Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/bluetooth/hci_conn.c
29269 views
1
/*
2
BlueZ - Bluetooth protocol stack for Linux
3
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
Copyright 2023-2024 NXP
5
6
Written 2000,2001 by Maxim Krasnyansky <[email protected]>
7
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License version 2 as
10
published by the Free Software Foundation;
11
12
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23
SOFTWARE IS DISCLAIMED.
24
*/
25
26
/* Bluetooth HCI connection handling. */
27
28
#include <linux/export.h>
29
#include <linux/debugfs.h>
30
#include <linux/errqueue.h>
31
32
#include <net/bluetooth/bluetooth.h>
33
#include <net/bluetooth/hci_core.h>
34
#include <net/bluetooth/l2cap.h>
35
#include <net/bluetooth/iso.h>
36
#include <net/bluetooth/mgmt.h>
37
38
#include "smp.h"
39
#include "eir.h"
40
41
struct sco_param {
42
u16 pkt_type;
43
u16 max_latency;
44
u8 retrans_effort;
45
};
46
47
struct conn_handle_t {
48
struct hci_conn *conn;
49
__u16 handle;
50
};
51
52
static const struct sco_param esco_param_cvsd[] = {
53
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
54
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
55
{ EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
56
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
57
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
58
};
59
60
static const struct sco_param sco_param_cvsd[] = {
61
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
62
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
63
};
64
65
static const struct sco_param esco_param_msbc[] = {
66
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
67
{ EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
68
};
69
70
/* This function requires the caller holds hdev->lock */
71
void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status)
72
{
73
struct hci_conn_params *params;
74
struct hci_dev *hdev = conn->hdev;
75
struct smp_irk *irk;
76
bdaddr_t *bdaddr;
77
u8 bdaddr_type;
78
79
bdaddr = &conn->dst;
80
bdaddr_type = conn->dst_type;
81
82
/* Check if we need to convert to identity address */
83
irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
84
if (irk) {
85
bdaddr = &irk->bdaddr;
86
bdaddr_type = irk->addr_type;
87
}
88
89
params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
90
bdaddr_type);
91
if (!params)
92
return;
93
94
if (params->conn) {
95
hci_conn_drop(params->conn);
96
hci_conn_put(params->conn);
97
params->conn = NULL;
98
}
99
100
if (!params->explicit_connect)
101
return;
102
103
/* If the status indicates successful cancellation of
104
* the attempt (i.e. Unknown Connection Id) there's no point of
105
* notifying failure since we'll go back to keep trying to
106
* connect. The only exception is explicit connect requests
107
* where a timeout + cancel does indicate an actual failure.
108
*/
109
if (status && status != HCI_ERROR_UNKNOWN_CONN_ID)
110
mgmt_connect_failed(hdev, conn, status);
111
112
/* The connection attempt was doing scan for new RPA, and is
113
* in scan phase. If params are not associated with any other
114
* autoconnect action, remove them completely. If they are, just unmark
115
* them as waiting for connection, by clearing explicit_connect field.
116
*/
117
params->explicit_connect = false;
118
119
hci_pend_le_list_del_init(params);
120
121
switch (params->auto_connect) {
122
case HCI_AUTO_CONN_EXPLICIT:
123
hci_conn_params_del(hdev, bdaddr, bdaddr_type);
124
/* return instead of break to avoid duplicate scan update */
125
return;
126
case HCI_AUTO_CONN_DIRECT:
127
case HCI_AUTO_CONN_ALWAYS:
128
hci_pend_le_list_add(params, &hdev->pend_le_conns);
129
break;
130
case HCI_AUTO_CONN_REPORT:
131
hci_pend_le_list_add(params, &hdev->pend_le_reports);
132
break;
133
default:
134
break;
135
}
136
137
hci_update_passive_scan(hdev);
138
}
139
140
static void hci_conn_cleanup(struct hci_conn *conn)
141
{
142
struct hci_dev *hdev = conn->hdev;
143
144
if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
145
hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
146
147
if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags))
148
hci_remove_link_key(hdev, &conn->dst);
149
150
hci_chan_list_flush(conn);
151
152
if (HCI_CONN_HANDLE_UNSET(conn->handle))
153
ida_free(&hdev->unset_handle_ida, conn->handle);
154
155
if (conn->cleanup)
156
conn->cleanup(conn);
157
158
if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
159
switch (conn->setting & SCO_AIRMODE_MASK) {
160
case SCO_AIRMODE_CVSD:
161
case SCO_AIRMODE_TRANSP:
162
if (hdev->notify)
163
hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
164
break;
165
}
166
} else {
167
if (hdev->notify)
168
hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
169
}
170
171
debugfs_remove_recursive(conn->debugfs);
172
173
hci_conn_del_sysfs(conn);
174
175
hci_dev_put(hdev);
176
}
177
178
int hci_disconnect(struct hci_conn *conn, __u8 reason)
179
{
180
BT_DBG("hcon %p", conn);
181
182
/* When we are central of an established connection and it enters
183
* the disconnect timeout, then go ahead and try to read the
184
* current clock offset. Processing of the result is done
185
* within the event handling and hci_clock_offset_evt function.
186
*/
187
if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
188
(conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
189
struct hci_dev *hdev = conn->hdev;
190
struct hci_cp_read_clock_offset clkoff_cp;
191
192
clkoff_cp.handle = cpu_to_le16(conn->handle);
193
hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
194
&clkoff_cp);
195
}
196
197
return hci_abort_conn(conn, reason);
198
}
199
200
static void hci_add_sco(struct hci_conn *conn, __u16 handle)
201
{
202
struct hci_dev *hdev = conn->hdev;
203
struct hci_cp_add_sco cp;
204
205
BT_DBG("hcon %p", conn);
206
207
conn->state = BT_CONNECT;
208
conn->out = true;
209
210
conn->attempt++;
211
212
cp.handle = cpu_to_le16(handle);
213
cp.pkt_type = cpu_to_le16(conn->pkt_type);
214
215
hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
216
}
217
218
static bool find_next_esco_param(struct hci_conn *conn,
219
const struct sco_param *esco_param, int size)
220
{
221
if (!conn->parent)
222
return false;
223
224
for (; conn->attempt <= size; conn->attempt++) {
225
if (lmp_esco_2m_capable(conn->parent) ||
226
(esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
227
break;
228
BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
229
conn, conn->attempt);
230
}
231
232
return conn->attempt <= size;
233
}
234
235
static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec)
236
{
237
int err;
238
__u8 vnd_len, *vnd_data = NULL;
239
struct hci_op_configure_data_path *cmd = NULL;
240
241
/* Do not take below 2 checks as error since the 1st means user do not
242
* want to use HFP offload mode and the 2nd means the vendor controller
243
* do not need to send below HCI command for offload mode.
244
*/
245
if (!codec->data_path || !hdev->get_codec_config_data)
246
return 0;
247
248
err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
249
&vnd_data);
250
if (err < 0)
251
goto error;
252
253
cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
254
if (!cmd) {
255
err = -ENOMEM;
256
goto error;
257
}
258
259
err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
260
if (err < 0)
261
goto error;
262
263
cmd->vnd_len = vnd_len;
264
memcpy(cmd->vnd_data, vnd_data, vnd_len);
265
266
cmd->direction = 0x00;
267
__hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
268
sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT);
269
270
cmd->direction = 0x01;
271
err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
272
sizeof(*cmd) + vnd_len, cmd,
273
HCI_CMD_TIMEOUT);
274
error:
275
276
kfree(cmd);
277
kfree(vnd_data);
278
return err;
279
}
280
281
static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data)
282
{
283
struct conn_handle_t *conn_handle = data;
284
struct hci_conn *conn = conn_handle->conn;
285
__u16 handle = conn_handle->handle;
286
struct hci_cp_enhanced_setup_sync_conn cp;
287
const struct sco_param *param;
288
289
kfree(conn_handle);
290
291
if (!hci_conn_valid(hdev, conn))
292
return -ECANCELED;
293
294
bt_dev_dbg(hdev, "hcon %p", conn);
295
296
configure_datapath_sync(hdev, &conn->codec);
297
298
conn->state = BT_CONNECT;
299
conn->out = true;
300
301
conn->attempt++;
302
303
memset(&cp, 0x00, sizeof(cp));
304
305
cp.handle = cpu_to_le16(handle);
306
307
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
308
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
309
310
switch (conn->codec.id) {
311
case BT_CODEC_MSBC:
312
if (!find_next_esco_param(conn, esco_param_msbc,
313
ARRAY_SIZE(esco_param_msbc)))
314
return -EINVAL;
315
316
param = &esco_param_msbc[conn->attempt - 1];
317
cp.tx_coding_format.id = 0x05;
318
cp.rx_coding_format.id = 0x05;
319
cp.tx_codec_frame_size = __cpu_to_le16(60);
320
cp.rx_codec_frame_size = __cpu_to_le16(60);
321
cp.in_bandwidth = __cpu_to_le32(32000);
322
cp.out_bandwidth = __cpu_to_le32(32000);
323
cp.in_coding_format.id = 0x04;
324
cp.out_coding_format.id = 0x04;
325
cp.in_coded_data_size = __cpu_to_le16(16);
326
cp.out_coded_data_size = __cpu_to_le16(16);
327
cp.in_pcm_data_format = 2;
328
cp.out_pcm_data_format = 2;
329
cp.in_pcm_sample_payload_msb_pos = 0;
330
cp.out_pcm_sample_payload_msb_pos = 0;
331
cp.in_data_path = conn->codec.data_path;
332
cp.out_data_path = conn->codec.data_path;
333
cp.in_transport_unit_size = 1;
334
cp.out_transport_unit_size = 1;
335
break;
336
337
case BT_CODEC_TRANSPARENT:
338
if (!find_next_esco_param(conn, esco_param_msbc,
339
ARRAY_SIZE(esco_param_msbc)))
340
return -EINVAL;
341
342
param = &esco_param_msbc[conn->attempt - 1];
343
cp.tx_coding_format.id = 0x03;
344
cp.rx_coding_format.id = 0x03;
345
cp.tx_codec_frame_size = __cpu_to_le16(60);
346
cp.rx_codec_frame_size = __cpu_to_le16(60);
347
cp.in_bandwidth = __cpu_to_le32(0x1f40);
348
cp.out_bandwidth = __cpu_to_le32(0x1f40);
349
cp.in_coding_format.id = 0x03;
350
cp.out_coding_format.id = 0x03;
351
cp.in_coded_data_size = __cpu_to_le16(16);
352
cp.out_coded_data_size = __cpu_to_le16(16);
353
cp.in_pcm_data_format = 2;
354
cp.out_pcm_data_format = 2;
355
cp.in_pcm_sample_payload_msb_pos = 0;
356
cp.out_pcm_sample_payload_msb_pos = 0;
357
cp.in_data_path = conn->codec.data_path;
358
cp.out_data_path = conn->codec.data_path;
359
cp.in_transport_unit_size = 1;
360
cp.out_transport_unit_size = 1;
361
break;
362
363
case BT_CODEC_CVSD:
364
if (conn->parent && lmp_esco_capable(conn->parent)) {
365
if (!find_next_esco_param(conn, esco_param_cvsd,
366
ARRAY_SIZE(esco_param_cvsd)))
367
return -EINVAL;
368
param = &esco_param_cvsd[conn->attempt - 1];
369
} else {
370
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
371
return -EINVAL;
372
param = &sco_param_cvsd[conn->attempt - 1];
373
}
374
cp.tx_coding_format.id = 2;
375
cp.rx_coding_format.id = 2;
376
cp.tx_codec_frame_size = __cpu_to_le16(60);
377
cp.rx_codec_frame_size = __cpu_to_le16(60);
378
cp.in_bandwidth = __cpu_to_le32(16000);
379
cp.out_bandwidth = __cpu_to_le32(16000);
380
cp.in_coding_format.id = 4;
381
cp.out_coding_format.id = 4;
382
cp.in_coded_data_size = __cpu_to_le16(16);
383
cp.out_coded_data_size = __cpu_to_le16(16);
384
cp.in_pcm_data_format = 2;
385
cp.out_pcm_data_format = 2;
386
cp.in_pcm_sample_payload_msb_pos = 0;
387
cp.out_pcm_sample_payload_msb_pos = 0;
388
cp.in_data_path = conn->codec.data_path;
389
cp.out_data_path = conn->codec.data_path;
390
cp.in_transport_unit_size = 16;
391
cp.out_transport_unit_size = 16;
392
break;
393
default:
394
return -EINVAL;
395
}
396
397
