Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/bluetooth/hci_sync.c
54335 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* BlueZ - Bluetooth protocol stack for Linux
4
*
5
* Copyright (C) 2021 Intel Corporation
6
* Copyright 2023 NXP
7
*/
8
9
#include <linux/property.h>
10
11
#include <net/bluetooth/bluetooth.h>
12
#include <net/bluetooth/hci_core.h>
13
#include <net/bluetooth/mgmt.h>
14
15
#include "hci_codec.h"
16
#include "hci_debugfs.h"
17
#include "smp.h"
18
#include "eir.h"
19
#include "msft.h"
20
#include "aosp.h"
21
#include "leds.h"
22
23
static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24
struct sk_buff *skb)
25
{
26
bt_dev_dbg(hdev, "result 0x%2.2x", result);
27
28
if (hdev->req_status != HCI_REQ_PEND)
29
return;
30
31
hdev->req_result = result;
32
hdev->req_status = HCI_REQ_DONE;
33
34
/* Free the request command so it is not used as response */
35
kfree_skb(hdev->req_skb);
36
hdev->req_skb = NULL;
37
38
if (skb) {
39
struct sock *sk = hci_skb_sk(skb);
40
41
/* Drop sk reference if set */
42
if (sk)
43
sock_put(sk);
44
45
hdev->req_rsp = skb_get(skb);
46
}
47
48
wake_up_interruptible(&hdev->req_wait_q);
49
}
50
51
struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen,
52
const void *param, struct sock *sk)
53
{
54
int len = HCI_COMMAND_HDR_SIZE + plen;
55
struct hci_command_hdr *hdr;
56
struct sk_buff *skb;
57
58
skb = bt_skb_alloc(len, GFP_ATOMIC);
59
if (!skb)
60
return NULL;
61
62
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
63
hdr->opcode = cpu_to_le16(opcode);
64
hdr->plen = plen;
65
66
if (plen)
67
skb_put_data(skb, param, plen);
68
69
bt_dev_dbg(hdev, "skb len %d", skb->len);
70
71
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
72
hci_skb_opcode(skb) = opcode;
73
74
/* Grab a reference if command needs to be associated with a sock (e.g.
75
* likely mgmt socket that initiated the command).
76
*/
77
if (sk) {
78
hci_skb_sk(skb) = sk;
79
sock_hold(sk);
80
}
81
82
return skb;
83
}
84
85
static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
86
const void *param, u8 event, struct sock *sk)
87
{
88
struct hci_dev *hdev = req->hdev;
89
struct sk_buff *skb;
90
91
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
92
93
/* If an error occurred during request building, there is no point in
94
* queueing the HCI command. We can simply return.
95
*/
96
if (req->err)
97
return;
98
99
skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
100
if (!skb) {
101
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
102
opcode);
103
req->err = -ENOMEM;
104
return;
105
}
106
107
if (skb_queue_empty(&req->cmd_q))
108
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
109
110
hci_skb_event(skb) = event;
111
112
skb_queue_tail(&req->cmd_q, skb);
113
}
114
115
static int hci_req_sync_run(struct hci_request *req)
116
{
117
struct hci_dev *hdev = req->hdev;
118
struct sk_buff *skb;
119
unsigned long flags;
120
121
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
122
123
/* If an error occurred during request building, remove all HCI
124
* commands queued on the HCI request queue.
125
*/
126
if (req->err) {
127
skb_queue_purge(&req->cmd_q);
128
return req->err;
129
}
130
131
/* Do not allow empty requests */
132
if (skb_queue_empty(&req->cmd_q))
133
return -ENODATA;
134
135
skb = skb_peek_tail(&req->cmd_q);
136
bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
137
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
138
139
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
140
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
141
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
142
143
queue_work(hdev->workqueue, &hdev->cmd_work);
144
145
return 0;
146
}
147
148
static void hci_request_init(struct hci_request *req, struct hci_dev *hdev)
149
{
150
skb_queue_head_init(&req->cmd_q);
151
req->hdev = hdev;
152
req->err = 0;
153
}
154
155
/* This function requires the caller holds hdev->req_lock. */
156
struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
157
const void *param, u8 event, u32 timeout,
158
struct sock *sk)
159
{
160
struct hci_request req;
161
struct sk_buff *skb;
162
int err = 0;
163
164
bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
165
166
hci_request_init(&req, hdev);
167
168
hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
169
170
hdev->req_status = HCI_REQ_PEND;
171
172
err = hci_req_sync_run(&req);
173
if (err < 0)
174
return ERR_PTR(err);
175
176
err = wait_event_interruptible_timeout(hdev->req_wait_q,
177
hdev->req_status != HCI_REQ_PEND,
178
timeout);
179
180
if (err == -ERESTARTSYS)
181
return ERR_PTR(-EINTR);
182
183
switch (hdev->req_status) {
184
case HCI_REQ_DONE:
185
err = -bt_to_errno(hdev->req_result);
186
break;
187
188
case HCI_REQ_CANCELED:
189
err = -hdev->req_result;
190
break;
191
192
default:
193
err = -ETIMEDOUT;
194
break;
195
}
196
197
hdev->req_status = 0;
198
hdev->req_result = 0;
199
skb = hdev->req_rsp;
200
hdev->req_rsp = NULL;
201
202
bt_dev_dbg(hdev, "end: err %d", err);
203
204
if (err < 0) {
205
kfree_skb(skb);
206
return ERR_PTR(err);
207
}
208
209
/* If command return a status event skb will be set to NULL as there are
210
* no parameters.
211
*/
212
if (!skb)
213
return ERR_PTR(-ENODATA);
214
215
return skb;
216
}
217
EXPORT_SYMBOL(__hci_cmd_sync_sk);
218
219
/* This function requires the caller holds hdev->req_lock. */
220
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
221
const void *param, u32 timeout)
222
{
223
return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
224
}
225
EXPORT_SYMBOL(__hci_cmd_sync);
226
227
/* Send HCI command and wait for command complete event */
228
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
229
const void *param, u32 timeout)
230
{
231
struct sk_buff *skb;
232
233
if (!test_bit(HCI_UP, &hdev->flags))
234
return ERR_PTR(-ENETDOWN);
235
236
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
237
238
hci_req_sync_lock(hdev);
239
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
240
hci_req_sync_unlock(hdev);
241
242
return skb;
243
}
244
EXPORT_SYMBOL(hci_cmd_sync);
245
246
/* This function requires the caller holds hdev->req_lock. */
247
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
248
const void *param, u8 event, u32 timeout)
249
{
250
return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
251
NULL);
252
}
253
EXPORT_SYMBOL(__hci_cmd_sync_ev);
254
255
/* This function requires the caller holds hdev->req_lock. */
256
int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
257
const void *param, u8 event, u32 timeout,
258
struct sock *sk)
259
{
260
struct sk_buff *skb;
261
u8 status;
262
263
skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
264
265
/* If command return a status event, skb will be set to -ENODATA */
266
if (skb == ERR_PTR(-ENODATA))
267
return 0;
268
269
if (IS_ERR(skb)) {
270
if (!event)
271
bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
272
PTR_ERR(skb));
273
return PTR_ERR(skb);
274
}
275
276
status = skb->data[0];
277
278
kfree_skb(skb);
279
280
return status;
281
}
282
EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
283
284
int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
285
const void *param, u32 timeout)
286
{
287
return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
288
NULL);
289
}
290
EXPORT_SYMBOL(__hci_cmd_sync_status);
291
292
int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
293
const void *param, u32 timeout)
294
{
295
int err;
296
297
hci_req_sync_lock(hdev);
298
err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout);
299
hci_req_sync_unlock(hdev);
300
301
return err;
302
}
303
EXPORT_SYMBOL(hci_cmd_sync_status);
304
305
static void hci_cmd_sync_work(struct work_struct *work)
306
{
307
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
308
309
bt_dev_dbg(hdev, "");
310
311
/* Dequeue all entries and run them */
312
while (1) {
313
struct hci_cmd_sync_work_entry *entry;
314
315
mutex_lock(&hdev->cmd_sync_work_lock);
316
entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
317
struct hci_cmd_sync_work_entry,
318
list);
319
if (entry)
320
list_del(&entry->list);
321
mutex_unlock(&hdev->cmd_sync_work_lock);
322
323
if (!entry)
324
break;
325
326
bt_dev_dbg(hdev, "entry %p", entry);
327
328
if (entry->func) {
329
int err;
330
331
hci_req_sync_lock(hdev);
332
err = entry->func(hdev, entry->data);
333
if (entry->destroy)
334
entry->destroy(hdev, entry->data, err);
335
hci_req_sync_unlock(hdev);
336
}
337
338
kfree(entry);
339
}
340
}
341
342
static void hci_cmd_sync_cancel_work(struct work_struct *work)
343
{
344
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
345
346
cancel_delayed_work_sync(&hdev->cmd_timer);
347
cancel_delayed_work_sync(&hdev->ncmd_timer);
348
atomic_set(&hdev->cmd_cnt, 1);
349
350
wake_up_interruptible(&hdev->req_wait_q);
351
}
352
353
static int hci_scan_disable_sync(struct hci_dev *hdev);
354
static int scan_disable_sync(struct hci_dev *hdev, void *data)
355
{
356
return hci_scan_disable_sync(hdev);
357
}
358
359
static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
360
{
361
return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0);
362
}
363
364
static void le_scan_disable(struct work_struct *work)
365
{
366
struct hci_dev *hdev = container_of(work, struct hci_dev,
367
le_scan_disable.work);
368
int status;
369
370
bt_dev_dbg(hdev, "");
371
hci_dev_lock(hdev);
372
373
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
374
goto _return;
375
376
status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
377
if (status) {
378
bt_dev_err(hdev, "failed to disable LE scan: %d", status);
379
goto _return;
380
}
381
382
/* If we were running LE only scan, change discovery state. If
383
* we were running both LE and BR/EDR inquiry simultaneously,
384
* and BR/EDR inquiry is already finished, stop discovery,
385
* otherwise BR/EDR inquiry will stop discovery when finished.
386
* If we will resolve remote device name, do not change
387
* discovery state.
388
*/
389
390
if (hdev->discovery.type == DISCOV_TYPE_LE)
391
goto discov_stopped;
392
393
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
394
goto _return;
395
396
if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) {
397
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
398
hdev->discovery.state != DISCOVERY_RESOLVING)
399
goto discov_stopped;
400
401
goto _return;
402
}
403
404
status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
405
if (status) {
406
bt_dev_err(hdev, "inquiry failed: status %d", status);
407
goto discov_stopped;
408
}
409
410
goto _return;
411
412
discov_stopped:
413
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
414
415
_return:
416
hci_dev_unlock(hdev);
417
}
418
419
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
420
u8 filter_dup);
421
422
static int reenable_adv_sync(struct hci_dev *hdev, void *data)
423
{
424
bt_dev_dbg(hdev, "");
425
426
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
427
list_empty(&hdev->adv_instances))
428
return 0;
429
430
if (hdev->cur_adv_instance) {
431
return hci_schedule_adv_instance_sync(hdev,
432
hdev->cur_adv_instance,
433
true);
434
} else {
435
if (ext_adv_capable(hdev)) {
436
hci_start_ext_adv_sync(hdev, 0x00);
437
} else {
438
hci_update_adv_data_sync(hdev, 0x00);
439
hci_update_scan_rsp_data_sync(hdev, 0x00);
440
hci_enable_advertising_sync(hdev);
441
}
442
}
443
444
return 0;
445
}
446
447
static void reenable_adv(struct work_struct *work)
448
{
449
struct hci_dev *hdev = container_of(work, struct hci_dev,
450
reenable_adv_work);
451
int status;
452
453
bt_dev_dbg(hdev, "");
454
455
hci_dev_lock(hdev);
456
457
status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
458
if (status)
459
bt_dev_err(hdev, "failed to reenable ADV: %d", status);
460
461
hci_dev_unlock(hdev);
462
}
463
464
static void cancel_adv_timeout(struct hci_dev *hdev)
465
{
466
if (hdev->adv_instance_timeout) {
467
hdev->adv_instance_timeout = 0;
468
cancel_delayed_work(&hdev->adv_instance_expire);
469
}
470
}
471
472
/* For a single instance:
473
* - force == true: The instance will be removed even when its remaining
474
* lifetime is not zero.
475
* - force == false: the instance will be deactivated but kept stored unless
476
* the remaining lifetime is zero.
477
*
478
* For instance == 0x00:
479
* - force == true: All instances will be removed regardless of their timeout
480
* setting.
481
* - force == false: Only instances that have a timeout will be removed.
482
*/
483
int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
484
u8 instance, bool force)
485
{
486
struct adv_info *adv_instance, *n, *next_instance = NULL;
487
int err;
488
u8 rem_inst;
489
490
/* Cancel any timeout concerning the removed instance(s). */
491
if (!instance || hdev->cur_adv_instance == instance)
492
cancel_adv_timeout(hdev);
493
494
/* Get the next instance to advertise BEFORE we remove
495
* the current one. This can be the same instance again
496
* if there is only one instance.
497
*/
498
if (instance && hdev->cur_adv_instance == instance)
499
next_instance = hci_get_next_instance(hdev, instance);
500
501
if (instance == 0x00) {
502
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
503
list) {
504
if (!(force || adv_instance->timeout))
505
continue;
506
507
rem_inst = adv_instance->instance;
508
err = hci_remove_adv_instance(hdev, rem_inst);
509
if (!err)
510
mgmt_advertising_removed(sk, hdev, rem_inst);
511
}
512
} else {
513
adv_instance = hci_find_adv_instance(hdev, instance);
514
515
if (force || (adv_instance && adv_instance->timeout &&
516
!adv_instance->remaining_time)) {
517
/* Don't advertise a removed instance. */
518
if (next_instance &&
519
next_instance->instance == instance)
520
next_instance = NULL;
521
522
err = hci_remove_adv_instance(hdev, instance);
523
if (!err)
524
mgmt_advertising_removed(sk, hdev, instance);
525
}
526
}
527
528
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
529
return 0;
530
531
if (next_instance && !ext_adv_capable(hdev))
532
return hci_schedule_adv_instance_sync(hdev,
533
next_instance->instance,
534
false);
535
536
return 0;
537
}
538
539
static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
540
{
541
u8 instance = *(u8 *)data;
542
543
kfree(data);
544
545
hci_clear_adv_instance_sync(hdev, NULL, instance, false);
546
547
if (list_empty(&hdev->adv_instances))
548
return hci_disable_advertising_sync(hdev);
549
550
return 0;
551
}
552
553
static void adv_timeout_expire(struct work_struct *work)
554
{
555
u8 *inst_ptr;
556
struct hci_dev *hdev = container_of(work, struct hci_dev,
557
adv_instance_expire.work);
558
559
bt_dev_dbg(hdev, "");
560
561
hci_dev_lock(hdev);
562
563
hdev->adv_instance_timeout = 0;
564
565
if (hdev->cur_adv_instance == 0x00)
566
goto unlock;
567
568
inst_ptr = kmalloc(1, GFP_KERNEL);
569
if (!inst_ptr)
570
goto unlock;
571
572
*inst_ptr = hdev->cur_adv_instance;
573
hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
574
575
unlock:
576
hci_dev_unlock(hdev);
577
}
578
579
static bool is_interleave_scanning(struct hci_dev *hdev)
580
{
581
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
582
}
583
584
static int hci_passive_scan_sync(struct hci_dev *hdev);
585
586
static void interleave_scan_work(struct work_struct *work)
587
{
588
struct hci_dev *hdev = container_of(work, struct hci_dev,
589
interleave_scan.work);
590
unsigned long timeout;
591
592
if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
593
timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
594
} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
595
timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
596
} else {
597
bt_dev_err(hdev, "unexpected error");
598
return;
599
}
600
601
hci_passive_scan_sync(hdev);
602
603
hci_dev_lock(hdev);
604
605
switch (hdev->interleave_scan_state) {
606
case INTERLEAVE_SCAN_ALLOWLIST:
607
bt_dev_dbg(hdev, "next state: allowlist");
608
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
609
break;
610
case INTERLEAVE_SCAN_NO_FILTER:
611
bt_dev_dbg(hdev, "next state: no filter");
612
hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
613
break;
614
case INTERLEAVE_SCAN_NONE:
615
bt_dev_err(hdev, "unexpected error");
616
}
617
618
hci_dev_unlock(hdev);
619
620
/* Don't continue interleaving if it was canceled */
621
if (is_interleave_scanning(hdev))
622
queue_delayed_work(hdev->req_workqueue,
623
&hdev->interleave_scan, timeout);
624
}
625
626
void hci_cmd_sync_init(struct hci_dev *hdev)
627
{
628
INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
629
INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
630
mutex_init(&hdev->cmd_sync_work_lock);
631
mutex_init(&hdev->unregister_lock);
632
633
INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
634
INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
635
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
636
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
637
INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
638
}
639
640
static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
641
struct hci_cmd_sync_work_entry *entry,
642
int err)
643
{
644
if (entry->destroy)
645
entry->destroy(hdev, entry->data, err);
646
647
list_del(&entry->list);
648
kfree(entry);
649
}
650
651
void hci_cmd_sync_clear(struct hci_dev *hdev)
652
{
653
struct hci_cmd_sync_work_entry *entry, *tmp;
654
655
cancel_work_sync(&hdev->cmd_sync_work);
656
cancel_work_sync(&hdev->reenable_adv_work);
657
658
mutex_lock(&hdev->cmd_sync_work_lock);
659
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list)
660
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
661
mutex_unlock(&hdev->cmd_sync_work_lock);
662
}
663
664
void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
665
{
666
bt_dev_dbg(hdev, "err 0x%2.2x", err);
667
668
if (hdev->req_status == HCI_REQ_PEND) {
669
hdev->req_result = err;
670
hdev->req_status = HCI_REQ_CANCELED;
671
672
queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
673
}
674
}
675
EXPORT_SYMBOL(hci_cmd_sync_cancel);
676
677
/* Cancel ongoing command request synchronously:
678
*
679
* - Set result and mark status to HCI_REQ_CANCELED
680
* - Wakeup command sync thread
681
*/
682
void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
683
{
684
bt_dev_dbg(hdev, "err 0x%2.2x", err);
685
686
if (hdev->req_status == HCI_REQ_PEND) {
687
/* req_result is __u32 so error must be positive to be properly
688
* propagated.
689
*/
690
hdev->req_result = err < 0 ? -err : err;
691
hdev->req_status = HCI_REQ_CANCELED;
692
693
wake_up_interruptible(&hdev->req_wait_q);
694
}
695
}
696
EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
697
698
/* Submit HCI command to be run in as cmd_sync_work:
699
*
700
* - hdev must _not_ be unregistered
701
*/
702
int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
703
void *data, hci_cmd_sync_work_destroy_t destroy)
704
{
705
struct hci_cmd_sync_work_entry *entry;
706
int err = 0;
707
708
mutex_lock(&hdev->unregister_lock);
709
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
710
err = -ENODEV;
711
goto unlock;
712
}
713
714
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
715
if (!entry) {
716
err = -ENOMEM;
717
goto unlock;
718
}
719
entry->func = func;
720
entry->data = data;
721
entry->destroy = destroy;
722
723
mutex_lock(&hdev->cmd_sync_work_lock);
724
list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
725
mutex_unlock(&hdev->cmd_sync_work_lock);
726
727
queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
728
729
unlock:
730
mutex_unlock(&hdev->unregister_lock);
731
return err;
732
}
733
EXPORT_SYMBOL(hci_cmd_sync_submit);
734
735
/* Queue HCI command:
736
*
737
* - hdev must be running
738
*/
739
int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
740
void *data, hci_cmd_sync_work_destroy_t destroy)
741
{
742
/* Only queue command if hdev is running which means it had been opened
743
* and is either on init phase or is already up.
744
*/
745
if (!test_bit(HCI_RUNNING, &hdev->flags))
746
return -ENETDOWN;
747
748
return hci_cmd_sync_submit(hdev, func, data, destroy);
749
}
750
EXPORT_SYMBOL(hci_cmd_sync_queue);
751
752
static struct hci_cmd_sync_work_entry *
753
_hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
754
void *data, hci_cmd_sync_work_destroy_t destroy)
755
{
756
struct hci_cmd_sync_work_entry *entry, *tmp;
757
758
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
759
if (func && entry->func != func)
760
continue;
761
762
if (data && entry->data != data)
763
continue;
764
765
if (destroy && entry->destroy != destroy)
766
continue;
767
768
return entry;
769
}
770
771
return NULL;
772
}
773
774
/* Queue HCI command entry once:
775
*
776
* - Lookup if an entry already exist and only if it doesn't creates a new entry
777
* and queue it.
778
*/
779
int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
780
void *data, hci_cmd_sync_work_destroy_t destroy)
781
{
782
if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
783
return 0;
784
785
return hci_cmd_sync_queue(hdev, func, data, destroy);
786
}
787
EXPORT_SYMBOL(hci_cmd_sync_queue_once);
788
789
/* Run HCI command:
790
*
791
* - hdev must be running
792
* - if on cmd_sync_work then run immediately otherwise queue
793
*/
794
int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
795
void *data, hci_cmd_sync_work_destroy_t destroy)
796
{
797
/* Only queue command if hdev is running which means it had been opened
798
* and is either on init phase or is already up.
799
*/
800
if (!test_bit(HCI_RUNNING, &hdev->flags))
801
return -ENETDOWN;
802
803
/* If on cmd_sync_work then run immediately otherwise queue */
804
if (current_work() == &hdev->cmd_sync_work)
805
return func(hdev, data);
806
807
return hci_cmd_sync_submit(hdev, func, data, destroy);
808
}
809
EXPORT_SYMBOL(hci_cmd_sync_run);
810
811
/* Run HCI command entry once:
812
*
813
* - Lookup if an entry already exist and only if it doesn't creates a new entry
814
* and run it.
815
* - if on cmd_sync_work then run immediately otherwise queue
816
*/
817
int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
818
void *data, hci_cmd_sync_work_destroy_t destroy)
819
{
820
if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
821
return 0;
822
823
return hci_cmd_sync_run(hdev, func, data, destroy);
824
}
825
EXPORT_SYMBOL(hci_cmd_sync_run_once);
826
827
/* Lookup HCI command entry:
828
*
829
* - Return first entry that matches by function callback or data or
830
* destroy callback.
831
*/
832
struct hci_cmd_sync_work_entry *
833
hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
834
void *data, hci_cmd_sync_work_destroy_t destroy)
835
{
836
struct hci_cmd_sync_work_entry *entry;
837
838
mutex_lock(&hdev->cmd_sync_work_lock);
839
entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
840
mutex_unlock(&hdev->cmd_sync_work_lock);
841
842
return entry;
843
}
844
EXPORT_SYMBOL(hci_cmd_sync_lookup_entry);
845
846
/* Cancel HCI command entry */
847
void hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
848
struct hci_cmd_sync_work_entry *entry)
849
{
850
mutex_lock(&hdev->cmd_sync_work_lock);
851
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
852
mutex_unlock(&hdev->cmd_sync_work_lock);
853
}
854
EXPORT_SYMBOL(hci_cmd_sync_cancel_entry);
855
856
/* Dequeue one HCI command entry:
857
*
858
* - Lookup and cancel first entry that matches.
859
*/
860
bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev,
861
hci_cmd_sync_work_func_t func,
862
void *data, hci_cmd_sync_work_destroy_t destroy)
863
{
864
struct hci_cmd_sync_work_entry *entry;
865
866
mutex_lock(&hdev->cmd_sync_work_lock);
867
868
entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
869
if (!entry) {
870
mutex_unlock(&hdev->cmd_sync_work_lock);
871
return false;
872
}
873
874
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
875
876
mutex_unlock(&hdev->cmd_sync_work_lock);
877
878
return true;
879
}
880
EXPORT_SYMBOL(hci_cmd_sync_dequeue_once);
881
882
/* Dequeue HCI command entry:
883
*
884
* - Lookup and cancel any entry that matches by function callback or data or
885
* destroy callback.
886
*/
887
bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
888
void *data, hci_cmd_sync_work_destroy_t destroy)
889
{
890
struct hci_cmd_sync_work_entry *entry;
891
bool ret = false;
892
893
mutex_lock(&hdev->cmd_sync_work_lock);
894
while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data,
895
destroy))) {
896
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
897
ret = true;
898
}
899
mutex_unlock(&hdev->cmd_sync_work_lock);
900
901
return ret;
902
}
903
EXPORT_SYMBOL(hci_cmd_sync_dequeue);
904
905
int hci_update_eir_sync(struct hci_dev *hdev)
906
{
907
struct hci_cp_write_eir cp;
908
909
bt_dev_dbg(hdev, "");
910
911
if (!hdev_is_powered(hdev))
912
return 0;
913
914
if (!lmp_ext_inq_capable(hdev))
915
return 0;
916
917
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
918
return 0;
919
920
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
921
return 0;
922
923
memset(&cp, 0, sizeof(cp));
924
925
eir_create(hdev, cp.data);
926
927
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
928
return 0;
929
930
memcpy(hdev->eir, cp.data, sizeof(cp.data));
931
932
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
933
HCI_CMD_TIMEOUT);
934
}
935
936
static u8 get_service_classes(struct hci_dev *hdev)
937
{
938
struct bt_uuid *uuid;
939
u8 val = 0;
940
941
list_for_each_entry(uuid, &hdev->uuids, list)
942
val |= uuid->svc_hint;
943
944
return val;
945
}
946
947
int hci_update_class_sync(struct hci_dev *hdev)
948
{
949
u8 cod[3];
950
951
bt_dev_dbg(hdev, "");
952
953
if (!hdev_is_powered(hdev))
954
return 0;
955
956
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
957
return 0;
958
959
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
960
return 0;
961
962
cod[0] = hdev->minor_class;
963
cod[1] = hdev->major_class;
964
cod[2] = get_service_classes(hdev);
965
966
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
967
cod[1] |= 0x20;
968
969
if (memcmp(cod, hdev->dev_class, 3) == 0)
970
return 0;
971
972
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
973
sizeof(cod), cod, HCI_CMD_TIMEOUT);
974
}
975
976
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
977
{
978
/* If there is no connection we are OK to advertise. */
979
if (hci_conn_num(hdev, LE_LINK) == 0)
980
return true;
981
982
/* Check le_states if there is any connection in peripheral role. */
983
if (hdev->conn_hash.le_num_peripheral > 0) {
984
/* Peripheral connection state and non connectable mode
985
* bit 20.
986
*/
987
if (!connectable && !(hdev->le_states[2] & 0x10))
988
return false;
989
990
/* Peripheral connection state and connectable mode bit 38
991
* and scannable bit 21.
992
*/
993
if (connectable && (!(hdev->le_states[4] & 0x40) ||
994
!(hdev->le_states[2] & 0x20)))
995
return false;
996
}
997
998
/* Check le_states if there is any connection in central role. */
999
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
1000
/* Central connection state and non connectable mode bit 18. */
1001
if (!connectable && !(hdev->le_states[2] & 0x02))
1002
return false;
1003
1004
/* Central connection state and connectable mode bit 35 and
1005
* scannable 19.
1006
*/
1007
if (connectable && (!(hdev->le_states[4] & 0x08) ||
1008
!(hdev->le_states[2] & 0x08)))
1009
return false;
1010
}
1011
1012
return true;
1013
}
1014
1015
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1016
{
1017
/* If privacy is not enabled don't use RPA */
1018
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1019
return false;
1020
1021
/* If basic privacy mode is enabled use RPA */
1022
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1023
return true;
1024
1025
/* If limited privacy mode is enabled don't use RPA if we're
1026
* both discoverable and bondable.
1027
*/
1028
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1029
hci_dev_test_flag(hdev, HCI_BONDABLE))
1030
return false;
1031
1032
/* We're neither bondable nor discoverable in the limited
1033
* privacy mode, therefore use RPA.
