Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ceph/messenger.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/ceph/ceph_debug.h>
3
4
#include <linux/crc32c.h>
5
#include <linux/ctype.h>
6
#include <linux/highmem.h>
7
#include <linux/inet.h>
8
#include <linux/kthread.h>
9
#include <linux/net.h>
10
#include <linux/nsproxy.h>
11
#include <linux/sched/mm.h>
12
#include <linux/slab.h>
13
#include <linux/socket.h>
14
#include <linux/string.h>
15
#ifdef CONFIG_BLOCK
16
#include <linux/bio.h>
17
#endif /* CONFIG_BLOCK */
18
#include <linux/dns_resolver.h>
19
#include <net/tcp.h>
20
#include <trace/events/sock.h>
21
22
#include <linux/ceph/ceph_features.h>
23
#include <linux/ceph/libceph.h>
24
#include <linux/ceph/messenger.h>
25
#include <linux/ceph/decode.h>
26
#include <linux/ceph/pagelist.h>
27
#include <linux/export.h>
28
29
/*
30
* Ceph uses the messenger to exchange ceph_msg messages with other
31
* hosts in the system. The messenger provides ordered and reliable
32
* delivery. We tolerate TCP disconnects by reconnecting (with
33
* exponential backoff) in the case of a fault (disconnection, bad
34
* crc, protocol error). Acks allow sent messages to be discarded by
35
* the sender.
36
*/
37
38
/*
39
* We track the state of the socket on a given connection using
40
* values defined below. The transition to a new socket state is
41
* handled by a function which verifies we aren't coming from an
42
* unexpected state.
43
*
44
* --------
45
* | NEW* | transient initial state
46
* --------
47
* | con_sock_state_init()
48
* v
49
* ----------
50
* | CLOSED | initialized, but no socket (and no
51
* ---------- TCP connection)
52
* ^ \
53
* | \ con_sock_state_connecting()
54
* | ----------------------
55
* | \
56
* + con_sock_state_closed() \
57
* |+--------------------------- \
58
* | \ \ \
59
* | ----------- \ \
60
* | | CLOSING | socket event; \ \
61
* | ----------- await close \ \
62
* | ^ \ |
63
* | | \ |
64
* | + con_sock_state_closing() \ |
65
* | / \ | |
66
* | / --------------- | |
67
* | / \ v v
68
* | / --------------
69
* | / -----------------| CONNECTING | socket created, TCP
70
* | | / -------------- connect initiated
71
* | | | con_sock_state_connected()
72
* | | v
73
* -------------
74
* | CONNECTED | TCP connection established
75
* -------------
76
*
77
* State values for ceph_connection->sock_state; NEW is assumed to be 0.
78
*/
79
80
#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81
#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82
#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83
#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84
#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86
static bool con_flag_valid(unsigned long con_flag)
87
{
88
switch (con_flag) {
89
case CEPH_CON_F_LOSSYTX:
90
case CEPH_CON_F_KEEPALIVE_PENDING:
91
case CEPH_CON_F_WRITE_PENDING:
92
case CEPH_CON_F_SOCK_CLOSED:
93
case CEPH_CON_F_BACKOFF:
94
return true;
95
default:
96
return false;
97
}
98
}
99
100
void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101
{
102
BUG_ON(!con_flag_valid(con_flag));
103
104
clear_bit(con_flag, &con->flags);
105
}
106
107
void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108
{
109
BUG_ON(!con_flag_valid(con_flag));
110
111
set_bit(con_flag, &con->flags);
112
}
113
114
bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115
{
116
BUG_ON(!con_flag_valid(con_flag));
117
118
return test_bit(con_flag, &con->flags);
119
}
120
121
bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122
unsigned long con_flag)
123
{
124
BUG_ON(!con_flag_valid(con_flag));
125
126
return test_and_clear_bit(con_flag, &con->flags);
127
}
128
129
bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130
unsigned long con_flag)
131
{
132
BUG_ON(!con_flag_valid(con_flag));
133
134
return test_and_set_bit(con_flag, &con->flags);
135
}
136
137
/* Slab caches for frequently-allocated structures */
138
139
static struct kmem_cache *ceph_msg_cache;
140
141
#ifdef CONFIG_LOCKDEP
142
static struct lock_class_key socket_class;
143
#endif
144
145
static void queue_con(struct ceph_connection *con);
146
static void cancel_con(struct ceph_connection *con);
147
static void ceph_con_workfn(struct work_struct *);
148
static void con_fault(struct ceph_connection *con);
149
150
/*
151
* Nicely render a sockaddr as a string. An array of formatted
152
* strings is used, to approximate reentrancy.