cp.retrans_effort = param->retrans_effort;
398
cp.pkt_type = __cpu_to_le16(param->pkt_type);
399
cp.max_latency = __cpu_to_le16(param->max_latency);
400
401
if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
402
return -EIO;
403
404
return 0;
405
}
406
407
static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
408
{
409
struct hci_dev *hdev = conn->hdev;
410
struct hci_cp_setup_sync_conn cp;
411
const struct sco_param *param;
412
413
bt_dev_dbg(hdev, "hcon %p", conn);
414
415
conn->state = BT_CONNECT;
416
conn->out = true;
417
418
conn->attempt++;
419
420
cp.handle = cpu_to_le16(handle);
421
422
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
423
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
424
cp.voice_setting = cpu_to_le16(conn->setting);
425
426
switch (conn->setting & SCO_AIRMODE_MASK) {
427
case SCO_AIRMODE_TRANSP:
428
if (!find_next_esco_param(conn, esco_param_msbc,
429
ARRAY_SIZE(esco_param_msbc)))
430
return false;
431
param = &esco_param_msbc[conn->attempt - 1];
432
break;
433
case SCO_AIRMODE_CVSD:
434
if (conn->parent && lmp_esco_capable(conn->parent)) {
435
if (!find_next_esco_param(conn, esco_param_cvsd,
436
ARRAY_SIZE(esco_param_cvsd)))
437
return false;
438
param = &esco_param_cvsd[conn->attempt - 1];
439
} else {
440
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
441
return false;
442
param = &sco_param_cvsd[conn->attempt - 1];
443
}
444
break;
445
default:
446
return false;
447
}
448
449
cp.retrans_effort = param->retrans_effort;
450
cp.pkt_type = __cpu_to_le16(param->pkt_type);
451
cp.max_latency = __cpu_to_le16(param->max_latency);
452
453
if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
454
return false;
455
456
return true;
457
}
458
459
bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
460
{
461
int result;
462
struct conn_handle_t *conn_handle;
463
464
if (enhanced_sync_conn_capable(conn->hdev)) {
465
conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL);
466
467
if (!conn_handle)
468
return false;
469
470
conn_handle->conn = conn;
471
conn_handle->handle = handle;
472
result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync,
473
conn_handle, NULL);
474
if (result < 0)
475
kfree(conn_handle);
476
477
return result == 0;
478
}
479
480
return hci_setup_sync_conn(conn, handle);
481
}
482
483
u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
484
u16 to_multiplier)
485
{
486
struct hci_dev *hdev = conn->hdev;
487
struct hci_conn_params *params;
488
struct hci_cp_le_conn_update cp;
489
490
hci_dev_lock(hdev);
491
492
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
493
if (params) {
494
params->conn_min_interval = min;
495
params->conn_max_interval = max;
496
params->conn_latency = latency;
497
params->supervision_timeout = to_multiplier;
498
}
499
500
hci_dev_unlock(hdev);
501
502
memset(&cp, 0, sizeof(cp));
503
cp.handle = cpu_to_le16(conn->handle);
504
cp.conn_interval_min = cpu_to_le16(min);
505
cp.conn_interval_max = cpu_to_le16(max);
506
cp.conn_latency = cpu_to_le16(latency);
507
cp.supervision_timeout = cpu_to_le16(to_multiplier);
508
cp.min_ce_len = cpu_to_le16(0x0000);
509
cp.max_ce_len = cpu_to_le16(0x0000);
510
511
hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
512
513
if (params)
514
return 0x01;
515
516
return 0x00;
517
}
518
519
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
520
__u8 ltk[16], __u8 key_size)
521
{
522
struct hci_dev *hdev = conn->hdev;
523
struct hci_cp_le_start_enc cp;
524
525
BT_DBG("hcon %p", conn);
526
527
memset(&cp, 0, sizeof(cp));
528
529
cp.handle = cpu_to_le16(conn->handle);
530
cp.rand = rand;
531
cp.ediv = ediv;
532
memcpy(cp.ltk, ltk, key_size);
533
534
hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
535
}
536
537
/* Device _must_ be locked */
538
void hci_sco_setup(struct hci_conn *conn, __u8 status)
539
{
540
struct hci_link *link;
541
542
link = list_first_entry_or_null(&conn->link_list, struct hci_link, list);
543
if (!link || !link->conn)
544
return;
545
546
BT_DBG("hcon %p", conn);
547
548
if (!status) {
549
if (lmp_esco_capable(conn->hdev))
550
hci_setup_sync(link->conn, conn->handle);
551
else
552
hci_add_sco(link->conn, conn->handle);
553
} else {
554
hci_connect_cfm(link->conn, status);
555
hci_conn_del(link->conn);
556
}
557
}
558
559
static void hci_conn_timeout(struct work_struct *work)
560
{
561
struct hci_conn *conn = container_of(work, struct hci_conn,
562
disc_work.work);
563
int refcnt = atomic_read(&conn->refcnt);
564
565
BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
566
567
WARN_ON(refcnt < 0);
568
569
/* FIXME: It was observed that in pairing failed scenario, refcnt
570
* drops below 0. Probably this is because l2cap_conn_del calls
571
* l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
572
* dropped. After that loop hci_chan_del is called which also drops
573
* conn. For now make sure that ACL is alive if refcnt is higher then 0,
574
* otherwise drop it.
575
*/
576
if (refcnt > 0)
577
return;
578
579
hci_abort_conn(conn, hci_proto_disconn_ind(conn));
580
}
581
582
/* Enter sniff mode */
583
static void hci_conn_idle(struct work_struct *work)
584
{
585
struct hci_conn *conn = container_of(work, struct hci_conn,
586
idle_work.work);
587
struct hci_dev *hdev = conn->hdev;
588
589
BT_DBG("hcon %p mode %d", conn, conn->mode);
590
591
if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
592
return;
593
594
if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
595
return;
596
597
if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
598
struct hci_cp_sniff_subrate cp;
599
cp.handle = cpu_to_le16(conn->handle);
600
cp.max_latency = cpu_to_le16(0);
601
cp.min_remote_timeout = cpu_to_le16(0);
602
cp.min_local_timeout = cpu_to_le16(0);
603
hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
604
}
605
606
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
607
struct hci_cp_sniff_mode cp;
608
cp.handle = cpu_to_le16(conn->handle);
609
cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
610
cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
611
cp.attempt = cpu_to_le16(4);
612
cp.timeout = cpu_to_le16(1);
613
hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
614
}
615
}
616
617
static void hci_conn_auto_accept(struct work_struct *work)
618
{
619
struct hci_conn *conn = container_of(work, struct hci_conn,
620
auto_accept_work.work);
621
622
hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
623
&conn->dst);
624
}
625
626
static void le_disable_advertising(struct hci_dev *hdev)
627
{
628
if (ext_adv_capable(hdev)) {
629
struct hci_cp_le_set_ext_adv_enable cp;
630
631
cp.enable = 0x00;
632
cp.num_of_sets = 0x00;
633
634
hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
635
&cp);
636
} else {
637
u8 enable = 0x00;
638
hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
639
&enable);
640
}
641
}
642
643
static void le_conn_timeout(struct work_struct *work)
644
{
645
struct hci_conn *conn = container_of(work, struct hci_conn,
646
le_conn_timeout.work);
647
struct hci_dev *hdev = conn->hdev;
648
649
BT_DBG("");
650
651
/* We could end up here due to having done directed advertising,
652
* so clean up the state if necessary. This should however only
653
* happen with broken hardware or if low duty cycle was used
654
* (which doesn't have a timeout of its own).
655
*/
656
if (conn->role == HCI_ROLE_SLAVE) {
657
/* Disable LE Advertising */
658
le_disable_advertising(hdev);
659
hci_dev_lock(hdev);
660
hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
661
hci_dev_unlock(hdev);
662
return;
663
}
664
665
hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
666
}
667
668
struct iso_list_data {
669
union {
670
u8 cig;
671
u8 big;
672
};
673
union {
674
u8 cis;
675
u8 bis;
676
u16 sync_handle;
677
};
678
int count;
679
bool big_term;
680
bool pa_sync_term;
681
bool big_sync_term;
682
};
683
684
static void bis_list(struct hci_conn *conn, void *data)
685
{
686
struct iso_list_data *d = data;
687
688
/* Skip if not broadcast/ANY address */
689
if (bacmp(&conn->dst, BDADDR_ANY))
690
return;
691
692
if (d->big != conn->iso_qos.bcast.big || d->bis == BT_ISO_QOS_BIS_UNSET ||
693
d->bis != conn->iso_qos.bcast.bis)
694
return;
695
696
d->count++;
697
}
698
699
static int terminate_big_sync(struct hci_dev *hdev, void *data)
700
{
701
struct iso_list_data *d = data;
702
703
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis);
704
705
hci_disable_per_advertising_sync(hdev, d->bis);
706
hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL);
707
708
/* Only terminate BIG if it has been created */
709
if (!d->big_term)
710
return 0;
711
712
return hci_le_terminate_big_sync(hdev, d->big,
713
HCI_ERROR_LOCAL_HOST_TERM);
714
}
715
716
static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err)
717
{
718
kfree(data);
719
}
720
721
static int hci_le_terminate_big(struct hci_dev *hdev, struct hci_conn *conn)
722
{
723
struct iso_list_data *d;
724
int ret;
725
726
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", conn->iso_qos.bcast.big,
727
conn->iso_qos.bcast.bis);
728
729
d = kzalloc(sizeof(*d), GFP_KERNEL);
730
if (!d)
731
return -ENOMEM;
732
733
d->big = conn->iso_qos.bcast.big;
734
d->bis = conn->iso_qos.bcast.bis;
735
d->big_term = test_and_clear_bit(HCI_CONN_BIG_CREATED, &conn->flags);
736
737
ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d,
738
terminate_big_destroy);
739
if (ret)
740
kfree(d);
741
742
return ret;
743
}
744
745
static int big_terminate_sync(struct hci_dev *hdev, void *data)
746
{
747
struct iso_list_data *d = data;
748
749
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big,
750
d->sync_handle);
751
752
if (d->big_sync_term)
753
hci_le_big_terminate_sync(hdev, d->big);
754
755
if (d->pa_sync_term)
756
return hci_le_pa_terminate_sync(hdev, d->sync_handle);
757
758
return 0;
759
}
760
761
static void find_bis(struct hci_conn *conn, void *data)
762
{
763
struct iso_list_data *d = data;
764
765
/* Ignore if BIG doesn't match */
766
if (d->big != conn->iso_qos.bcast.big)
767
return;
768
769
d->count++;
770
}
771
772
static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, struct hci_conn *conn)
773
{
774
struct iso_list_data *d;
775
int ret;
776
777
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, conn->sync_handle);
778
779
d = kzalloc(sizeof(*d), GFP_KERNEL);
780
if (!d)
781
return -ENOMEM;
782
783
d->big = big;
784
d->sync_handle = conn->sync_handle;
785
786
if (test_and_clear_bit(HCI_CONN_PA_SYNC, &conn->flags)) {
787
hci_conn_hash_list_flag(hdev, find_bis, PA_LINK,
788
HCI_CONN_PA_SYNC, d);
789
790
if (!d->count)
791
d->pa_sync_term = true;
792
793
d->count = 0;
794
}
795
796
if (test_and_clear_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
797
hci_conn_hash_list_flag(hdev, find_bis, BIS_LINK,
798
HCI_CONN_BIG_SYNC, d);
799
800
if (!d->count)
801
d->big_sync_term = true;
802
}
803
804
ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d,
805
terminate_big_destroy);
806
if (ret)
807
kfree(d);
808
809
return ret;
810
}
811
812
/* Cleanup BIS connection
813
*
814
* Detects if there any BIS left connected in a BIG
815
* broadcaster: Remove advertising instance and terminate BIG.
816
* broadcaster receiver: Terminate BIG sync and terminate PA sync.
817
*/
818
static void bis_cleanup(struct hci_conn *conn)
819
{
820
struct hci_dev *hdev = conn->hdev;
821
struct hci_conn *bis;
822
823
bt_dev_dbg(hdev, "conn %p", conn);
824
825
if (conn->role == HCI_ROLE_MASTER) {
826
if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags))
827
return;
828
829
/* Check if ISO connection is a BIS and terminate advertising
830
* set and BIG if there are no other connections using it.