1034
*/
1035
return true;
1036
}
1037
1038
static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
1039
{
1040
/* If a random_addr has been set we're advertising or initiating an LE
1041
* connection we can't go ahead and change the random address at this
1042
* time. This is because the eventual initiator address used for the
1043
* subsequently created connection will be undefined (some
1044
* controllers use the new address and others the one we had
1045
* when the operation started).
1046
*
1047
* In this kind of scenario skip the update and let the random
1048
* address be updated at the next cycle.
1049
*/
1050
if (bacmp(&hdev->random_addr, BDADDR_ANY) &&
1051
(hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1052
hci_lookup_le_connect(hdev))) {
1053
bt_dev_dbg(hdev, "Deferring random address update");
1054
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1055
return 0;
1056
}
1057
1058
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
1059
6, rpa, HCI_CMD_TIMEOUT);
1060
}
1061
1062
int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
1063
bool rpa, u8 *own_addr_type)
1064
{
1065
int err;
1066
1067
/* If privacy is enabled use a resolvable private address. If
1068
* current RPA has expired or there is something else than
1069
* the current RPA in use, then generate a new one.
1070
*/
1071
if (rpa) {
1072
/* If Controller supports LL Privacy use own address type is
1073
* 0x03
1074
*/
1075
if (ll_privacy_capable(hdev))
1076
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
1077
else
1078
*own_addr_type = ADDR_LE_DEV_RANDOM;
1079
1080
/* Check if RPA is valid */
1081
if (rpa_valid(hdev))
1082
return 0;
1083
1084
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1085
if (err < 0) {
1086
bt_dev_err(hdev, "failed to generate new RPA");
1087
return err;
1088
}
1089
1090
err = hci_set_random_addr_sync(hdev, &hdev->rpa);
1091
if (err)
1092
return err;
1093
1094
return 0;
1095
}
1096
1097
/* In case of required privacy without resolvable private address,
1098
* use an non-resolvable private address. This is useful for active
1099
* scanning and non-connectable advertising.
1100
*/
1101
if (require_privacy) {
1102
bdaddr_t nrpa;
1103
1104
while (true) {
1105
/* The non-resolvable private address is generated
1106
* from random six bytes with the two most significant
1107
* bits cleared.
1108
*/
1109
get_random_bytes(&nrpa, 6);
1110
nrpa.b[5] &= 0x3f;
1111
1112
/* The non-resolvable private address shall not be
1113
* equal to the public address.
1114
*/
1115
if (bacmp(&hdev->bdaddr, &nrpa))
1116
break;
1117
}
1118
1119
*own_addr_type = ADDR_LE_DEV_RANDOM;
1120
1121
return hci_set_random_addr_sync(hdev, &nrpa);
1122
}
1123
1124
/* If forcing static address is in use or there is no public
1125
* address use the static address as random address (but skip
1126
* the HCI command if the current random address is already the
1127
* static one.
1128
*
1129
* In case BR/EDR has been disabled on a dual-mode controller
1130
* and a static address has been configured, then use that
1131
* address instead of the public BR/EDR address.
1132
*/
1133
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1134
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1135
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1136
bacmp(&hdev->static_addr, BDADDR_ANY))) {
1137
*own_addr_type = ADDR_LE_DEV_RANDOM;
1138
if (bacmp(&hdev->static_addr, &hdev->random_addr))
1139
return hci_set_random_addr_sync(hdev,
1140
&hdev->static_addr);
1141
return 0;
1142
}
1143
1144
/* Neither privacy nor static address is being used so use a
1145
* public address.
1146
*/
1147
*own_addr_type = ADDR_LE_DEV_PUBLIC;
1148
1149
return 0;
1150
}
1151
1152
static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1153
{
1154
struct hci_cp_le_set_ext_adv_enable *cp;
1155
struct hci_cp_ext_adv_set *set;
1156
u8 data[sizeof(*cp) + sizeof(*set) * 1];
1157
u8 size;
1158
struct adv_info *adv = NULL;
1159
1160
/* If request specifies an instance that doesn't exist, fail */
1161
if (instance > 0) {
1162
adv = hci_find_adv_instance(hdev, instance);
1163
if (!adv)
1164
return -EINVAL;
1165
1166
/* If not enabled there is nothing to do */
1167
if (!adv->enabled)
1168
return 0;
1169
}
1170
1171
memset(data, 0, sizeof(data));
1172
1173
cp = (void *)data;
1174
set = (void *)cp->data;
1175
1176
/* Instance 0x00 indicates all advertising instances will be disabled */
1177
cp->num_of_sets = !!instance;
1178
cp->enable = 0x00;
1179
1180
set->handle = adv ? adv->handle : instance;
1181
1182
size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1183
1184
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1185
size, data, HCI_CMD_TIMEOUT);
1186
}
1187
1188
static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1189
bdaddr_t *random_addr)
1190
{
1191
struct hci_cp_le_set_adv_set_rand_addr cp;
1192
int err;
1193
1194
if (!instance) {
1195
/* Instance 0x00 doesn't have an adv_info, instead it uses
1196
* hdev->random_addr to track its address so whenever it needs
1197
* to be updated this also set the random address since
1198
* hdev->random_addr is shared with scan state machine.
1199
*/
1200
err = hci_set_random_addr_sync(hdev, random_addr);
1201
if (err)
1202
return err;
1203
}
1204
1205
memset(&cp, 0, sizeof(cp));
1206
1207
cp.handle = instance;
1208
bacpy(&cp.bdaddr, random_addr);
1209
1210
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1211
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1212
}
1213
1214
static int
1215
hci_set_ext_adv_params_sync(struct hci_dev *hdev, struct adv_info *adv,
1216
const struct hci_cp_le_set_ext_adv_params *cp,
1217
struct hci_rp_le_set_ext_adv_params *rp)
1218
{
1219
struct sk_buff *skb;
1220
1221
skb = __hci_cmd_sync(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(*cp),
1222
cp, HCI_CMD_TIMEOUT);
1223
1224
/* If command return a status event, skb will be set to -ENODATA */
1225
if (skb == ERR_PTR(-ENODATA))
1226
return 0;
1227
1228
if (IS_ERR(skb)) {
1229
bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld",
1230
HCI_OP_LE_SET_EXT_ADV_PARAMS, PTR_ERR(skb));
1231
return PTR_ERR(skb);
1232
}
1233
1234
if (skb->len != sizeof(*rp)) {
1235
bt_dev_err(hdev, "Invalid response length for 0x%4.4x: %u",
1236
HCI_OP_LE_SET_EXT_ADV_PARAMS, skb->len);
1237
kfree_skb(skb);
1238
return -EIO;
1239
}
1240
1241
memcpy(rp, skb->data, sizeof(*rp));
1242
kfree_skb(skb);
1243
1244
if (!rp->status) {
1245
hdev->adv_addr_type = cp->own_addr_type;
1246
if (!cp->handle) {
1247
/* Store in hdev for instance 0 */
1248
hdev->adv_tx_power = rp->tx_power;
1249
} else if (adv) {
1250
adv->tx_power = rp->tx_power;
1251
}
1252
}
1253
1254
return rp->status;
1255
}
1256
1257
static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1258
{
1259
DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length,
1260
HCI_MAX_EXT_AD_LENGTH);
1261
u8 len;
1262
struct adv_info *adv = NULL;
1263
int err;
1264
1265
if (instance) {
1266
adv = hci_find_adv_instance(hdev, instance);
1267
if (!adv || !adv->adv_data_changed)
1268
return 0;
1269
}
1270
1271
len = eir_create_adv_data(hdev, instance, pdu->data,
1272
HCI_MAX_EXT_AD_LENGTH);
1273
1274
pdu->length = len;
1275
pdu->handle = adv ? adv->handle : instance;
1276
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1277
pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1278
1279
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1280
struct_size(pdu, data, len), pdu,
1281
HCI_CMD_TIMEOUT);
1282
if (err)
1283
return err;
1284
1285
/* Update data if the command succeed */
1286
if (adv) {
1287
adv->adv_data_changed = false;
1288
} else {
1289
memcpy(hdev->adv_data, pdu->data, len);
1290
hdev->adv_data_len = len;
1291
}
1292
1293
return 0;
1294
}
1295
1296
static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1297
{
1298
struct hci_cp_le_set_adv_data cp;
1299
u8 len;
1300
1301
memset(&cp, 0, sizeof(cp));
1302
1303
len = eir_create_adv_data(hdev, instance, cp.data, sizeof(cp.data));
1304
1305
/* There's nothing to do if the data hasn't changed */
1306
if (hdev->adv_data_len == len &&
1307
memcmp(cp.data, hdev->adv_data, len) == 0)
1308
return 0;
1309
1310
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1311
hdev->adv_data_len = len;
1312
1313
cp.length = len;
1314
1315
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1316
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1317
}
1318
1319
int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1320
{
1321
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1322
return 0;
1323
1324
if (ext_adv_capable(hdev))
1325
return hci_set_ext_adv_data_sync(hdev, instance);
1326
1327
return hci_set_adv_data_sync(hdev, instance);
1328
}
1329
1330
int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1331
{
1332
struct hci_cp_le_set_ext_adv_params cp;
1333
struct hci_rp_le_set_ext_adv_params rp;
1334
bool connectable, require_privacy;
1335
u32 flags;
1336
bdaddr_t random_addr;
1337
u8 own_addr_type;
1338
int err;
1339
struct adv_info *adv;
1340
bool secondary_adv;
1341
1342
if (instance > 0) {
1343
adv = hci_find_adv_instance(hdev, instance);
1344
if (!adv)
1345
return -EINVAL;
1346
} else {
1347
adv = NULL;
1348
}
1349
1350
/* Updating parameters of an active instance will return a
1351
* Command Disallowed error, so we must first disable the
1352
* instance if it is active.
1353
*/
1354
if (adv) {
1355
err = hci_disable_ext_adv_instance_sync(hdev, instance);
1356
if (err)
1357
return err;
1358
}
1359
1360
flags = hci_adv_instance_flags(hdev, instance);
1361
1362
/* If the "connectable" instance flag was not set, then choose between
1363
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1364
*/
1365
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1366
mgmt_get_connectable(hdev);
1367
1368
if (!is_advertising_allowed(hdev, connectable))
1369
return -EPERM;
1370
1371
/* Set require_privacy to true only when non-connectable
1372
* advertising is used and it is not periodic.
1373
* In that case it is fine to use a non-resolvable private address.
1374
*/
1375
require_privacy = !connectable && !(adv && adv->periodic);
1376
1377
err = hci_get_random_address(hdev, require_privacy,
1378
adv_use_rpa(hdev, flags), adv,
1379
&own_addr_type, &random_addr);
1380
if (err < 0)
1381
return err;
1382
1383
memset(&cp, 0, sizeof(cp));
1384
1385
if (adv) {
1386
hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1387
hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1388
cp.tx_power = adv->tx_power;
1389
cp.sid = adv->sid;
1390
} else {
1391
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1392
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1393
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1394
cp.sid = 0x00;
1395
}
1396
1397
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1398
1399
if (connectable) {
1400
if (secondary_adv)
1401
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1402
else
1403
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1404
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1405
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1406
if (secondary_adv)
1407
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1408
else
1409
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1410
} else {
1411
if (secondary_adv)
1412
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1413
else
1414
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1415
}
1416
1417
/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1418
* contains the peer’s Identity Address and the Peer_Address_Type
1419
* parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1420
* These parameters are used to locate the corresponding local IRK in
1421
* the resolving list; this IRK is used to generate their own address
1422
* used in the advertisement.
1423
*/
1424
if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1425
hci_copy_identity_address(hdev, &cp.peer_addr,
1426
&cp.peer_addr_type);
1427
1428
cp.own_addr_type = own_addr_type;
1429
cp.channel_map = hdev->le_adv_channel_map;
1430
cp.handle = adv ? adv->handle : instance;
1431
1432
if (flags & MGMT_ADV_FLAG_SEC_2M) {
1433
cp.primary_phy = HCI_ADV_PHY_1M;
1434
cp.secondary_phy = HCI_ADV_PHY_2M;
1435
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1436
cp.primary_phy = HCI_ADV_PHY_CODED;
1437
cp.secondary_phy = HCI_ADV_PHY_CODED;
1438
} else {
1439
/* In all other cases use 1M */
1440
cp.primary_phy = HCI_ADV_PHY_1M;
1441
cp.secondary_phy = HCI_ADV_PHY_1M;
1442
}
1443
1444
err = hci_set_ext_adv_params_sync(hdev, adv, &cp, &rp);
1445
if (err)
1446
return err;
1447
1448
/* Update adv data as tx power is known now */
1449
err = hci_set_ext_adv_data_sync(hdev, cp.handle);
1450
if (err)
1451
return err;
1452
1453
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1454
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1455
bacmp(&random_addr, BDADDR_ANY)) {
1456
/* Check if random address need to be updated */
1457
if (adv) {
1458
if (!bacmp(&random_addr, &adv->random_addr))
1459
return 0;
1460
} else {
1461
if (!bacmp(&random_addr, &hdev->random_addr))
1462
return 0;
1463
}
1464
1465
return hci_set_adv_set_random_addr_sync(hdev, instance,
1466
&random_addr);
1467
}
1468
1469
return 0;
1470
}
1471
1472
static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1473
{
1474
DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length,
1475
HCI_MAX_EXT_AD_LENGTH);
1476
u8 len;
1477
struct adv_info *adv = NULL;
1478
int err;
1479
1480
if (instance) {
1481
adv = hci_find_adv_instance(hdev, instance);
1482
if (!adv || !adv->scan_rsp_changed)
1483
return 0;
1484
}
1485
1486
len = eir_create_scan_rsp(hdev, instance, pdu->data);
1487
1488
pdu->handle = adv ? adv->handle : instance;
1489
pdu->length = len;
1490
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1491
pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1492
1493
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1494
struct_size(pdu, data, len), pdu,
1495
HCI_CMD_TIMEOUT);
1496
if (err)
1497
return err;
1498
1499
if (adv) {
1500
adv->scan_rsp_changed = false;
1501
} else {
1502
memcpy(hdev->scan_rsp_data, pdu->data, len);
1503
hdev->scan_rsp_data_len = len;
1504
}
1505
1506
return 0;
1507
}
1508
1509
static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1510
{
1511
struct hci_cp_le_set_scan_rsp_data cp;
1512
u8 len;
1513
1514
memset(&cp, 0, sizeof(cp));
1515
1516
len = eir_create_scan_rsp(hdev, instance, cp.data);
1517
1518
if (hdev->scan_rsp_data_len == len &&
1519
!memcmp(cp.data, hdev->scan_rsp_data, len))
1520
return 0;
1521
1522
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1523
hdev->scan_rsp_data_len = len;
1524
1525
cp.length = len;
1526
1527
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1528
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1529
}
1530
1531
int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1532
{
1533
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1534
return 0;
1535
1536
if (ext_adv_capable(hdev))
1537
return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1538
1539
return __hci_set_scan_rsp_data_sync(hdev, instance);
1540
}
1541
1542
int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1543
{
1544
struct hci_cp_le_set_ext_adv_enable *cp;
1545
struct hci_cp_ext_adv_set *set;
1546
u8 data[sizeof(*cp) + sizeof(*set) * 1];
1547
struct adv_info *adv;
1548
1549
if (instance > 0) {
1550
adv = hci_find_adv_instance(hdev, instance);
1551
if (!adv)
1552
return -EINVAL;
1553
/* If already enabled there is nothing to do */
1554
if (adv->enabled)
1555
return 0;
1556
} else {
1557
adv = NULL;
1558
}
1559
1560
cp = (void *)data;
1561
set = (void *)cp->data;
1562
1563
memset(cp, 0, sizeof(*cp));
1564
1565
cp->enable = 0x01;
1566
cp->num_of_sets = 0x01;
1567
1568
memset(set, 0, sizeof(*set));
1569
1570
set->handle = adv ? adv->handle : instance;
1571
1572
/* Set duration per instance since controller is responsible for
1573
* scheduling it.
1574
*/
1575
if (adv && adv->timeout) {
1576
u16 duration = adv->timeout * MSEC_PER_SEC;
1577
1578
/* Time = N * 10 ms */
1579
set->duration = cpu_to_le16(duration / 10);
1580
}
1581
1582
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1583
sizeof(*cp) +
1584
sizeof(*set) * cp->num_of_sets,
1585
data, HCI_CMD_TIMEOUT);
1586
}
1587
1588
int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1589
{
1590
int err;
1591
1592
err = hci_setup_ext_adv_instance_sync(hdev, instance);
1593
if (err)
1594
return err;
1595
1596
err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1597
if (err)
1598
return err;
1599
1600
return hci_enable_ext_advertising_sync(hdev, instance);
1601
}
1602
1603
int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1604
{
1605
struct hci_cp_le_set_per_adv_enable cp;
1606
struct adv_info *adv = NULL;
1607
1608
/* If periodic advertising already disabled there is nothing to do. */
1609
adv = hci_find_adv_instance(hdev, instance);
1610
if (!adv || !adv->periodic_enabled)
1611
return 0;
1612
1613
memset(&cp, 0, sizeof(cp));
1614
1615
cp.enable = 0x00;
1616
cp.handle = instance;
1617
1618
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1619
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1620
}
1621
1622
static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1623
u16 min_interval, u16 max_interval)
1624
{
1625
struct hci_cp_le_set_per_adv_params cp;
1626
1627
memset(&cp, 0, sizeof(cp));
1628
1629
if (!min_interval)
1630
min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1631
1632
if (!max_interval)
1633
max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1634
1635
cp.handle = instance;
1636
cp.min_interval = cpu_to_le16(min_interval);
1637
cp.max_interval = cpu_to_le16(max_interval);
1638
cp.periodic_properties = 0x0000;
1639
1640
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1641
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1642
}
1643
1644
static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1645
{
1646
DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length,
1647
HCI_MAX_PER_AD_LENGTH);
1648
u8 len;
1649
struct adv_info *adv = NULL;
1650
1651
if (instance) {
1652
adv = hci_find_adv_instance(hdev, instance);
1653
if (!adv || !adv->periodic)
1654
return 0;
1655
}
1656
1657
len = eir_create_per_adv_data(hdev, instance, pdu->data);
1658
1659
pdu->length = len;
1660
pdu->handle = adv ? adv->handle : instance;
1661
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1662
1663
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1664
struct_size(pdu, data, len), pdu,
1665
HCI_CMD_TIMEOUT);
1666
}
1667
1668
static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1669
{
1670
struct hci_cp_le_set_per_adv_enable cp;
1671
struct adv_info *adv = NULL;
1672
1673
/* If periodic advertising already enabled there is nothing to do. */
1674
adv = hci_find_adv_instance(hdev, instance);
1675
if (adv && adv->periodic_enabled)
1676
return 0;
1677
1678
memset(&cp, 0, sizeof(cp));
1679
1680
cp.enable = 0x01;
1681
cp.handle = instance;
1682
1683
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1684
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1685
}
1686
1687
/* Checks if periodic advertising data contains a Basic Announcement and if it
1688
* does generates a Broadcast ID and add Broadcast Announcement.
1689
*/
1690
static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1691
{
1692
u8 bid[3];
1693
u8 ad[HCI_MAX_EXT_AD_LENGTH];
1694
u8 len;
1695
1696
/* Skip if NULL adv as instance 0x00 is used for general purpose
1697
* advertising so it cannot used for the likes of Broadcast Announcement
1698
* as it can be overwritten at any point.
1699
*/
1700
if (!adv)
1701
return 0;
1702
1703
/* Check if PA data doesn't contains a Basic Audio Announcement then
1704
* there is nothing to do.
1705
*/
1706
if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1707
0x1851, NULL))
1708
return 0;
1709
1710
/* Check if advertising data already has a Broadcast Announcement since
1711
* the process may want to control the Broadcast ID directly and in that
1712
* case the kernel shall no interfere.
1713
*/
1714
if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1715
NULL))
1716
return 0;
1717
1718
/* Generate Broadcast ID */
1719
get_random_bytes(bid, sizeof(bid));
1720
len = eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1721
memcpy(ad + len, adv->adv_data, adv->adv_data_len);
1722
hci_set_adv_instance_data(hdev, adv->instance, len + adv->adv_data_len,
1723
ad, 0, NULL);
1724
1725
return hci_update_adv_data_sync(hdev, adv->instance);
1726
}
1727
1728
int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 sid,
1729
u8 data_len, u8 *data, u32 flags, u16 min_interval,
1730
u16 max_interval, u16 sync_interval)
1731
{
1732
struct adv_info *adv = NULL;
1733
int err;
1734
bool added = false;
1735
1736
hci_disable_per_advertising_sync(hdev, instance);
1737
1738
if (instance) {
1739
adv = hci_find_adv_instance(hdev, instance);
1740
if (adv) {
1741
if (sid != HCI_SID_INVALID && adv->sid != sid) {
1742
/* If the SID don't match attempt to find by
1743
* SID.
1744
*/
1745
adv = hci_find_adv_sid(hdev, sid);
1746
if (!adv) {
1747
bt_dev_err(hdev,
1748
"Unable to find adv_info");
1749
return -EINVAL;
1750
}
1751
}
1752
1753
/* Turn it into periodic advertising */
1754
adv->periodic = true;
1755
adv->per_adv_data_len = data_len;
1756
if (data)
1757
memcpy(adv->per_adv_data, data, data_len);
1758
adv->flags = flags;
1759
} else if (!adv) {
1760
/* Create an instance if that could not be found */
1761
adv = hci_add_per_instance(hdev, instance, sid, flags,
1762
data_len, data,
1763
sync_interval,
1764
sync_interval);
1765
if (IS_ERR(adv))
1766
return PTR_ERR(adv);
1767
adv->pending = false;
1768
added = true;
1769
}
1770
}
1771
1772
/* Start advertising */
1773
err = hci_start_ext_adv_sync(hdev, instance);
1774
if (err < 0)
1775
goto fail;
1776
1777
err = hci_adv_bcast_annoucement(hdev, adv);
1778
if (err < 0)
1779
goto fail;
1780
1781
err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1782
max_interval);
1783
if (err < 0)
1784
goto fail;
1785
1786
err = hci_set_per_adv_data_sync(hdev, instance);
1787
if (err < 0)
1788
goto fail;
1789
1790
err = hci_enable_per_advertising_sync(hdev, instance);
1791
if (err < 0)
1792
goto fail;
1793
1794
return 0;
1795
1796
fail:
1797
if (added)
1798
hci_remove_adv_instance(hdev, instance);
1799
1800
return err;
1801
}
1802
1803
static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1804
{
1805
int err;
1806
1807
if (ext_adv_capable(hdev))
1808
return hci_start_ext_adv_sync(hdev, instance);
1809
1810
err = hci_update_adv_data_sync(hdev, instance);
1811
if (err)
1812
return err;
1813
1814
err = hci_update_scan_rsp_data_sync(hdev, instance);
1815
if (err)
1816
return err;
1817
1818
return hci_enable_advertising_sync(hdev);
1819
}
1820
1821
int hci_enable_advertising_sync(struct hci_dev *hdev)
1822
{
1823
struct adv_info *adv_instance;
1824
struct hci_cp_le_set_adv_param cp;
1825
u8 own_addr_type, enable = 0x01;
1826
bool connectable;
1827
u16 adv_min_interval, adv_max_interval;
1828
u32 flags;
1829
u8 status;
1830
1831
if (ext_adv_capable(hdev))
1832
return hci_enable_ext_advertising_sync(hdev,
1833
hdev->cur_adv_instance);
1834
1835
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1836
adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1837
1838
/* If the "connectable" instance flag was not set, then choose between
1839
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1840
*/
1841
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1842
mgmt_get_connectable(hdev);
1843
1844
if (!is_advertising_allowed(hdev, connectable))
1845
return -EINVAL;
1846
1847
status = hci_disable_advertising_sync(hdev);
1848
if (status)
1849
return status;
1850
1851
/* Clear the HCI_LE_ADV bit temporarily so that the
1852
* hci_update_random_address knows that it's safe to go ahead
1853
* and write a new random address. The flag will be set back on
1854
* as soon as the SET_ADV_ENABLE HCI command completes.
1855
*/
1856
hci_dev_clear_flag(hdev, HCI_LE_ADV);
1857
1858
/* Set require_privacy to true only when non-connectable
1859
* advertising is used. In that case it is fine to use a
1860
* non-resolvable private address.
1861
*/
1862
status = hci_update_random_address_sync(hdev, !connectable,
1863
adv_use_rpa(hdev, flags),
1864
&own_addr_type);
1865
if (status)
1866
return status;
1867
1868
memset(&cp, 0, sizeof(cp));
1869
1870
if (adv_instance) {
1871
adv_min_interval = adv_instance->min_interval;
1872
adv_max_interval = adv_instance->max_interval;
1873
} else {
1874
adv_min_interval = hdev->le_adv_min_interval;
1875
adv_max_interval = hdev->le_adv_max_interval;
1876
}
1877
1878
if (connectable) {
1879
cp.type = LE_ADV_IND;
1880
} else {
1881
if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1882
cp.type = LE_ADV_SCAN_IND;
1883
else
1884
cp.type = LE_ADV_NONCONN_IND;
1885
1886
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1887
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1888
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1889
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1890
}
1891
}
1892
1893
cp.min_interval = cpu_to_le16(adv_min_interval);
1894
cp.max_interval = cpu_to_le16(adv_max_interval);
1895
cp.own_address_type = own_addr_type;
1896
cp.channel_map = hdev->le_adv_channel_map;
1897
1898
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1899
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1900
if (status)
1901
return status;
1902
1903
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1904
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1905
}
1906
1907
static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1908
{
1909
return hci_enable_advertising_sync(hdev);
1910
}
1911
1912
int hci_enable_advertising(struct hci_dev *hdev)
1913
{
1914
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1915
list_empty(&hdev->adv_instances))
1916
return 0;
1917
1918
return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1919
}
1920
1921
int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1922
struct sock *sk)
1923
{
1924
int err;
1925
1926
if (!ext_adv_capable(hdev))
1927
return 0;
1928
1929
err = hci_disable_ext_adv_instance_sync(hdev, instance);
1930
if (err)
1931
return err;
1932
1933
/* If request specifies an instance that doesn't exist, fail */
1934
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1935
return -EINVAL;
1936
1937
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1938
sizeof(instance), &instance, 0,
1939
HCI_CMD_TIMEOUT, sk);
1940
}
1941
1942
int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1943
{
1944
struct hci_cp_le_term_big cp;
1945
1946
memset(&cp, 0, sizeof(cp));
1947
cp.handle = handle;
1948
cp.reason = reason;
1949
1950
return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1951
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1952
}
1953
1954
int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1955
bool force)
1956
{
1957
struct adv_info *adv = NULL;
1958
u16 timeout;
1959
1960
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1961
return -EPERM;
1962
1963
if (hdev->adv_instance_timeout)
1964
return -EBUSY;
1965
1966
adv = hci_find_adv_instance(hdev, instance);
1967
if (!adv)
1968
return -ENOENT;
1969
1970
/* A zero timeout means unlimited advertising. As long as there is
1971
* only one instance, duration should be ignored. We still set a timeout
1972
* in case further instances are being added later on.
1973
*
1974
* If the remaining lifetime of the instance is more than the duration
1975
* then the timeout corresponds to the duration, otherwise it will be
1976
* reduced to the remaining instance lifetime.
1977
*/
1978
if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1979
timeout = adv->duration;
1980
else
1981
timeout = adv->remaining_time;
1982
1983
/* The remaining time is being reduced unless the instance is being
1984
* advertised without time limit.
1985
*/
1986
if (adv->timeout)
1987
adv->remaining_time = adv->remaining_time - timeout;
1988
1989
/* Only use work for scheduling instances with legacy advertising */
1990
if (!ext_adv_capable(hdev)) {
1991
hdev->adv_instance_timeout = timeout;
1992
queue_delayed_work(hdev->req_workqueue,
1993
&hdev->adv_instance_expire,
1994
secs_to_jiffies(timeout));
1995
}
1996
1997
/* If we're just re-scheduling the same instance again then do not
1998
* execute any HCI commands. This happens when a single instance is
1999
* being advertised.
