_advisor = ksm_advisor;
3697
3698
if (sysfs_streq("scan-time", buf))
3699
ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3700
else if (sysfs_streq("none", buf))
3701
ksm_advisor = KSM_ADVISOR_NONE;
3702
else
3703
return -EINVAL;
3704
3705
/* Set advisor default values */
3706
if (curr_advisor != ksm_advisor)
3707
set_advisor_defaults();
3708
3709
return count;
3710
}
3711
KSM_ATTR(advisor_mode);
3712
3713
static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3714
struct kobj_attribute *attr, char *buf)
3715
{
3716
return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3717
}
3718
3719
static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3720
struct kobj_attribute *attr,
3721
const char *buf, size_t count)
3722
{
3723
int err;
3724
unsigned long value;
3725
3726
err = kstrtoul(buf, 10, &value);
3727
if (err)
3728
return -EINVAL;
3729
3730
ksm_advisor_max_cpu = value;
3731
return count;
3732
}
3733
KSM_ATTR(advisor_max_cpu);
3734
3735
static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3736
struct kobj_attribute *attr, char *buf)
3737
{
3738
return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3739
}
3740
3741
static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3742
struct kobj_attribute *attr,
3743
const char *buf, size_t count)
3744
{
3745
int err;
3746
unsigned long value;
3747
3748
err = kstrtoul(buf, 10, &value);
3749
if (err)
3750
return -EINVAL;
3751
3752
ksm_advisor_min_pages_to_scan = value;
3753
return count;
3754
}
3755
KSM_ATTR(advisor_min_pages_to_scan);
3756
3757
static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3758
struct kobj_attribute *attr, char *buf)
3759
{
3760
return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3761
}
3762
3763
static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3764
struct kobj_attribute *attr,
3765
const char *buf, size_t count)
3766
{
3767
int err;
3768
unsigned long value;
3769
3770
err = kstrtoul(buf, 10, &value);
3771
if (err)
3772
return -EINVAL;
3773
3774
ksm_advisor_max_pages_to_scan = value;
3775
return count;
3776
}
3777
KSM_ATTR(advisor_max_pages_to_scan);
3778
3779
static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3780
struct kobj_attribute *attr, char *buf)
3781
{
3782
return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3783
}
3784
3785
static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3786
struct kobj_attribute *attr,
3787
const char *buf, size_t count)
3788
{
3789
int err;
3790
unsigned long value;
3791
3792
err = kstrtoul(buf, 10, &value);
3793
if (err)
3794
return -EINVAL;
3795
if (value < 1)
3796
return -EINVAL;
3797
3798
ksm_advisor_target_scan_time = value;
3799
return count;
3800
}
3801
KSM_ATTR(advisor_target_scan_time);
3802
3803
static struct attribute *ksm_attrs[] = {
3804
&sleep_millisecs_attr.attr,
3805
&pages_to_scan_attr.attr,
3806
&run_attr.attr,
3807
&pages_scanned_attr.attr,
3808
&pages_shared_attr.attr,
3809
&pages_sharing_attr.attr,
3810
&pages_unshared_attr.attr,
3811
&pages_volatile_attr.attr,
3812
&pages_skipped_attr.attr,
3813
&ksm_zero_pages_attr.attr,
3814
&full_scans_attr.attr,
3815
#ifdef CONFIG_NUMA
3816
&merge_across_nodes_attr.attr,
3817
#endif
3818
&max_page_sharing_attr.attr,
3819
&stable_node_chains_attr.attr,
3820
&stable_node_dups_attr.attr,
3821
&stable_node_chains_prune_millisecs_attr.attr,
3822
&use_zero_pages_attr.attr,
3823
&general_profit_attr.attr,
3824
&smart_scan_attr.attr,
3825
&advisor_mode_attr.attr,
3826
&advisor_max_cpu_attr.attr,
3827
&advisor_min_pages_to_scan_attr.attr,
3828
&advisor_max_pages_to_scan_attr.attr,
3829
&advisor_target_scan_time_attr.attr,
3830
NULL,
3831
};
3832
3833
static const struct attribute_group ksm_attr_group = {
3834
.attrs = ksm_attrs,
3835
.name = "ksm",
3836
};
3837
#endif /* CONFIG_SYSFS */
3838
3839
static int __init ksm_init(void)
3840
{
3841
struct task_struct *ksm_thread;
3842
int err;
3843
3844
/* The correct value depends on page size and endianness */
3845
zero_checksum = calc_checksum(ZERO_PAGE(0));
3846
/* Default to false for backwards compatibility */
3847
ksm_use_zero_pages = false;
3848
3849
err = ksm_slab_init();
3850
if (err)
3851
goto out;
3852
3853
ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3854
if (IS_ERR(ksm_thread)) {
3855
pr_err("ksm: creating kthread failed\n");
3856
err = PTR_ERR(ksm_thread);
3857
goto out_free;
3858
}
3859
3860
#ifdef CONFIG_SYSFS
3861
err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3862
if (err) {
3863
pr_err("ksm: register sysfs failed\n");
3864
kthread_stop(ksm_thread);
3865
goto out_free;
3866
}
3867
#else
3868
ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3869
3870
#endif /* CONFIG_SYSFS */
3871
3872
#ifdef CONFIG_MEMORY_HOTREMOVE
3873
/* There is no significance to this priority 100 */
3874
hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3875
#endif
3876
return 0;
3877
3878
out_free:
3879
ksm_slab_free();
3880
out:
3881
return err;
3882
}
3883
subsys_initcall(ksm_init);
3884
3885