831
*/
832
bis = hci_conn_hash_lookup_big_state(hdev,
833
conn->iso_qos.bcast.big,
834
BT_CONNECTED,
835
HCI_ROLE_MASTER);
836
if (bis)
837
return;
838
839
bis = hci_conn_hash_lookup_big_state(hdev,
840
conn->iso_qos.bcast.big,
841
BT_CONNECT,
842
HCI_ROLE_MASTER);
843
if (bis)
844
return;
845
846
hci_le_terminate_big(hdev, conn);
847
} else {
848
hci_le_big_terminate(hdev, conn->iso_qos.bcast.big,
849
conn);
850
}
851
}
852
853
static int remove_cig_sync(struct hci_dev *hdev, void *data)
854
{
855
u8 handle = PTR_UINT(data);
856
857
return hci_le_remove_cig_sync(hdev, handle);
858
}
859
860
static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle)
861
{
862
bt_dev_dbg(hdev, "handle 0x%2.2x", handle);
863
864
return hci_cmd_sync_queue(hdev, remove_cig_sync, UINT_PTR(handle),
865
NULL);
866
}
867
868
static void find_cis(struct hci_conn *conn, void *data)
869
{
870
struct iso_list_data *d = data;
871
872
/* Ignore broadcast or if CIG don't match */
873
if (!bacmp(&conn->dst, BDADDR_ANY) || d->cig != conn->iso_qos.ucast.cig)
874
return;
875
876
d->count++;
877
}
878
879
/* Cleanup CIS connection:
880
*
881
* Detects if there any CIS left connected in a CIG and remove it.
882
*/
883
static void cis_cleanup(struct hci_conn *conn)
884
{
885
struct hci_dev *hdev = conn->hdev;
886
struct iso_list_data d;
887
888
if (conn->iso_qos.ucast.cig == BT_ISO_QOS_CIG_UNSET)
889
return;
890
891
memset(&d, 0, sizeof(d));
892
d.cig = conn->iso_qos.ucast.cig;
893
894
/* Check if ISO connection is a CIS and remove CIG if there are
895
* no other connections using it.
896
*/
897
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_BOUND, &d);
898
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECT,
899
&d);
900
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECTED,
901
&d);
902
if (d.count)
903
return;
904
905
hci_le_remove_cig(hdev, conn->iso_qos.ucast.cig);
906
}
907
908
static int hci_conn_hash_alloc_unset(struct hci_dev *hdev)
909
{
910
return ida_alloc_range(&hdev->unset_handle_ida, HCI_CONN_HANDLE_MAX + 1,
911
U16_MAX, GFP_ATOMIC);
912
}
913
914
static struct hci_conn *__hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
915
u8 role, u16 handle)
916
{
917
struct hci_conn *conn;
918
919
switch (type) {
920
case ACL_LINK:
921
if (!hdev->acl_mtu)
922
return ERR_PTR(-ECONNREFUSED);
923
break;
924
case CIS_LINK:
925
case BIS_LINK:
926
case PA_LINK:
927
if (!hdev->iso_mtu)
928
return ERR_PTR(-ECONNREFUSED);
929
break;
930
case LE_LINK:
931
if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU)
932
return ERR_PTR(-ECONNREFUSED);
933
if (!hdev->le_mtu && hdev->acl_mtu < HCI_MIN_LE_MTU)
934
return ERR_PTR(-ECONNREFUSED);
935
break;
936
case SCO_LINK:
937
case ESCO_LINK:
938
if (!hdev->sco_pkts)
939
/* Controller does not support SCO or eSCO over HCI */
940
return ERR_PTR(-ECONNREFUSED);
941
break;
942
default:
943
return ERR_PTR(-ECONNREFUSED);
944
}
945
946
bt_dev_dbg(hdev, "dst %pMR handle 0x%4.4x", dst, handle);
947
948
conn = kzalloc(sizeof(*conn), GFP_KERNEL);
949
if (!conn)
950
return ERR_PTR(-ENOMEM);
951
952
bacpy(&conn->dst, dst);
953
bacpy(&conn->src, &hdev->bdaddr);
954
conn->handle = handle;
955
conn->hdev = hdev;
956
conn->type = type;
957
conn->role = role;
958
conn->mode = HCI_CM_ACTIVE;
959
conn->state = BT_OPEN;
960
conn->auth_type = HCI_AT_GENERAL_BONDING;
961
conn->io_capability = hdev->io_capability;
962
conn->remote_auth = 0xff;
963
conn->key_type = 0xff;
964
conn->rssi = HCI_RSSI_INVALID;
965
conn->tx_power = HCI_TX_POWER_INVALID;
966
conn->max_tx_power = HCI_TX_POWER_INVALID;
967
conn->sync_handle = HCI_SYNC_HANDLE_INVALID;
968
conn->sid = HCI_SID_INVALID;
969
970
set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
971
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
972
973
/* Set Default Authenticated payload timeout to 30s */
974
conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
975
976
if (conn->role == HCI_ROLE_MASTER)
977
conn->out = true;
978
979
switch (type) {
980
case ACL_LINK:
981
conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
982
conn->mtu = hdev->acl_mtu;
983
break;
984
case LE_LINK:
985
/* conn->src should reflect the local identity address */
986
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
987
conn->mtu = hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu;
988
break;
989
case CIS_LINK:
990
case BIS_LINK:
991
case PA_LINK:
992
/* conn->src should reflect the local identity address */
993
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
994
995
/* set proper cleanup function */
996
if (!bacmp(dst, BDADDR_ANY))
997
conn->cleanup = bis_cleanup;
998
else if (conn->role == HCI_ROLE_MASTER)
999
conn->cleanup = cis_cleanup;
1000
1001
conn->mtu = hdev->iso_mtu ? hdev->iso_mtu :
1002
hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu;
1003
break;
1004
case SCO_LINK:
1005
if (lmp_esco_capable(hdev))
1006
conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
1007
(hdev->esco_type & EDR_ESCO_MASK);
1008
else
1009
conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
1010
1011
conn->mtu = hdev->sco_mtu;
1012
break;
1013
case ESCO_LINK:
1014
conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
1015
conn->mtu = hdev->sco_mtu;
1016
break;
1017
}
1018
1019
skb_queue_head_init(&conn->data_q);
1020
skb_queue_head_init(&conn->tx_q.queue);
1021
1022
INIT_LIST_HEAD(&conn->chan_list);
1023
INIT_LIST_HEAD(&conn->link_list);
1024
1025
INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
1026
INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
1027
INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
1028
INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
1029
1030
atomic_set(&conn->refcnt, 0);
1031
1032
hci_dev_hold(hdev);
1033
1034
hci_conn_hash_add(hdev, conn);
1035
1036
/* The SCO and eSCO connections will only be notified when their
1037
* setup has been completed. This is different to ACL links which
1038
* can be notified right away.
1039
*/
1040
if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
1041
if (hdev->notify)
1042
hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
1043
}
1044
1045
hci_conn_init_sysfs(conn);
1046
return conn;
1047
}
1048
1049
struct hci_conn *hci_conn_add_unset(struct hci_dev *hdev, int type,
1050
bdaddr_t *dst, u8 role)
1051
{
1052
int handle;
1053
1054
bt_dev_dbg(hdev, "dst %pMR", dst);
1055
1056
handle = hci_conn_hash_alloc_unset(hdev);
1057
if (unlikely(handle < 0))
1058
return ERR_PTR(-ECONNREFUSED);
1059
1060
return __hci_conn_add(hdev, type, dst, role, handle);
1061
}
1062
1063
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
1064
u8 role, u16 handle)
1065
{
1066
if (handle > HCI_CONN_HANDLE_MAX)
1067
return ERR_PTR(-EINVAL);
1068
1069
return __hci_conn_add(hdev, type, dst, role, handle);
1070
}
1071
1072
static void hci_conn_cleanup_child(struct hci_conn *conn, u8 reason)
1073
{
1074
if (!reason)
1075
reason = HCI_ERROR_REMOTE_USER_TERM;
1076
1077
/* Due to race, SCO/ISO conn might be not established yet at this point,
1078
* and nothing else will clean it up. In other cases it is done via HCI
1079
* events.
1080
*/
1081
switch (conn->type) {
1082
case SCO_LINK:
1083
case ESCO_LINK:
1084
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1085
hci_conn_failed(conn, reason);
1086
break;
1087
case CIS_LINK:
1088
case BIS_LINK:
1089
case PA_LINK:
1090
if ((conn->state != BT_CONNECTED &&
1091
!test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) ||
1092
test_bit(HCI_CONN_BIG_CREATED, &conn->flags))
1093
hci_conn_failed(conn, reason);
1094
break;
1095
}
1096
}
1097
1098
static void hci_conn_unlink(struct hci_conn *conn)
1099
{
1100
struct hci_dev *hdev = conn->hdev;
1101
1102
bt_dev_dbg(hdev, "hcon %p", conn);
1103
1104
if (!conn->parent) {
1105
struct hci_link *link, *t;
1106
1107
list_for_each_entry_safe(link, t, &conn->link_list, list) {
1108
struct hci_conn *child = link->conn;
1109
1110
hci_conn_unlink(child);
1111
1112
/* If hdev is down it means
1113
* hci_dev_close_sync/hci_conn_hash_flush is in progress
1114
* and links don't need to be cleanup as all connections
1115
* would be cleanup.
1116
*/
1117
if (!test_bit(HCI_UP, &hdev->flags))
1118
continue;
1119
1120
hci_conn_cleanup_child(child, conn->abort_reason);
1121
}
1122
1123
return;
1124
}
1125
1126
if (!conn->link)
1127
return;
1128
1129
list_del_rcu(&conn->link->list);
1130
synchronize_rcu();
1131
1132
hci_conn_drop(conn->parent);
1133
hci_conn_put(conn->parent);
1134
conn->parent = NULL;
1135
1136
kfree(conn->link);
1137
conn->link = NULL;
1138
}
1139
1140
void hci_conn_del(struct hci_conn *conn)
1141
{
1142
struct hci_dev *hdev = conn->hdev;
1143
1144
BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
1145
1146
hci_conn_unlink(conn);
1147
1148
disable_delayed_work_sync(&conn->disc_work);
1149
disable_delayed_work_sync(&conn->auto_accept_work);
1150
disable_delayed_work_sync(&conn->idle_work);
1151
1152
/* Remove the connection from the list so unacked logic can detect when
1153
* a certain pool is not being utilized.
1154
*/
1155
hci_conn_hash_del(hdev, conn);
1156
1157
/* Handle unacked frames:
1158
*
1159
* - In case there are no connection, or if restoring the buffers
1160
* considered in transist would overflow, restore all buffers to the
1161
* pool.
1162
* - Otherwise restore just the buffers considered in transit for the
1163
* hci_conn
1164
*/
1165
switch (conn->type) {
1166
case ACL_LINK:
1167
if (!hci_conn_num(hdev, ACL_LINK) ||
1168
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1169
hdev->acl_cnt = hdev->acl_pkts;
1170
else
1171
hdev->acl_cnt += conn->sent;
1172
break;
1173
case LE_LINK:
1174
cancel_delayed_work(&conn->le_conn_timeout);
1175
1176
if (hdev->le_pkts) {
1177
if (!hci_conn_num(hdev, LE_LINK) ||
1178
hdev->le_cnt + conn->sent > hdev->le_pkts)
1179
hdev->le_cnt = hdev->le_pkts;
1180
else
1181
hdev->le_cnt += conn->sent;
1182
} else {
1183
if ((!hci_conn_num(hdev, LE_LINK) &&
1184
!hci_conn_num(hdev, ACL_LINK)) ||
1185
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1186
hdev->acl_cnt = hdev->acl_pkts;
1187
else
1188
hdev->acl_cnt += conn->sent;
1189
}
1190
break;
1191
case CIS_LINK:
1192
case BIS_LINK:
1193
case PA_LINK:
1194
if (!hci_iso_count(hdev) ||
1195
hdev->iso_cnt + conn->sent > hdev->iso_pkts)
1196
hdev->iso_cnt = hdev->iso_pkts;
1197
else
1198
hdev->iso_cnt += conn->sent;
1199
break;
1200
}
1201
1202
skb_queue_purge(&conn->data_q);
1203
skb_queue_purge(&conn->tx_q.queue);
1204
1205
/* Remove the connection from the list and cleanup its remaining
1206
* state. This is a separate function since for some cases like
1207
* BT_CONNECT_SCAN we *only* want the cleanup part without the
1208
* rest of hci_conn_del.