2000
*/
2001
if (!force && hdev->cur_adv_instance == instance &&
2002
hci_dev_test_flag(hdev, HCI_LE_ADV))
2003
return 0;
2004
2005
hdev->cur_adv_instance = instance;
2006
2007
return hci_start_adv_sync(hdev, instance);
2008
}
2009
2010
static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
2011
{
2012
int err;
2013
2014
if (!ext_adv_capable(hdev))
2015
return 0;
2016
2017
/* Disable instance 0x00 to disable all instances */
2018
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
2019
if (err)
2020
return err;
2021
2022
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
2023
0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2024
}
2025
2026
static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
2027
{
2028
struct adv_info *adv, *n;
2029
2030
if (ext_adv_capable(hdev))
2031
/* Remove all existing sets */
2032
return hci_clear_adv_sets_sync(hdev, sk);
2033
2034
/* This is safe as long as there is no command send while the lock is
2035
* held.
2036
*/
2037
hci_dev_lock(hdev);
2038
2039
/* Cleanup non-ext instances */
2040
list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
2041
u8 instance = adv->instance;
2042
int err;
2043
2044
if (!(force || adv->timeout))
2045
continue;
2046
2047
err = hci_remove_adv_instance(hdev, instance);
2048
if (!err)
2049
mgmt_advertising_removed(sk, hdev, instance);
2050
}
2051
2052
hci_dev_unlock(hdev);
2053
2054
return 0;
2055
}
2056
2057
static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
2058
struct sock *sk)
2059
{
2060
int err;
2061
2062
/* If we use extended advertising, instance has to be removed first. */
2063
if (ext_adv_capable(hdev))
2064
return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
2065
2066
/* This is safe as long as there is no command send while the lock is
2067
* held.
2068
*/
2069
hci_dev_lock(hdev);
2070
2071
err = hci_remove_adv_instance(hdev, instance);
2072
if (!err)
2073
mgmt_advertising_removed(sk, hdev, instance);
2074
2075
hci_dev_unlock(hdev);
2076
2077
return err;
2078
}
2079
2080
/* For a single instance:
2081
* - force == true: The instance will be removed even when its remaining
2082
* lifetime is not zero.
2083
* - force == false: the instance will be deactivated but kept stored unless
2084
* the remaining lifetime is zero.
2085
*
2086
* For instance == 0x00:
2087
* - force == true: All instances will be removed regardless of their timeout
2088
* setting.
2089
* - force == false: Only instances that have a timeout will be removed.
2090
*/
2091
int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
2092
u8 instance, bool force)
2093
{
2094
struct adv_info *next = NULL;
2095
int err;
2096
2097
/* Cancel any timeout concerning the removed instance(s). */
2098
if (!instance || hdev->cur_adv_instance == instance)
2099
cancel_adv_timeout(hdev);
2100
2101
/* Get the next instance to advertise BEFORE we remove
2102
* the current one. This can be the same instance again
2103
* if there is only one instance.
2104
*/
2105
if (hdev->cur_adv_instance == instance)
2106
next = hci_get_next_instance(hdev, instance);
2107
2108
if (!instance) {
2109
err = hci_clear_adv_sync(hdev, sk, force);
2110
if (err)
2111
return err;
2112
} else {
2113
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
2114
2115
if (force || (adv && adv->timeout && !adv->remaining_time)) {
2116
/* Don't advertise a removed instance. */
2117
if (next && next->instance == instance)
2118
next = NULL;
2119
2120
err = hci_remove_adv_sync(hdev, instance, sk);
2121
if (err)
2122
return err;
2123
}
2124
}
2125
2126
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
2127
return 0;
2128
2129
if (next && !ext_adv_capable(hdev))
2130
hci_schedule_adv_instance_sync(hdev, next->instance, false);
2131
2132
return 0;
2133
}
2134
2135
int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
2136
{
2137
struct hci_cp_read_rssi cp;
2138
2139
cp.handle = handle;
2140
return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
2141
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2142
}
2143
2144
int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
2145
{
2146
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
2147
sizeof(*cp), cp, HCI_CMD_TIMEOUT);
2148
}
2149
2150
int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
2151
{
2152
struct hci_cp_read_tx_power cp;
2153
2154
cp.handle = handle;
2155
cp.type = type;
2156
return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
2157
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2158
}
2159
2160
int hci_disable_advertising_sync(struct hci_dev *hdev)
2161
{
2162
u8 enable = 0x00;
2163
2164
/* If controller is not advertising we are done. */
2165
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
2166
return 0;
2167
2168
if (ext_adv_capable(hdev))
2169
return hci_disable_ext_adv_instance_sync(hdev, 0x00);
2170
2171
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
2172
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
2173
}
2174
2175
static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
2176
u8 filter_dup)
2177
{
2178
struct hci_cp_le_set_ext_scan_enable cp;
2179
2180
memset(&cp, 0, sizeof(cp));
2181
cp.enable = val;
2182
2183
if (hci_dev_test_flag(hdev, HCI_MESH))
2184
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2185
else
2186
cp.filter_dup = filter_dup;
2187
2188
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2189
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2190
}
2191
2192
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2193
u8 filter_dup)
2194
{
2195
struct hci_cp_le_set_scan_enable cp;
2196
2197
if (use_ext_scan(hdev))
2198
return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2199
2200
memset(&cp, 0, sizeof(cp));
2201
cp.enable = val;
2202
2203
if (val && hci_dev_test_flag(hdev, HCI_MESH))
2204
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2205
else
2206
cp.filter_dup = filter_dup;
2207
2208
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2209
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2210
}
2211
2212
static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2213
{
2214
if (!ll_privacy_capable(hdev))
2215
return 0;
2216
2217
/* If controller is not/already resolving we are done. */
2218
if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2219
return 0;
2220
2221
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2222
sizeof(val), &val, HCI_CMD_TIMEOUT);
2223
}
2224
2225
static int hci_scan_disable_sync(struct hci_dev *hdev)
2226
{
2227
int err;
2228
2229
/* If controller is not scanning we are done. */
2230
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2231
return 0;
2232
2233
if (hdev->scanning_paused) {
2234
bt_dev_dbg(hdev, "Scanning is paused for suspend");
2235
return 0;
2236
}
2237
2238
err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2239
if (err) {
2240
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2241
return err;
2242
}
2243
2244
return err;
2245
}
2246
2247
static bool scan_use_rpa(struct hci_dev *hdev)
2248
{
2249
return hci_dev_test_flag(hdev, HCI_PRIVACY);
2250
}
2251
2252
static void hci_start_interleave_scan(struct hci_dev *hdev)
2253
{
2254
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2255
queue_delayed_work(hdev->req_workqueue,
2256
&hdev->interleave_scan, 0);
2257
}
2258
2259
static void cancel_interleave_scan(struct hci_dev *hdev)
2260
{
2261
bt_dev_dbg(hdev, "cancelling interleave scan");
2262
2263
cancel_delayed_work_sync(&hdev->interleave_scan);
2264
2265
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2266
}
2267
2268
/* Return true if interleave_scan wasn't started until exiting this function,
2269
* otherwise, return false
2270
*/
2271
static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2272
{
2273
/* Do interleaved scan only if all of the following are true:
2274
* - There is at least one ADV monitor
2275
* - At least one pending LE connection or one device to be scanned for
2276
* - Monitor offloading is not supported
2277
* If so, we should alternate between allowlist scan and one without
2278
* any filters to save power.
2279
*/
2280
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2281
!(list_empty(&hdev->pend_le_conns) &&
2282
list_empty(&hdev->pend_le_reports)) &&
2283
hci_get_adv_monitor_offload_ext(hdev) ==
2284
HCI_ADV_MONITOR_EXT_NONE;
2285
bool is_interleaving = is_interleave_scanning(hdev);
2286
2287
if (use_interleaving && !is_interleaving) {
2288
hci_start_interleave_scan(hdev);
2289
bt_dev_dbg(hdev, "starting interleave scan");
2290
return true;
2291
}
2292
2293
if (!use_interleaving && is_interleaving)
2294
cancel_interleave_scan(hdev);
2295
2296
return false;
2297
}
2298
2299
/* Removes connection to resolve list if needed.*/
2300
static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2301
bdaddr_t *bdaddr, u8 bdaddr_type)
2302
{
2303
struct hci_cp_le_del_from_resolv_list cp;
2304
struct bdaddr_list_with_irk *entry;
2305
2306
if (!ll_privacy_capable(hdev))
2307
return 0;
2308
2309
/* Check if the IRK has been programmed */
2310
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2311
bdaddr_type);
2312
if (!entry)
2313
return 0;
2314
2315
cp.bdaddr_type = bdaddr_type;
2316
bacpy(&cp.bdaddr, bdaddr);
2317
2318
return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2319
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2320
}
2321
2322
static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2323
bdaddr_t *bdaddr, u8 bdaddr_type)
2324
{
2325
struct hci_cp_le_del_from_accept_list cp;
2326
int err;
2327
2328
/* Check if device is on accept list before removing it */
2329
if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2330
return 0;
2331
2332
cp.bdaddr_type = bdaddr_type;
2333
bacpy(&cp.bdaddr, bdaddr);
2334
2335
/* Ignore errors when removing from resolving list as that is likely
2336
* that the device was never added.
2337
*/
2338
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2339
2340
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2341
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2342
if (err) {
2343
bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2344
return err;
2345
}
2346
2347
bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2348
cp.bdaddr_type);
2349
2350
return 0;
2351
}
2352
2353
struct conn_params {
2354
bdaddr_t addr;
2355
u8 addr_type;
2356
hci_conn_flags_t flags;
2357
u8 privacy_mode;
2358
};
2359
2360
/* Adds connection to resolve list if needed.
2361
* Setting params to NULL programs local hdev->irk
2362
*/
2363
static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2364
struct conn_params *params)
2365
{
2366
struct hci_cp_le_add_to_resolv_list cp;
2367
struct smp_irk *irk;
2368
struct bdaddr_list_with_irk *entry;
2369
struct hci_conn_params *p;
2370
2371
if (!ll_privacy_capable(hdev))
2372
return 0;
2373
2374
/* Attempt to program local identity address, type and irk if params is
2375
* NULL.
2376
*/
2377
if (!params) {
2378
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2379
return 0;
2380
2381
hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2382
memcpy(cp.peer_irk, hdev->irk, 16);
2383
goto done;
2384
} else if (!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
2385
return 0;
2386
2387
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2388
if (!irk)
2389
return 0;
2390
2391
/* Check if the IK has _not_ been programmed yet. */
2392
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2393
&params->addr,
2394
params->addr_type);
2395
if (entry)
2396
return 0;
2397
2398
cp.bdaddr_type = params->addr_type;
2399
bacpy(&cp.bdaddr, &params->addr);
2400
memcpy(cp.peer_irk, irk->val, 16);
2401
2402
/* Default privacy mode is always Network */
2403
params->privacy_mode = HCI_NETWORK_PRIVACY;
2404
2405
rcu_read_lock();
2406
p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2407
&params->addr, params->addr_type);
2408
if (!p)
2409
p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2410
&params->addr, params->addr_type);
2411
if (p)
2412
WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2413
rcu_read_unlock();
2414
2415
done:
2416
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2417
memcpy(cp.local_irk, hdev->irk, 16);
2418
else
2419
memset(cp.local_irk, 0, 16);
2420
2421
return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2422
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2423
}
2424
2425
/* Set Device Privacy Mode. */
2426
static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2427
struct conn_params *params)
2428
{
2429
struct hci_cp_le_set_privacy_mode cp;
2430
struct smp_irk *irk;
2431
2432
if (!ll_privacy_capable(hdev) ||
2433
!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
2434
return 0;
2435
2436
/* If device privacy mode has already been set there is nothing to do */
2437
if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2438
return 0;
2439
2440
/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2441
* indicates that LL Privacy has been enabled and
2442
* HCI_OP_LE_SET_PRIVACY_MODE is supported.
2443
*/
2444
if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2445
return 0;
2446
2447
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2448
if (!irk)
2449
return 0;
2450
2451
memset(&cp, 0, sizeof(cp));
2452
cp.bdaddr_type = irk->addr_type;
2453
bacpy(&cp.bdaddr, &irk->bdaddr);
2454
cp.mode = HCI_DEVICE_PRIVACY;
2455
2456
/* Note: params->privacy_mode is not updated since it is a copy */
2457
2458
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2459
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2460
}
2461
2462
/* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2463
* this attempts to program the device in the resolving list as well and
2464
* properly set the privacy mode.
2465
*/
2466
static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2467
struct conn_params *params,
2468
u8 *num_entries)
2469
{
2470
struct hci_cp_le_add_to_accept_list cp;
2471
int err;
2472
2473
/* During suspend, only wakeable devices can be in acceptlist */
2474
if (hdev->suspended &&
2475
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2476
hci_le_del_accept_list_sync(hdev, &params->addr,
2477
params->addr_type);
2478
return 0;
2479
}
2480
2481
/* Select filter policy to accept all advertising */
2482
if (*num_entries >= hdev->le_accept_list_size)
2483
return -ENOSPC;
2484
2485
/* Attempt to program the device in the resolving list first to avoid
2486
* having to rollback in case it fails since the resolving list is
2487
* dynamic it can probably be smaller than the accept list.
2488
*/
2489
err = hci_le_add_resolve_list_sync(hdev, params);
2490
if (err) {
2491
bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2492
return err;
2493
}
2494
2495
/* Set Privacy Mode */
2496
err = hci_le_set_privacy_mode_sync(hdev, params);
2497
if (err) {
2498
bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2499
return err;
2500
}
2501
2502
/* Check if already in accept list */
2503
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2504
params->addr_type))
2505
return 0;
2506
2507
*num_entries += 1;
2508
cp.bdaddr_type = params->addr_type;
2509
bacpy(&cp.bdaddr, &params->addr);
2510
2511
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2512
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2513
if (err) {
2514
bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2515
/* Rollback the device from the resolving list */
2516
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2517
return err;
2518
}
2519
2520
bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2521
cp.bdaddr_type);
2522
2523
return 0;
2524
}
2525
2526
/* This function disables/pause all advertising instances */
2527
static int hci_pause_advertising_sync(struct hci_dev *hdev)
2528
{
2529
int err;
2530
int old_state;
2531
2532
/* If controller is not advertising we are done. */
2533
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
2534
return 0;
2535
2536
/* If already been paused there is nothing to do. */
2537
if (hdev->advertising_paused)
2538
return 0;
2539
2540
bt_dev_dbg(hdev, "Pausing directed advertising");
2541
2542
/* Stop directed advertising */
2543
old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2544
if (old_state) {
2545
/* When discoverable timeout triggers, then just make sure
2546
* the limited discoverable flag is cleared. Even in the case
2547
* of a timeout triggered from general discoverable, it is
2548
* safe to unconditionally clear the flag.
2549
*/
2550
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2551
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2552
hdev->discov_timeout = 0;
2553
}
2554
2555
bt_dev_dbg(hdev, "Pausing advertising instances");
2556
2557
/* Call to disable any advertisements active on the controller.
2558
* This will succeed even if no advertisements are configured.
2559
*/
2560
err = hci_disable_advertising_sync(hdev);
2561
if (err)
2562
return err;
2563
2564
/* If we are using software rotation, pause the loop */
2565
if (!ext_adv_capable(hdev))
2566
cancel_adv_timeout(hdev);
2567
2568
hdev->advertising_paused = true;
2569
hdev->advertising_old_state = old_state;
2570
2571
return 0;
2572
}
2573
2574
/* This function enables all user advertising instances */
2575
static int hci_resume_advertising_sync(struct hci_dev *hdev)
2576
{
2577
struct adv_info *adv, *tmp;
2578
int err;
2579
2580
/* If advertising has not been paused there is nothing to do. */
2581
if (!hdev->advertising_paused)
2582
return 0;
2583
2584
/* Resume directed advertising */
2585
hdev->advertising_paused = false;
2586
if (hdev->advertising_old_state) {
2587
hci_dev_set_flag(hdev, HCI_ADVERTISING);
2588
hdev->advertising_old_state = 0;
2589
}
2590
2591
bt_dev_dbg(hdev, "Resuming advertising instances");
2592
2593
if (ext_adv_capable(hdev)) {
2594
/* Call for each tracked instance to be re-enabled */
2595
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2596
err = hci_enable_ext_advertising_sync(hdev,
2597
adv->instance);
2598
if (!err)
2599
continue;
2600
2601
/* If the instance cannot be resumed remove it */
2602
hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2603
NULL);
2604
}
2605
2606
/* If current advertising instance is set to instance 0x00
2607
* then we need to re-enable it.
2608
*/
2609
if (hci_dev_test_and_clear_flag(hdev, HCI_LE_ADV_0))
2610
err = hci_enable_ext_advertising_sync(hdev, 0x00);
2611
} else {
2612
/* Schedule for most recent instance to be restarted and begin
2613
* the software rotation loop
2614
*/
2615
err = hci_schedule_adv_instance_sync(hdev,
2616
hdev->cur_adv_instance,
2617
true);
2618
}
2619
2620
hdev->advertising_paused = false;
2621
2622
return err;
2623
}
2624
2625
static int hci_pause_addr_resolution(struct hci_dev *hdev)
2626
{
2627
int err;
2628
2629
if (!ll_privacy_capable(hdev))
2630
return 0;
2631
2632
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2633
return 0;
2634
2635
/* Cannot disable addr resolution if scanning is enabled or
2636
* when initiating an LE connection.
2637
*/
2638
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2639
hci_lookup_le_connect(hdev)) {
2640
bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2641
return -EPERM;
2642
}
2643
2644
/* Cannot disable addr resolution if advertising is enabled. */
2645
err = hci_pause_advertising_sync(hdev);
2646
if (err) {
2647
bt_dev_err(hdev, "Pause advertising failed: %d", err);
2648
return err;
2649
}
2650
2651
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2652
if (err)
2653
bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2654
err);
2655
2656
/* Return if address resolution is disabled and RPA is not used. */
2657
if (!err && scan_use_rpa(hdev))
2658
return 0;
2659
2660
hci_resume_advertising_sync(hdev);
2661
return err;
2662
}
2663
2664
struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2665
bool extended, struct sock *sk)
2666
{
2667
u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2668
HCI_OP_READ_LOCAL_OOB_DATA;
2669
2670
return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2671
}
2672
2673
static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2674
{
2675
struct hci_conn_params *params;
2676
struct conn_params *p;
2677
size_t i;
2678
2679
rcu_read_lock();
2680
2681
i = 0;
2682
list_for_each_entry_rcu(params, list, action)
2683
++i;
2684
*n = i;
2685
2686
rcu_read_unlock();
2687
2688
p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2689
if (!p)
2690
return NULL;
2691
2692
rcu_read_lock();
2693
2694
i = 0;
2695
list_for_each_entry_rcu(params, list, action) {
2696
/* Racing adds are handled in next scan update */
2697
if (i >= *n)
2698
break;
2699
2700
/* No hdev->lock, but: addr, addr_type are immutable.
2701
* privacy_mode is only written by us or in
2702
* hci_cc_le_set_privacy_mode that we wait for.
2703
* We should be idempotent so MGMT updating flags
2704
* while we are processing is OK.
2705
*/
2706
bacpy(&p[i].addr, &params->addr);
2707
p[i].addr_type = params->addr_type;
2708
p[i].flags = READ_ONCE(params->flags);
2709
p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2710
++i;
2711
}
2712
2713
rcu_read_unlock();
2714
2715
*n = i;
2716
return p;
2717
}
2718
2719
/* Clear LE Accept List */
2720
static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
2721
{
2722
if (!(hdev->commands[26] & 0x80))
2723
return 0;
2724
2725
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
2726
HCI_CMD_TIMEOUT);
2727
}
2728
2729
/* Device must not be scanning when updating the accept list.
2730
*
2731
* Update is done using the following sequence:
2732
*
2733
* ll_privacy_capable((Disable Advertising) -> Disable Resolving List) ->
2734
* Remove Devices From Accept List ->
2735
* (has IRK && ll_privacy_capable(Remove Devices From Resolving List))->
2736
* Add Devices to Accept List ->
2737
* (has IRK && ll_privacy_capable(Remove Devices From Resolving List)) ->
2738
* ll_privacy_capable(Enable Resolving List -> (Enable Advertising)) ->
2739
* Enable Scanning
2740
*
2741
* In case of failure advertising shall be restored to its original state and
2742
* return would disable accept list since either accept or resolving list could
2743
* not be programmed.
2744
*
2745
*/
2746
static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2747
{
2748
struct conn_params *params;
2749
struct bdaddr_list *b, *t;
2750
u8 num_entries = 0;
2751
bool pend_conn, pend_report;
2752
u8 filter_policy;
2753
size_t i, n;
2754
int err;
2755
2756
/* Pause advertising if resolving list can be used as controllers
2757
* cannot accept resolving list modifications while advertising.
2758
*/
2759
if (ll_privacy_capable(hdev)) {
2760
err = hci_pause_advertising_sync(hdev);
2761
if (err) {
2762
bt_dev_err(hdev, "pause advertising failed: %d", err);
2763
return 0x00;
2764
}
2765
}
2766
2767
/* Disable address resolution while reprogramming accept list since
2768
* devices that do have an IRK will be programmed in the resolving list
2769
* when LL Privacy is enabled.
2770
*/
2771
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2772
if (err) {
2773
bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2774
goto done;
2775
}
2776
2777
/* Force address filtering if PA Sync is in progress */
2778
if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2779
struct hci_conn *conn;
2780
2781
conn = hci_conn_hash_lookup_create_pa_sync(hdev);
2782
if (conn) {
2783
struct conn_params pa;
2784
2785
memset(&pa, 0, sizeof(pa));
2786
2787
bacpy(&pa.addr, &conn->dst);
2788
pa.addr_type = conn->dst_type;
2789
2790
/* Clear first since there could be addresses left
2791
* behind.
2792
*/
2793
hci_le_clear_accept_list_sync(hdev);
2794
2795
num_entries = 1;
2796
err = hci_le_add_accept_list_sync(hdev, &pa,
2797
&num_entries);
2798
goto done;
2799
}
2800
}
2801
2802
/* Go through the current accept list programmed into the
2803
* controller one by one and check if that address is connected or is
2804
* still in the list of pending connections or list of devices to
2805
* report. If not present in either list, then remove it from
2806
* the controller.
2807
*/
2808
list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2809
if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2810
continue;
2811
2812
/* Pointers not dereferenced, no locks needed */
2813
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2814
&b->bdaddr,
2815
b->bdaddr_type);
2816
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2817
&b->bdaddr,
2818
b->bdaddr_type);
2819
2820
/* If the device is not likely to connect or report,
2821
* remove it from the acceptlist.
2822
*/
2823
if (!pend_conn && !pend_report) {
2824
hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2825
b->bdaddr_type);
2826
continue;
2827
}
2828
2829
num_entries++;
2830
}
2831
2832
/* Since all no longer valid accept list entries have been
2833
* removed, walk through the list of pending connections
2834
* and ensure that any new device gets programmed into
2835
* the controller.
2836
*
2837
* If the list of the devices is larger than the list of
2838
* available accept list entries in the controller, then
2839
* just abort and return filer policy value to not use the
2840
* accept list.
2841
*
2842
* The list and params may be mutated while we wait for events,
2843
* so make a copy and iterate it.
2844
*/
2845
2846
params = conn_params_copy(&hdev->pend_le_conns, &n);
2847
if (!params) {
2848
err = -ENOMEM;
2849
goto done;
2850
}
2851
2852
for (i = 0; i < n; ++i) {
2853
err = hci_le_add_accept_list_sync(hdev, &params[i],
2854
&num_entries);
2855
if (err) {
2856
kvfree(params);
2857
goto done;
2858
}
2859
}
2860
2861
kvfree(params);
2862
2863
/* After adding all new pending connections, walk through
2864
* the list of pending reports and also add these to the
2865
* accept list if there is still space. Abort if space runs out.
2866
*/
2867
2868
params = conn_params_copy(&hdev->pend_le_reports, &n);
2869
if (!params) {
2870
err = -ENOMEM;
2871
goto done;
2872
}
2873
2874
for (i = 0; i < n; ++i) {
2875
err = hci_le_add_accept_list_sync(hdev, &params[i],
2876
&num_entries);
2877
if (err) {
2878
kvfree(params);
2879
goto done;
2880
}
2881
}
2882
2883
kvfree(params);
2884
2885
/* Use the allowlist unless the following conditions are all true:
2886
* - We are not currently suspending
2887
* - There are 1 or more ADV monitors registered and it's not offloaded
2888
* - Interleaved scanning is not currently using the allowlist
2889
*/
2890
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2891
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2892
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2893
err = -EINVAL;
2894
2895
done:
2896
filter_policy = err ? 0x00 : 0x01;
2897
2898
/* Enable address resolution when LL Privacy is enabled. */
2899
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2900
if (err)
2901
bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2902
2903
/* Resume advertising if it was paused */
2904
if (ll_privacy_capable(hdev))
2905
hci_resume_advertising_sync(hdev);
2906
2907
/* Select filter policy to use accept list */
2908
return filter_policy;
2909
}
2910
2911
static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp,
2912
u8 type, u16 interval, u16 window)
2913
{
2914
cp->type = type;
2915
cp->interval = cpu_to_le16(interval);
2916
cp->window = cpu_to_le16(window);
2917
}
2918
2919
static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2920
u16 interval, u16 window,
2921
u8 own_addr_type, u8 filter_policy)
2922
{
2923
struct hci_cp_le_set_ext_scan_params *cp;
2924
struct hci_cp_le_scan_phy_params *phy;
2925
u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2926
u8 num_phy = 0x00;
2927
2928
cp = (void *)data;
2929
phy = (void *)cp->data;
2930
2931
memset(data, 0, sizeof(data));
2932
2933
cp->own_addr_type = own_addr_type;
2934
cp->filter_policy = filter_policy;
2935
2936
/* Check if PA Sync is in progress then select the PHY based on the
2937
* hci_conn.iso_qos.
2938
*/
2939
if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2940
struct hci_cp_le_add_to_accept_list *sent;
2941
2942
sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST);
2943
if (sent) {
2944
struct hci_conn *conn;
2945
2946
conn = hci_conn_hash_lookup_ba(hdev, PA_LINK,
2947
&sent->bdaddr);
2948
if (conn) {
2949
struct bt_iso_qos *qos = &conn->iso_qos;
2950
2951
if (qos->bcast.in.phys & BT_ISO_PHY_1M ||
2952
qos->bcast.in.phys & BT_ISO_PHY_2M) {
2953
cp->scanning_phys |= LE_SCAN_PHY_1M;
2954
hci_le_scan_phy_params(phy, type,
2955
interval,
2956
window);
2957
num_phy++;
2958
phy++;
2959
}
2960
2961
if (qos->bcast.in.phys & BT_ISO_PHY_CODED) {
2962
cp->scanning_phys |= LE_SCAN_PHY_CODED;
2963
hci_le_scan_phy_params(phy, type,
2964
interval * 3,
2965
window * 3);
2966
num_phy++;
2967
phy++;
2968
}
2969
2970
if (num_phy)
2971
goto done;
2972
}
2973
}
2974
}
2975
2976
if (scan_1m(hdev) || scan_2m(hdev)) {
2977
cp->scanning_phys |= LE_SCAN_PHY_1M;
2978
hci_le_scan_phy_params(phy, type, interval, window);
2979
num_phy++;
2980
phy++;
2981
}
2982
2983
if (scan_coded(hdev)) {
2984
cp->scanning_phys |= LE_SCAN_PHY_CODED;
2985
hci_le_scan_phy_params(phy, type, interval * 3, window * 3);
2986
num_phy++;
2987
phy++;
2988
}
2989
2990
done:
2991
if (!num_phy)
2992
return -EINVAL;
2993
2994
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2995
sizeof(*cp) + sizeof(*phy) * num_phy,
2996
data, HCI_CMD_TIMEOUT);
2997
}
2998
2999
static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
3000
u16 interval, u16 window,
3001
u8 own_addr_type, u8 filter_policy)
3002
{
3003
struct hci_cp_le_set_scan_param cp;
3004
3005
if (use_ext_scan(hdev))
3006
return hci_le_set_ext_scan_param_sync(hdev, type, interval,
3007
window, own_addr_type,
3008
filter_policy);
3009
3010
memset(&cp, 0, sizeof(cp));
3011
cp.type = type;
3012
cp.interval = cpu_to_le16(interval);
3013
cp.window = cpu_to_le16(window);
3014
cp.own_address_type = own_addr_type;
3015
cp.filter_policy = filter_policy;
3016
3017
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
3018
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3019
}
3020
3021
static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
3022
u16 window, u8 own_addr_type, u8 filter_policy,
3023
u8 filter_dup)
3024
{
3025
int err;
3026
3027
if (hdev->scanning_paused) {
3028
bt_dev_dbg(hdev, "Scanning is paused for suspend");
3029
return 0;
3030
}
3031
3032
err = hci_le_set_scan_param_sync(hdev, type, interval, window,
3033
own_addr_type, filter_policy);
3034
if (err)
3035
return err;
3036
3037
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
3038
}
3039
3040
static int hci_passive_scan_sync(struct hci_dev *hdev)
3041
{
3042
u8 own_addr_type;
3043
u8 filter_policy;
3044
u16 window, interval;
3045
u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
3046
int err;
3047
3048
if (hdev->scanning_paused) {
3049
bt_dev_dbg(hdev, "Scanning is paused for suspend");
3050
return 0;
3051
}
3052
3053
err = hci_scan_disable_sync(hdev);
3054
if (err) {
3055
bt_dev_err(hdev, "disable scanning failed: %d", err);
3056
return err;
3057
}
3058
3059
/* Set require_privacy to false since no SCAN_REQ are send
3060
* during passive scanning. Not using an non-resolvable address
3061
* here is important so that peer devices using direct
3062
* advertising with our address will be correctly reported
3063
* by the controller.