153
*/
154
#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155
#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156
#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157
#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159
static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160
static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162
struct page *ceph_zero_page; /* used in certain error cases */
163
164
const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165
{
166
int i;
167
char *s;
168
struct sockaddr_storage ss = addr->in_addr; /* align */
169
struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172
i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173
s = addr_str[i];
174
175
switch (ss.ss_family) {
176
case AF_INET:
177
snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178
le32_to_cpu(addr->type), &in4->sin_addr,
179
ntohs(in4->sin_port));
180
break;
181
182
case AF_INET6:
183
snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184
le32_to_cpu(addr->type), &in6->sin6_addr,
185
ntohs(in6->sin6_port));
186
break;
187
188
default:
189
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190
ss.ss_family);
191
}
192
193
return s;
194
}
195
EXPORT_SYMBOL(ceph_pr_addr);
196
197
void ceph_encode_my_addr(struct ceph_messenger *msgr)
198
{
199
if (!ceph_msgr2(from_msgr(msgr))) {
200
memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201
sizeof(msgr->my_enc_addr));
202
ceph_encode_banner_addr(&msgr->my_enc_addr);
203
}
204
}
205
206
/*
207
* work queue for all reading and writing to/from the socket.
208
*/
209
static struct workqueue_struct *ceph_msgr_wq;
210
211
static int ceph_msgr_slab_init(void)
212
{
213
BUG_ON(ceph_msg_cache);
214
ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215
if (!ceph_msg_cache)
216
return -ENOMEM;
217
218
return 0;
219
}
220
221
static void ceph_msgr_slab_exit(void)
222
{
223
BUG_ON(!ceph_msg_cache);
224
kmem_cache_destroy(ceph_msg_cache);
225
ceph_msg_cache = NULL;
226
}
227
228
static void _ceph_msgr_exit(void)
229
{
230
if (ceph_msgr_wq) {
231
destroy_workqueue(ceph_msgr_wq);
232
ceph_msgr_wq = NULL;
233
}
234
235
BUG_ON(!ceph_zero_page);
236
put_page(ceph_zero_page);
237
ceph_zero_page = NULL;
238
239
ceph_msgr_slab_exit();
240
}
241
242
int __init ceph_msgr_init(void)
243
{
244
if (ceph_msgr_slab_init())
245
return -ENOMEM;
246
247
BUG_ON(ceph_zero_page);
248
ceph_zero_page = ZERO_PAGE(0);
249
get_page(ceph_zero_page);
250
251
/*
252
* The number of active work items is limited by the number of
253
* connections, so leave @max_active at default.