1209
*/
1210
hci_conn_cleanup(conn);
1211
1212
/* Dequeue callbacks using connection pointer as data */
1213
hci_cmd_sync_dequeue(hdev, NULL, conn, NULL);
1214
}
1215
1216
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
1217
{
1218
int use_src = bacmp(src, BDADDR_ANY);
1219
struct hci_dev *hdev = NULL, *d;
1220
1221
BT_DBG("%pMR -> %pMR", src, dst);
1222
1223
read_lock(&hci_dev_list_lock);
1224
1225
list_for_each_entry(d, &hci_dev_list, list) {
1226
if (!test_bit(HCI_UP, &d->flags) ||
1227
hci_dev_test_flag(d, HCI_USER_CHANNEL))
1228
continue;
1229
1230
/* Simple routing:
1231
* No source address - find interface with bdaddr != dst
1232
* Source address - find interface with bdaddr == src
1233
*/
1234
1235
if (use_src) {
1236
bdaddr_t id_addr;
1237
u8 id_addr_type;
1238
1239
if (src_type == BDADDR_BREDR) {
1240
if (!lmp_bredr_capable(d))
1241
continue;
1242
bacpy(&id_addr, &d->bdaddr);
1243
id_addr_type = BDADDR_BREDR;
1244
} else {
1245
if (!lmp_le_capable(d))
1246
continue;
1247
1248
hci_copy_identity_address(d, &id_addr,
1249
&id_addr_type);
1250
1251
/* Convert from HCI to three-value type */
1252
if (id_addr_type == ADDR_LE_DEV_PUBLIC)
1253
id_addr_type = BDADDR_LE_PUBLIC;
1254
else
1255
id_addr_type = BDADDR_LE_RANDOM;
1256
}
1257
1258
if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
1259
hdev = d; break;
1260
}
1261
} else {
1262
if (bacmp(&d->bdaddr, dst)) {
1263
hdev = d; break;
1264
}
1265
}
1266
}
1267
1268
if (hdev)
1269
hdev = hci_dev_hold(hdev);
1270
1271
read_unlock(&hci_dev_list_lock);
1272
return hdev;
1273
}
1274
EXPORT_SYMBOL(hci_get_route);
1275
1276
/* This function requires the caller holds hdev->lock */
1277
static void hci_le_conn_failed(struct hci_conn *conn, u8 status)
1278
{
1279
struct hci_dev *hdev = conn->hdev;
1280
1281
hci_connect_le_scan_cleanup(conn, status);
1282
1283
/* Enable advertising in case this was a failed connection
1284
* attempt as a peripheral.
1285
*/
1286
hci_enable_advertising(hdev);
1287
}
1288
1289
/* This function requires the caller holds hdev->lock */
1290
void hci_conn_failed(struct hci_conn *conn, u8 status)
1291
{
1292
struct hci_dev *hdev = conn->hdev;
1293
1294
bt_dev_dbg(hdev, "status 0x%2.2x", status);
1295
1296
switch (conn->type) {
1297
case LE_LINK:
1298
hci_le_conn_failed(conn, status);
1299
break;
1300
case ACL_LINK:
1301
mgmt_connect_failed(hdev, conn, status);
1302
break;
1303
}
1304
1305
/* In case of BIG/PA sync failed, clear conn flags so that
1306
* the conns will be correctly cleaned up by ISO layer
1307
*/
1308
test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags);
1309
test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags);
1310
1311
conn->state = BT_CLOSED;
1312
hci_connect_cfm(conn, status);
1313
hci_conn_del(conn);
1314
}
1315
1316
/* This function requires the caller holds hdev->lock */
1317
u8 hci_conn_set_handle(struct hci_conn *conn, u16 handle)
1318
{
1319
struct hci_dev *hdev = conn->hdev;
1320
1321
bt_dev_dbg(hdev, "hcon %p handle 0x%4.4x", conn, handle);
1322
1323
if (conn->handle == handle)
1324
return 0;
1325
1326
if (handle > HCI_CONN_HANDLE_MAX) {
1327
bt_dev_err(hdev, "Invalid handle: 0x%4.4x > 0x%4.4x",
1328
handle, HCI_CONN_HANDLE_MAX);
1329
return HCI_ERROR_INVALID_PARAMETERS;
1330
}
1331
1332
/* If abort_reason has been sent it means the connection is being
1333
* aborted and the handle shall not be changed.
1334
*/
1335
if (conn->abort_reason)
1336
return conn->abort_reason;
1337
1338
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1339
ida_free(&hdev->unset_handle_ida, conn->handle);
1340
1341
conn->handle = handle;
1342
1343
return 0;
1344
}
1345
1346
struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1347
u8 dst_type, bool dst_resolved, u8 sec_level,
1348
u16 conn_timeout, u8 role, u8 phy, u8 sec_phy)
1349
{
1350
struct hci_conn *conn;
1351
struct smp_irk *irk;
1352
int err;
1353
1354
/* Let's make sure that le is enabled.*/
1355
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1356
if (lmp_le_capable(hdev))
1357
return ERR_PTR(-ECONNREFUSED);
1358
1359
return ERR_PTR(-EOPNOTSUPP);
1360
}
1361
1362
/* Since the controller supports only one LE connection attempt at a
1363
* time, we return -EBUSY if there is any connection attempt running.
1364
*/
1365
if (hci_lookup_le_connect(hdev))
1366
return ERR_PTR(-EBUSY);
1367
1368
/* If there's already a connection object but it's not in
1369
* scanning state it means it must already be established, in
1370
* which case we can't do anything else except report a failure
1371
* to connect.
1372
*/
1373
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1374
if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1375
return ERR_PTR(-EBUSY);
1376
}
1377
1378
/* Check if the destination address has been resolved by the controller
1379
* since if it did then the identity address shall be used.
1380
*/
1381
if (!dst_resolved) {
1382
/* When given an identity address with existing identity
1383
* resolving key, the connection needs to be established
1384
* to a resolvable random address.
1385
*
1386
* Storing the resolvable random address is required here
1387
* to handle connection failures. The address will later
1388
* be resolved back into the original identity address
1389
* from the connect request.
1390
*/
1391
irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1392
if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1393
dst = &irk->rpa;
1394
dst_type = ADDR_LE_DEV_RANDOM;
1395
}
1396
}
1397
1398
if (conn) {
1399
bacpy(&conn->dst, dst);
1400
} else {
1401
conn = hci_conn_add_unset(hdev, LE_LINK, dst, role);
1402
if (IS_ERR(conn))
1403
return conn;
1404
hci_conn_hold(conn);
1405
conn->pending_sec_level = sec_level;
1406
}
1407
1408
conn->dst_type = dst_type;
1409
conn->sec_level = BT_SECURITY_LOW;
1410
conn->conn_timeout = conn_timeout;
1411
conn->le_adv_phy = phy;
1412
conn->le_adv_sec_phy = sec_phy;
1413
1414
err = hci_connect_le_sync(hdev, conn);
1415
if (err) {
1416
hci_conn_del(conn);
1417
return ERR_PTR(err);
1418
}
1419
1420
return conn;
1421
}
1422
1423
static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1424
{
1425
struct hci_conn *conn;
1426
1427
conn = hci_conn_hash_lookup_le(hdev, addr, type);
1428
if (!conn)
1429
return false;
1430
1431
if (conn->state != BT_CONNECTED)
1432
return false;
1433
1434
return true;
1435
}
1436
1437
/* This function requires the caller holds hdev->lock */
1438
static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1439
bdaddr_t *addr, u8 addr_type)
1440
{
1441
struct hci_conn_params *params;
1442
1443
if (is_connected(hdev, addr, addr_type))
1444
return -EISCONN;
1445
1446
params = hci_conn_params_lookup(hdev, addr, addr_type);
1447
if (!params) {
1448
params = hci_conn_params_add(hdev, addr, addr_type);
1449
if (!params)
1450
return -ENOMEM;
1451
1452
/* If we created new params, mark them to be deleted in
1453
* hci_connect_le_scan_cleanup. It's different case than
1454
* existing disabled params, those will stay after cleanup.
1455
*/
1456
params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1457
}
1458
1459
/* We're trying to connect, so make sure params are at pend_le_conns */
1460
if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1461
params->auto_connect == HCI_AUTO_CONN_REPORT ||
1462
params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1463
hci_pend_le_list_del_init(params);
1464
hci_pend_le_list_add(params, &hdev->pend_le_conns);
1465
}
1466
1467
params->explicit_connect = true;
1468
1469
BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1470
params->auto_connect);
1471
1472
return 0;
1473
}
1474
1475
static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos)
1476
{
1477
struct hci_conn *conn;
1478
u8 big;
1479
1480
/* Allocate a BIG if not set */
1481
if (qos->bcast.big == BT_ISO_QOS_BIG_UNSET) {
1482
for (big = 0x00; big < 0xef; big++) {
1483
1484
conn = hci_conn_hash_lookup_big(hdev, big);
1485
if (!conn)
1486
break;
1487
}
1488
1489
if (big == 0xef)
1490
return -EADDRNOTAVAIL;
1491
1492
/* Update BIG */
1493
qos->bcast.big = big;
1494
}
1495
1496
return 0;
1497
}
1498
1499
static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos)
1500
{
1501
struct hci_conn *conn;
1502
u8 bis;
1503
1504
/* Allocate BIS if not set */
1505
if (qos->bcast.bis == BT_ISO_QOS_BIS_UNSET) {
1506
if (qos->bcast.big != BT_ISO_QOS_BIG_UNSET) {
1507
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1508
1509
if (conn) {
1510
/* If the BIG handle is already matched to an advertising
1511
* handle, do not allocate a new one.
1512
*/
1513
qos->bcast.bis = conn->iso_qos.bcast.bis;
1514
return 0;
1515
}
1516
}
1517
1518
/* Find an unused adv set to advertise BIS, skip instance 0x00
1519
* since it is reserved as general purpose set.
1520
*/
1521
for (bis = 0x01; bis < hdev->le_num_of_adv_sets;
1522
bis++) {
1523
1524
conn = hci_conn_hash_lookup_bis(hdev, BDADDR_ANY, bis);
1525
if (!conn)
1526
break;
1527
}
1528
1529
if (bis == hdev->le_num_of_adv_sets)
1530
return -EADDRNOTAVAIL;
1531
1532
/* Update BIS */
1533
qos->bcast.bis = bis;
1534
}
1535
1536
return 0;
1537
}
1538
1539
/* This function requires the caller holds hdev->lock */
1540
static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst,
1541
__u8 sid, struct bt_iso_qos *qos,
1542
__u8 base_len, __u8 *base, u16 timeout)
1543
{
1544
struct hci_conn *conn;
1545
int err;
1546
1547
/* Let's make sure that le is enabled.*/
1548
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1549
if (lmp_le_capable(hdev))
1550
return ERR_PTR(-ECONNREFUSED);
1551
return ERR_PTR(-EOPNOTSUPP);
1552
}
1553
1554
err = qos_set_big(hdev, qos);
1555
if (err)
1556
return ERR_PTR(err);
1557
1558
err = qos_set_bis(hdev, qos);
1559
if (err)
1560
return ERR_PTR(err);
1561
1562
/* Check if the LE Create BIG command has already been sent */
1563
conn = hci_conn_hash_lookup_per_adv_bis(hdev, dst, qos->bcast.big,
1564
qos->bcast.big);
1565
if (conn)
1566
return ERR_PTR(-EADDRINUSE);
1567
1568
/* Check BIS settings against other bound BISes, since all
1569
* BISes in a BIG must have the same value for all parameters
1570
*/
1571
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1572
1573
if (conn && (memcmp(qos, &conn->iso_qos, sizeof(*qos)) ||
1574
base_len != conn->le_per_adv_data_len ||
1575
memcmp(conn->le_per_adv_data, base, base_len)))
1576
return ERR_PTR(-EADDRINUSE);
1577
1578
conn = hci_conn_add_unset(hdev, BIS_LINK, dst, HCI_ROLE_MASTER);
1579
if (IS_ERR(conn))
1580
return conn;
1581
1582
conn->state = BT_CONNECT;
1583
conn->sid = sid;
1584
conn->conn_timeout = timeout;
1585
1586
hci_conn_hold(conn);
1587
return conn;
1588
}
1589
1590
/* This function requires the caller holds hdev->lock */
1591
struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1592
u8 dst_type, u8 sec_level,
1593
u16 conn_timeout,
1594
enum conn_reasons conn_reason)
1595
{
1596
struct hci_conn *conn;
1597
1598
/* Let's make sure that le is enabled.*/
1599
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1600
if (lmp_le_capable(hdev))
1601
return ERR_PTR(-ECONNREFUSED);
1602
1603
return ERR_PTR(-EOPNOTSUPP);
1604
}
1605
1606
/* Some devices send ATT messages as soon as the physical link is
1607
* established. To be able to handle these ATT messages, the user-
1608
* space first establishes the connection and then starts the pairing
1609
* process.
1610
*
1611
* So if a hci_conn object already exists for the following connection
1612
* attempt, we simply update pending_sec_level and auth_type fields
1613
* and return the object found.