3064
*/
3065
if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
3066
&own_addr_type))
3067
return 0;
3068
3069
if (hdev->enable_advmon_interleave_scan &&
3070
hci_update_interleaved_scan_sync(hdev))
3071
return 0;
3072
3073
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
3074
3075
/* Adding or removing entries from the accept list must
3076
* happen before enabling scanning. The controller does
3077
* not allow accept list modification while scanning.
3078
*/
3079
filter_policy = hci_update_accept_list_sync(hdev);
3080
3081
/* If suspended and filter_policy set to 0x00 (no acceptlist) then
3082
* passive scanning cannot be started since that would require the host
3083
* to be woken up to process the reports.
3084
*/
3085
if (hdev->suspended && !filter_policy) {
3086
/* Check if accept list is empty then there is no need to scan
3087
* while suspended.
3088
*/
3089
if (list_empty(&hdev->le_accept_list))
3090
return 0;
3091
3092
/* If there are devices is the accept_list that means some
3093
* devices could not be programmed which in non-suspended case
3094
* means filter_policy needs to be set to 0x00 so the host needs
3095
* to filter, but since this is treating suspended case we
3096
* can ignore device needing host to filter to allow devices in
3097
* the acceptlist to be able to wakeup the system.
3098
*/
3099
filter_policy = 0x01;
3100
}
3101
3102
/* When the controller is using random resolvable addresses and
3103
* with that having LE privacy enabled, then controllers with
3104
* Extended Scanner Filter Policies support can now enable support
3105
* for handling directed advertising.
3106
*
3107
* So instead of using filter polices 0x00 (no acceptlist)
3108
* and 0x01 (acceptlist enabled) use the new filter policies
3109
* 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
3110
*/
3111
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
3112
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
3113
filter_policy |= 0x02;
3114
3115
if (hdev->suspended) {
3116
window = hdev->le_scan_window_suspend;
3117
interval = hdev->le_scan_int_suspend;
3118
} else if (hci_is_le_conn_scanning(hdev)) {
3119
window = hdev->le_scan_window_connect;
3120
interval = hdev->le_scan_int_connect;
3121
} else if (hci_is_adv_monitoring(hdev)) {
3122
window = hdev->le_scan_window_adv_monitor;
3123
interval = hdev->le_scan_int_adv_monitor;
3124
3125
/* Disable duplicates filter when scanning for advertisement
3126
* monitor for the following reasons.
3127
*
3128
* For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
3129
* controllers ignore RSSI_Sampling_Period when the duplicates
3130
* filter is enabled.
3131
*
3132
* For SW pattern filtering, when we're not doing interleaved
3133
* scanning, it is necessary to disable duplicates filter,
3134
* otherwise hosts can only receive one advertisement and it's
3135
* impossible to know if a peer is still in range.
3136
*/
3137
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3138
} else {
3139
window = hdev->le_scan_window;
3140
interval = hdev->le_scan_interval;
3141
}
3142
3143
/* Disable all filtering for Mesh */
3144
if (hci_dev_test_flag(hdev, HCI_MESH)) {
3145
filter_policy = 0;
3146
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3147
}
3148
3149
bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
3150
3151
return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
3152
own_addr_type, filter_policy, filter_dups);
3153
}
3154
3155
/* This function controls the passive scanning based on hdev->pend_le_conns
3156
* list. If there are pending LE connection we start the background scanning,
3157
* otherwise we stop it in the following sequence:
3158
*
3159
* If there are devices to scan:
3160
*
3161
* Disable Scanning -> Update Accept List ->
3162
* ll_privacy_capable((Disable Advertising) -> Disable Resolving List ->
3163
* Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
3164
* Enable Scanning
3165
*
3166
* Otherwise:
3167
*
3168
* Disable Scanning
3169
*/
3170
int hci_update_passive_scan_sync(struct hci_dev *hdev)
3171
{
3172
int err;
3173
3174
if (!test_bit(HCI_UP, &hdev->flags) ||
3175
test_bit(HCI_INIT, &hdev->flags) ||
3176
hci_dev_test_flag(hdev, HCI_SETUP) ||
3177
hci_dev_test_flag(hdev, HCI_CONFIG) ||
3178
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3179
hci_dev_test_flag(hdev, HCI_UNREGISTER))
3180
return 0;
3181
3182
/* No point in doing scanning if LE support hasn't been enabled */
3183
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3184
return 0;
3185
3186
/* If discovery is active don't interfere with it */
3187
if (hdev->discovery.state != DISCOVERY_STOPPED)
3188
return 0;
3189
3190
/* Reset RSSI and UUID filters when starting background scanning
3191
* since these filters are meant for service discovery only.
3192
*
3193
* The Start Discovery and Start Service Discovery operations
3194
* ensure to set proper values for RSSI threshold and UUID
3195
* filter list. So it is safe to just reset them here.
3196
*/
3197
hci_discovery_filter_clear(hdev);
3198
3199
bt_dev_dbg(hdev, "ADV monitoring is %s",
3200
hci_is_adv_monitoring(hdev) ? "on" : "off");
3201
3202
if (!hci_dev_test_flag(hdev, HCI_MESH) &&
3203
list_empty(&hdev->pend_le_conns) &&
3204
list_empty(&hdev->pend_le_reports) &&
3205
!hci_is_adv_monitoring(hdev) &&
3206
!hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
3207
/* If there is no pending LE connections or devices
3208
* to be scanned for or no ADV monitors, we should stop the
3209
* background scanning.
3210
*/
3211
3212
bt_dev_dbg(hdev, "stopping background scanning");
3213
3214
err = hci_scan_disable_sync(hdev);
3215
if (err)
3216
bt_dev_err(hdev, "stop background scanning failed: %d",
3217
err);
3218
} else {
3219
/* If there is at least one pending LE connection, we should
3220
* keep the background scan running.
3221
*/
3222
3223
/* If controller is connecting, we should not start scanning
3224
* since some controllers are not able to scan and connect at
3225
* the same time.
3226
*/
3227
if (hci_lookup_le_connect(hdev))
3228
return 0;
3229
3230
bt_dev_dbg(hdev, "start background scanning");
3231
3232
err = hci_passive_scan_sync(hdev);
3233
if (err)
3234
bt_dev_err(hdev, "start background scanning failed: %d",
3235
err);
3236
}
3237
3238
return err;
3239
}
3240
3241
static int update_scan_sync(struct hci_dev *hdev, void *data)
3242
{
3243
return hci_update_scan_sync(hdev);
3244
}
3245
3246
int hci_update_scan(struct hci_dev *hdev)
3247
{
3248
return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
3249
}
3250
3251
static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
3252
{
3253
return hci_update_passive_scan_sync(hdev);
3254
}
3255
3256
int hci_update_passive_scan(struct hci_dev *hdev)
3257
{
3258
/* Only queue if it would have any effect */
3259
if (!test_bit(HCI_UP, &hdev->flags) ||
3260
test_bit(HCI_INIT, &hdev->flags) ||
3261
hci_dev_test_flag(hdev, HCI_SETUP) ||
3262
hci_dev_test_flag(hdev, HCI_CONFIG) ||
3263
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3264
hci_dev_test_flag(hdev, HCI_UNREGISTER))
3265
return 0;
3266
3267
return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL,
3268
NULL);
3269
}
3270
3271
int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
3272
{
3273
int err;
3274
3275
if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
3276
return 0;
3277
3278
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3279
sizeof(val), &val, HCI_CMD_TIMEOUT);
3280
3281
if (!err) {
3282
if (val) {
3283
hdev->features[1][0] |= LMP_HOST_SC;
3284
hci_dev_set_flag(hdev, HCI_SC_ENABLED);
3285
} else {
3286
hdev->features[1][0] &= ~LMP_HOST_SC;
3287
hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
3288
}
3289
}
3290
3291
return err;
3292
}
3293
3294
int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
3295
{
3296
int err;
3297
3298
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3299
lmp_host_ssp_capable(hdev))
3300
return 0;
3301
3302
if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
3303
__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
3304
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3305
}
3306
3307
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3308
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3309
if (err)
3310
return err;
3311
3312
return hci_write_sc_support_sync(hdev, 0x01);
3313
}
3314
3315
int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3316
{
3317
struct hci_cp_write_le_host_supported cp;
3318
3319
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3320
!lmp_bredr_capable(hdev))
3321
return 0;
3322
3323
/* Check first if we already have the right host state
3324
* (host features set)
3325
*/
3326
if (le == lmp_host_le_capable(hdev) &&
3327
simul == lmp_host_le_br_capable(hdev))
3328
return 0;
3329
3330
memset(&cp, 0, sizeof(cp));
3331
3332
cp.le = le;
3333
cp.simul = simul;
3334
3335
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3336
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3337
}
3338
3339
static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3340
{
3341
struct adv_info *adv, *tmp;
3342
int err;
3343
3344
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3345
return 0;
3346
3347
/* If RPA Resolution has not been enable yet it means the
3348
* resolving list is empty and we should attempt to program the
3349
* local IRK in order to support using own_addr_type
3350
* ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3351
*/
3352
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3353
hci_le_add_resolve_list_sync(hdev, NULL);
3354
hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3355
}
3356
3357
/* Make sure the controller has a good default for
3358
* advertising data. This also applies to the case
3359
* where BR/EDR was toggled during the AUTO_OFF phase.
3360
*/
3361
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
3362
list_empty(&hdev->adv_instances)) {
3363
if (ext_adv_capable(hdev)) {
3364
err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3365
if (!err)
3366
hci_update_scan_rsp_data_sync(hdev, 0x00);
3367
} else {
3368
err = hci_update_adv_data_sync(hdev, 0x00);
3369
if (!err)
3370
hci_update_scan_rsp_data_sync(hdev, 0x00);
3371
}
3372
3373
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3374
hci_enable_advertising_sync(hdev);
3375
}
3376
3377
/* Call for each tracked instance to be scheduled */
3378
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3379
hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3380
3381
return 0;
3382
}
3383
3384
static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3385
{
3386
u8 link_sec;
3387
3388
link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3389
if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3390
return 0;
3391
3392
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3393
sizeof(link_sec), &link_sec,
3394
HCI_CMD_TIMEOUT);
3395
}
3396
3397
int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3398
{
3399
struct hci_cp_write_page_scan_activity cp;
3400
u8 type;
3401
int err = 0;
3402
3403
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3404
return 0;
3405
3406
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3407
return 0;
3408
3409
memset(&cp, 0, sizeof(cp));
3410
3411
if (enable) {
3412
type = PAGE_SCAN_TYPE_INTERLACED;
3413
3414
/* 160 msec page scan interval */
3415
cp.interval = cpu_to_le16(0x0100);
3416
} else {
3417
type = hdev->def_page_scan_type;
3418
cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3419
}
3420
3421
cp.window = cpu_to_le16(hdev->def_page_scan_window);
3422
3423
if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3424
__cpu_to_le16(hdev->page_scan_window) != cp.window) {
3425
err = __hci_cmd_sync_status(hdev,
3426
HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3427
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3428
if (err)
3429
return err;
3430
}
3431
3432
if (hdev->page_scan_type != type)
3433
err = __hci_cmd_sync_status(hdev,
3434
HCI_OP_WRITE_PAGE_SCAN_TYPE,
3435
sizeof(type), &type,
3436
HCI_CMD_TIMEOUT);
3437
3438
return err;
3439
}
3440
3441
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3442
{
3443
struct bdaddr_list *b;
3444
3445
list_for_each_entry(b, &hdev->accept_list, list) {
3446
struct hci_conn *conn;
3447
3448
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3449
if (!conn)
3450
return true;
3451
3452
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3453
return true;
3454
}
3455
3456
return false;
3457
}
3458
3459
static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3460
{
3461
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3462
sizeof(val), &val,
3463
HCI_CMD_TIMEOUT);
3464
}
3465
3466
int hci_update_scan_sync(struct hci_dev *hdev)
3467
{
3468
u8 scan;
3469
3470
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3471
return 0;
3472
3473
if (!hdev_is_powered(hdev))
3474
return 0;
3475
3476
if (mgmt_powering_down(hdev))
3477
return 0;
3478
3479
if (hdev->scanning_paused)
3480
return 0;
3481
3482
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3483
disconnected_accept_list_entries(hdev))
3484
scan = SCAN_PAGE;
3485
else
3486
scan = SCAN_DISABLED;
3487
3488
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3489
scan |= SCAN_INQUIRY;
3490
3491
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3492
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3493
return 0;
3494
3495
return hci_write_scan_enable_sync(hdev, scan);
3496
}
3497
3498
int hci_update_name_sync(struct hci_dev *hdev, const u8 *name)
3499
{
3500
struct hci_cp_write_local_name cp;
3501
3502
memset(&cp, 0, sizeof(cp));
3503
3504
memcpy(cp.name, name, sizeof(cp.name));
3505
3506
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3507
sizeof(cp), &cp,
3508
HCI_CMD_TIMEOUT);
3509
}
3510
3511
/* This function perform powered update HCI command sequence after the HCI init
3512
* sequence which end up resetting all states, the sequence is as follows:
3513
*
3514
* HCI_SSP_ENABLED(Enable SSP)
3515
* HCI_LE_ENABLED(Enable LE)
3516
* HCI_LE_ENABLED(ll_privacy_capable(Add local IRK to Resolving List) ->
3517
* Update adv data)
3518
* Enable Authentication
3519
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3520
* Set Name -> Set EIR)
3521
* HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3522
*/
3523
int hci_powered_update_sync(struct hci_dev *hdev)
3524
{
3525
int err;
3526
3527
/* Register the available SMP channels (BR/EDR and LE) only when
3528
* successfully powering on the controller. This late
3529
* registration is required so that LE SMP can clearly decide if
3530
* the public address or static address is used.
3531
*/
3532
smp_register(hdev);
3533
3534
err = hci_write_ssp_mode_sync(hdev, 0x01);
3535
if (err)
3536
return err;
3537
3538
err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3539
if (err)
3540
return err;
3541
3542
err = hci_powered_update_adv_sync(hdev);
3543
if (err)
3544
return err;
3545
3546
err = hci_write_auth_enable_sync(hdev);
3547
if (err)
3548
return err;
3549
3550
if (lmp_bredr_capable(hdev)) {
3551
if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3552
hci_write_fast_connectable_sync(hdev, true);
3553
else
3554
hci_write_fast_connectable_sync(hdev, false);
3555
hci_update_scan_sync(hdev);
3556
hci_update_class_sync(hdev);
3557
hci_update_name_sync(hdev, hdev->dev_name);
3558
hci_update_eir_sync(hdev);
3559
}
3560
3561
/* If forcing static address is in use or there is no public
3562
* address use the static address as random address (but skip
3563
* the HCI command if the current random address is already the
3564
* static one.
3565
*
3566
* In case BR/EDR has been disabled on a dual-mode controller
3567
* and a static address has been configured, then use that
3568
* address instead of the public BR/EDR address.
3569
*/
3570
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3571
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3572
!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3573
if (bacmp(&hdev->static_addr, BDADDR_ANY))
3574
return hci_set_random_addr_sync(hdev,
3575
&hdev->static_addr);
3576
}
3577
3578
return 0;
3579
}
3580
3581
/**
3582
* hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3583
* (BD_ADDR) for a HCI device from
3584
* a firmware node property.
3585
* @hdev: The HCI device
3586
*
3587
* Search the firmware node for 'local-bd-address'.
3588
*
3589
* All-zero BD addresses are rejected, because those could be properties
3590
* that exist in the firmware tables, but were not updated by the firmware. For
3591
* example, the DTS could define 'local-bd-address', with zero BD addresses.
3592
*/
3593
static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3594
{
3595
struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3596
bdaddr_t ba;
3597
int ret;
3598
3599
ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3600
(u8 *)&ba, sizeof(ba));
3601
if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3602
return;
3603
3604
if (hci_test_quirk(hdev, HCI_QUIRK_BDADDR_PROPERTY_BROKEN))
3605
baswap(&hdev->public_addr, &ba);
3606
else
3607
bacpy(&hdev->public_addr, &ba);
3608
}
3609
3610
struct hci_init_stage {
3611
int (*func)(struct hci_dev *hdev);
3612
};
3613
3614
/* Run init stage NULL terminated function table */
3615
static int hci_init_stage_sync(struct hci_dev *hdev,
3616
const struct hci_init_stage *stage)
3617
{
3618
size_t i;
3619
3620
for (i = 0; stage[i].func; i++) {
3621
int err;
3622
3623
err = stage[i].func(hdev);
3624
if (err)
3625
return err;
3626
}
3627
3628
return 0;
3629
}
3630
3631
/* Read Local Version */
3632
static int hci_read_local_version_sync(struct hci_dev *hdev)
3633
{
3634
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3635
0, NULL, HCI_CMD_TIMEOUT);
3636
}
3637
3638
/* Read BD Address */
3639
static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3640
{
3641
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3642
0, NULL, HCI_CMD_TIMEOUT);
3643
}
3644
3645
#define HCI_INIT(_func) \
3646
{ \
3647
.func = _func, \
3648
}
3649
3650
static const struct hci_init_stage hci_init0[] = {
3651
/* HCI_OP_READ_LOCAL_VERSION */
3652
HCI_INIT(hci_read_local_version_sync),
3653
/* HCI_OP_READ_BD_ADDR */
3654
HCI_INIT(hci_read_bd_addr_sync),
3655
{}
3656
};
3657
3658
int hci_reset_sync(struct hci_dev *hdev)
3659
{
3660
int err;
3661
3662
set_bit(HCI_RESET, &hdev->flags);
3663
3664
err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3665
HCI_CMD_TIMEOUT);
3666
if (err)
3667
return err;
3668
3669
return 0;
3670
}
3671
3672
static int hci_init0_sync(struct hci_dev *hdev)
3673
{
3674
int err;
3675
3676
bt_dev_dbg(hdev, "");
3677
3678
/* Reset */
3679
if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) {
3680
err = hci_reset_sync(hdev);
3681
if (err)
3682
return err;
3683
}
3684
3685
return hci_init_stage_sync(hdev, hci_init0);
3686
}
3687
3688
static int hci_unconf_init_sync(struct hci_dev *hdev)
3689
{
3690
int err;
3691
3692
if (hci_test_quirk(hdev, HCI_QUIRK_RAW_DEVICE))
3693
return 0;
3694
3695
err = hci_init0_sync(hdev);
3696
if (err < 0)
3697
return err;
3698
3699
if (hci_dev_test_flag(hdev, HCI_SETUP))
3700
hci_debugfs_create_basic(hdev);
3701
3702
return 0;
3703
}
3704
3705
/* Read Local Supported Features. */
3706
static int hci_read_local_features_sync(struct hci_dev *hdev)
3707
{
3708
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3709
0, NULL, HCI_CMD_TIMEOUT);
3710
}
3711
3712
/* BR Controller init stage 1 command sequence */
3713
static const struct hci_init_stage br_init1[] = {
3714
/* HCI_OP_READ_LOCAL_FEATURES */
3715
HCI_INIT(hci_read_local_features_sync),
3716
/* HCI_OP_READ_LOCAL_VERSION */
3717
HCI_INIT(hci_read_local_version_sync),
3718
/* HCI_OP_READ_BD_ADDR */
3719
HCI_INIT(hci_read_bd_addr_sync),
3720
{}
3721
};
3722
3723
/* Read Local Commands */
3724
static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3725
{
3726
/* All Bluetooth 1.2 and later controllers should support the
3727
* HCI command for reading the local supported commands.
3728
*
3729
* Unfortunately some controllers indicate Bluetooth 1.2 support,
3730
* but do not have support for this command. If that is the case,
3731
* the driver can quirk the behavior and skip reading the local
3732
* supported commands.
3733
*/
3734
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3735
!hci_test_quirk(hdev, HCI_QUIRK_BROKEN_LOCAL_COMMANDS))
3736
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3737
0, NULL, HCI_CMD_TIMEOUT);
3738
3739
return 0;
3740
}
3741
3742
static int hci_init1_sync(struct hci_dev *hdev)
3743
{
3744
int err;
3745
3746
bt_dev_dbg(hdev, "");
3747
3748
/* Reset */
3749
if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) {
3750
err = hci_reset_sync(hdev);
3751
if (err)
3752
return err;
3753
}
3754
3755
return hci_init_stage_sync(hdev, br_init1);
3756
}
3757
3758
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
3759
static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3760
{
3761
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3762
0, NULL, HCI_CMD_TIMEOUT);
3763
}
3764
3765
/* Read Class of Device */
3766
static int hci_read_dev_class_sync(struct hci_dev *hdev)
3767
{
3768
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3769
0, NULL, HCI_CMD_TIMEOUT);
3770
}
3771
3772
/* Read Local Name */
3773
static int hci_read_local_name_sync(struct hci_dev *hdev)
3774
{
3775
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3776
0, NULL, HCI_CMD_TIMEOUT);
3777
}
3778
3779
/* Read Voice Setting */
3780
static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3781
{
3782
if (!read_voice_setting_capable(hdev))
3783
return 0;
3784
3785
return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3786
0, NULL, HCI_CMD_TIMEOUT);
3787
}
3788
3789
/* Read Number of Supported IAC */
3790
static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3791
{
3792
return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3793
0, NULL, HCI_CMD_TIMEOUT);
3794
}
3795
3796
/* Read Current IAC LAP */
3797
static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3798
{
3799
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3800
0, NULL, HCI_CMD_TIMEOUT);
3801
}
3802
3803
static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3804
u8 cond_type, bdaddr_t *bdaddr,
3805
u8 auto_accept)
3806
{
3807
struct hci_cp_set_event_filter cp;
3808
3809
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3810
return 0;
3811
3812
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
3813
return 0;
3814
3815
memset(&cp, 0, sizeof(cp));
3816
cp.flt_type = flt_type;
3817
3818
if (flt_type != HCI_FLT_CLEAR_ALL) {
3819
cp.cond_type = cond_type;
3820
bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3821
cp.addr_conn_flt.auto_accept = auto_accept;
3822
}
3823
3824
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3825
flt_type == HCI_FLT_CLEAR_ALL ?
3826
sizeof(cp.flt_type) : sizeof(cp), &cp,
3827
HCI_CMD_TIMEOUT);
3828
}
3829
3830
static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3831
{
3832
if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3833
return 0;
3834
3835
/* In theory the state machine should not reach here unless
3836
* a hci_set_event_filter_sync() call succeeds, but we do
3837
* the check both for parity and as a future reminder.
3838
*/
3839
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
3840
return 0;
3841
3842
return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3843
BDADDR_ANY, 0x00);
3844
}
3845
3846
/* Connection accept timeout ~20 secs */
3847
static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3848
{
3849
__le16 param = cpu_to_le16(0x7d00);
3850
3851
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3852
sizeof(param), &param, HCI_CMD_TIMEOUT);
3853
}
3854
3855
/* Enable SCO flow control if supported */
3856
static int hci_write_sync_flowctl_sync(struct hci_dev *hdev)
3857
{
3858
struct hci_cp_write_sync_flowctl cp;
3859
int err;
3860
3861
/* Check if the controller supports SCO and HCI_OP_WRITE_SYNC_FLOWCTL */
3862
if (!lmp_sco_capable(hdev) || !(hdev->commands[10] & BIT(4)) ||
3863
!hci_test_quirk(hdev, HCI_QUIRK_SYNC_FLOWCTL_SUPPORTED))
3864
return 0;
3865
3866
memset(&cp, 0, sizeof(cp));
3867
cp.enable = 0x01;
3868
3869
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SYNC_FLOWCTL,
3870
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3871
if (!err)
3872
hci_dev_set_flag(hdev, HCI_SCO_FLOWCTL);
3873
3874
return err;
3875
}
3876
3877
/* BR Controller init stage 2 command sequence */
3878
static const struct hci_init_stage br_init2[] = {
3879
/* HCI_OP_READ_BUFFER_SIZE */
3880
HCI_INIT(hci_read_buffer_size_sync),
3881
/* HCI_OP_READ_CLASS_OF_DEV */
3882
HCI_INIT(hci_read_dev_class_sync),
3883
/* HCI_OP_READ_LOCAL_NAME */
3884
HCI_INIT(hci_read_local_name_sync),
3885
/* HCI_OP_READ_VOICE_SETTING */
3886
HCI_INIT(hci_read_voice_setting_sync),
3887
/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3888
HCI_INIT(hci_read_num_supported_iac_sync),
3889
/* HCI_OP_READ_CURRENT_IAC_LAP */
3890
HCI_INIT(hci_read_current_iac_lap_sync),
3891
/* HCI_OP_SET_EVENT_FLT */
3892
HCI_INIT(hci_clear_event_filter_sync),
3893
/* HCI_OP_WRITE_CA_TIMEOUT */
3894
HCI_INIT(hci_write_ca_timeout_sync),
3895
/* HCI_OP_WRITE_SYNC_FLOWCTL */
3896
HCI_INIT(hci_write_sync_flowctl_sync),
3897
{}
3898
};
3899
3900
static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3901
{
3902
u8 mode = 0x01;
3903
3904
if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3905
return 0;
3906
3907
/* When SSP is available, then the host features page
3908
* should also be available as well. However some
3909
* controllers list the max_page as 0 as long as SSP
3910
* has not been enabled. To achieve proper debugging
3911
* output, force the minimum max_page to 1 at least.
3912
*/
3913
hdev->max_page = 0x01;
3914
3915
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3916
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3917
}
3918
3919
static int hci_write_eir_sync(struct hci_dev *hdev)
3920
{
3921
struct hci_cp_write_eir cp;
3922
3923
if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3924
return 0;
3925
3926
memset(hdev->eir, 0, sizeof(hdev->eir));
3927
memset(&cp, 0, sizeof(cp));
3928
3929
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3930
HCI_CMD_TIMEOUT);
3931
}
3932
3933
static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3934
{
3935
u8 mode;
3936
3937
if (!lmp_inq_rssi_capable(hdev) &&
3938
!hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE))
3939
return 0;
3940
3941
/* If Extended Inquiry Result events are supported, then
3942
* they are clearly preferred over Inquiry Result with RSSI
3943
* events.