254
*/
255
ceph_msgr_wq = alloc_workqueue("ceph-msgr",
256
WQ_MEM_RECLAIM | WQ_PERCPU, 0);
257
if (ceph_msgr_wq)
258
return 0;
259
260
pr_err("msgr_init failed to create workqueue\n");
261
_ceph_msgr_exit();
262
263
return -ENOMEM;
264
}
265
266
void ceph_msgr_exit(void)
267
{
268
BUG_ON(ceph_msgr_wq == NULL);
269
270
_ceph_msgr_exit();
271
}
272
273
void ceph_msgr_flush(void)
274
{
275
flush_workqueue(ceph_msgr_wq);
276
}
277
EXPORT_SYMBOL(ceph_msgr_flush);
278
279
/* Connection socket state transition functions */
280
281
static void con_sock_state_init(struct ceph_connection *con)
282
{
283
int old_state;
284
285
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
286
if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
287
printk("%s: unexpected old state %d\n", __func__, old_state);
288
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
289
CON_SOCK_STATE_CLOSED);
290
}
291
292
static void con_sock_state_connecting(struct ceph_connection *con)
293
{
294
int old_state;
295
296
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
297
if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
298
printk("%s: unexpected old state %d\n", __func__, old_state);
299
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
300
CON_SOCK_STATE_CONNECTING);
301
}
302
303
static void con_sock_state_connected(struct ceph_connection *con)
304
{
305
int old_state;
306
307
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
308
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
309
printk("%s: unexpected old state %d\n", __func__, old_state);
310
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
311
CON_SOCK_STATE_CONNECTED);
312
}
313
314
static void con_sock_state_closing(struct ceph_connection *con)
315
{
316
int old_state;
317
318
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
319
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
320
old_state != CON_SOCK_STATE_CONNECTED &&
321
old_state != CON_SOCK_STATE_CLOSING))
322
printk("%s: unexpected old state %d\n", __func__, old_state);
323
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
324
CON_SOCK_STATE_CLOSING);
325
}
326
327
static void con_sock_state_closed(struct ceph_connection *con)
328
{
329
int old_state;
330
331
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
333
old_state != CON_SOCK_STATE_CLOSING &&
334
old_state != CON_SOCK_STATE_CONNECTING &&
335
old_state != CON_SOCK_STATE_CLOSED))
336
printk("%s: unexpected old state %d\n", __func__, old_state);
337
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338
CON_SOCK_STATE_CLOSED);
339
}
340
341
/*
342
* socket callback functions
343
*/
344
345
/* data available on socket, or listen socket received a connect */
346
static void ceph_sock_data_ready(struct sock *sk)
347
{
348
struct ceph_connection *con = sk->sk_user_data;
349
350
trace_sk_data_ready(sk);
351
352
if (atomic_read(&con->msgr->stopping)) {
353
return;
354
}
355
356
if (sk->sk_state != TCP_CLOSE_WAIT) {
357
dout("%s %p state = %d, queueing work\n", __func__,
358
con, con->state);
359
queue_con(con);
360
}
361
}
362
363
/* socket has buffer space for writing */
364
static void ceph_sock_write_space(struct sock *sk)
365
{
366
struct ceph_connection *con = sk->sk_user_data;
367
368
/* only queue to workqueue if there is data we want to write,
369
* and there is sufficient space in the socket buffer to accept
370
* more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
371
* doesn't get called again until try_write() fills the socket
372
* buffer. See net/ipv4/tcp_input.c:tcp_check_space()
373
* and net/core/stream.c:sk_stream_write_space().
374
*/
375
if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
376
if (sk_stream_is_writeable(sk)) {
377
dout("%s %p queueing write work\n", __func__, con);
378
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
379
queue_con(con);
380
}
381
} else {
382
dout("%s %p nothing to write\n", __func__, con);
383
}
384
}
385
386
/* socket's state has changed */
387
static void ceph_sock_state_change(struct sock *sk)
388
{
389
struct ceph_connection *con = sk->sk_user_data;
390
391
dout("%s %p state = %d sk_state = %u\n", __func__,
392
con, con->state, sk->sk_state);
393
394
switch (sk->sk_state) {
395
case TCP_CLOSE:
396
dout("%s TCP_CLOSE\n", __func__);
397
fallthrough;
398
case TCP_CLOSE_WAIT:
399
dout("%s TCP_CLOSE_WAIT\n", __func__);
400
con_sock_state_closing(con);
401
ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
402
queue_con(con);
403
break;
404
case TCP_ESTABLISHED:
405
dout("%s TCP_ESTABLISHED\n", __func__);
406
con_sock_state_connected(con);
407
queue_con(con);
408
break;
409
default: /* Everything else is uninteresting */
410
break;
411
}
412
}
413
414
/*
415
* set up socket callbacks
416
*/
417
static void set_sock_callbacks(struct socket *sock,
418
struct ceph_connection *con)
419
{
420
struct sock *sk = sock->sk;
421
sk->sk_user_data = con;
422
sk->sk_data_ready = ceph_sock_data_ready;
423
sk->sk_write_space = ceph_sock_write_space;
424
sk->sk_state_change = ceph_sock_state_change;
425
}
426
427
428
/*
429
* socket helpers
430
*/
431
432
/*
433
* initiate connection to a remote socket.