1614
*/
1615
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1616
if (conn) {
1617
if (conn->pending_sec_level < sec_level)
1618
conn->pending_sec_level = sec_level;
1619
goto done;
1620
}
1621
1622
BT_DBG("requesting refresh of dst_addr");
1623
1624
conn = hci_conn_add_unset(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1625
if (IS_ERR(conn))
1626
return conn;
1627
1628
if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1629
hci_conn_del(conn);
1630
return ERR_PTR(-EBUSY);
1631
}
1632
1633
conn->state = BT_CONNECT;
1634
set_bit(HCI_CONN_SCANNING, &conn->flags);
1635
conn->dst_type = dst_type;
1636
conn->sec_level = BT_SECURITY_LOW;
1637
conn->pending_sec_level = sec_level;
1638
conn->conn_timeout = conn_timeout;
1639
conn->conn_reason = conn_reason;
1640
1641
hci_update_passive_scan(hdev);
1642
1643
done:
1644
hci_conn_hold(conn);
1645
return conn;
1646
}
1647
1648
struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1649
u8 sec_level, u8 auth_type,
1650
enum conn_reasons conn_reason, u16 timeout)
1651
{
1652
struct hci_conn *acl;
1653
1654
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1655
if (lmp_bredr_capable(hdev))
1656
return ERR_PTR(-ECONNREFUSED);
1657
1658
return ERR_PTR(-EOPNOTSUPP);
1659
}
1660
1661
/* Reject outgoing connection to device with same BD ADDR against
1662
* CVE-2020-26555
1663
*/
1664
if (!bacmp(&hdev->bdaddr, dst)) {
1665
bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n",
1666
dst);
1667
return ERR_PTR(-ECONNREFUSED);
1668
}
1669
1670
acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1671
if (!acl) {
1672
acl = hci_conn_add_unset(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1673
if (IS_ERR(acl))
1674
return acl;
1675
}
1676
1677
hci_conn_hold(acl);
1678
1679
acl->conn_reason = conn_reason;
1680
if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1681
int err;
1682
1683
acl->sec_level = BT_SECURITY_LOW;
1684
acl->pending_sec_level = sec_level;
1685
acl->auth_type = auth_type;
1686
acl->conn_timeout = timeout;
1687
1688
err = hci_connect_acl_sync(hdev, acl);
1689
if (err) {
1690
hci_conn_del(acl);
1691
return ERR_PTR(err);
1692
}
1693
}
1694
1695
return acl;
1696
}
1697
1698
static struct hci_link *hci_conn_link(struct hci_conn *parent,
1699
struct hci_conn *conn)
1700
{
1701
struct hci_dev *hdev = parent->hdev;
1702
struct hci_link *link;
1703
1704
bt_dev_dbg(hdev, "parent %p hcon %p", parent, conn);
1705
1706
if (conn->link)
1707
return conn->link;
1708
1709
if (conn->parent)
1710
return NULL;
1711
1712
link = kzalloc(sizeof(*link), GFP_KERNEL);
1713
if (!link)
1714
return NULL;
1715
1716
link->conn = hci_conn_hold(conn);
1717
conn->link = link;
1718
conn->parent = hci_conn_get(parent);
1719
1720
/* Use list_add_tail_rcu append to the list */
1721
list_add_tail_rcu(&link->list, &parent->link_list);
1722
1723
return link;
1724
}
1725
1726
struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1727
__u16 setting, struct bt_codec *codec,
1728
u16 timeout)
1729
{
1730
struct hci_conn *acl;
1731
struct hci_conn *sco;
1732
struct hci_link *link;
1733
1734
acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1735
CONN_REASON_SCO_CONNECT, timeout);
1736
if (IS_ERR(acl))
1737
return acl;
1738
1739
sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1740
if (!sco) {
1741
sco = hci_conn_add_unset(hdev, type, dst, HCI_ROLE_MASTER);
1742
if (IS_ERR(sco)) {
1743
hci_conn_drop(acl);
1744
return sco;
1745
}
1746
}
1747
1748
link = hci_conn_link(acl, sco);
1749
if (!link) {
1750
hci_conn_drop(acl);
1751
hci_conn_drop(sco);
1752
return ERR_PTR(-ENOLINK);
1753
}
1754
1755
sco->setting = setting;
1756
sco->codec = *codec;
1757
1758
if (acl->state == BT_CONNECTED &&
1759
(sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1760
set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1761
hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1762
1763
if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1764
/* defer SCO setup until mode change completed */
1765
set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1766
return sco;
1767
}
1768
1769
hci_sco_setup(acl, 0x00);
1770
}
1771
1772
return sco;
1773
}
1774
1775
static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos)
1776
{
1777
struct hci_dev *hdev = conn->hdev;
1778
struct hci_cp_le_create_big cp;
1779
struct iso_list_data data;
1780
1781
memset(&cp, 0, sizeof(cp));
1782
1783
data.big = qos->bcast.big;
1784
data.bis = qos->bcast.bis;
1785
data.count = 0;
1786
1787
/* Create a BIS for each bound connection */
1788
hci_conn_hash_list_state(hdev, bis_list, BIS_LINK,
1789
BT_BOUND, &data);
1790
1791
cp.handle = qos->bcast.big;
1792
cp.adv_handle = qos->bcast.bis;
1793
cp.num_bis = data.count;
1794
hci_cpu_to_le24(qos->bcast.out.interval, cp.bis.sdu_interval);
1795
cp.bis.sdu = cpu_to_le16(qos->bcast.out.sdu);
1796
cp.bis.latency = cpu_to_le16(qos->bcast.out.latency);
1797
cp.bis.rtn = qos->bcast.out.rtn;
1798
cp.bis.phy = qos->bcast.out.phy;
1799
cp.bis.packing = qos->bcast.packing;
1800
cp.bis.framing = qos->bcast.framing;
1801
cp.bis.encryption = qos->bcast.encryption;
1802
memcpy(cp.bis.bcode, qos->bcast.bcode, sizeof(cp.bis.bcode));
1803
1804
return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp);
1805
}
1806
1807
static int set_cig_params_sync(struct hci_dev *hdev, void *data)
1808
{
1809
DEFINE_FLEX(struct hci_cp_le_set_cig_params, pdu, cis, num_cis, 0x1f);
1810
u8 cig_id = PTR_UINT(data);
1811
struct hci_conn *conn;
1812
struct bt_iso_qos *qos;
1813
u8 aux_num_cis = 0;
1814
u8 cis_id;
1815
1816
conn = hci_conn_hash_lookup_cig(hdev, cig_id);
1817
if (!conn)
1818
return 0;
1819
1820
qos = &conn->iso_qos;
1821
pdu->cig_id = cig_id;
1822
hci_cpu_to_le24(qos->ucast.out.interval, pdu->c_interval);
1823
hci_cpu_to_le24(qos->ucast.in.interval, pdu->p_interval);
1824
pdu->sca = qos->ucast.sca;
1825
pdu->packing = qos->ucast.packing;
1826
pdu->framing = qos->ucast.framing;
1827
pdu->c_latency = cpu_to_le16(qos->ucast.out.latency);
1828
pdu->p_latency = cpu_to_le16(qos->ucast.in.latency);
1829
1830
/* Reprogram all CIS(s) with the same CIG, valid range are:
1831
* num_cis: 0x00 to 0x1F
1832
* cis_id: 0x00 to 0xEF
1833
*/
1834
for (cis_id = 0x00; cis_id < 0xf0 &&
1835
aux_num_cis < pdu->num_cis; cis_id++) {
1836
struct hci_cis_params *cis;
1837
1838
conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, cig_id, cis_id);
1839
if (!conn)
1840
continue;
1841
1842
qos = &conn->iso_qos;
1843
1844
cis = &pdu->cis[aux_num_cis++];
1845
cis->cis_id = cis_id;
1846
cis->c_sdu = cpu_to_le16(conn->iso_qos.ucast.out.sdu);
1847
cis->p_sdu = cpu_to_le16(conn->iso_qos.ucast.in.sdu);
1848
cis->c_phy = qos->ucast.out.phy ? qos->ucast.out.phy :
1849
qos->ucast.in.phy;
1850
cis->p_phy = qos->ucast.in.phy ? qos->ucast.in.phy :
1851
qos->ucast.out.phy;
1852
cis->c_rtn = qos->ucast.out.rtn;
1853
cis->p_rtn = qos->ucast.in.rtn;
1854
}
1855
pdu->num_cis = aux_num_cis;
1856
1857
if (!pdu->num_cis)
1858
return 0;
1859
1860
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_CIG_PARAMS,
1861
struct_size(pdu, cis, pdu->num_cis),
1862
pdu, HCI_CMD_TIMEOUT);
1863
}
1864
1865
static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos)
1866
{
1867
struct hci_dev *hdev = conn->hdev;
1868
struct iso_list_data data;
1869
1870
memset(&data, 0, sizeof(data));
1871
1872
/* Allocate first still reconfigurable CIG if not set */
1873
if (qos->ucast.cig == BT_ISO_QOS_CIG_UNSET) {
1874
for (data.cig = 0x00; data.cig < 0xf0; data.cig++) {
1875
data.count = 0;
1876
1877
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1878
BT_CONNECT, &data);
1879
if (data.count)
1880
continue;
1881
1882
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1883
BT_CONNECTED, &data);
1884
if (!data.count)
1885
break;
1886
}
1887
1888
if (data.cig == 0xf0)
1889
return false;
1890
1891
/* Update CIG */
1892
qos->ucast.cig = data.cig;
1893
}
1894
1895
if (qos->ucast.cis != BT_ISO_QOS_CIS_UNSET) {
1896
if (hci_conn_hash_lookup_cis(hdev, NULL, 0, qos->ucast.cig,
1897
qos->ucast.cis))
1898
return false;
1899
goto done;
1900
}
1901
1902
/* Allocate first available CIS if not set */
1903
for (data.cig = qos->ucast.cig, data.cis = 0x00; data.cis < 0xf0;
1904
data.cis++) {
1905
if (!hci_conn_hash_lookup_cis(hdev, NULL, 0, data.cig,
1906
data.cis)) {
1907
/* Update CIS */
1908
qos->ucast.cis = data.cis;
1909
break;
1910
}
1911
}
1912
1913
if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET)
1914
return false;
1915
1916
done:
1917
if (hci_cmd_sync_queue(hdev, set_cig_params_sync,
1918
UINT_PTR(qos->ucast.cig), NULL) < 0)
1919
return false;
1920
1921
return true;
1922
}
1923
1924
struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst,
1925
__u8 dst_type, struct bt_iso_qos *qos,
1926
u16 timeout)
1927
{
1928
struct hci_conn *cis;
1929
1930
cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type, qos->ucast.cig,
1931
qos->ucast.cis);
1932
if (!cis) {
1933
cis = hci_conn_add_unset(hdev, CIS_LINK, dst,
1934
HCI_ROLE_MASTER);
1935
if (IS_ERR(cis))
1936
return cis;
1937
cis->cleanup = cis_cleanup;
1938
cis->dst_type = dst_type;
1939
cis->iso_qos.ucast.cig = BT_ISO_QOS_CIG_UNSET;
1940
cis->iso_qos.ucast.cis = BT_ISO_QOS_CIS_UNSET;
1941
cis->conn_timeout = timeout;
1942
}
1943
1944
if (cis->state == BT_CONNECTED)
1945
return cis;
1946
1947
/* Check if CIS has been set and the settings matches */
1948
if (cis->state == BT_BOUND &&
1949
!memcmp(&cis->iso_qos, qos, sizeof(*qos)))
1950
return cis;
1951
1952
/* Update LINK PHYs according to QoS preference */
1953
cis->le_tx_phy = qos->ucast.out.phy;
1954
cis->le_rx_phy = qos->ucast.in.phy;
1955
1956
/* If output interval is not set use the input interval as it cannot be
1957
* 0x000000.
1958
*/
1959
if (!qos->ucast.out.interval)
1960
qos->ucast.out.interval = qos->ucast.in.interval;
1961
1962
/* If input interval is not set use the output interval as it cannot be
1963
* 0x000000.
1964
*/
1965
if (!qos->ucast.in.interval)
1966
qos->ucast.in.interval = qos->ucast.out.interval;
1967
1968
/* If output latency is not set use the input latency as it cannot be
1969
* 0x0000.
1970
*/
1971
if (!qos->ucast.out.latency)
1972
qos->ucast.out.latency = qos->ucast.in.latency;
1973
1974
/* If input latency is not set use the output latency as it cannot be
1975
* 0x0000.