3944
*/
3945
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3946
3947
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3948
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3949
}
3950
3951
static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3952
{
3953
if (!lmp_inq_tx_pwr_capable(hdev))
3954
return 0;
3955
3956
return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3957
0, NULL, HCI_CMD_TIMEOUT);
3958
}
3959
3960
static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3961
{
3962
struct hci_cp_read_local_ext_features cp;
3963
3964
if (!lmp_ext_feat_capable(hdev))
3965
return 0;
3966
3967
memset(&cp, 0, sizeof(cp));
3968
cp.page = page;
3969
3970
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3971
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3972
}
3973
3974
static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3975
{
3976
return hci_read_local_ext_features_sync(hdev, 0x01);
3977
}
3978
3979
/* HCI Controller init stage 2 command sequence */
3980
static const struct hci_init_stage hci_init2[] = {
3981
/* HCI_OP_READ_LOCAL_COMMANDS */
3982
HCI_INIT(hci_read_local_cmds_sync),
3983
/* HCI_OP_WRITE_SSP_MODE */
3984
HCI_INIT(hci_write_ssp_mode_1_sync),
3985
/* HCI_OP_WRITE_EIR */
3986
HCI_INIT(hci_write_eir_sync),
3987
/* HCI_OP_WRITE_INQUIRY_MODE */
3988
HCI_INIT(hci_write_inquiry_mode_sync),
3989
/* HCI_OP_READ_INQ_RSP_TX_POWER */
3990
HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3991
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3992
HCI_INIT(hci_read_local_ext_features_1_sync),
3993
/* HCI_OP_WRITE_AUTH_ENABLE */
3994
HCI_INIT(hci_write_auth_enable_sync),
3995
{}
3996
};
3997
3998
/* Read LE Buffer Size */
3999
static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
4000
{
4001
/* Use Read LE Buffer Size V2 if supported */
4002
if (iso_capable(hdev) && hdev->commands[41] & 0x20)
4003
return __hci_cmd_sync_status(hdev,
4004
HCI_OP_LE_READ_BUFFER_SIZE_V2,
4005
0, NULL, HCI_CMD_TIMEOUT);
4006
4007
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
4008
0, NULL, HCI_CMD_TIMEOUT);
4009
}
4010
4011
/* Read LE Local Supported Features */
4012
static int hci_le_read_local_features_sync(struct hci_dev *hdev)
4013
{
4014
int err;
4015
4016
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
4017
0, NULL, HCI_CMD_TIMEOUT);
4018
if (err)
4019
return err;
4020
4021
if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(2))
4022
return __hci_cmd_sync_status(hdev,
4023
HCI_OP_LE_READ_ALL_LOCAL_FEATURES,
4024
0, NULL, HCI_CMD_TIMEOUT);
4025
4026
return err;
4027
}
4028
4029
/* Read LE Supported States */
4030
static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
4031
{
4032
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
4033
0, NULL, HCI_CMD_TIMEOUT);
4034
}
4035
4036
/* LE Controller init stage 2 command sequence */
4037
static const struct hci_init_stage le_init2[] = {
4038
/* HCI_OP_LE_READ_LOCAL_FEATURES */
4039
HCI_INIT(hci_le_read_local_features_sync),
4040
/* HCI_OP_LE_READ_BUFFER_SIZE */
4041
HCI_INIT(hci_le_read_buffer_size_sync),
4042
/* HCI_OP_LE_READ_SUPPORTED_STATES */
4043
HCI_INIT(hci_le_read_supported_states_sync),
4044
{}
4045
};
4046
4047
static int hci_init2_sync(struct hci_dev *hdev)
4048
{
4049
int err;
4050
4051
bt_dev_dbg(hdev, "");
4052
4053
err = hci_init_stage_sync(hdev, hci_init2);
4054
if (err)
4055
return err;
4056
4057
if (lmp_bredr_capable(hdev)) {
4058
err = hci_init_stage_sync(hdev, br_init2);
4059
if (err)
4060
return err;
4061
} else {
4062
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
4063
}
4064
4065
if (lmp_le_capable(hdev)) {
4066
err = hci_init_stage_sync(hdev, le_init2);
4067
if (err)
4068
return err;
4069
/* LE-only controllers have LE implicitly enabled */
4070
if (!lmp_bredr_capable(hdev))
4071
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
4072
}
4073
4074
return 0;
4075
}
4076
4077
static int hci_set_event_mask_sync(struct hci_dev *hdev)
4078
{
4079
/* The second byte is 0xff instead of 0x9f (two reserved bits
4080
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
4081
* command otherwise.
4082
*/
4083
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
4084
4085
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
4086
* any event mask for pre 1.2 devices.
4087
*/
4088
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4089
return 0;
4090
4091
if (lmp_bredr_capable(hdev)) {
4092
events[4] |= 0x01; /* Flow Specification Complete */
4093
4094
/* Don't set Disconnect Complete and mode change when
4095
* suspended as that would wakeup the host when disconnecting
4096
* due to suspend.
4097
*/
4098
if (hdev->suspended) {
4099
events[0] &= 0xef;
4100
events[2] &= 0xf7;
4101
}
4102
} else {
4103
/* Use a different default for LE-only devices */
4104
memset(events, 0, sizeof(events));
4105
events[1] |= 0x20; /* Command Complete */
4106
events[1] |= 0x40; /* Command Status */
4107
events[1] |= 0x80; /* Hardware Error */
4108
4109
/* If the controller supports the Disconnect command, enable
4110
* the corresponding event. In addition enable packet flow
4111
* control related events.
4112
*/
4113
if (hdev->commands[0] & 0x20) {
4114
/* Don't set Disconnect Complete when suspended as that
4115
* would wakeup the host when disconnecting due to
4116
* suspend.
4117
*/
4118
if (!hdev->suspended)
4119
events[0] |= 0x10; /* Disconnection Complete */
4120
events[2] |= 0x04; /* Number of Completed Packets */
4121
events[3] |= 0x02; /* Data Buffer Overflow */
4122
}
4123
4124
/* If the controller supports the Read Remote Version
4125
* Information command, enable the corresponding event.
4126
*/
4127
if (hdev->commands[2] & 0x80)
4128
events[1] |= 0x08; /* Read Remote Version Information
4129
* Complete
4130
*/
4131
4132
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
4133
events[0] |= 0x80; /* Encryption Change */
4134
events[5] |= 0x80; /* Encryption Key Refresh Complete */
4135
}
4136
}
4137
4138
if (lmp_inq_rssi_capable(hdev) ||
4139
hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE))
4140
events[4] |= 0x02; /* Inquiry Result with RSSI */
4141
4142
if (lmp_ext_feat_capable(hdev))
4143
events[4] |= 0x04; /* Read Remote Extended Features Complete */
4144
4145
if (lmp_esco_capable(hdev)) {
4146
events[5] |= 0x08; /* Synchronous Connection Complete */
4147
events[5] |= 0x10; /* Synchronous Connection Changed */
4148
}
4149
4150
if (lmp_sniffsubr_capable(hdev))
4151
events[5] |= 0x20; /* Sniff Subrating */
4152
4153
if (lmp_pause_enc_capable(hdev))
4154
events[5] |= 0x80; /* Encryption Key Refresh Complete */
4155
4156
if (lmp_ext_inq_capable(hdev))
4157
events[5] |= 0x40; /* Extended Inquiry Result */
4158
4159
if (lmp_no_flush_capable(hdev))
4160
events[7] |= 0x01; /* Enhanced Flush Complete */
4161
4162
if (lmp_lsto_capable(hdev))
4163
events[6] |= 0x80; /* Link Supervision Timeout Changed */
4164
4165
if (lmp_ssp_capable(hdev)) {
4166
events[6] |= 0x01; /* IO Capability Request */
4167
events[6] |= 0x02; /* IO Capability Response */
4168
events[6] |= 0x04; /* User Confirmation Request */
4169
events[6] |= 0x08; /* User Passkey Request */
4170
events[6] |= 0x10; /* Remote OOB Data Request */
4171
events[6] |= 0x20; /* Simple Pairing Complete */
4172
events[7] |= 0x04; /* User Passkey Notification */
4173
events[7] |= 0x08; /* Keypress Notification */
4174
events[7] |= 0x10; /* Remote Host Supported
4175
* Features Notification
4176
*/
4177
}
4178
4179
if (lmp_le_capable(hdev))
4180
events[7] |= 0x20; /* LE Meta-Event */
4181
4182
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
4183
sizeof(events), events, HCI_CMD_TIMEOUT);
4184
}
4185
4186
static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
4187
{
4188
struct hci_cp_read_stored_link_key cp;
4189
4190
if (!(hdev->commands[6] & 0x20) ||
4191
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY))
4192
return 0;
4193
4194
memset(&cp, 0, sizeof(cp));
4195
bacpy(&cp.bdaddr, BDADDR_ANY);
4196
cp.read_all = 0x01;
4197
4198
return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
4199
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4200
}
4201
4202
static int hci_setup_link_policy_sync(struct hci_dev *hdev)
4203
{
4204
struct hci_cp_write_def_link_policy cp;
4205
u16 link_policy = 0;
4206
4207
if (!(hdev->commands[5] & 0x10))
4208
return 0;
4209
4210
memset(&cp, 0, sizeof(cp));
4211
4212
if (lmp_rswitch_capable(hdev))
4213
link_policy |= HCI_LP_RSWITCH;
4214
if (lmp_hold_capable(hdev))
4215
link_policy |= HCI_LP_HOLD;
4216
if (lmp_sniff_capable(hdev))
4217
link_policy |= HCI_LP_SNIFF;
4218
if (lmp_park_capable(hdev))
4219
link_policy |= HCI_LP_PARK;
4220
4221
cp.policy = cpu_to_le16(link_policy);
4222
4223
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
4224
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4225
}
4226
4227
static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
4228
{
4229
if (!(hdev->commands[8] & 0x01))
4230
return 0;
4231
4232
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
4233
0, NULL, HCI_CMD_TIMEOUT);
4234
}
4235
4236
static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
4237
{
4238
if (!(hdev->commands[18] & 0x04) ||
4239
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4240
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING))
4241
return 0;
4242
4243
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
4244
0, NULL, HCI_CMD_TIMEOUT);
4245
}
4246
4247
static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
4248
{
4249
/* Some older Broadcom based Bluetooth 1.2 controllers do not
4250
* support the Read Page Scan Type command. Check support for
4251
* this command in the bit mask of supported commands.
4252
*/
4253
if (!(hdev->commands[13] & 0x01) ||
4254
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_PAGE_SCAN_TYPE))
4255
return 0;
4256
4257
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
4258
0, NULL, HCI_CMD_TIMEOUT);
4259
}
4260
4261
/* Read features beyond page 1 if available */
4262
static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
4263
{
4264
u8 page;
4265
int err;
4266
4267
if (!lmp_ext_feat_capable(hdev))
4268
return 0;
4269
4270
for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
4271
page++) {
4272
err = hci_read_local_ext_features_sync(hdev, page);
4273
if (err)
4274
return err;
4275
}
4276
4277
return 0;
4278
}
4279
4280
/* HCI Controller init stage 3 command sequence */
4281
static const struct hci_init_stage hci_init3[] = {
4282
/* HCI_OP_SET_EVENT_MASK */
4283
HCI_INIT(hci_set_event_mask_sync),
4284
/* HCI_OP_READ_STORED_LINK_KEY */
4285
HCI_INIT(hci_read_stored_link_key_sync),
4286
/* HCI_OP_WRITE_DEF_LINK_POLICY */
4287
HCI_INIT(hci_setup_link_policy_sync),
4288
/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4289
HCI_INIT(hci_read_page_scan_activity_sync),
4290
/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4291
HCI_INIT(hci_read_def_err_data_reporting_sync),
4292
/* HCI_OP_READ_PAGE_SCAN_TYPE */
4293
HCI_INIT(hci_read_page_scan_type_sync),
4294
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4295
HCI_INIT(hci_read_local_ext_features_all_sync),
4296
{}
4297
};
4298
4299
static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4300
{
4301
u8 events[8];
4302
4303
if (!lmp_le_capable(hdev))
4304
return 0;
4305
4306
memset(events, 0, sizeof(events));
4307
4308
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4309
events[0] |= 0x10; /* LE Long Term Key Request */
4310
4311
/* If controller supports the Connection Parameters Request
4312
* Link Layer Procedure, enable the corresponding event.
4313
*/
4314
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4315
/* LE Remote Connection Parameter Request */
4316
events[0] |= 0x20;
4317
4318
/* If the controller supports the Data Length Extension
4319
* feature, enable the corresponding event.
4320
*/
4321
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4322
events[0] |= 0x40; /* LE Data Length Change */
4323
4324
/* If the controller supports LL Privacy feature or LE Extended Adv,
4325
* enable the corresponding event.
4326
*/
4327
if (use_enhanced_conn_complete(hdev))
4328
events[1] |= 0x02; /* LE Enhanced Connection Complete */
4329
4330
/* Mark Device Privacy if Privacy Mode is supported */
4331
if (privacy_mode_capable(hdev))
4332
hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY;
4333
4334
/* Mark Address Resolution if LL Privacy is supported */
4335
if (ll_privacy_capable(hdev))
4336
hdev->conn_flags |= HCI_CONN_FLAG_ADDRESS_RESOLUTION;
4337
4338
/* Mark PAST if supported */
4339
if (past_capable(hdev))
4340
hdev->conn_flags |= HCI_CONN_FLAG_PAST;
4341
4342
/* If the controller supports Extended Scanner Filter
4343
* Policies, enable the corresponding event.
4344
*/
4345
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4346
events[1] |= 0x04; /* LE Direct Advertising Report */
4347
4348
/* If the controller supports Channel Selection Algorithm #2
4349
* feature, enable the corresponding event.
4350
*/
4351
if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4352
events[2] |= 0x08; /* LE Channel Selection Algorithm */
4353
4354
/* If the controller supports the LE Set Scan Enable command,
4355
* enable the corresponding advertising report event.
4356
*/
4357
if (hdev->commands[26] & 0x08)
4358
events[0] |= 0x02; /* LE Advertising Report */
4359
4360
/* If the controller supports the LE Create Connection
4361
* command, enable the corresponding event.
4362
*/
4363
if (hdev->commands[26] & 0x10)
4364
events[0] |= 0x01; /* LE Connection Complete */
4365
4366
/* If the controller supports the LE Connection Update
4367
* command, enable the corresponding event.
4368
*/
4369
if (hdev->commands[27] & 0x04)
4370
events[0] |= 0x04; /* LE Connection Update Complete */
4371
4372
/* If the controller supports the LE Read Remote Used Features
4373
* command, enable the corresponding event.
4374
*/
4375
if (hdev->commands[27] & 0x20)
4376
/* LE Read Remote Used Features Complete */
4377
events[0] |= 0x08;
4378
4379
/* If the controller supports the LE Read Local P-256
4380
* Public Key command, enable the corresponding event.
4381
*/
4382
if (hdev->commands[34] & 0x02)
4383
/* LE Read Local P-256 Public Key Complete */
4384
events[0] |= 0x80;
4385
4386
/* If the controller supports the LE Generate DHKey
4387
* command, enable the corresponding event.
4388
*/
4389
if (hdev->commands[34] & 0x04)
4390
events[1] |= 0x01; /* LE Generate DHKey Complete */
4391
4392
/* If the controller supports the LE Set Default PHY or
4393
* LE Set PHY commands, enable the corresponding event.
4394
*/
4395
if (hdev->commands[35] & (0x20 | 0x40))
4396
events[1] |= 0x08; /* LE PHY Update Complete */
4397
4398
/* If the controller supports LE Set Extended Scan Parameters
4399
* and LE Set Extended Scan Enable commands, enable the
4400
* corresponding event.
4401
*/
4402
if (use_ext_scan(hdev))
4403
events[1] |= 0x10; /* LE Extended Advertising Report */
4404
4405
/* If the controller supports the LE Extended Advertising
4406
* command, enable the corresponding event.
4407
*/
4408
if (ext_adv_capable(hdev))
4409
events[2] |= 0x02; /* LE Advertising Set Terminated */
4410
4411
if (past_receiver_capable(hdev))
4412
events[2] |= 0x80; /* LE PAST Received */
4413
4414
if (cis_capable(hdev)) {
4415
events[3] |= 0x01; /* LE CIS Established */
4416
if (cis_peripheral_capable(hdev))
4417
events[3] |= 0x02; /* LE CIS Request */
4418
}
4419
4420
if (bis_capable(hdev)) {
4421
events[1] |= 0x20; /* LE PA Report */
4422
events[1] |= 0x40; /* LE PA Sync Established */
4423
events[1] |= 0x80; /* LE PA Sync Lost */
4424
events[3] |= 0x04; /* LE Create BIG Complete */
4425
events[3] |= 0x08; /* LE Terminate BIG Complete */
4426
events[3] |= 0x10; /* LE BIG Sync Established */
4427
events[3] |= 0x20; /* LE BIG Sync Loss */
4428
events[4] |= 0x02; /* LE BIG Info Advertising Report */
4429
}
4430
4431
if (le_cs_capable(hdev)) {
4432
/* Channel Sounding events */
4433
events[5] |= 0x08; /* LE CS Read Remote Supported Cap Complete event */
4434
events[5] |= 0x10; /* LE CS Read Remote FAE Table Complete event */
4435
events[5] |= 0x20; /* LE CS Security Enable Complete event */
4436
events[5] |= 0x40; /* LE CS Config Complete event */
4437
events[5] |= 0x80; /* LE CS Procedure Enable Complete event */
4438
events[6] |= 0x01; /* LE CS Subevent Result event */
4439
events[6] |= 0x02; /* LE CS Subevent Result Continue event */
4440
events[6] |= 0x04; /* LE CS Test End Complete event */
4441
}
4442
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4443
sizeof(events), events, HCI_CMD_TIMEOUT);
4444
}
4445
4446
/* Read LE Advertising Channel TX Power */
4447
static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4448
{
4449
if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4450
/* HCI TS spec forbids mixing of legacy and extended
4451
* advertising commands wherein READ_ADV_TX_POWER is
4452
* also included. So do not call it if extended adv
4453
* is supported otherwise controller will return
4454
* COMMAND_DISALLOWED for extended commands.
4455
*/
4456
return __hci_cmd_sync_status(hdev,
4457
HCI_OP_LE_READ_ADV_TX_POWER,
4458
0, NULL, HCI_CMD_TIMEOUT);
4459
}
4460
4461
return 0;
4462
}
4463
4464
/* Read LE Min/Max Tx Power*/
4465
static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4466
{
4467
if (!(hdev->commands[38] & 0x80) ||
4468
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER))
4469
return 0;
4470
4471
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4472
0, NULL, HCI_CMD_TIMEOUT);
4473
}
4474
4475
/* Read LE Accept List Size */
4476
static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4477
{
4478
if (!(hdev->commands[26] & 0x40))
4479
return 0;
4480
4481
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4482
0, NULL, HCI_CMD_TIMEOUT);
4483
}
4484
4485
/* Read LE Resolving List Size */
4486
static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4487
{
4488
if (!(hdev->commands[34] & 0x40))
4489
return 0;
4490
4491
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4492
0, NULL, HCI_CMD_TIMEOUT);
4493
}
4494
4495
/* Clear LE Resolving List */
4496
static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4497
{
4498
if (!(hdev->commands[34] & 0x20))
4499
return 0;
4500
4501
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4502
HCI_CMD_TIMEOUT);
4503
}
4504
4505
/* Set RPA timeout */
4506
static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4507
{
4508
__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4509
4510
if (!(hdev->commands[35] & 0x04) ||
4511
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT))
4512
return 0;
4513
4514
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4515
sizeof(timeout), &timeout,
4516
HCI_CMD_TIMEOUT);
4517
}
4518
4519
/* Read LE Maximum Data Length */
4520
static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4521
{
4522
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4523
return 0;
4524
4525
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4526
HCI_CMD_TIMEOUT);
4527
}
4528
4529
/* Read LE Suggested Default Data Length */
4530
static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4531
{
4532
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4533
return 0;
4534
4535
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4536
HCI_CMD_TIMEOUT);
4537
}
4538
4539
/* Read LE Number of Supported Advertising Sets */
4540
static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4541
{
4542
if (!ext_adv_capable(hdev))
4543
return 0;
4544
4545
return __hci_cmd_sync_status(hdev,
4546
HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4547
0, NULL, HCI_CMD_TIMEOUT);
4548
}
4549
4550
/* Write LE Host Supported */
4551
static int hci_set_le_support_sync(struct hci_dev *hdev)
4552
{
4553
struct hci_cp_write_le_host_supported cp;
4554
4555
/* LE-only devices do not support explicit enablement */
4556
if (!lmp_bredr_capable(hdev))
4557
return 0;
4558
4559
memset(&cp, 0, sizeof(cp));
4560
4561
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4562
cp.le = 0x01;
4563
cp.simul = 0x00;
4564
}
4565
4566
if (cp.le == lmp_host_le_capable(hdev))
4567
return 0;
4568
4569
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4570
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4571
}
4572
4573
/* LE Set Host Feature */
4574
static int hci_le_set_host_feature_sync(struct hci_dev *hdev, u8 bit, u8 value)
4575
{
4576
struct hci_cp_le_set_host_feature cp;
4577
4578
memset(&cp, 0, sizeof(cp));
4579
4580
/* Connected Isochronous Channels (Host Support) */
4581
cp.bit_number = bit;
4582
cp.bit_value = value;
4583
4584
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4585
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4586
}
4587
4588
/* Set Host Features, each feature needs to be sent separately since
4589
* HCI_OP_LE_SET_HOST_FEATURE doesn't support setting all of them at once.
4590
*/
4591
static int hci_le_set_host_features_sync(struct hci_dev *hdev)
4592
{
4593
int err;
4594
4595
if (iso_capable(hdev)) {
4596
/* Connected Isochronous Channels (Host Support) */
4597
err = hci_le_set_host_feature_sync(hdev, 32,
4598
(iso_enabled(hdev) ? 0x01 :
4599
0x00));
4600
if (err)
4601
return err;
4602
}
4603
4604
if (le_cs_capable(hdev))
4605
/* Channel Sounding (Host Support) */
4606
err = hci_le_set_host_feature_sync(hdev, 47, 0x01);
4607
4608
return err;
4609
}
4610
4611
/* LE Controller init stage 3 command sequence */
4612
static const struct hci_init_stage le_init3[] = {
4613
/* HCI_OP_LE_SET_EVENT_MASK */
4614
HCI_INIT(hci_le_set_event_mask_sync),
4615
/* HCI_OP_LE_READ_ADV_TX_POWER */
4616
HCI_INIT(hci_le_read_adv_tx_power_sync),
4617
/* HCI_OP_LE_READ_TRANSMIT_POWER */
4618
HCI_INIT(hci_le_read_tx_power_sync),
4619
/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4620
HCI_INIT(hci_le_read_accept_list_size_sync),
4621
/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4622
HCI_INIT(hci_le_clear_accept_list_sync),
4623
/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4624
HCI_INIT(hci_le_read_resolv_list_size_sync),
4625
/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4626
HCI_INIT(hci_le_clear_resolv_list_sync),
4627
/* HCI_OP_LE_SET_RPA_TIMEOUT */
4628
HCI_INIT(hci_le_set_rpa_timeout_sync),
4629
/* HCI_OP_LE_READ_MAX_DATA_LEN */
4630
HCI_INIT(hci_le_read_max_data_len_sync),
4631
/* HCI_OP_LE_READ_DEF_DATA_LEN */
4632
HCI_INIT(hci_le_read_def_data_len_sync),
4633
/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4634
HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4635
/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4636
HCI_INIT(hci_set_le_support_sync),
4637
/* HCI_OP_LE_SET_HOST_FEATURE */
4638
HCI_INIT(hci_le_set_host_features_sync),
4639
{}
4640
};
4641
4642
static int hci_init3_sync(struct hci_dev *hdev)
4643
{
4644
int err;
4645
4646
bt_dev_dbg(hdev, "");
4647
4648
err = hci_init_stage_sync(hdev, hci_init3);
4649
if (err)
4650
return err;
4651
4652
if (lmp_le_capable(hdev))
4653
return hci_init_stage_sync(hdev, le_init3);
4654
4655
return 0;
4656
}
4657
4658
static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4659
{
4660
struct hci_cp_delete_stored_link_key cp;
4661
4662
/* Some Broadcom based Bluetooth controllers do not support the
4663
* Delete Stored Link Key command. They are clearly indicating its
4664
* absence in the bit mask of supported commands.
4665
*
4666
* Check the supported commands and only if the command is marked
4667
* as supported send it. If not supported assume that the controller
4668
* does not have actual support for stored link keys which makes this
4669
* command redundant anyway.
4670
*
4671
* Some controllers indicate that they support handling deleting
4672
* stored link keys, but they don't. The quirk lets a driver
4673
* just disable this command.
4674
*/
4675
if (!(hdev->commands[6] & 0x80) ||
4676
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY))
4677
return 0;
4678
4679
memset(&cp, 0, sizeof(cp));
4680
bacpy(&cp.bdaddr, BDADDR_ANY);
4681
cp.delete_all = 0x01;
4682
4683
return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4684
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4685
}
4686
4687
static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4688
{
4689
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4690
bool changed = false;
4691
4692
/* Set event mask page 2 if the HCI command for it is supported */
4693
if (!(hdev->commands[22] & 0x04))
4694
return 0;
4695
4696
/* If Connectionless Peripheral Broadcast central role is supported
4697
* enable all necessary events for it.
4698
*/
4699
if (lmp_cpb_central_capable(hdev)) {
4700
events[1] |= 0x40; /* Triggered Clock Capture */
4701
events[1] |= 0x80; /* Synchronization Train Complete */
4702
events[2] |= 0x08; /* Truncated Page Complete */
4703
events[2] |= 0x20; /* CPB Channel Map Change */
4704
changed = true;
4705
}
4706
4707
/* If Connectionless Peripheral Broadcast peripheral role is supported
4708
* enable all necessary events for it.
4709
*/
4710
if (lmp_cpb_peripheral_capable(hdev)) {
4711
events[2] |= 0x01; /* Synchronization Train Received */
4712
events[2] |= 0x02; /* CPB Receive */
4713
events[2] |= 0x04; /* CPB Timeout */
4714
events[2] |= 0x10; /* Peripheral Page Response Timeout */
4715
changed = true;
4716
}
4717
4718
/* Enable Authenticated Payload Timeout Expired event if supported */
4719
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4720
events[2] |= 0x80;
4721
changed = true;
4722
}
4723
4724
/* Some Broadcom based controllers indicate support for Set Event
4725
* Mask Page 2 command, but then actually do not support it. Since
4726
* the default value is all bits set to zero, the command is only
4727
* required if the event mask has to be changed. In case no change
4728
* to the event mask is needed, skip this command.
4729
*/
4730
if (!changed)
4731
return 0;
4732
4733
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4734
sizeof(events), events, HCI_CMD_TIMEOUT);
4735
}
4736
4737
/* Read local codec list if the HCI command is supported */
4738
static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4739
{
4740
if (hdev->commands[45] & 0x04)
4741
hci_read_supported_codecs_v2(hdev);
4742
else if (hdev->commands[29] & 0x20)
4743
hci_read_supported_codecs(hdev);
4744
4745
return 0;
4746
}
4747
4748
/* Read local pairing options if the HCI command is supported */
4749
static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4750
{
4751
if (!(hdev->commands[41] & 0x08))
4752
return 0;
4753
4754
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4755
0, NULL, HCI_CMD_TIMEOUT);
4756
}
4757
4758
/* Get MWS transport configuration if the HCI command is supported */
4759
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4760
{
4761
if (!mws_transport_config_capable(hdev))
4762
return 0;
4763
4764
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4765
0, NULL, HCI_CMD_TIMEOUT);
4766
}
4767
4768
/* Check for Synchronization Train support */
4769
static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4770
{
4771
if (!lmp_sync_train_capable(hdev))
4772
return 0;
4773
4774
return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4775
0, NULL, HCI_CMD_TIMEOUT);
4776
}
4777
4778
/* Enable Secure Connections if supported and configured */
4779
static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4780
{
4781
u8 support = 0x01;
4782
4783
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4784
!bredr_sc_enabled(hdev))
4785
return 0;
4786
4787
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4788
sizeof(support), &support,
4789
HCI_CMD_TIMEOUT);
4790
}
4791
4792
/* Set erroneous data reporting if supported to the wideband speech
4793
* setting value
4794
*/
4795
static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4796
{
4797
struct hci_cp_write_def_err_data_reporting cp;
4798
bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4799
4800
if (!(hdev->commands[18] & 0x08) ||
4801
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4802
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING))
4803
return 0;
4804
4805
if (enabled == hdev->err_data_reporting)
4806
return 0;
4807
4808
memset(&cp, 0, sizeof(cp));
4809
cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4810
ERR_DATA_REPORTING_DISABLED;
4811
4812
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4813
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4814
}
4815
4816
static const struct hci_init_stage hci_init4[] = {
4817
/* HCI_OP_DELETE_STORED_LINK_KEY */
4818
HCI_INIT(hci_delete_stored_link_key_sync),
4819
/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4820
HCI_INIT(hci_set_event_mask_page_2_sync),
4821
/* HCI_OP_READ_LOCAL_CODECS */
4822
HCI_INIT(hci_read_local_codecs_sync),
4823
/* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4824
HCI_INIT(hci_read_local_pairing_opts_sync),
4825
/* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4826
HCI_INIT(hci_get_mws_transport_config_sync),
4827
/* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4828
HCI_INIT(hci_read_sync_train_params_sync),
4829
/* HCI_OP_WRITE_SC_SUPPORT */
4830
HCI_INIT(hci_write_sc_support_1_sync),
4831
/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4832
HCI_INIT(hci_set_err_data_report_sync),
4833
{}
4834
};
4835
4836
/* Set Suggested Default Data Length to maximum if supported */
4837
static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4838
{
4839
struct hci_cp_le_write_def_data_len cp;
4840
4841
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4842
return 0;
4843
4844
memset(&cp, 0, sizeof(cp));
4845
cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4846
cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4847
4848
return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4849
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4850
}
4851
4852
/* Set Default PHY parameters if command is supported, enables all supported
4853
* PHYs according to the LE Features bits.
4854
*/
4855
static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4856
{
4857
struct hci_cp_le_set_default_phy cp;
4858
4859
if (!(hdev->commands[35] & 0x20)) {
4860
/* If the command is not supported it means only 1M PHY is
4861
* supported.
4862
*/
4863
hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4864
hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4865
return 0;
4866
}
4867
4868
memset(&cp, 0, sizeof(cp));
4869
cp.all_phys = 0x00;
4870
cp.tx_phys = HCI_LE_SET_PHY_1M;
4871
cp.rx_phys = HCI_LE_SET_PHY_1M;
4872
4873
/* Enables 2M PHY if supported */
4874
if (le_2m_capable(hdev)) {
4875
cp.tx_phys |= HCI_LE_SET_PHY_2M;
4876
cp.rx_phys |= HCI_LE_SET_PHY_2M;
4877
}
4878
4879
/* Enables Coded PHY if supported */
4880
if (le_coded_capable(hdev)) {
4881
cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4882
cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4883
}
4884
4885
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4886
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4887
}
4888
4889
static const struct hci_init_stage le_init4[] = {
4890
/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4891
HCI_INIT(hci_le_set_write_def_data_len_sync),
4892
/* HCI_OP_LE_SET_DEFAULT_PHY */
4893
HCI_INIT(hci_le_set_default_phy_sync),
4894
{}
4895
};
4896
4897
static int hci_init4_sync(struct hci_dev *hdev)
4898
{
4899
int err;
4900
4901
bt_dev_dbg(hdev, "");
4902
4903
err = hci_init_stage_sync(hdev, hci_init4);
4904
if (err)
4905
return err;
4906
4907
if (lmp_le_capable(hdev))
4908
return hci_init_stage_sync(hdev, le_init4);
4909
4910
return 0;
4911
}
4912
4913
static int hci_init_sync(struct hci_dev *hdev)
4914
{
4915
int err;
4916
4917
err = hci_init1_sync(hdev);
4918
if (err < 0)
4919
return err;
4920
4921
if (hci_dev_test_flag(hdev, HCI_SETUP))
4922
hci_debugfs_create_basic(hdev);
4923
4924
err = hci_init2_sync(hdev);
4925
if (err < 0)
4926
return err;
4927
4928
err = hci_init3_sync(hdev);
4929
if (err < 0)
4930
return err;
4931
4932
err = hci_init4_sync(hdev);
4933
if (err < 0)
4934
return err;
4935
4936
/* This function is only called when the controller is actually in
4937
* configured state. When the controller is marked as unconfigured,
4938
* this initialization procedure is not run.
4939
*
4940
* It means that it is possible that a controller runs through its
4941
* setup phase and then discovers missing settings. If that is the
4942
* case, then this function will not be called. It then will only
4943
* be called during the config phase.
4944
*
4945
* So only when in setup phase or config phase, create the debugfs
4946
* entries and register the SMP channels.
4947
*/
4948
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4949
!hci_dev_test_flag(hdev, HCI_CONFIG))
4950
return 0;
4951
4952
if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4953
return 0;
4954
4955
hci_debugfs_create_common(hdev);
4956
4957
if (lmp_bredr_capable(hdev))
4958
hci_debugfs_create_bredr(hdev);
4959
4960
if (lmp_le_capable(hdev))
4961
hci_debugfs_create_le(hdev);
4962
4963
return 0;
4964
}
4965
4966
#define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4967
4968
static const struct {
4969
unsigned long quirk;
4970
const char *desc;
4971
} hci_broken_table[] = {
4972
HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4973
"HCI Read Local Supported Commands not supported"),
4974
HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4975
"HCI Delete Stored Link Key command is advertised, "
4976
"but not supported."),
4977
HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4978
"HCI Read Default Erroneous Data Reporting command is "
4979
"advertised, but not supported."),
4980
HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4981
"HCI Read Transmit Power Level command is advertised, "
4982
"but not supported."),
4983
HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4984
"HCI Set Event Filter command not supported."),
4985
HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4986
"HCI Enhanced Setup Synchronous Connection command is "
4987
"advertised, but not supported."),
4988
HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4989
"HCI LE Set Random Private Address Timeout command is "
4990
"advertised, but not supported."),
4991
HCI_QUIRK_BROKEN(EXT_CREATE_CONN,
4992
"HCI LE Extended Create Connection command is "
4993
"advertised, but not supported."),
4994
HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT,
4995
"HCI WRITE AUTH PAYLOAD TIMEOUT command leads "
4996
"to unexpected SMP errors when pairing "
4997
"and will not be used."),
4998
HCI_QUIRK_BROKEN(LE_CODED,
4999
"HCI LE Coded PHY feature bit is set, "
5000
"but its usage is not supported.")
5001
};
5002
5003
/* This function handles hdev setup stage:
5004
*
5005
* Calls hdev->setup
5006
* Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
5007
*/
5008
static int hci_dev_setup_sync(struct hci_dev *hdev)
5009
{
5010
int ret = 0;
5011
bool invalid_bdaddr;
5012
size_t i;
5013
5014
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5015
!hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_SETUP))
5016
return 0;
5017
5018
bt_dev_dbg(hdev, "");
5019
5020
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
5021
5022
if (hdev->setup)
5023
ret = hdev->setup(hdev);
5024
5025
for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
5026
if (hci_test_quirk(hdev, hci_broken_table[i].quirk))
5027
bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
5028
}
5029
5030
/* The transport driver can set the quirk to mark the
5031
* BD_ADDR invalid before creating the HCI device or in
5032
* its setup callback.
5033
*/
5034
invalid_bdaddr = hci_test_quirk(hdev, HCI_QUIRK_INVALID_BDADDR) ||
5035
hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY);
5036
if (!ret) {
5037
if (hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY) &&
5038
!bacmp(&hdev->public_addr, BDADDR_ANY))
5039
hci_dev_get_bd_addr_from_property(hdev);
5040
5041
if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
5042
hdev->set_bdaddr) {
5043
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
5044
if (!ret)
5045
invalid_bdaddr = false;
5046
}
5047
}
5048
5049
/* The transport driver can set these quirks before
5050
* creating the HCI device or in its setup callback.
5051
*
5052
* For the invalid BD_ADDR quirk it is possible that
5053
* it becomes a valid address if the bootloader does
5054
* provide it (see above).
5055
*
5056
* In case any of them is set, the controller has to
5057
* start up as unconfigured.
5058
*/
5059
if (hci_test_quirk(hdev, HCI_QUIRK_EXTERNAL_CONFIG) ||
5060
invalid_bdaddr)
5061
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
5062
5063
/* For an unconfigured controller it is required to
5064
* read at least the version information provided by
5065
* the Read Local Version Information command.
5066
*
5067
* If the set_bdaddr driver callback is provided, then
5068
* also the original Bluetooth public device address
5069
* will be read using the Read BD Address command.
5070
*/
5071
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5072
return hci_unconf_init_sync(hdev);
5073
5074
return ret;
5075
}
5076
5077
/* This function handles hdev init stage:
5078
*
5079
* Calls hci_dev_setup_sync to perform setup stage
5080
* Calls hci_init_sync to perform HCI command init sequence
5081
*/
5082
static int hci_dev_init_sync(struct hci_dev *hdev)
5083
{
5084
int ret;
5085
5086
bt_dev_dbg(hdev, "");
5087
5088
atomic_set(&hdev->cmd_cnt, 1);
5089
set_bit(HCI_INIT, &hdev->flags);
5090
5091
ret = hci_dev_setup_sync(hdev);
5092
5093
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
5094
/* If public address change is configured, ensure that
5095
* the address gets programmed. If the driver does not
5096
* support changing the public address, fail the power
5097
* on procedure.
5098
*/
5099
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
5100
hdev->set_bdaddr)
5101
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
5102
else
5103
ret = -EADDRNOTAVAIL;
5104
}
5105
5106
if (!ret) {
5107
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
5108
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5109
ret = hci_init_sync(hdev);
5110
if (!ret && hdev->post_init)
5111
ret = hdev->post_init(hdev);
5112
}
5113
}
5114
5115
/* If the HCI Reset command is clearing all diagnostic settings,
5116
* then they need to be reprogrammed after the init procedure
5117
* completed.
5118
*/
5119
if (hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG) &&
5120
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5121
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
5122
ret = hdev->set_diag(hdev, true);
5123
5124
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5125
msft_do_open(hdev);
5126
aosp_do_open(hdev);
5127
}
5128
5129
clear_bit(HCI_INIT, &hdev->flags);
5130
5131
return ret;
5132
}
5133
5134
int hci_dev_open_sync(struct hci_dev *hdev)
5135
{
5136
int ret;
5137
5138
bt_dev_dbg(hdev, "");
5139
5140
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
5141
ret = -ENODEV;
5142
goto done;
5143
}
5144
5145
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5146
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
5147
/* Check for rfkill but allow the HCI setup stage to
5148
* proceed (which in itself doesn't cause any RF activity).
5149
*/
5150
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
5151
ret = -ERFKILL;
5152
goto done;
5153
}
5154
5155
/* Check for valid public address or a configured static
5156
* random address, but let the HCI setup proceed to
5157
* be able to determine if there is a public address
5158
* or not.
5159
*
5160
* In case of user channel usage, it is not important
5161
* if a public address or static random address is
5162
* available.
5163
*/
5164
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5165
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5166
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
5167
ret = -EADDRNOTAVAIL;
5168
goto done;
5169
}
5170
}
5171
5172
if (test_bit(HCI_UP, &hdev->flags)) {
5173
ret = -EALREADY;
5174
goto done;
5175
}
5176
5177
if (hdev->open(hdev)) {
5178
ret = -EIO;
5179
goto done;
5180
}
5181
5182
hci_devcd_reset(hdev);
5183
5184
set_bit(HCI_RUNNING, &hdev->flags);
5185
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
5186
5187
ret = hci_dev_init_sync(hdev);
5188
if (!ret) {
5189
hci_dev_hold(hdev);
5190
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
5191
hci_adv_instances_set_rpa_expired(hdev, true);
5192
set_bit(HCI_UP, &hdev->flags);
5193
hci_sock_dev_event(hdev, HCI_DEV_UP);
5194
hci_leds_update_powered(hdev, true);
5195
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5196
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
5197
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
5198
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5199
hci_dev_test_flag(hdev, HCI_MGMT)) {
5200
ret = hci_powered_update_sync(hdev);
5201
mgmt_power_on(hdev, ret);
5202
}
5203
} else {
5204
/* Init failed, cleanup */
5205
flush_work(&hdev->tx_work);
5206
5207
/* Since hci_rx_work() is possible to awake new cmd_work
5208
* it should be flushed first to avoid unexpected call of
5209
* hci_cmd_work()
5210
*/
5211
flush_work(&hdev->rx_work);
5212
flush_work(&hdev->cmd_work);
5213
5214
skb_queue_purge(&hdev->cmd_q);
5215
skb_queue_purge(&hdev->rx_q);
5216
5217
if (hdev->flush)
5218
hdev->flush(hdev);
5219
5220
if (hdev->sent_cmd) {
5221
cancel_delayed_work_sync(&hdev->cmd_timer);
5222
kfree_skb(hdev->sent_cmd);
5223
hdev->sent_cmd = NULL;
5224
}
5225
5226
if (hdev->req_skb) {
5227
kfree_skb(hdev->req_skb);
5228
hdev->req_skb = NULL;
5229
}
5230
5231
clear_bit(HCI_RUNNING, &hdev->flags);
5232
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5233
5234
hdev->close(hdev);
5235
hdev->flags &= BIT(HCI_RAW);
5236
}
5237
5238
done:
5239
return ret;
5240
}
5241
5242
/* This function requires the caller holds hdev->lock */
5243
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
5244
{
5245
struct hci_conn_params *p;
5246
5247
list_for_each_entry(p, &hdev->le_conn_params, list) {
5248
hci_pend_le_list_del_init(p);
5249
if (p->conn) {
5250
hci_conn_drop(p->conn);
5251
hci_conn_put(p->conn);
5252
p->conn = NULL;
5253
}
5254
}
5255
5256
BT_DBG("All LE pending actions cleared");
5257
}
5258
5259
static int hci_dev_shutdown(struct hci_dev *hdev)
5260
{
5261
int err = 0;
5262
/* Similar to how we first do setup and then set the exclusive access
5263
* bit for userspace, we must first unset userchannel and then clean up.
5264
* Otherwise, the kernel can't properly use the hci channel to clean up
5265
* the controller (some shutdown routines require sending additional
5266
* commands to the controller for example).
5267
*/
5268
bool was_userchannel =
5269
hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
5270
5271
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
5272
test_bit(HCI_UP, &hdev->flags)) {
5273
/* Execute vendor specific shutdown routine */
5274
if (hdev->shutdown)
5275
err = hdev->shutdown(hdev);
5276
}
5277
5278
if (was_userchannel)
5279
hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
5280
5281
return err;
5282
}
5283
5284
int hci_dev_close_sync(struct hci_dev *hdev)
5285
{
5286
bool auto_off;
5287
int err = 0;
5288
5289
bt_dev_dbg(hdev, "");
5290
5291
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
5292
disable_delayed_work(&hdev->power_off);
5293
disable_delayed_work(&hdev->ncmd_timer);
5294
disable_delayed_work(&hdev->le_scan_disable);
5295
} else {
5296
cancel_delayed_work(&hdev->power_off);
5297
cancel_delayed_work(&hdev->ncmd_timer);
5298
cancel_delayed_work(&hdev->le_scan_disable);
5299
}
5300
5301
hci_cmd_sync_cancel_sync(hdev, ENODEV);
5302
5303
cancel_interleave_scan(hdev);
5304
5305
if (hdev->adv_instance_timeout) {
5306
cancel_delayed_work_sync(&hdev->adv_instance_expire);
5307
hdev->adv_instance_timeout = 0;
5308
}
5309
5310
err = hci_dev_shutdown(hdev);
5311
5312
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
5313
cancel_delayed_work_sync(&hdev->cmd_timer);
5314
return err;
5315
}
5316
5317
hci_leds_update_powered(hdev, false);
5318
5319
/* Flush RX and TX works */
5320
flush_work(&hdev->tx_work);
5321
flush_work(&hdev->rx_work);
5322
5323
if (hdev->discov_timeout > 0) {
5324
hdev->discov_timeout = 0;
5325
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
5326
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
5327
}
5328
5329
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
5330
cancel_delayed_work(&hdev->service_cache);
5331
5332
if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5333
struct adv_info *adv_instance;
5334
5335
cancel_delayed_work_sync(&hdev->rpa_expired);
5336
5337
list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5338
cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5339
}
5340
5341
/* Avoid potential lockdep warnings from the *_flush() calls by
5342
* ensuring the workqueue is empty up front.
5343
*/
5344
drain_workqueue(hdev->workqueue);
5345
5346
hci_dev_lock(hdev);
5347
5348
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5349
5350
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5351
5352
if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5353
hci_dev_test_flag(hdev, HCI_MGMT))
5354
__mgmt_power_off(hdev);
5355
5356
hci_inquiry_cache_flush(hdev);
5357
hci_pend_le_actions_clear(hdev);
5358
hci_conn_hash_flush(hdev);
5359
/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5360
smp_unregister(hdev);
5361
hci_dev_unlock(hdev);
5362
5363
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5364
5365
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5366
aosp_do_close(hdev);
5367
msft_do_close(hdev);
5368
}
5369
5370
if (hdev->flush)
5371
hdev->flush(hdev);
5372
5373
/* Reset device */
5374
skb_queue_purge(&hdev->cmd_q);
5375
atomic_set(&hdev->cmd_cnt, 1);
5376
if (hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE) &&
5377
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5378
set_bit(HCI_INIT, &hdev->flags);
5379
hci_reset_sync(hdev);
5380
clear_bit(HCI_INIT, &hdev->flags);
5381
}
5382
5383
/* flush cmd work */
5384
flush_work(&hdev->cmd_work);
5385
5386
/* Drop queues */
5387
skb_queue_purge(&hdev->rx_q);
5388
skb_queue_purge(&hdev->cmd_q);
5389
skb_queue_purge(&hdev->raw_q);
5390
5391
/* Drop last sent command */
5392
if (hdev->sent_cmd) {
5393
cancel_delayed_work_sync(&hdev->cmd_timer);
5394
kfree_skb(hdev->sent_cmd);
5395
hdev->sent_cmd = NULL;
5396
}
5397
5398
/* Drop last request */
5399
if (hdev->req_skb) {
5400
kfree_skb(hdev->req_skb);
5401
hdev->req_skb = NULL;
5402
}
5403
5404
clear_bit(HCI_RUNNING, &hdev->flags);
5405
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5406
5407
/* After this point our queues are empty and no tasks are scheduled. */
5408
hdev->close(hdev);
5409
5410
/* Clear flags */
5411
hdev->flags &= BIT(HCI_RAW);
5412
hci_dev_clear_volatile_flags(hdev);
5413
5414
memset(hdev->eir, 0, sizeof(hdev->eir));
5415
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5416
bacpy(&hdev->random_addr, BDADDR_ANY);
5417
hci_codec_list_clear(&hdev->local_codecs);
5418
5419
hci_dev_put(hdev);
5420
return err;
5421
}
5422
5423
/* This function perform power on HCI command sequence as follows:
5424
*
5425
* If controller is already up (HCI_UP) performs hci_powered_update_sync
5426
* sequence otherwise run hci_dev_open_sync which will follow with
5427
* hci_powered_update_sync after the init sequence is completed.
5428
*/
5429
static int hci_power_on_sync(struct hci_dev *hdev)
5430
{
5431
int err;
5432
5433
if (test_bit(HCI_UP, &hdev->flags) &&
5434
hci_dev_test_flag(hdev, HCI_MGMT) &&
5435
hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5436
cancel_delayed_work(&hdev->power_off);
5437
return hci_powered_update_sync(hdev);
5438
}
5439
5440
err = hci_dev_open_sync(hdev);
5441
if (err < 0)
5442
return err;
5443
5444
/* During the HCI setup phase, a few error conditions are
5445
* ignored and they need to be checked now. If they are still
5446
* valid, it is important to return the device back off.
5447
*/
5448
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5449
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5450
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5451
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
5452
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5453
hci_dev_close_sync(hdev);
5454
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5455
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5456
HCI_AUTO_OFF_TIMEOUT);
5457
}
5458
5459
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5460
/* For unconfigured devices, set the HCI_RAW flag
5461
* so that userspace can easily identify them.
5462
*/
5463
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5464
set_bit(HCI_RAW, &hdev->flags);
5465
5466
/* For fully configured devices, this will send
5467
* the Index Added event. For unconfigured devices,
5468
* it will send Unconfigued Index Added event.
5469
*
5470
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
5471
* and no event will be send.
5472
*/
5473
mgmt_index_added(hdev);
5474
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5475
/* When the controller is now configured, then it
5476
* is important to clear the HCI_RAW flag.
5477
*/
5478
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5479
clear_bit(HCI_RAW, &hdev->flags);
5480
5481
/* Powering on the controller with HCI_CONFIG set only
5482
* happens with the transition from unconfigured to
5483
* configured. This will send the Index Added event.
5484
*/
5485
mgmt_index_added(hdev);
5486
}
5487
5488
return 0;
5489
}
5490
5491
static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5492
{
5493
struct hci_cp_remote_name_req_cancel cp;
5494
5495
memset(&cp, 0, sizeof(cp));
5496
bacpy(&cp.bdaddr, addr);
5497
5498
return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5499
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5500
}
5501
5502
int hci_stop_discovery_sync(struct hci_dev *hdev)
5503
{
5504
struct discovery_state *d = &hdev->discovery;
5505
struct inquiry_entry *e;
5506
int err;
5507
5508
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5509
5510
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5511
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5512
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5513
0, NULL, HCI_CMD_TIMEOUT);
5514
if (err)
5515
return err;
5516
}
5517
5518
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5519
cancel_delayed_work(&hdev->le_scan_disable);
5520
5521
err = hci_scan_disable_sync(hdev);
5522
if (err)
5523
return err;
5524
}
5525
5526
} else {
5527
err = hci_scan_disable_sync(hdev);
5528
if (err)
5529
return err;
5530
}
5531
5532
/* Resume advertising if it was paused */
5533
if (ll_privacy_capable(hdev))
5534
hci_resume_advertising_sync(hdev);
5535
5536
/* No further actions needed for LE-only discovery */
5537
if (d->type == DISCOV_TYPE_LE)
5538
return 0;
5539
5540
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5541
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5542
NAME_PENDING);
5543
if (!e)
5544
return 0;
5545
5546
/* Ignore cancel errors since it should interfere with stopping
5547
* of the discovery.
5548
*/
5549
hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5550
}
5551
5552
return 0;
5553
}
5554
5555
static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5556
u8 reason)
5557
{
5558
struct hci_cp_disconnect cp;
5559
5560
if (conn->type == BIS_LINK || conn->type == PA_LINK) {
5561
/* This is a BIS connection, hci_conn_del will
5562
* do the necessary cleanup.
5563
*/
5564
hci_dev_lock(hdev);
5565
hci_conn_failed(conn, reason);
5566
hci_dev_unlock(hdev);
5567
5568
return 0;
5569
}
5570
5571
memset(&cp, 0, sizeof(cp));
5572
cp.handle = cpu_to_le16(conn->handle);
5573
cp.reason = reason;
5574
5575
/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5576
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5577
* used when suspending or powering off, where we don't want to wait
5578
* for the peer's response.
5579
*/
5580
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5581
return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5582
sizeof(cp), &cp,
5583
HCI_EV_DISCONN_COMPLETE,
5584
HCI_CMD_TIMEOUT, NULL);
5585
5586
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5587
HCI_CMD_TIMEOUT);
5588
}
5589
5590
static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5591
struct hci_conn *conn, u8 reason)
5592
{
5593
/* Return reason if scanning since the connection shall probably be
5594
* cleanup directly.
5595
*/
5596
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5597
return reason;
5598
5599
if (conn->role == HCI_ROLE_SLAVE ||
5600
test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5601
return 0;
5602
5603
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5604
0, NULL, HCI_CMD_TIMEOUT);
5605
}
5606
5607
static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5608
u8 reason)
5609
{
5610
if (conn->type == LE_LINK)
5611
return hci_le_connect_cancel_sync(hdev, conn, reason);
5612
5613
if (conn->type == CIS_LINK) {
5614
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5615
* page 1857:
5616
*
5617
* If this command is issued for a CIS on the Central and the
5618
* CIS is successfully terminated before being established,
5619
* then an HCI_LE_CIS_Established event shall also be sent for
5620
* this CIS with the Status Operation Cancelled by Host (0x44).
5621
*/
5622
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5623
return hci_disconnect_sync(hdev, conn, reason);
5624
5625
/* CIS with no Create CIS sent have nothing to cancel */
5626
return HCI_ERROR_LOCAL_HOST_TERM;
5627
}
5628
5629
if (conn->type == BIS_LINK || conn->type == PA_LINK) {
5630
/* There is no way to cancel a BIS without terminating the BIG
5631
* which is done later on connection cleanup.
5632
*/
5633
return 0;
5634
}
5635
5636
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5637
return 0;
5638
5639
/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5640
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5641
* used when suspending or powering off, where we don't want to wait
5642
* for the peer's response.
5643
*/
5644
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5645
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5646
6, &conn->dst,
5647
HCI_EV_CONN_COMPLETE,
5648
HCI_CMD_TIMEOUT, NULL);
5649
5650
return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5651
6, &conn->dst, HCI_CMD_TIMEOUT);
5652
}
5653
5654
static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5655
u8 reason)
5656
{
5657
struct hci_cp_reject_sync_conn_req cp;
5658
5659
memset(&cp, 0, sizeof(cp));
5660
bacpy(&cp.bdaddr, &conn->dst);
5661
cp.reason = reason;
5662
5663
/* SCO rejection has its own limited set of
5664
* allowed error values (0x0D-0x0F).
5665
*/
5666
if (reason < 0x0d || reason > 0x0f)
5667
cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5668
5669
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5670
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5671
}
5672
5673
static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5674
u8 reason)
5675
{
5676
struct hci_cp_le_reject_cis cp;
5677
5678
memset(&cp, 0, sizeof(cp));
5679
cp.handle = cpu_to_le16(conn->handle);
5680
cp.reason = reason;
5681
5682
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5683
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5684
}
5685
5686
static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5687
u8 reason)
5688
{
5689
struct hci_cp_reject_conn_req cp;
5690
5691
if (conn->type == CIS_LINK)
5692
return hci_le_reject_cis_sync(hdev, conn, reason);
5693
5694
if (conn->type == BIS_LINK || conn->type == PA_LINK)
5695
return -EINVAL;
5696
5697
if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5698
return hci_reject_sco_sync(hdev, conn, reason);
5699
5700
memset(&cp, 0, sizeof(cp));
5701
bacpy(&cp.bdaddr, &conn->dst);
5702
cp.reason = reason;
5703
5704
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5705
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5706
}
5707
5708
int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5709
{
5710
int err = 0;
5711
u16 handle = conn->handle;
5712
bool disconnect = false;
5713
struct hci_conn *c;
5714
5715
switch (conn->state) {
5716
case BT_CONNECTED:
5717
case BT_CONFIG:
5718
err = hci_disconnect_sync(hdev, conn, reason);
5719
break;
5720
case BT_CONNECT:
5721
err = hci_connect_cancel_sync(hdev, conn, reason);
5722
break;
5723
case BT_CONNECT2:
5724
err = hci_reject_conn_sync(hdev, conn, reason);
5725
break;
5726
case BT_OPEN:
5727
case BT_BOUND:
5728
break;
5729
default:
5730
disconnect = true;
5731
break;
5732
}
5733
5734
hci_dev_lock(hdev);
5735
5736
/* Check if the connection has been cleaned up concurrently */
5737
c = hci_conn_hash_lookup_handle(hdev, handle);
5738
if (!c || c != conn) {
5739
err = 0;
5740
goto unlock;
5741
}
5742
5743
/* Cleanup hci_conn object if it cannot be cancelled as it
5744
* likely means the controller and host stack are out of sync
5745
* or in case of LE it was still scanning so it can be cleanup
5746
* safely.