1976
*/
1977
if (!qos->ucast.in.latency)
1978
qos->ucast.in.latency = qos->ucast.out.latency;
1979
1980
if (!hci_le_set_cig_params(cis, qos)) {
1981
hci_conn_drop(cis);
1982
return ERR_PTR(-EINVAL);
1983
}
1984
1985
hci_conn_hold(cis);
1986
1987
cis->iso_qos = *qos;
1988
cis->state = BT_BOUND;
1989
1990
return cis;
1991
}
1992
1993
bool hci_iso_setup_path(struct hci_conn *conn)
1994
{
1995
struct hci_dev *hdev = conn->hdev;
1996
struct hci_cp_le_setup_iso_path cmd;
1997
1998
memset(&cmd, 0, sizeof(cmd));
1999
2000
if (conn->iso_qos.ucast.out.sdu) {
2001
cmd.handle = cpu_to_le16(conn->handle);
2002
cmd.direction = 0x00; /* Input (Host to Controller) */
2003
cmd.path = 0x00; /* HCI path if enabled */
2004
cmd.codec = 0x03; /* Transparent Data */
2005
2006
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2007
&cmd) < 0)
2008
return false;
2009
}
2010
2011
if (conn->iso_qos.ucast.in.sdu) {
2012
cmd.handle = cpu_to_le16(conn->handle);
2013
cmd.direction = 0x01; /* Output (Controller to Host) */
2014
cmd.path = 0x00; /* HCI path if enabled */
2015
cmd.codec = 0x03; /* Transparent Data */
2016
2017
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2018
&cmd) < 0)
2019
return false;
2020
}
2021
2022
return true;
2023
}
2024
2025
int hci_conn_check_create_cis(struct hci_conn *conn)
2026
{
2027
if (conn->type != CIS_LINK)
2028
return -EINVAL;
2029
2030
if (!conn->parent || conn->parent->state != BT_CONNECTED ||
2031
conn->state != BT_CONNECT || HCI_CONN_HANDLE_UNSET(conn->handle))
2032
return 1;
2033
2034
return 0;
2035
}
2036
2037
static int hci_create_cis_sync(struct hci_dev *hdev, void *data)
2038
{
2039
return hci_le_create_cis_sync(hdev);
2040
}
2041
2042
int hci_le_create_cis_pending(struct hci_dev *hdev)
2043
{
2044
struct hci_conn *conn;
2045
bool pending = false;
2046
2047
rcu_read_lock();
2048
2049
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
2050
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) {
2051
rcu_read_unlock();
2052
return -EBUSY;
2053
}
2054
2055
if (!hci_conn_check_create_cis(conn))
2056
pending = true;
2057
}
2058
2059
rcu_read_unlock();
2060
2061
if (!pending)
2062
return 0;
2063
2064
/* Queue Create CIS */
2065
return hci_cmd_sync_queue(hdev, hci_create_cis_sync, NULL, NULL);
2066
}
2067
2068
static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn,
2069
struct bt_iso_io_qos *qos, __u8 phy)
2070
{
2071
/* Only set MTU if PHY is enabled */
2072
if (!qos->sdu && qos->phy)
2073
qos->sdu = conn->mtu;
2074
2075
/* Use the same PHY as ACL if set to any */
2076
if (qos->phy == BT_ISO_PHY_ANY)
2077
qos->phy = phy;
2078
2079
/* Use LE ACL connection interval if not set */
2080
if (!qos->interval)
2081
/* ACL interval unit in 1.25 ms to us */
2082
qos->interval = conn->le_conn_interval * 1250;
2083
2084
/* Use LE ACL connection latency if not set */
2085
if (!qos->latency)
2086
qos->latency = conn->le_conn_latency;
2087
}
2088
2089
static int create_big_sync(struct hci_dev *hdev, void *data)
2090
{
2091
struct hci_conn *conn = data;
2092
struct bt_iso_qos *qos = &conn->iso_qos;
2093
u16 interval, sync_interval = 0;
2094
u32 flags = 0;
2095
int err;
2096
2097
if (qos->bcast.out.phy == 0x02)
2098
flags |= MGMT_ADV_FLAG_SEC_2M;
2099
2100
/* Align intervals */
2101
interval = (qos->bcast.out.interval / 1250) * qos->bcast.sync_factor;
2102
2103
if (qos->bcast.bis)
2104
sync_interval = interval * 4;
2105
2106
err = hci_start_per_adv_sync(hdev, qos->bcast.bis, conn->sid,
2107
conn->le_per_adv_data_len,
2108
conn->le_per_adv_data, flags, interval,
2109
interval, sync_interval);
2110
if (err)
2111
return err;
2112
2113
return hci_le_create_big(conn, &conn->iso_qos);
2114
}
2115
2116
struct hci_conn *hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst,
2117
__u8 dst_type, __u8 sid,
2118
struct bt_iso_qos *qos)
2119
{
2120
struct hci_conn *conn;
2121
2122
bt_dev_dbg(hdev, "dst %pMR type %d sid %d", dst, dst_type, sid);
2123
2124
conn = hci_conn_add_unset(hdev, PA_LINK, dst, HCI_ROLE_SLAVE);
2125
if (IS_ERR(conn))
2126
return conn;
2127
2128
conn->iso_qos = *qos;
2129
conn->dst_type = dst_type;
2130
conn->sid = sid;
2131
conn->state = BT_LISTEN;
2132
conn->conn_timeout = msecs_to_jiffies(qos->bcast.sync_timeout * 10);
2133
2134
hci_conn_hold(conn);
2135
2136
hci_connect_pa_sync(hdev, conn);
2137
2138
return conn;
2139
}
2140
2141
int hci_conn_big_create_sync(struct hci_dev *hdev, struct hci_conn *hcon,
2142
struct bt_iso_qos *qos, __u16 sync_handle,
2143
__u8 num_bis, __u8 bis[])
2144
{
2145
int err;
2146
2147
if (num_bis < 0x01 || num_bis > ISO_MAX_NUM_BIS)
2148
return -EINVAL;
2149
2150
err = qos_set_big(hdev, qos);
2151
if (err)
2152
return err;
2153
2154
if (hcon) {
2155
/* Update hcon QoS */
2156
hcon->iso_qos = *qos;
2157
2158
hcon->num_bis = num_bis;
2159
memcpy(hcon->bis, bis, num_bis);
2160
hcon->conn_timeout = msecs_to_jiffies(qos->bcast.timeout * 10);
2161
}
2162
2163
return hci_connect_big_sync(hdev, hcon);
2164
}
2165
2166
static void create_big_complete(struct hci_dev *hdev, void *data, int err)
2167
{
2168
struct hci_conn *conn = data;
2169
2170
bt_dev_dbg(hdev, "conn %p", conn);
2171
2172
if (err) {
2173
bt_dev_err(hdev, "Unable to create BIG: %d", err);
2174
hci_connect_cfm(conn, err);
2175
hci_conn_del(conn);
2176
}
2177
}
2178
2179
struct hci_conn *hci_bind_bis(struct hci_dev *hdev, bdaddr_t *dst, __u8 sid,
2180
struct bt_iso_qos *qos,
2181
__u8 base_len, __u8 *base, u16 timeout)
2182
{
2183
struct hci_conn *conn;
2184
struct hci_conn *parent;
2185
__u8 eir[HCI_MAX_PER_AD_LENGTH];
2186
struct hci_link *link;
2187
2188
/* Look for any BIS that is open for rebinding */
2189
conn = hci_conn_hash_lookup_big_state(hdev, qos->bcast.big, BT_OPEN,
2190
HCI_ROLE_MASTER);
2191
if (conn) {
2192
memcpy(qos, &conn->iso_qos, sizeof(*qos));
2193
conn->state = BT_CONNECTED;
2194
return conn;
2195
}
2196
2197
if (base_len && base)
2198
base_len = eir_append_service_data(eir, 0, 0x1851,
2199
base, base_len);
2200
2201
/* We need hci_conn object using the BDADDR_ANY as dst */
2202
conn = hci_add_bis(hdev, dst, sid, qos, base_len, eir, timeout);
2203
if (IS_ERR(conn))
2204
return conn;
2205
2206
/* Update LINK PHYs according to QoS preference */
2207
conn->le_tx_phy = qos->bcast.out.phy;
2208
conn->le_tx_phy = qos->bcast.out.phy;
2209
2210
/* Add Basic Announcement into Peridic Adv Data if BASE is set */
2211
if (base_len && base) {
2212
memcpy(conn->le_per_adv_data, eir, sizeof(eir));
2213
conn->le_per_adv_data_len = base_len;
2214
}
2215
2216
hci_iso_qos_setup(hdev, conn, &qos->bcast.out,
2217
conn->le_tx_phy ? conn->le_tx_phy :
2218
hdev->le_tx_def_phys);
2219
2220
conn->iso_qos = *qos;
2221
conn->state = BT_BOUND;
2222
2223
/* Link BISes together */
2224
parent = hci_conn_hash_lookup_big(hdev,
2225
conn->iso_qos.bcast.big);
2226
if (parent && parent != conn) {
2227
link = hci_conn_link(parent, conn);
2228
hci_conn_drop(conn);
2229
if (!link)
2230
return ERR_PTR(-ENOLINK);
2231
}
2232
2233
return conn;
2234
}
2235
2236
static void bis_mark_per_adv(struct hci_conn *conn, void *data)
2237
{
2238
struct iso_list_data *d = data;
2239
2240
/* Skip if not broadcast/ANY address */
2241
if (bacmp(&conn->dst, BDADDR_ANY))
2242
return;
2243
2244
if (d->big != conn->iso_qos.bcast.big ||
2245
d->bis == BT_ISO_QOS_BIS_UNSET ||
2246
d->bis != conn->iso_qos.bcast.bis)
2247
return;
2248
2249
set_bit(HCI_CONN_PER_ADV, &conn->flags);
2250
}
2251
2252
struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst,
2253
__u8 dst_type, __u8 sid,
2254
struct bt_iso_qos *qos,
2255
__u8 base_len, __u8 *base, u16 timeout)
2256
{
2257
struct hci_conn *conn;
2258
int err;
2259
struct iso_list_data data;
2260
2261
conn = hci_bind_bis(hdev, dst, sid, qos, base_len, base, timeout);
2262
if (IS_ERR(conn))
2263
return conn;
2264
2265
if (conn->state == BT_CONNECTED)
2266
return conn;
2267
2268
/* Check if SID needs to be allocated then search for the first
2269
* available.
2270
*/
2271
if (conn->sid == HCI_SID_INVALID) {
2272
u8 sid;
2273
2274
for (sid = 0; sid <= 0x0f; sid++) {
2275
if (!hci_find_adv_sid(hdev, sid)) {
2276
conn->sid = sid;
2277
break;
2278
}
2279
}
2280
}
2281
2282
data.big = qos->bcast.big;
2283
data.bis = qos->bcast.bis;
2284
2285
/* Set HCI_CONN_PER_ADV for all bound connections, to mark that
2286
* the start periodic advertising and create BIG commands have
2287
* been queued
2288
*/
2289
hci_conn_hash_list_state(hdev, bis_mark_per_adv, BIS_LINK,
2290
BT_BOUND, &data);
2291
2292
/* Queue start periodic advertising and create BIG */
2293
err = hci_cmd_sync_queue(hdev, create_big_sync, conn,
2294
create_big_complete);
2295
if (err < 0) {
2296
hci_conn_drop(conn);
2297
return ERR_PTR(err);
2298
}
2299
2300
return conn;
2301
}
2302
2303
struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst,
2304
__u8 dst_type, struct bt_iso_qos *qos,
2305
u16 timeout)
2306
{
2307
struct hci_conn *le;
2308
struct hci_conn *cis;
2309
struct hci_link *link;
2310
2311
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2312
le = hci_connect_le(hdev, dst, dst_type, false,
2313
BT_SECURITY_LOW,
2314
HCI_LE_CONN_TIMEOUT,
2315
HCI_ROLE_SLAVE, 0, 0);
2316
else
2317
le = hci_connect_le_scan(hdev, dst, dst_type,
2318
BT_SECURITY_LOW,
2319
HCI_LE_CONN_TIMEOUT,
2320
CONN_REASON_ISO_CONNECT);
2321
if (IS_ERR(le))
2322
return le;
2323
2324
hci_iso_qos_setup(hdev, le, &qos->ucast.out,
2325
le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys);
2326
hci_iso_qos_setup(hdev, le, &qos->ucast.in,
2327
le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys);
2328
2329
cis = hci_bind_cis(hdev, dst, dst_type, qos, timeout);
2330
if (IS_ERR(cis)) {
2331
hci_conn_drop(le);
2332
return cis;
2333
}
2334
2335
link = hci_conn_link(le, cis);
2336
hci_conn_drop(cis);
2337
if (!link) {
2338
hci_conn_drop(le);
2339
return ERR_PTR(-ENOLINK);
2340
}
2341
2342
cis->state = BT_CONNECT;
2343
2344
hci_le_create_cis_pending(hdev);
2345
2346
return cis;
2347
}
2348
2349
/* Check link security requirement */
2350
int hci_conn_check_link_mode(struct hci_conn *conn)
2351
{
2352
BT_DBG("hcon %p", conn);
2353
2354
/* In Secure Connections Only mode, it is required that Secure
2355
* Connections is used and the link is encrypted with AES-CCM
2356
* using a P-256 authenticated combination key.
2357
*/
2358
if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
2359
if (!hci_conn_sc_enabled(conn) ||
2360
!test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
2361
conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
2362
return 0;
2363
}
2364
2365
/* AES encryption is required for Level 4:
2366
*
2367
* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
2368
* page 1319:
2369
*
2370
* 128-bit equivalent strength for link and encryption keys
2371
* required using FIPS approved algorithms (E0 not allowed,
2372
* SAFER+ not allowed, and P-192 not allowed; encryption key
2373
* not shortened)
2374
*/
2375
if (conn->sec_level == BT_SECURITY_FIPS &&
2376
!test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
2377
bt_dev_err(conn->hdev,
2378
"Invalid security: Missing AES-CCM usage");
2379
return 0;
2380
}
2381
2382
if (hci_conn_ssp_enabled(conn) &&
2383
!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2384
return 0;
2385
2386
return 1;
2387
}
2388
2389
/* Authenticate remote device */
2390
static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
2391
{
2392
BT_DBG("hcon %p", conn);
2393
2394
if (conn->pending_sec_level > sec_level)
2395
sec_level = conn->pending_sec_level;
2396
2397
if (sec_level > conn->sec_level)
2398
conn->pending_sec_level = sec_level;
2399
else if (test_bit(HCI_CONN_AUTH, &conn->flags))
2400
return 1;
2401
2402
/* Make sure we preserve an existing MITM requirement*/
2403
auth_type |= (conn->auth_type & 0x01);
2404
2405
conn->auth_type = auth_type;
2406
2407
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
2408
struct hci_cp_auth_requested cp;
2409
2410
cp.handle = cpu_to_le16(conn->handle);
2411
hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
2412
sizeof(cp), &cp);
2413
2414
/* Set the ENCRYPT_PEND to trigger encryption after
2415
* authentication.
2416
*/
2417
if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2418
set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
2419
}
2420
2421
return 0;
2422
}
2423
2424
/* Encrypt the link */
2425
static void hci_conn_encrypt(struct hci_conn *conn)
2426
{
2427
BT_DBG("hcon %p", conn);
2428
2429
if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
2430
struct hci_cp_set_conn_encrypt cp;
2431
cp.handle = cpu_to_le16(conn->handle);
2432
cp.encrypt = 0x01;
2433
hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
2434
&cp);
2435
}
2436
}
2437
2438
/* Enable security */
2439
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
2440
bool initiator)
2441
{
2442
BT_DBG("hcon %p", conn);
2443
2444
if (conn->type == LE_LINK)
2445
return smp_conn_security(conn, sec_level);
2446
2447
/* For sdp we don't need the link key. */
2448
if (sec_level == BT_SECURITY_SDP)
2449
return 1;
2450
2451
/* For non 2.1 devices and low security level we don't need the link
2452
key. */
2453
if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
2454
return 1;
2455
2456
/* For other security levels we need the link key. */
2457
if (!test_bit(HCI_CONN_AUTH, &conn->flags))
2458
goto auth;
2459
2460
switch (conn->key_type) {
2461
case HCI_LK_AUTH_COMBINATION_P256:
2462
/* An authenticated FIPS approved combination key has
2463
* sufficient security for security level 4 or lower.
2464
*/
2465
if (sec_level <= BT_SECURITY_FIPS)
2466
goto encrypt;
2467
break;
2468
case HCI_LK_AUTH_COMBINATION_P192:
2469
/* An authenticated combination key has sufficient security for
2470
* security level 3 or lower.
2471
*/
2472
if (sec_level <= BT_SECURITY_HIGH)
2473
goto encrypt;
2474
break;
2475
case HCI_LK_UNAUTH_COMBINATION_P192:
2476
case HCI_LK_UNAUTH_COMBINATION_P256:
2477
/* An unauthenticated combination key has sufficient security
2478
* for security level 2 or lower.
2479
*/
2480
if (sec_level <= BT_SECURITY_MEDIUM)
2481
goto encrypt;
2482
break;
2483
case HCI_LK_COMBINATION:
2484
/* A combination key has always sufficient security for the
2485
* security levels 2 or lower. High security level requires the
2486
* combination key is generated using maximum PIN code length
2487
* (16). For pre 2.1 units.
2488
*/
2489
if (sec_level <= BT_SECURITY_MEDIUM || conn->pin_length == 16)
2490
goto encrypt;
2491
break;
2492
default:
2493
break;
2494
}
2495
2496
auth:
2497
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
2498
return 0;
2499
2500
if (initiator)
2501
set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
2502
2503
if (!hci_conn_auth(conn, sec_level, auth_type))
2504
return 0;
2505
2506
encrypt:
2507
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
2508
/* Ensure that the encryption key size has been read,
2509
* otherwise stall the upper layer responses.
2510
*/
2511
if (!conn->enc_key_size)
2512
return 0;
2513
2514
/* Nothing else needed, all requirements are met */
2515
return 1;
2516
}
2517
2518
hci_conn_encrypt(conn);
2519
return 0;
2520
}
2521
EXPORT_SYMBOL(hci_conn_security);
2522
2523
/* Check secure link requirement */
2524
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
2525
{
2526
BT_DBG("hcon %p", conn);
2527
2528
/* Accept if non-secure or higher security level is required */
2529
if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
2530
return 1;
2531
2532
/* Accept if secure or higher security level is already present */
2533
if (conn->sec_level == BT_SECURITY_HIGH ||
2534
conn->sec_level == BT_SECURITY_FIPS)
2535
return 1;
2536
2537
/* Reject not secure link */
2538
return 0;
2539
}
2540
EXPORT_SYMBOL(hci_conn_check_secure);
2541
2542
/* Switch role */
2543
int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
2544
{
2545
BT_DBG("hcon %p", conn);
2546
2547
if (role == conn->role)
2548
return 1;
2549
2550
if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
2551
struct hci_cp_switch_role cp;
2552
bacpy(&cp.bdaddr, &conn->dst);
2553
cp.role = role;
2554
hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
2555
}
2556
2557
return 0;
2558
}
2559
EXPORT_SYMBOL(hci_conn_switch_role);
2560
2561
/* Enter active mode */
2562
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
2563
{
2564
struct hci_dev *hdev = conn->hdev;
2565
2566
BT_DBG("hcon %p mode %d", conn, conn->mode);
2567
2568
if (conn->mode != HCI_CM_SNIFF)
2569
goto timer;
2570
2571
if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
2572
goto timer;
2573
2574
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
2575
struct hci_cp_exit_sniff_mode cp;
2576
cp.handle = cpu_to_le16(conn->handle);
2577
hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
2578
}
2579
2580
timer:
2581
if (hdev->idle_timeout > 0)
2582
queue_delayed_work(hdev->workqueue, &conn->idle_work,
2583
msecs_to_jiffies(hdev->idle_timeout));
2584
}
2585
2586
/* Drop all connection on the device */
2587
void hci_conn_hash_flush(struct hci_dev *hdev)
2588
{
2589
struct list_head *head = &hdev->conn_hash.list;
2590
struct hci_conn *conn;
2591
2592
BT_DBG("hdev %s", hdev->name);
2593
2594
/* We should not traverse the list here, because hci_conn_del
2595
* can remove extra links, which may cause the list traversal
2596
* to hit items that have already been released.
2597
*/
2598
while ((conn = list_first_entry_or_null(head,
2599
struct hci_conn,
2600
list)) != NULL) {
2601
conn->state = BT_CLOSED;
2602
hci_disconn_cfm(conn, HCI_ERROR_LOCAL_HOST_TERM);
2603
hci_conn_del(conn);
2604
}
2605
}
2606
2607
static u32 get_link_mode(struct hci_conn *conn)
2608
{
2609
u32 link_mode = 0;
2610
2611
if (conn->role == HCI_ROLE_MASTER)
2612
link_mode |= HCI_LM_MASTER;
2613
2614
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2615
link_mode |= HCI_LM_ENCRYPT;
2616
2617
if (test_bit(HCI_CONN_AUTH, &conn->flags))
2618
link_mode |= HCI_LM_AUTH;
2619
2620
if (test_bit(HCI_CONN_SECURE, &conn->flags))
2621
link_mode |= HCI_LM_SECURE;
2622
2623
if (test_bit(HCI_CONN_FIPS, &conn->flags))
2624
link_mode |= HCI_LM_FIPS;
2625
2626
return link_mode;
2627
}
2628
2629
int hci_get_conn_list(void __user *arg)
2630
{
2631
struct hci_conn *c;
2632
struct hci_conn_list_req req, *cl;
2633
struct hci_conn_info *ci;
2634
struct hci_dev *hdev;
2635
int n = 0, size, err;
2636
2637
if (copy_from_user(&req, arg, sizeof(req)))
2638
return -EFAULT;
2639
2640
if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
2641
return -EINVAL;
2642
2643
size = sizeof(req) + req.conn_num * sizeof(*ci);
2644
2645
cl = kmalloc(size, GFP_KERNEL);
2646
if (!cl)
2647
return -ENOMEM;
2648
2649
hdev = hci_dev_get(req.dev_id);
2650
if (!hdev) {
2651
kfree(cl);
2652
return -ENODEV;
2653
}
2654
2655
ci = cl->conn_info;
2656
2657
hci_dev_lock(hdev);
2658
list_for_each_entry(c, &hdev->conn_hash.list, list) {
2659
bacpy(&(ci + n)->bdaddr, &c->dst);
2660
(ci + n)->handle = c->handle;
2661
(ci + n)->type = c->type;
2662
(ci + n)->out = c->out;
2663
(ci + n)->state = c->state;
2664
(ci + n)->link_mode = get_link_mode(c);
2665
if (++n >= req.conn_num)
2666
break;
2667
}
2668
hci_dev_unlock(hdev);
2669
2670
cl->dev_id = hdev->id;
2671
cl->conn_num = n;
2672
size = sizeof(req) + n * sizeof(*ci);
2673
2674
hci_dev_put(hdev);
2675
2676
err = copy_to_user(arg, cl, size);
2677
kfree(cl);
2678
2679
return err ? -EFAULT : 0;
2680
}
2681
2682
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
2683
{
2684
struct hci_conn_info_req req;
2685
struct hci_conn_info ci;
2686
struct hci_conn *conn;
2687
char __user *ptr = arg + sizeof(req);
2688
2689
if (copy_from_user(&req, arg, sizeof(req)))
2690
return -EFAULT;
2691
2692
hci_dev_lock(hdev);
2693
conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
2694
if (conn) {
2695
bacpy(&ci.bdaddr, &conn->dst);
2696
ci.handle = conn->handle;
2697
ci.type = conn->type;
2698
ci.out = conn->out;
2699
ci.state = conn->state;
2700
ci.link_mode = get_link_mode(conn);
2701
}
2702
hci_dev_unlock(hdev);
2703
2704
if (!conn)
2705
return -ENOENT;
2706
2707
return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
2708
}
2709
2710
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
2711
{
2712
struct hci_auth_info_req req;
2713
struct hci_conn *conn;
2714
2715
if (copy_from_user(&req, arg, sizeof(req)))
2716
return -EFAULT;
2717
2718
hci_dev_lock(hdev);
2719
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
2720
if (conn)
2721
req.type = conn->auth_type;
2722
hci_dev_unlock(hdev);
2723
2724
if (!conn)
2725
return -ENOENT;
2726
2727
return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
2728
}
2729
2730
struct hci_chan *hci_chan_create(struct hci_conn *conn)
2731
{
2732
struct hci_dev *hdev = conn->hdev;
2733
struct hci_chan *chan;
2734
2735
BT_DBG("%s hcon %p", hdev->name, conn);
2736
2737
if (test_bit(HCI_CONN_DROP, &conn->flags)) {
2738
BT_DBG("Refusing to create new hci_chan");
2739
return NULL;
2740
}
2741
2742
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2743
if (!chan)
2744
return NULL;
2745
2746
chan->conn = hci_conn_get(conn);
2747
skb_queue_head_init(&chan->data_q);
2748
chan->state = BT_CONNECTED;
2749
2750
list_add_rcu(&chan->list, &conn->chan_list);
2751
2752
return chan;
2753
}
2754
2755
void hci_chan_del(struct hci_chan *chan)
2756
{
2757
struct hci_conn *conn = chan->conn;
2758
struct hci_dev *hdev = conn->hdev;
2759
2760
BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
2761
2762
list_del_rcu(&chan->list);
2763
2764
synchronize_rcu();
2765
2766
/* Prevent new hci_chan's to be created for this hci_conn */
2767
set_bit(HCI_CONN_DROP, &conn->flags);
2768
2769
hci_conn_put(conn);
2770
2771
skb_queue_purge(&chan->data_q);
2772
kfree(chan);
2773
}
2774
2775
void hci_chan_list_flush(struct hci_conn *conn)
2776
{
2777
struct hci_chan *chan, *n;
2778
2779
BT_DBG("hcon %p", conn);
2780
2781
list_for_each_entry_safe(chan, n, &conn->chan_list, list)
2782
hci_chan_del(chan);
2783
}
2784
2785
static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
2786
__u16 handle)
2787
{
2788
struct hci_chan *hchan;
2789
2790
list_for_each_entry(hchan, &hcon->chan_list, list) {
2791
if (hchan->handle == handle)
2792
return hchan;
2793
}
2794
2795
return NULL;
2796
}
2797
2798
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
2799
{
2800
struct hci_conn_hash *h = &hdev->conn_hash;
2801
struct hci_conn *hcon;
2802
struct hci_chan *hchan = NULL;
2803
2804
rcu_read_lock();
2805
2806
list_for_each_entry_rcu(hcon, &h->list, list) {
2807
hchan = __hci_chan_lookup_handle(hcon, handle);
2808
if (hchan)
2809
break;
2810
}
2811
2812
rcu_read_unlock();
2813
2814
return hchan;
2815
}
2816
2817
u32 hci_conn_get_phy(struct hci_conn *conn)
2818
{
2819
u32 phys = 0;
2820
2821
/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
2822
* Table 6.2: Packets defined for synchronous, asynchronous, and
2823
* CPB logical transport types.