5747
*/
5748
if (disconnect) {
5749
conn->state = BT_CLOSED;
5750
hci_disconn_cfm(conn, reason);
5751
hci_conn_del(conn);
5752
} else {
5753
hci_conn_failed(conn, reason);
5754
}
5755
5756
unlock:
5757
hci_dev_unlock(hdev);
5758
return err;
5759
}
5760
5761
static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5762
{
5763
struct list_head *head = &hdev->conn_hash.list;
5764
struct hci_conn *conn;
5765
5766
rcu_read_lock();
5767
while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5768
/* Make sure the connection is not freed while unlocking */
5769
conn = hci_conn_get(conn);
5770
rcu_read_unlock();
5771
/* Disregard possible errors since hci_conn_del shall have been
5772
* called even in case of errors had occurred since it would
5773
* then cause hci_conn_failed to be called which calls
5774
* hci_conn_del internally.
5775
*/
5776
hci_abort_conn_sync(hdev, conn, reason);
5777
hci_conn_put(conn);
5778
rcu_read_lock();
5779
}
5780
rcu_read_unlock();
5781
5782
return 0;
5783
}
5784
5785
/* This function perform power off HCI command sequence as follows:
5786
*
5787
* Clear Advertising
5788
* Stop Discovery
5789
* Disconnect all connections
5790
* hci_dev_close_sync
5791
*/
5792
static int hci_power_off_sync(struct hci_dev *hdev)
5793
{
5794
int err;
5795
5796
/* If controller is already down there is nothing to do */
5797
if (!test_bit(HCI_UP, &hdev->flags))
5798
return 0;
5799
5800
hci_dev_set_flag(hdev, HCI_POWERING_DOWN);
5801
5802
if (test_bit(HCI_ISCAN, &hdev->flags) ||
5803
test_bit(HCI_PSCAN, &hdev->flags)) {
5804
err = hci_write_scan_enable_sync(hdev, 0x00);
5805
if (err)
5806
goto out;
5807
}
5808
5809
err = hci_clear_adv_sync(hdev, NULL, false);
5810
if (err)
5811
goto out;
5812
5813
err = hci_stop_discovery_sync(hdev);
5814
if (err)
5815
goto out;
5816
5817
/* Terminated due to Power Off */
5818
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5819
if (err)
5820
goto out;
5821
5822
err = hci_dev_close_sync(hdev);
5823
5824
out:
5825
hci_dev_clear_flag(hdev, HCI_POWERING_DOWN);
5826
return err;
5827
}
5828
5829
int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5830
{
5831
if (val)
5832
return hci_power_on_sync(hdev);
5833
5834
return hci_power_off_sync(hdev);
5835
}
5836
5837
static int hci_write_iac_sync(struct hci_dev *hdev)
5838
{
5839
struct hci_cp_write_current_iac_lap cp;
5840
5841
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5842
return 0;
5843
5844
memset(&cp, 0, sizeof(cp));
5845
5846
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5847
/* Limited discoverable mode */
5848
cp.num_iac = min_t(u8, hdev->num_iac, 2);
5849
cp.iac_lap[0] = 0x00; /* LIAC */
5850
cp.iac_lap[1] = 0x8b;
5851
cp.iac_lap[2] = 0x9e;
5852
cp.iac_lap[3] = 0x33; /* GIAC */
5853
cp.iac_lap[4] = 0x8b;
5854
cp.iac_lap[5] = 0x9e;
5855
} else {
5856
/* General discoverable mode */
5857
cp.num_iac = 1;
5858
cp.iac_lap[0] = 0x33; /* GIAC */
5859
cp.iac_lap[1] = 0x8b;
5860
cp.iac_lap[2] = 0x9e;
5861
}
5862
5863
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5864
(cp.num_iac * 3) + 1, &cp,
5865
HCI_CMD_TIMEOUT);
5866
}
5867
5868
int hci_update_discoverable_sync(struct hci_dev *hdev)
5869
{
5870
int err = 0;
5871
5872
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5873
err = hci_write_iac_sync(hdev);
5874
if (err)
5875
return err;
5876
5877
err = hci_update_scan_sync(hdev);
5878
if (err)
5879
return err;
5880
5881
err = hci_update_class_sync(hdev);
5882
if (err)
5883
return err;
5884
}
5885
5886
/* Advertising instances don't use the global discoverable setting, so
5887
* only update AD if advertising was enabled using Set Advertising.
5888
*/
5889
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5890
err = hci_update_adv_data_sync(hdev, 0x00);
5891
if (err)
5892
return err;
5893
5894
/* Discoverable mode affects the local advertising
5895
* address in limited privacy mode.
5896
*/
5897
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5898
if (ext_adv_capable(hdev))
5899
err = hci_start_ext_adv_sync(hdev, 0x00);
5900
else
5901
err = hci_enable_advertising_sync(hdev);
5902
}
5903
}
5904
5905
return err;
5906
}
5907
5908
static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5909
{
5910
return hci_update_discoverable_sync(hdev);
5911
}
5912
5913
int hci_update_discoverable(struct hci_dev *hdev)
5914
{
5915
/* Only queue if it would have any effect */
5916
if (hdev_is_powered(hdev) &&
5917
hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5918
hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5919
hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5920
return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5921
NULL);
5922
5923
return 0;
5924
}
5925
5926
int hci_update_connectable_sync(struct hci_dev *hdev)
5927
{
5928
int err;
5929
5930
err = hci_update_scan_sync(hdev);
5931
if (err)
5932
return err;
5933
5934
/* If BR/EDR is not enabled and we disable advertising as a
5935
* by-product of disabling connectable, we need to update the
5936
* advertising flags.
5937
*/
5938
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5939
err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5940
5941
/* Update the advertising parameters if necessary */
5942
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5943
!list_empty(&hdev->adv_instances)) {
5944
if (ext_adv_capable(hdev))
5945
err = hci_start_ext_adv_sync(hdev,
5946
hdev->cur_adv_instance);
5947
else
5948
err = hci_enable_advertising_sync(hdev);
5949
5950
if (err)
5951
return err;
5952
}
5953
5954
return hci_update_passive_scan_sync(hdev);
5955
}
5956
5957
int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp)
5958
{
5959
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5960
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5961
struct hci_cp_inquiry cp;
5962
5963
bt_dev_dbg(hdev, "");
5964
5965
if (test_bit(HCI_INQUIRY, &hdev->flags))
5966
return 0;
5967
5968
hci_dev_lock(hdev);
5969
hci_inquiry_cache_flush(hdev);
5970
hci_dev_unlock(hdev);
5971
5972
memset(&cp, 0, sizeof(cp));
5973
5974
if (hdev->discovery.limited)
5975
memcpy(&cp.lap, liac, sizeof(cp.lap));
5976
else
5977
memcpy(&cp.lap, giac, sizeof(cp.lap));
5978
5979
cp.length = length;
5980
cp.num_rsp = num_rsp;
5981
5982
return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5983
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5984
}
5985
5986
static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5987
{
5988
u8 own_addr_type;
5989
/* Accept list is not used for discovery */
5990
u8 filter_policy = 0x00;
5991
/* Default is to enable duplicates filter */
5992
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5993
int err;
5994
5995
bt_dev_dbg(hdev, "");
5996
5997
/* If controller is scanning, it means the passive scanning is
5998
* running. Thus, we should temporarily stop it in order to set the
5999
* discovery scanning parameters.
6000
*/
6001
err = hci_scan_disable_sync(hdev);
6002
if (err) {
6003
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
6004
return err;
6005
}
6006
6007
cancel_interleave_scan(hdev);
6008
6009
/* Pause address resolution for active scan and stop advertising if
6010
* privacy is enabled.
6011
*/
6012
err = hci_pause_addr_resolution(hdev);
6013
if (err)
6014
goto failed;
6015
6016
/* All active scans will be done with either a resolvable private
6017
* address (when privacy feature has been enabled) or non-resolvable
6018
* private address.
6019
*/
6020
err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
6021
&own_addr_type);
6022
if (err < 0)
6023
own_addr_type = ADDR_LE_DEV_PUBLIC;
6024
6025
if (hci_is_adv_monitoring(hdev) ||
6026
(hci_test_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER) &&
6027
hdev->discovery.result_filtering)) {
6028
/* Duplicate filter should be disabled when some advertisement
6029
* monitor is activated, otherwise AdvMon can only receive one
6030
* advertisement for one peer(*) during active scanning, and
6031
* might report loss to these peers.
6032
*
6033
* If controller does strict duplicate filtering and the
6034
* discovery requires result filtering disables controller based
6035
* filtering since that can cause reports that would match the
6036
* host filter to not be reported.
6037
*/
6038
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
6039
}
6040
6041
err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
6042
hdev->le_scan_window_discovery,
6043
own_addr_type, filter_policy, filter_dup);
6044
if (!err)
6045
return err;
6046
6047
failed:
6048
/* Resume advertising if it was paused */
6049
if (ll_privacy_capable(hdev))
6050
hci_resume_advertising_sync(hdev);
6051
6052
/* Resume passive scanning */
6053
hci_update_passive_scan_sync(hdev);
6054
return err;
6055
}
6056
6057
static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
6058
{
6059
int err;
6060
6061
bt_dev_dbg(hdev, "");
6062
6063
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
6064
if (err)
6065
return err;
6066
6067
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
6068
}
6069
6070
int hci_start_discovery_sync(struct hci_dev *hdev)
6071
{
6072
unsigned long timeout;
6073
int err;
6074
6075
bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
6076
6077
switch (hdev->discovery.type) {
6078
case DISCOV_TYPE_BREDR:
6079
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
6080
case DISCOV_TYPE_INTERLEAVED:
6081
/* When running simultaneous discovery, the LE scanning time
6082
* should occupy the whole discovery time sine BR/EDR inquiry
6083
* and LE scanning are scheduled by the controller.
6084
*
6085
* For interleaving discovery in comparison, BR/EDR inquiry
6086
* and LE scanning are done sequentially with separate
6087
* timeouts.
6088
*/
6089
if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) {
6090
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
6091
/* During simultaneous discovery, we double LE scan
6092
* interval. We must leave some time for the controller
6093
* to do BR/EDR inquiry.
6094
*/
6095
err = hci_start_interleaved_discovery_sync(hdev);
6096
break;
6097
}
6098
6099
timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
6100
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
6101
break;
6102
case DISCOV_TYPE_LE:
6103
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
6104
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
6105
break;
6106
default:
6107
return -EINVAL;
6108
}
6109
6110
if (err)
6111
return err;
6112
6113
bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
6114
6115
queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
6116
timeout);
6117
return 0;
6118
}
6119
6120
static void hci_suspend_monitor_sync(struct hci_dev *hdev)
6121
{
6122
switch (hci_get_adv_monitor_offload_ext(hdev)) {
6123
case HCI_ADV_MONITOR_EXT_MSFT:
6124
msft_suspend_sync(hdev);
6125
break;
6126
default:
6127
return;
6128
}
6129
}
6130
6131
/* This function disables discovery and mark it as paused */
6132
static int hci_pause_discovery_sync(struct hci_dev *hdev)
6133
{
6134
int old_state = hdev->discovery.state;
6135
int err;
6136
6137
/* If discovery already stopped/stopping/paused there nothing to do */
6138
if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
6139
hdev->discovery_paused)
6140
return 0;
6141
6142
hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
6143
err = hci_stop_discovery_sync(hdev);
6144
if (err)
6145
return err;
6146
6147
hdev->discovery_paused = true;
6148
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
6149
6150
return 0;
6151
}
6152
6153
static int hci_update_event_filter_sync(struct hci_dev *hdev)
6154
{
6155
struct bdaddr_list_with_flags *b;
6156
u8 scan = SCAN_DISABLED;
6157
bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
6158
int err;
6159
6160
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
6161
return 0;
6162
6163
/* Some fake CSR controllers lock up after setting this type of
6164
* filter, so avoid sending the request altogether.
6165
*/
6166
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
6167
return 0;
6168
6169
/* Always clear event filter when starting */
6170
hci_clear_event_filter_sync(hdev);
6171
6172
list_for_each_entry(b, &hdev->accept_list, list) {
6173
if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
6174
continue;
6175
6176
bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
6177
6178
err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
6179
HCI_CONN_SETUP_ALLOW_BDADDR,
6180
&b->bdaddr,
6181
HCI_CONN_SETUP_AUTO_ON);
6182
if (err)
6183
bt_dev_err(hdev, "Failed to set event filter for %pMR",
6184
&b->bdaddr);
6185
else
6186
scan = SCAN_PAGE;
6187
}
6188
6189
if (scan && !scanning)
6190
hci_write_scan_enable_sync(hdev, scan);
6191
else if (!scan && scanning)
6192
hci_write_scan_enable_sync(hdev, scan);
6193
6194
return 0;
6195
}
6196
6197
/* This function disables scan (BR and LE) and mark it as paused */
6198
static int hci_pause_scan_sync(struct hci_dev *hdev)
6199
{
6200
if (hdev->scanning_paused)
6201
return 0;
6202
6203
/* Disable page scan if enabled */
6204
if (test_bit(HCI_PSCAN, &hdev->flags))
6205
hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
6206
6207
hci_scan_disable_sync(hdev);
6208
6209
hdev->scanning_paused = true;
6210
6211
return 0;
6212
}
6213
6214
/* This function performs the HCI suspend procedures in the follow order:
6215
*
6216
* Pause discovery (active scanning/inquiry)
6217
* Pause Directed Advertising/Advertising
6218
* Pause Scanning (passive scanning in case discovery was not active)
6219
* Disconnect all connections
6220
* Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
6221
* otherwise:
6222
* Update event mask (only set events that are allowed to wake up the host)
6223
* Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
6224
* Update passive scanning (lower duty cycle)
6225
* Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
6226
*/
6227
int hci_suspend_sync(struct hci_dev *hdev)
6228
{
6229
int err;
6230
6231
/* If marked as suspended there nothing to do */
6232
if (hdev->suspended)
6233
return 0;
6234
6235
/* Mark device as suspended */
6236
hdev->suspended = true;
6237
6238
/* Pause discovery if not already stopped */
6239
hci_pause_discovery_sync(hdev);
6240
6241
/* Pause other advertisements */
6242
hci_pause_advertising_sync(hdev);
6243
6244
/* Suspend monitor filters */
6245
hci_suspend_monitor_sync(hdev);
6246
6247
/* Prevent disconnects from causing scanning to be re-enabled */
6248
hci_pause_scan_sync(hdev);
6249
6250
if (hci_conn_count(hdev)) {
6251
/* Soft disconnect everything (power off) */
6252
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
6253
if (err) {
6254
/* Set state to BT_RUNNING so resume doesn't notify */
6255
hdev->suspend_state = BT_RUNNING;
6256
hci_resume_sync(hdev);
6257
return err;
6258
}
6259
6260
/* Update event mask so only the allowed event can wakeup the
6261
* host.
6262
*/
6263
hci_set_event_mask_sync(hdev);
6264
}
6265
6266
/* Only configure accept list if disconnect succeeded and wake
6267
* isn't being prevented.
6268
*/
6269
if (!hdev->wakeup || !hdev->wakeup(hdev)) {
6270
hdev->suspend_state = BT_SUSPEND_DISCONNECT;
6271
return 0;
6272
}
6273
6274
/* Unpause to take care of updating scanning params */
6275
hdev->scanning_paused = false;
6276
6277
/* Enable event filter for paired devices */
6278
hci_update_event_filter_sync(hdev);
6279
6280
/* Update LE passive scan if enabled */
6281
hci_update_passive_scan_sync(hdev);
6282
6283
/* Pause scan changes again. */
6284
hdev->scanning_paused = true;
6285
6286
hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
6287
6288
return 0;
6289
}
6290
6291
/* This function resumes discovery */
6292
static int hci_resume_discovery_sync(struct hci_dev *hdev)
6293
{
6294
int err;
6295
6296
/* If discovery not paused there nothing to do */
6297
if (!hdev->discovery_paused)
6298
return 0;
6299
6300
hdev->discovery_paused = false;
6301
6302
hci_discovery_set_state(hdev, DISCOVERY_STARTING);
6303
6304
err = hci_start_discovery_sync(hdev);
6305
6306
hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
6307
DISCOVERY_FINDING);
6308
6309
return err;
6310
}
6311
6312
static void hci_resume_monitor_sync(struct hci_dev *hdev)
6313
{
6314
switch (hci_get_adv_monitor_offload_ext(hdev)) {
6315
case HCI_ADV_MONITOR_EXT_MSFT:
6316
msft_resume_sync(hdev);
6317
break;
6318
default:
6319
return;
6320
}
6321
}
6322
6323
/* This function resume scan and reset paused flag */
6324
static int hci_resume_scan_sync(struct hci_dev *hdev)
6325
{
6326
if (!hdev->scanning_paused)
6327
return 0;
6328
6329
hdev->scanning_paused = false;
6330
6331
hci_update_scan_sync(hdev);
6332
6333
/* Reset passive scanning to normal */
6334
hci_update_passive_scan_sync(hdev);
6335
6336
return 0;
6337
}
6338
6339
/* This function performs the HCI suspend procedures in the follow order:
6340
*
6341
* Restore event mask
6342
* Clear event filter
6343
* Update passive scanning (normal duty cycle)
6344
* Resume Directed Advertising/Advertising
6345
* Resume discovery (active scanning/inquiry)
6346
*/
6347
int hci_resume_sync(struct hci_dev *hdev)
6348
{
6349
/* If not marked as suspended there nothing to do */
6350
if (!hdev->suspended)
6351
return 0;
6352
6353
hdev->suspended = false;
6354
6355
/* Restore event mask */
6356
hci_set_event_mask_sync(hdev);
6357
6358
/* Clear any event filters and restore scan state */
6359
hci_clear_event_filter_sync(hdev);
6360
6361
/* Resume scanning */
6362
hci_resume_scan_sync(hdev);
6363
6364
/* Resume monitor filters */
6365
hci_resume_monitor_sync(hdev);
6366
6367
/* Resume other advertisements */
6368
hci_resume_advertising_sync(hdev);
6369
6370
/* Resume discovery */
6371
hci_resume_discovery_sync(hdev);
6372
6373
return 0;
6374
}
6375
6376
static bool conn_use_rpa(struct hci_conn *conn)
6377
{
6378
struct hci_dev *hdev = conn->hdev;
6379
6380
return hci_dev_test_flag(hdev, HCI_PRIVACY);
6381
}
6382
6383
static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6384
struct hci_conn *conn)
6385
{
6386
struct hci_cp_le_set_ext_adv_params cp;
6387
struct hci_rp_le_set_ext_adv_params rp;
6388
int err;
6389
bdaddr_t random_addr;
6390
u8 own_addr_type;
6391
6392
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6393
&own_addr_type);
6394
if (err)
6395
return err;
6396
6397
/* Set require_privacy to false so that the remote device has a
6398
* chance of identifying us.
6399
*/
6400
err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6401
&own_addr_type, &random_addr);
6402
if (err)
6403
return err;
6404
6405
memset(&cp, 0, sizeof(cp));
6406
6407
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6408
cp.channel_map = hdev->le_adv_channel_map;
6409
cp.tx_power = HCI_TX_POWER_INVALID;
6410
cp.primary_phy = HCI_ADV_PHY_1M;
6411
cp.secondary_phy = HCI_ADV_PHY_1M;
6412
cp.handle = 0x00; /* Use instance 0 for directed adv */
6413
cp.own_addr_type = own_addr_type;
6414
cp.peer_addr_type = conn->dst_type;
6415
bacpy(&cp.peer_addr, &conn->dst);
6416
6417
/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6418
* advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6419
* does not supports advertising data when the advertising set already
6420
* contains some, the controller shall return erroc code 'Invalid
6421
* HCI Command Parameters(0x12).
6422
* So it is required to remove adv set for handle 0x00. since we use
6423
* instance 0 for directed adv.
6424
*/
6425
err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6426
if (err)
6427
return err;
6428
6429
err = hci_set_ext_adv_params_sync(hdev, NULL, &cp, &rp);
6430
if (err)
6431
return err;
6432
6433
/* Update adv data as tx power is known now */
6434
err = hci_set_ext_adv_data_sync(hdev, cp.handle);
6435
if (err)
6436
return err;
6437
6438
/* Check if random address need to be updated */
6439
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6440
bacmp(&random_addr, BDADDR_ANY) &&
6441
bacmp(&random_addr, &hdev->random_addr)) {
6442
err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6443
&random_addr);
6444
if (err)
6445
return err;
6446
}
6447
6448
return hci_enable_ext_advertising_sync(hdev, 0x00);
6449
}
6450
6451
static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6452
struct hci_conn *conn)
6453
{
6454
struct hci_cp_le_set_adv_param cp;
6455
u8 status;
6456
u8 own_addr_type;
6457
u8 enable;
6458
6459
if (ext_adv_capable(hdev))
6460
return hci_le_ext_directed_advertising_sync(hdev, conn);
6461
6462
/* Clear the HCI_LE_ADV bit temporarily so that the
6463
* hci_update_random_address knows that it's safe to go ahead
6464
* and write a new random address. The flag will be set back on
6465
* as soon as the SET_ADV_ENABLE HCI command completes.
6466
*/
6467
hci_dev_clear_flag(hdev, HCI_LE_ADV);
6468
6469
/* Set require_privacy to false so that the remote device has a
6470
* chance of identifying us.
6471
*/
6472
status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6473
&own_addr_type);
6474
if (status)
6475
return status;
6476
6477
memset(&cp, 0, sizeof(cp));
6478
6479
/* Some controllers might reject command if intervals are not
6480
* within range for undirected advertising.
6481
* BCM20702A0 is known to be affected by this.
6482
*/
6483
cp.min_interval = cpu_to_le16(0x0020);
6484
cp.max_interval = cpu_to_le16(0x0020);
6485
6486
cp.type = LE_ADV_DIRECT_IND;
6487
cp.own_address_type = own_addr_type;
6488
cp.direct_addr_type = conn->dst_type;
6489
bacpy(&cp.direct_addr, &conn->dst);
6490
cp.channel_map = hdev->le_adv_channel_map;
6491
6492
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6493
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6494
if (status)
6495
return status;
6496
6497
enable = 0x01;
6498
6499
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6500
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6501
}
6502
6503
static void set_ext_conn_params(struct hci_conn *conn,
6504
struct hci_cp_le_ext_conn_param *p)
6505
{
6506
struct hci_dev *hdev = conn->hdev;
6507
6508
memset(p, 0, sizeof(*p));
6509
6510
p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6511
p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6512
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6513
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6514
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6515
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6516
p->min_ce_len = cpu_to_le16(0x0000);
6517
p->max_ce_len = cpu_to_le16(0x0000);
6518
}
6519
6520
static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6521
struct hci_conn *conn, u8 own_addr_type)
6522
{
6523
struct hci_cp_le_ext_create_conn *cp;
6524
struct hci_cp_le_ext_conn_param *p;
6525
u8 data[sizeof(*cp) + sizeof(*p) * 3];
6526
u32 plen;
6527
6528
cp = (void *)data;
6529
p = (void *)cp->data;
6530
6531
memset(cp, 0, sizeof(*cp));
6532
6533
bacpy(&cp->peer_addr, &conn->dst);
6534
cp->peer_addr_type = conn->dst_type;
6535
cp->own_addr_type = own_addr_type;
6536
6537
plen = sizeof(*cp);
6538
6539
if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M ||
6540
conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) {
6541
cp->phys |= LE_SCAN_PHY_1M;
6542
set_ext_conn_params(conn, p);
6543
6544
p++;
6545
plen += sizeof(*p);
6546
}
6547
6548
if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M ||
6549
conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) {
6550
cp->phys |= LE_SCAN_PHY_2M;
6551
set_ext_conn_params(conn, p);
6552
6553
p++;
6554
plen += sizeof(*p);
6555
}
6556
6557
if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED ||
6558
conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) {
6559
cp->phys |= LE_SCAN_PHY_CODED;
6560
set_ext_conn_params(conn, p);
6561
6562
plen += sizeof(*p);
6563
}
6564
6565
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6566
plen, data,
6567
HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6568
conn->conn_timeout, NULL);
6569
}
6570
6571
static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data)
6572
{
6573
struct hci_cp_le_create_conn cp;
6574
struct hci_conn_params *params;
6575
u8 own_addr_type;
6576
int err;
6577
struct hci_conn *conn = data;
6578
6579
if (!hci_conn_valid(hdev, conn))
6580
return -ECANCELED;
6581
6582
bt_dev_dbg(hdev, "conn %p", conn);
6583
6584
clear_bit(HCI_CONN_SCANNING, &conn->flags);
6585
conn->state = BT_CONNECT;
6586
6587
/* If requested to connect as peripheral use directed advertising */
6588
if (conn->role == HCI_ROLE_SLAVE) {
6589
/* If we're active scanning and simultaneous roles is not
6590
* enabled simply reject the attempt.
6591
*/
6592
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6593
hdev->le_scan_type == LE_SCAN_ACTIVE &&
6594
!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6595
hci_conn_del(conn);
6596
return -EBUSY;
6597
}
6598
6599
/* Pause advertising while doing directed advertising. */
6600
hci_pause_advertising_sync(hdev);
6601
6602
err = hci_le_directed_advertising_sync(hdev, conn);
6603
goto done;
6604
}
6605
6606
/* Disable advertising if simultaneous roles is not in use. */
6607
if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6608
hci_pause_advertising_sync(hdev);
6609
6610
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6611
if (params) {
6612
conn->le_conn_min_interval = params->conn_min_interval;
6613
conn->le_conn_max_interval = params->conn_max_interval;
6614
conn->le_conn_latency = params->conn_latency;
6615
conn->le_supv_timeout = params->supervision_timeout;
6616
} else {
6617
conn->le_conn_min_interval = hdev->le_conn_min_interval;
6618
conn->le_conn_max_interval = hdev->le_conn_max_interval;
6619
conn->le_conn_latency = hdev->le_conn_latency;
6620
conn->le_supv_timeout = hdev->le_supv_timeout;
6621
}
6622
6623
/* If controller is scanning, we stop it since some controllers are
6624
* not able to scan and connect at the same time. Also set the
6625
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6626
* handler for scan disabling knows to set the correct discovery
6627
* state.
6628
*/
6629
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6630
hci_scan_disable_sync(hdev);
6631
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6632
}
6633
6634
/* Update random address, but set require_privacy to false so
6635
* that we never connect with an non-resolvable address.
6636
*/
6637
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6638
&own_addr_type);
6639
if (err)
6640
goto done;
6641
/* Send command LE Extended Create Connection if supported */
6642
if (use_ext_conn(hdev)) {
6643
err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6644
goto done;
6645
}
6646
6647
memset(&cp, 0, sizeof(cp));
6648
6649
cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6650
cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6651
6652
bacpy(&cp.peer_addr, &conn->dst);
6653
cp.peer_addr_type = conn->dst_type;
6654
cp.own_address_type = own_addr_type;
6655
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6656
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6657
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6658
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6659
cp.min_ce_len = cpu_to_le16(0x0000);
6660
cp.max_ce_len = cpu_to_le16(0x0000);
6661
6662
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6663
*
6664
* If this event is unmasked and the HCI_LE_Connection_Complete event
6665
* is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6666
* sent when a new connection has been created.
6667
*/
6668
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6669
sizeof(cp), &cp,
6670
use_enhanced_conn_complete(hdev) ?
6671
HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6672
HCI_EV_LE_CONN_COMPLETE,
6673
conn->conn_timeout, NULL);
6674
6675
done:
6676
if (err == -ETIMEDOUT)
6677
hci_le_connect_cancel_sync(hdev, conn, 0x00);
6678
6679
/* Re-enable advertising after the connection attempt is finished. */
6680
hci_resume_advertising_sync(hdev);
6681
return err;
6682
}
6683
6684
int hci_le_create_cis_sync(struct hci_dev *hdev)
6685
{
6686
DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f);
6687
size_t aux_num_cis = 0;
6688
struct hci_conn *conn;
6689
u8 cig = BT_ISO_QOS_CIG_UNSET;
6690
6691
/* The spec allows only one pending LE Create CIS command at a time. If
6692
* the command is pending now, don't do anything. We check for pending
6693
* connections after each CIS Established event.