2824
*/
2825
switch (conn->type) {
2826
case SCO_LINK:
2827
/* SCO logical transport (1 Mb/s):
2828
* HV1, HV2, HV3 and DV.
2829
*/
2830
phys |= BT_PHY_BR_1M_1SLOT;
2831
2832
break;
2833
2834
case ACL_LINK:
2835
/* ACL logical transport (1 Mb/s) ptt=0:
2836
* DH1, DM3, DH3, DM5 and DH5.
2837
*/
2838
phys |= BT_PHY_BR_1M_1SLOT;
2839
2840
if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
2841
phys |= BT_PHY_BR_1M_3SLOT;
2842
2843
if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
2844
phys |= BT_PHY_BR_1M_5SLOT;
2845
2846
/* ACL logical transport (2 Mb/s) ptt=1:
2847
* 2-DH1, 2-DH3 and 2-DH5.
2848
*/
2849
if (!(conn->pkt_type & HCI_2DH1))
2850
phys |= BT_PHY_EDR_2M_1SLOT;
2851
2852
if (!(conn->pkt_type & HCI_2DH3))
2853
phys |= BT_PHY_EDR_2M_3SLOT;
2854
2855
if (!(conn->pkt_type & HCI_2DH5))
2856
phys |= BT_PHY_EDR_2M_5SLOT;
2857
2858
/* ACL logical transport (3 Mb/s) ptt=1:
2859
* 3-DH1, 3-DH3 and 3-DH5.
2860
*/
2861
if (!(conn->pkt_type & HCI_3DH1))
2862
phys |= BT_PHY_EDR_3M_1SLOT;
2863
2864
if (!(conn->pkt_type & HCI_3DH3))
2865
phys |= BT_PHY_EDR_3M_3SLOT;
2866
2867
if (!(conn->pkt_type & HCI_3DH5))
2868
phys |= BT_PHY_EDR_3M_5SLOT;
2869
2870
break;
2871
2872
case ESCO_LINK:
2873
/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
2874
phys |= BT_PHY_BR_1M_1SLOT;
2875
2876
if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
2877
phys |= BT_PHY_BR_1M_3SLOT;
2878
2879
/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
2880
if (!(conn->pkt_type & ESCO_2EV3))
2881
phys |= BT_PHY_EDR_2M_1SLOT;
2882
2883
if (!(conn->pkt_type & ESCO_2EV5))
2884
phys |= BT_PHY_EDR_2M_3SLOT;
2885
2886
/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
2887
if (!(conn->pkt_type & ESCO_3EV3))
2888
phys |= BT_PHY_EDR_3M_1SLOT;
2889
2890
if (!(conn->pkt_type & ESCO_3EV5))
2891
phys |= BT_PHY_EDR_3M_3SLOT;
2892
2893
break;
2894
2895
case LE_LINK:
2896
if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
2897
phys |= BT_PHY_LE_1M_TX;
2898
2899
if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
2900
phys |= BT_PHY_LE_1M_RX;
2901
2902
if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
2903
phys |= BT_PHY_LE_2M_TX;
2904
2905
if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
2906
phys |= BT_PHY_LE_2M_RX;
2907
2908
if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2909
phys |= BT_PHY_LE_CODED_TX;
2910
2911
if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2912
phys |= BT_PHY_LE_CODED_RX;
2913
2914
break;
2915
}
2916
2917
return phys;
2918
}
2919
2920
static int abort_conn_sync(struct hci_dev *hdev, void *data)
2921
{
2922
struct hci_conn *conn = data;
2923
2924
if (!hci_conn_valid(hdev, conn))
2925
return -ECANCELED;
2926
2927
return hci_abort_conn_sync(hdev, conn, conn->abort_reason);
2928
}
2929
2930
int hci_abort_conn(struct hci_conn *conn, u8 reason)
2931
{
2932
struct hci_dev *hdev = conn->hdev;
2933
2934
/* If abort_reason has already been set it means the connection is
2935
* already being aborted so don't attempt to overwrite it.
2936
*/
2937
if (conn->abort_reason)
2938
return 0;
2939
2940
bt_dev_dbg(hdev, "handle 0x%2.2x reason 0x%2.2x", conn->handle, reason);
2941
2942
conn->abort_reason = reason;
2943
2944
/* If the connection is pending check the command opcode since that
2945
* might be blocking on hci_cmd_sync_work while waiting its respective
2946
* event so we need to hci_cmd_sync_cancel to cancel it.
2947
*
2948
* hci_connect_le serializes the connection attempts so only one
2949
* connection can be in BT_CONNECT at time.
2950
*/
2951
if (conn->state == BT_CONNECT && hdev->req_status == HCI_REQ_PEND) {
2952
switch (hci_skb_event(hdev->sent_cmd)) {
2953
case HCI_EV_CONN_COMPLETE:
2954
case HCI_EV_LE_CONN_COMPLETE:
2955
case HCI_EV_LE_ENHANCED_CONN_COMPLETE:
2956
case HCI_EVT_LE_CIS_ESTABLISHED:
2957
hci_cmd_sync_cancel(hdev, ECANCELED);
2958
break;
2959
}
2960
/* Cancel connect attempt if still queued/pending */
2961
} else if (!hci_cancel_connect_sync(hdev, conn)) {
2962
return 0;
2963
}
2964
2965
/* Run immediately if on cmd_sync_work since this may be called
2966
* as a result to MGMT_OP_DISCONNECT/MGMT_OP_UNPAIR which does
2967
* already queue its callback on cmd_sync_work.
2968
*/
2969
return hci_cmd_sync_run_once(hdev, abort_conn_sync, conn, NULL);
2970
}
2971
2972
void hci_setup_tx_timestamp(struct sk_buff *skb, size_t key_offset,
2973
const struct sockcm_cookie *sockc)
2974
{
2975
struct sock *sk = skb ? skb->sk : NULL;
2976
int key;
2977
2978
/* This shall be called on a single skb of those generated by user
2979
* sendmsg(), and only when the sendmsg() does not return error to
2980
* user. This is required for keeping the tskey that increments here in
2981
* sync with possible sendmsg() counting by user.
2982
*
2983
* Stream sockets shall set key_offset to sendmsg() length in bytes
2984
* and call with the last fragment, others to 1 and first fragment.
2985
*/
2986
2987
if (!skb || !sockc || !sk || !key_offset)
2988
return;
2989
2990
sock_tx_timestamp(sk, sockc, &skb_shinfo(skb)->tx_flags);
2991
2992
if (sk->sk_type == SOCK_STREAM)
2993
key = atomic_add_return(key_offset, &sk->sk_tskey);
2994
2995
if (sockc->tsflags & SOF_TIMESTAMPING_OPT_ID &&
2996
sockc->tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2997
if (sockc->tsflags & SOCKCM_FLAG_TS_OPT_ID) {
2998
skb_shinfo(skb)->tskey = sockc->ts_opt_id;
2999
} else {
3000
if (sk->sk_type != SOCK_STREAM)
3001
key = atomic_inc_return(&sk->sk_tskey);
3002
skb_shinfo(skb)->tskey = key - 1;
3003
}
3004
}
3005
}
3006
3007
void hci_conn_tx_queue(struct hci_conn *conn, struct sk_buff *skb)
3008
{
3009
struct tx_queue *comp = &conn->tx_q;
3010
bool track = false;
3011
3012
/* Emit SND now, ie. just before sending to driver */
3013
if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3014
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SND);
3015
3016
/* COMPLETION tstamp is emitted for tracked skb later in Number of
3017
* Completed Packets event. Available only for flow controlled cases.
3018
*
3019
* TODO: SCO support without flowctl (needs to be done in drivers)
3020
*/
3021
switch (conn->type) {
3022
case CIS_LINK:
3023
case BIS_LINK:
3024
case PA_LINK:
3025
case ACL_LINK:
3026
case LE_LINK:
3027
break;
3028
case SCO_LINK:
3029
case ESCO_LINK:
3030
if (!hci_dev_test_flag(conn->hdev, HCI_SCO_FLOWCTL))
3031
return;
3032
break;
3033
default:
3034
return;
3035
}
3036
3037
if (skb->sk && (skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP))
3038
track = true;
3039
3040
/* If nothing is tracked, just count extra skbs at the queue head */
3041
if (!track && !comp->tracked) {
3042
comp->extra++;
3043
return;
3044
}
3045
3046
if (track) {
3047
skb = skb_clone_sk(skb);
3048
if (!skb)
3049
goto count_only;
3050
3051
comp->tracked++;
3052
} else {
3053
skb = skb_clone(skb, GFP_KERNEL);
3054
if (!skb)
3055
goto count_only;
3056
}
3057
3058
skb_queue_tail(&comp->queue, skb);
3059
return;
3060
3061
count_only:
3062
/* Stop tracking skbs, and only count. This will not emit timestamps for
3063
* the packets, but if we get here something is more seriously wrong.
3064
*/
3065
comp->tracked = 0;
3066
comp->extra += skb_queue_len(&comp->queue) + 1;
3067
skb_queue_purge(&comp->queue);
3068
}
3069
3070
void hci_conn_tx_dequeue(struct hci_conn *conn)
3071
{
3072
struct tx_queue *comp = &conn->tx_q;
3073
struct sk_buff *skb;
3074
3075
/* If there are tracked skbs, the counted extra go before dequeuing real
3076
* skbs, to keep ordering. When nothing is tracked, the ordering doesn't
3077
* matter so dequeue real skbs first to get rid of them ASAP.
3078
*/
3079
if (comp->extra && (comp->tracked || skb_queue_empty(&comp->queue))) {
3080
comp->extra--;
3081
return;
3082
}
3083
3084
skb = skb_dequeue(&comp->queue);
3085
if (!skb)
3086
return;
3087
3088
if (skb->sk) {
3089
comp->tracked--;
3090
__skb_tstamp_tx(skb, NULL, NULL, skb->sk,
3091
SCM_TSTAMP_COMPLETION);
3092
}
3093
3094
kfree_skb(skb);
3095
}
3096
3097
u8 *hci_conn_key_enc_size(struct hci_conn *conn)
3098
{
3099
if (conn->type == ACL_LINK) {
3100
struct link_key *key;
3101
3102
key = hci_find_link_key(conn->hdev, &conn->dst);
3103
if (!key)
3104
return NULL;
3105
3106
return &key->pin_len;
3107
} else if (conn->type == LE_LINK) {
3108
struct smp_ltk *ltk;
3109
3110
ltk = hci_find_ltk(conn->hdev, &conn->dst, conn->dst_type,
3111
conn->role);
3112
if (!ltk)
3113
return NULL;
3114
3115
return &ltk->enc_size;
3116
}
3117
3118
return NULL;
3119
}
3120
3121
int hci_ethtool_ts_info(unsigned int index, int sk_proto,
3122
struct kernel_ethtool_ts_info *info)
3123
{
3124
struct hci_dev *hdev;
3125
3126
hdev = hci_dev_get(index);
3127
if (!hdev)
3128
return -ENODEV;
3129
3130
info->so_timestamping =
3131
SOF_TIMESTAMPING_RX_SOFTWARE |
3132
SOF_TIMESTAMPING_SOFTWARE;
3133
info->phc_index = -1;
3134
info->tx_types = BIT(HWTSTAMP_TX_OFF);
3135
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
3136
3137
switch (sk_proto) {
3138
case BTPROTO_ISO:
3139
case BTPROTO_L2CAP:
3140
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3141
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3142
break;
3143
case BTPROTO_SCO:
3144
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3145
if (hci_dev_test_flag(hdev, HCI_SCO_FLOWCTL))
3146
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3147
break;
3148
}
3149
3150
hci_dev_put(hdev);
3151
return 0;
3152
}
3153
3154