6694
*
6695
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6696
* page 2566:
6697
*
6698
* If the Host issues this command before all the
6699
* HCI_LE_CIS_Established events from the previous use of the
6700
* command have been generated, the Controller shall return the
6701
* error code Command Disallowed (0x0C).
6702
*
6703
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6704
* page 2567:
6705
*
6706
* When the Controller receives the HCI_LE_Create_CIS command, the
6707
* Controller sends the HCI_Command_Status event to the Host. An
6708
* HCI_LE_CIS_Established event will be generated for each CIS when it
6709
* is established or if it is disconnected or considered lost before
6710
* being established; until all the events are generated, the command
6711
* remains pending.
6712
*/
6713
6714
hci_dev_lock(hdev);
6715
6716
rcu_read_lock();
6717
6718
/* Wait until previous Create CIS has completed */
6719
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6720
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6721
goto done;
6722
}
6723
6724
/* Find CIG with all CIS ready */
6725
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6726
struct hci_conn *link;
6727
6728
if (hci_conn_check_create_cis(conn))
6729
continue;
6730
6731
cig = conn->iso_qos.ucast.cig;
6732
6733
list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6734
if (hci_conn_check_create_cis(link) > 0 &&
6735
link->iso_qos.ucast.cig == cig &&
6736
link->state != BT_CONNECTED) {
6737
cig = BT_ISO_QOS_CIG_UNSET;
6738
break;
6739
}
6740
}
6741
6742
if (cig != BT_ISO_QOS_CIG_UNSET)
6743
break;
6744
}
6745
6746
if (cig == BT_ISO_QOS_CIG_UNSET)
6747
goto done;
6748
6749
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6750
struct hci_cis *cis = &cmd->cis[aux_num_cis];
6751
6752
if (hci_conn_check_create_cis(conn) ||
6753
conn->iso_qos.ucast.cig != cig)
6754
continue;
6755
6756
set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6757
cis->acl_handle = cpu_to_le16(conn->parent->handle);
6758
cis->cis_handle = cpu_to_le16(conn->handle);
6759
aux_num_cis++;
6760
6761
if (aux_num_cis >= cmd->num_cis)
6762
break;
6763
}
6764
cmd->num_cis = aux_num_cis;
6765
6766
done:
6767
rcu_read_unlock();
6768
6769
hci_dev_unlock(hdev);
6770
6771
if (!aux_num_cis)
6772
return 0;
6773
6774
/* Wait for HCI_LE_CIS_Established */
6775
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6776
struct_size(cmd, cis, cmd->num_cis),
6777
cmd, HCI_EVT_LE_CIS_ESTABLISHED,
6778
conn->conn_timeout, NULL);
6779
}
6780
6781
int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6782
{
6783
struct hci_cp_le_remove_cig cp;
6784
6785
memset(&cp, 0, sizeof(cp));
6786
cp.cig_id = handle;
6787
6788
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6789
&cp, HCI_CMD_TIMEOUT);
6790
}
6791
6792
int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6793
{
6794
struct hci_cp_le_big_term_sync cp;
6795
6796
memset(&cp, 0, sizeof(cp));
6797
cp.handle = handle;
6798
6799
return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6800
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6801
}
6802
6803
int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6804
{
6805
struct hci_cp_le_pa_term_sync cp;
6806
6807
memset(&cp, 0, sizeof(cp));
6808
cp.handle = cpu_to_le16(handle);
6809
6810
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6811
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6812
}
6813
6814
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6815
bool use_rpa, struct adv_info *adv_instance,
6816
u8 *own_addr_type, bdaddr_t *rand_addr)
6817
{
6818
int err;
6819
6820
bacpy(rand_addr, BDADDR_ANY);
6821
6822
/* If privacy is enabled use a resolvable private address. If
6823
* current RPA has expired then generate a new one.
6824
*/
6825
if (use_rpa) {
6826
/* If Controller supports LL Privacy use own address type is
6827
* 0x03
6828
*/
6829
if (ll_privacy_capable(hdev))
6830
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6831
else
6832
*own_addr_type = ADDR_LE_DEV_RANDOM;
6833
6834
if (adv_instance) {
6835
if (adv_rpa_valid(adv_instance))
6836
return 0;
6837
} else {
6838
if (rpa_valid(hdev))
6839
return 0;
6840
}
6841
6842
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6843
if (err < 0) {
6844
bt_dev_err(hdev, "failed to generate new RPA");
6845
return err;
6846
}
6847
6848
bacpy(rand_addr, &hdev->rpa);
6849
6850
return 0;
6851
}
6852
6853
/* In case of required privacy without resolvable private address,
6854
* use an non-resolvable private address. This is useful for
6855
* non-connectable advertising.
6856
*/
6857
if (require_privacy) {
6858
bdaddr_t nrpa;
6859
6860
while (true) {
6861
/* The non-resolvable private address is generated
6862
* from random six bytes with the two most significant
6863
* bits cleared.
6864
*/
6865
get_random_bytes(&nrpa, 6);
6866
nrpa.b[5] &= 0x3f;
6867
6868
/* The non-resolvable private address shall not be
6869
* equal to the public address.
6870
*/
6871
if (bacmp(&hdev->bdaddr, &nrpa))
6872
break;
6873
}
6874
6875
*own_addr_type = ADDR_LE_DEV_RANDOM;
6876
bacpy(rand_addr, &nrpa);
6877
6878
return 0;
6879
}
6880
6881
/* No privacy, use the current address */
6882
hci_copy_identity_address(hdev, rand_addr, own_addr_type);
6883
6884
return 0;
6885
}
6886
6887
static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6888
{
6889
u8 instance = PTR_UINT(data);
6890
6891
return hci_update_adv_data_sync(hdev, instance);
6892
}
6893
6894
int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6895
{
6896
return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6897
UINT_PTR(instance), NULL);
6898
}
6899
6900
static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data)
6901
{
6902
struct hci_conn *conn = data;
6903
struct inquiry_entry *ie;
6904
struct hci_cp_create_conn cp;
6905
int err;
6906
6907
if (!hci_conn_valid(hdev, conn))
6908
return -ECANCELED;
6909
6910
/* Many controllers disallow HCI Create Connection while it is doing
6911
* HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
6912
* Connection. This may cause the MGMT discovering state to become false
6913
* without user space's request but it is okay since the MGMT Discovery
6914
* APIs do not promise that discovery should be done forever. Instead,
6915
* the user space monitors the status of MGMT discovering and it may
6916
* request for discovery again when this flag becomes false.
6917
*/
6918
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
6919
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0,
6920
NULL, HCI_CMD_TIMEOUT);
6921
if (err)
6922
bt_dev_warn(hdev, "Failed to cancel inquiry %d", err);
6923
}
6924
6925
conn->state = BT_CONNECT;
6926
conn->out = true;
6927
conn->role = HCI_ROLE_MASTER;
6928
6929
conn->attempt++;
6930
6931
memset(&cp, 0, sizeof(cp));
6932
bacpy(&cp.bdaddr, &conn->dst);
6933
cp.pscan_rep_mode = 0x02;
6934
6935
ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
6936
if (ie) {
6937
if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
6938
cp.pscan_rep_mode = ie->data.pscan_rep_mode;
6939
cp.pscan_mode = ie->data.pscan_mode;
6940
cp.clock_offset = ie->data.clock_offset |
6941
cpu_to_le16(0x8000);
6942
}
6943
6944
memcpy(conn->dev_class, ie->data.dev_class, 3);
6945
}
6946
6947
cp.pkt_type = cpu_to_le16(conn->pkt_type);
6948
if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
6949
cp.role_switch = 0x01;
6950
else
6951
cp.role_switch = 0x00;
6952
6953
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN,
6954
sizeof(cp), &cp,
6955
HCI_EV_CONN_COMPLETE,
6956
conn->conn_timeout, NULL);
6957
}
6958
6959
int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn)
6960
{
6961
return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn,
6962
NULL);
6963
}
6964
6965
static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
6966
{
6967
struct hci_conn *conn = data;
6968
6969
bt_dev_dbg(hdev, "err %d", err);
6970
6971
if (err == -ECANCELED)
6972
return;
6973
6974
hci_dev_lock(hdev);
6975
6976
if (!hci_conn_valid(hdev, conn))
6977
goto done;
6978
6979
if (!err) {
6980
hci_connect_le_scan_cleanup(conn, 0x00);
6981
goto done;
6982
}
6983
6984
/* Check if connection is still pending */
6985
if (conn != hci_lookup_le_connect(hdev))
6986
goto done;
6987
6988
/* Flush to make sure we send create conn cancel command if needed */
6989
flush_delayed_work(&conn->le_conn_timeout);
6990
hci_conn_failed(conn, bt_status(err));
6991
6992
done:
6993
hci_dev_unlock(hdev);
6994
}
6995
6996
int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn)
6997
{
6998
return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn,
6999
create_le_conn_complete);
7000
}
7001
7002
int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn)
7003
{
7004
if (conn->state != BT_OPEN)
7005
return -EINVAL;
7006
7007
switch (conn->type) {
7008
case ACL_LINK:
7009
return !hci_cmd_sync_dequeue_once(hdev,
7010
hci_acl_create_conn_sync,
7011
conn, NULL);
7012
case LE_LINK:
7013
return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync,
7014
conn, create_le_conn_complete);
7015
}
7016
7017
return -ENOENT;
7018
}
7019
7020
int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn,
7021
struct hci_conn_params *params)
7022
{
7023
struct hci_cp_le_conn_update cp;
7024
7025
memset(&cp, 0, sizeof(cp));
7026
cp.handle = cpu_to_le16(conn->handle);
7027
cp.conn_interval_min = cpu_to_le16(params->conn_min_interval);
7028
cp.conn_interval_max = cpu_to_le16(params->conn_max_interval);
7029
cp.conn_latency = cpu_to_le16(params->conn_latency);
7030
cp.supervision_timeout = cpu_to_le16(params->supervision_timeout);
7031
cp.min_ce_len = cpu_to_le16(0x0000);
7032
cp.max_ce_len = cpu_to_le16(0x0000);
7033
7034
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE,
7035
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7036
}
7037
7038
static void create_pa_complete(struct hci_dev *hdev, void *data, int err)
7039
{
7040
struct hci_conn *conn = data;
7041
struct hci_conn *pa_sync;
7042
7043
bt_dev_dbg(hdev, "err %d", err);
7044
7045
if (err == -ECANCELED)
7046
return;
7047
7048
hci_dev_lock(hdev);
7049
7050
if (hci_conn_valid(hdev, conn))
7051
clear_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags);
7052
7053
if (!err)
7054
goto unlock;
7055
7056
/* Add connection to indicate PA sync error */
7057
pa_sync = hci_conn_add_unset(hdev, PA_LINK, BDADDR_ANY, 0,
7058
HCI_ROLE_SLAVE);
7059
7060
if (IS_ERR(pa_sync))
7061
goto unlock;
7062
7063
set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags);
7064
7065
/* Notify iso layer */
7066
hci_connect_cfm(pa_sync, bt_status(err));
7067
7068
unlock:
7069
hci_dev_unlock(hdev);
7070
}
7071
7072
static int hci_le_past_params_sync(struct hci_dev *hdev, struct hci_conn *conn,
7073
struct hci_conn *acl, struct bt_iso_qos *qos)
7074
{
7075
struct hci_cp_le_past_params cp;
7076
int err;
7077
7078
memset(&cp, 0, sizeof(cp));
7079
cp.handle = cpu_to_le16(acl->handle);
7080
/* An HCI_LE_Periodic_Advertising_Sync_Transfer_Received event is sent
7081
* to the Host. HCI_LE_Periodic_Advertising_Report events will be
7082
* enabled with duplicate filtering enabled.
7083
*/
7084
cp.mode = 0x03;
7085
cp.skip = cpu_to_le16(qos->bcast.skip);
7086
cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout);
7087
cp.cte_type = qos->bcast.sync_cte_type;
7088
7089
/* HCI_LE_PAST_PARAMS command returns a command complete event so it
7090
* cannot wait for HCI_EV_LE_PAST_RECEIVED.
7091
*/
7092
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_PARAMS,
7093
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7094
if (err)
7095
return err;
7096
7097
/* Wait for HCI_EV_LE_PAST_RECEIVED event */
7098
return __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL,
7099
HCI_EV_LE_PAST_RECEIVED,
7100
conn->conn_timeout, NULL);
7101
}
7102
7103
static int hci_le_pa_create_sync(struct hci_dev *hdev, void *data)
7104
{
7105
struct hci_cp_le_pa_create_sync cp;
7106
struct hci_conn *conn = data, *le;
7107
struct bt_iso_qos *qos = &conn->iso_qos;
7108
int err;
7109
7110
if (!hci_conn_valid(hdev, conn))
7111
return -ECANCELED;
7112
7113
if (conn->sync_handle != HCI_SYNC_HANDLE_INVALID)
7114
return -EINVAL;
7115
7116
if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC))
7117
return -EBUSY;
7118
7119
/* Stop scanning if SID has not been set and active scanning is enabled
7120
* so we use passive scanning which will be scanning using the allow
7121
* list programmed to contain only the connection address.
7122
*/
7123
if (conn->sid == HCI_SID_INVALID &&
7124
hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
7125
hci_scan_disable_sync(hdev);
7126
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
7127
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
7128
}
7129
7130
/* Mark HCI_CONN_CREATE_PA_SYNC so hci_update_passive_scan_sync can
7131
* program the address in the allow list so PA advertisements can be
7132
* received.
7133
*/
7134
set_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags);
7135
7136
hci_update_passive_scan_sync(hdev);
7137
7138
/* Check if PAST is possible:
7139
*
7140
* 1. Check if an ACL connection with the destination address exists
7141
* 2. Check if that HCI_CONN_FLAG_PAST has been set which indicates that
7142
* user really intended to use PAST.
7143
*/
7144
le = hci_conn_hash_lookup_le(hdev, &conn->dst, conn->dst_type);
7145
if (le) {
7146
struct hci_conn_params *params;
7147
7148
params = hci_conn_params_lookup(hdev, &le->dst, le->dst_type);
7149
if (params && params->flags & HCI_CONN_FLAG_PAST) {
7150
err = hci_le_past_params_sync(hdev, conn, le, qos);
7151
if (!err)
7152
goto done;
7153
}
7154
}
7155
7156
/* SID has not been set listen for HCI_EV_LE_EXT_ADV_REPORT to update
7157
* it.
7158
*/
7159
if (conn->sid == HCI_SID_INVALID) {
7160
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL,
7161
HCI_EV_LE_EXT_ADV_REPORT,
7162
conn->conn_timeout, NULL);
7163
if (err == -ETIMEDOUT)
7164
goto done;
7165
}
7166
7167
memset(&cp, 0, sizeof(cp));
7168
cp.options = qos->bcast.options;
7169
cp.sid = conn->sid;
7170
cp.addr_type = conn->dst_type;
7171
bacpy(&cp.addr, &conn->dst);
7172
cp.skip = cpu_to_le16(qos->bcast.skip);
7173
cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout);
7174
cp.sync_cte_type = qos->bcast.sync_cte_type;
7175
7176
/* The spec allows only one pending LE Periodic Advertising Create
7177
* Sync command at a time so we forcefully wait for PA Sync Established
7178
* event since cmd_work can only schedule one command at a time.
7179
*
7180
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
7181
* page 2493:
7182
*
7183
* If the Host issues this command when another HCI_LE_Periodic_
7184
* Advertising_Create_Sync command is pending, the Controller shall
7185
* return the error code Command Disallowed (0x0C).
7186
*/
7187
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_PA_CREATE_SYNC,
7188
sizeof(cp), &cp,
7189
HCI_EV_LE_PA_SYNC_ESTABLISHED,
7190
conn->conn_timeout, NULL);
7191
if (err == -ETIMEDOUT)
7192
__hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC_CANCEL,
7193
0, NULL, HCI_CMD_TIMEOUT);
7194
7195
done:
7196
hci_dev_clear_flag(hdev, HCI_PA_SYNC);
7197
7198
/* Update passive scan since HCI_PA_SYNC flag has been cleared */
7199
hci_update_passive_scan_sync(hdev);
7200
7201
return err;
7202
}
7203
7204
int hci_connect_pa_sync(struct hci_dev *hdev, struct hci_conn *conn)
7205
{
7206
return hci_cmd_sync_queue_once(hdev, hci_le_pa_create_sync, conn,
7207
create_pa_complete);
7208
}
7209
7210
static void create_big_complete(struct hci_dev *hdev, void *data, int err)
7211
{
7212
struct hci_conn *conn = data;
7213
7214
bt_dev_dbg(hdev, "err %d", err);
7215
7216
if (err == -ECANCELED)
7217
return;
7218
7219
if (hci_conn_valid(hdev, conn))
7220
clear_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
7221
}
7222
7223
static int hci_le_big_create_sync(struct hci_dev *hdev, void *data)
7224
{
7225
DEFINE_FLEX(struct hci_cp_le_big_create_sync, cp, bis, num_bis, 0x11);
7226
struct hci_conn *conn = data;
7227
struct bt_iso_qos *qos = &conn->iso_qos;
7228
int err;
7229
7230
if (!hci_conn_valid(hdev, conn))
7231
return -ECANCELED;
7232
7233
set_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
7234
7235
memset(cp, 0, sizeof(*cp));
7236
cp->handle = qos->bcast.big;
7237
cp->sync_handle = cpu_to_le16(conn->sync_handle);
7238
cp->encryption = qos->bcast.encryption;
7239
memcpy(cp->bcode, qos->bcast.bcode, sizeof(cp->bcode));
7240
cp->mse = qos->bcast.mse;
7241
cp->timeout = cpu_to_le16(qos->bcast.timeout);
7242
cp->num_bis = conn->num_bis;
7243
memcpy(cp->bis, conn->bis, conn->num_bis);
7244
7245
/* The spec allows only one pending LE BIG Create Sync command at
7246
* a time, so we forcefully wait for BIG Sync Established event since
7247
* cmd_work can only schedule one command at a time.
7248
*
7249
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
7250
* page 2586:
7251
*
7252
* If the Host sends this command when the Controller is in the
7253
* process of synchronizing to any BIG, i.e. the HCI_LE_BIG_Sync_
7254
* Established event has not been generated, the Controller shall
7255
* return the error code Command Disallowed (0x0C).
7256
*/
7257
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_BIG_CREATE_SYNC,
7258
struct_size(cp, bis, cp->num_bis), cp,
7259
HCI_EVT_LE_BIG_SYNC_ESTABLISHED,
7260
conn->conn_timeout, NULL);
7261
if (err == -ETIMEDOUT)
7262
hci_le_big_terminate_sync(hdev, cp->handle);
7263
7264
return err;
7265
}
7266
7267
int hci_connect_big_sync(struct hci_dev *hdev, struct hci_conn *conn)
7268
{
7269
return hci_cmd_sync_queue_once(hdev, hci_le_big_create_sync, conn,
7270
create_big_complete);
7271
}
7272
7273
struct past_data {
7274
struct hci_conn *conn;
7275
struct hci_conn *le;
7276
};
7277
7278
static void past_complete(struct hci_dev *hdev, void *data, int err)
7279
{
7280
struct past_data *past = data;
7281
7282
bt_dev_dbg(hdev, "err %d", err);
7283
7284
kfree(past);
7285
}
7286
7287
static int hci_le_past_set_info_sync(struct hci_dev *hdev, void *data)
7288
{
7289
struct past_data *past = data;
7290
struct hci_cp_le_past_set_info cp;
7291
7292
hci_dev_lock(hdev);
7293
7294
if (!hci_conn_valid(hdev, past->conn) ||
7295
!hci_conn_valid(hdev, past->le)) {
7296
hci_dev_unlock(hdev);
7297
return -ECANCELED;
7298
}
7299
7300
memset(&cp, 0, sizeof(cp));
7301
cp.handle = cpu_to_le16(past->le->handle);
7302
cp.adv_handle = past->conn->iso_qos.bcast.bis;
7303
7304
hci_dev_unlock(hdev);
7305
7306
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_SET_INFO,
7307
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7308
}
7309
7310
static int hci_le_past_sync(struct hci_dev *hdev, void *data)
7311
{
7312
struct past_data *past = data;
7313
struct hci_cp_le_past cp;
7314
7315
hci_dev_lock(hdev);
7316
7317
if (!hci_conn_valid(hdev, past->conn) ||
7318
!hci_conn_valid(hdev, past->le)) {
7319
hci_dev_unlock(hdev);
7320
return -ECANCELED;
7321
}
7322
7323
memset(&cp, 0, sizeof(cp));
7324
cp.handle = cpu_to_le16(past->le->handle);
7325
cp.sync_handle = cpu_to_le16(past->conn->sync_handle);
7326
7327
hci_dev_unlock(hdev);
7328
7329
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST,
7330
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7331
}
7332
7333
int hci_past_sync(struct hci_conn *conn, struct hci_conn *le)
7334
{
7335
struct past_data *data;
7336
int err;
7337
7338
if (conn->type != BIS_LINK && conn->type != PA_LINK)
7339
return -EINVAL;
7340
7341
if (!past_sender_capable(conn->hdev))
7342
return -EOPNOTSUPP;
7343
7344
data = kmalloc(sizeof(*data), GFP_KERNEL);
7345
if (!data)
7346
return -ENOMEM;
7347
7348
data->conn = conn;
7349
data->le = le;
7350
7351
if (conn->role == HCI_ROLE_MASTER)
7352
err = hci_cmd_sync_queue_once(conn->hdev,
7353
hci_le_past_set_info_sync, data,
7354
past_complete);
7355
else
7356
err = hci_cmd_sync_queue_once(conn->hdev, hci_le_past_sync,
7357
data, past_complete);
7358
7359
if (err)
7360
kfree(data);
7361
7362
return err;
7363
}
7364
7365
static void le_read_features_complete(struct hci_dev *hdev, void *data, int err)
7366
{
7367
struct hci_conn *conn = data;
7368
7369
bt_dev_dbg(hdev, "err %d", err);
7370
7371
if (err == -ECANCELED)
7372
return;
7373
7374
hci_conn_drop(conn);
7375
}
7376
7377
static int hci_le_read_all_remote_features_sync(struct hci_dev *hdev,
7378
void *data)
7379
{
7380
struct hci_conn *conn = data;
7381
struct hci_cp_le_read_all_remote_features cp;
7382
7383
memset(&cp, 0, sizeof(cp));
7384
cp.handle = cpu_to_le16(conn->handle);
7385
cp.pages = 10; /* Attempt to read all pages */
7386
7387
/* Wait for HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE event otherwise
7388
* hci_conn_drop may run prematurely causing a disconnection.
7389
*/
7390
return __hci_cmd_sync_status_sk(hdev,
7391
HCI_OP_LE_READ_ALL_REMOTE_FEATURES,
7392
sizeof(cp), &cp,
7393
HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE,
7394
HCI_CMD_TIMEOUT, NULL);
7395
7396
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ALL_REMOTE_FEATURES,
7397
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7398
}
7399
7400
static int hci_le_read_remote_features_sync(struct hci_dev *hdev, void *data)
7401
{
7402
struct hci_conn *conn = data;
7403
struct hci_cp_le_read_remote_features cp;
7404
7405
if (!hci_conn_valid(hdev, conn))
7406
return -ECANCELED;
7407
7408
/* Check if LL Extended Feature Set is supported and
7409
* HCI_OP_LE_READ_ALL_REMOTE_FEATURES is supported then use that to read
7410
* all features.
7411
*/
7412
if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(3))
7413
return hci_le_read_all_remote_features_sync(hdev, data);
7414
7415
memset(&cp, 0, sizeof(cp));
7416
cp.handle = cpu_to_le16(conn->handle);
7417
7418
/* Wait for HCI_EV_LE_REMOTE_FEAT_COMPLETE event otherwise
7419
* hci_conn_drop may run prematurely causing a disconnection.
7420
*/
7421
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_READ_REMOTE_FEATURES,
7422
sizeof(cp), &cp,
7423
HCI_EV_LE_REMOTE_FEAT_COMPLETE,
7424
HCI_CMD_TIMEOUT, NULL);
7425
}
7426
7427
int hci_le_read_remote_features(struct hci_conn *conn)
7428
{
7429
struct hci_dev *hdev = conn->hdev;
7430
int err;
7431
7432
/* The remote features procedure is defined for central
7433
* role only. So only in case of an initiated connection
7434
* request the remote features.
7435
*
7436
* If the local controller supports peripheral-initiated features
7437
* exchange, then requesting the remote features in peripheral
7438
* role is possible. Otherwise just transition into the
7439
* connected state without requesting the remote features.
7440
*/
7441
if (conn->out || (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES))
7442
err = hci_cmd_sync_queue_once(hdev,
7443
hci_le_read_remote_features_sync,
7444
hci_conn_hold(conn),
7445
le_read_features_complete);
7446
else
7447
err = -EOPNOTSUPP;
7448
7449
return err;
7450
}
7451
7452
static void pkt_type_changed(struct hci_dev *hdev, void *data, int err)
7453
{
7454
struct hci_cp_change_conn_ptype *cp = data;
7455
7456
bt_dev_dbg(hdev, "err %d", err);
7457
7458
kfree(cp);
7459
}
7460
7461
static int hci_change_conn_ptype_sync(struct hci_dev *hdev, void *data)
7462
{
7463
struct hci_cp_change_conn_ptype *cp = data;
7464
7465
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CHANGE_CONN_PTYPE,
7466
sizeof(*cp), cp,
7467
HCI_EV_PKT_TYPE_CHANGE,
7468
HCI_CMD_TIMEOUT, NULL);
7469
}
7470
7471
int hci_acl_change_pkt_type(struct hci_conn *conn, u16 pkt_type)
7472
{
7473
struct hci_dev *hdev = conn->hdev;
7474
struct hci_cp_change_conn_ptype *cp;
7475
7476
cp = kmalloc(sizeof(*cp), GFP_KERNEL);
7477
if (!cp)
7478
return -ENOMEM;
7479
7480
cp->handle = cpu_to_le16(conn->handle);
7481
cp->pkt_type = cpu_to_le16(pkt_type);
7482
7483
return hci_cmd_sync_queue_once(hdev, hci_change_conn_ptype_sync, cp,
7484
pkt_type_changed);
7485
}
7486
7487
static void le_phy_update_complete(struct hci_dev *hdev, void *data, int err)
7488
{
7489
struct hci_cp_le_set_phy *cp = data;
7490
7491
bt_dev_dbg(hdev, "err %d", err);
7492
7493
kfree(cp);
7494
}
7495
7496
static int hci_le_set_phy_sync(struct hci_dev *hdev, void *data)
7497
{
7498
struct hci_cp_le_set_phy *cp = data;
7499
7500
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_SET_PHY,
7501
sizeof(*cp), cp,
7502
HCI_EV_LE_PHY_UPDATE_COMPLETE,
7503
HCI_CMD_TIMEOUT, NULL);
7504
}
7505
7506
int hci_le_set_phy(struct hci_conn *conn, u8 tx_phys, u8 rx_phys)
7507
{
7508
struct hci_dev *hdev = conn->hdev;
7509
struct hci_cp_le_set_phy *cp;
7510
7511
cp = kmalloc(sizeof(*cp), GFP_KERNEL);
7512
if (!cp)
7513
return -ENOMEM;
7514
7515
memset(cp, 0, sizeof(*cp));
7516
cp->handle = cpu_to_le16(conn->handle);
7517
cp->tx_phys = tx_phys;
7518
cp->rx_phys = rx_phys;
7519
7520
return hci_cmd_sync_queue_once(hdev, hci_le_set_phy_sync, cp,
7521
le_phy_update_complete);
7522
}
7523
7524