434
*/
435
int ceph_tcp_connect(struct ceph_connection *con)
436
{
437
struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
438
struct socket *sock;
439
unsigned int noio_flag;
440
int ret;
441
442
dout("%s con %p peer_addr %s\n", __func__, con,
443
ceph_pr_addr(&con->peer_addr));
444
BUG_ON(con->sock);
445
446
/* sock_create_kern() allocates with GFP_KERNEL */
447
noio_flag = memalloc_noio_save();
448
ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
449
SOCK_STREAM, IPPROTO_TCP, &sock);
450
memalloc_noio_restore(noio_flag);
451
if (ret)
452
return ret;
453
sock->sk->sk_allocation = GFP_NOFS;
454
sock->sk->sk_use_task_frag = false;
455
456
#ifdef CONFIG_LOCKDEP
457
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
458
#endif
459
460
set_sock_callbacks(sock, con);
461
462
con_sock_state_connecting(con);
463
ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
464
O_NONBLOCK);
465
if (ret == -EINPROGRESS) {
466
dout("connect %s EINPROGRESS sk_state = %u\n",
467
ceph_pr_addr(&con->peer_addr),
468
sock->sk->sk_state);
469
} else if (ret < 0) {
470
pr_err("connect %s error %d\n",
471
ceph_pr_addr(&con->peer_addr), ret);
472
sock_release(sock);
473
return ret;
474
}
475
476
if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
477
tcp_sock_set_nodelay(sock->sk);
478
479
con->sock = sock;
480
return 0;
481
}
482
483
/*
484
* Shutdown/close the socket for the given connection.
485
*/
486
int ceph_con_close_socket(struct ceph_connection *con)
487
{
488
int rc = 0;
489
490
dout("%s con %p sock %p\n", __func__, con, con->sock);
491
if (con->sock) {
492
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
493
sock_release(con->sock);
494
con->sock = NULL;
495
}
496
497
/*
498
* Forcibly clear the SOCK_CLOSED flag. It gets set
499
* independent of the connection mutex, and we could have
500
* received a socket close event before we had the chance to
501
* shut the socket down.
502
*/
503
ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
504
505
con_sock_state_closed(con);
506
return rc;
507
}
508
509
static void ceph_con_reset_protocol(struct ceph_connection *con)
510
{
511
dout("%s con %p\n", __func__, con);
512
513
ceph_con_close_socket(con);
514
if (con->in_msg) {
515
WARN_ON(con->in_msg->con != con);
516
ceph_msg_put(con->in_msg);
517
con->in_msg = NULL;
518
}
519
if (con->out_msg) {
520
WARN_ON(con->out_msg->con != con);
521
ceph_msg_put(con->out_msg);
522
con->out_msg = NULL;
523
}
524
if (con->bounce_page) {
525
__free_page(con->bounce_page);
526
con->bounce_page = NULL;
527
}
528
529
if (ceph_msgr2(from_msgr(con->msgr)))
530
ceph_con_v2_reset_protocol(con);
531
else
532
ceph_con_v1_reset_protocol(con);
533
}
534
535
/*
536
* Reset a connection. Discard all incoming and outgoing messages
537
* and clear *_seq state.
538
*/
539
static void ceph_msg_remove(struct ceph_msg *msg)
540
{
541
list_del_init(&msg->list_head);
542
543
ceph_msg_put(msg);
544
}
545
546
static void ceph_msg_remove_list(struct list_head *head)
547
{
548
while (!list_empty(head)) {
549
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
550
list_head);
551
ceph_msg_remove(msg);
552
}
553
}
554
555
void ceph_con_reset_session(struct ceph_connection *con)
556
{
557
dout("%s con %p\n", __func__, con);
558
559
WARN_ON(con->in_msg);
560
WARN_ON(con->out_msg);
561
ceph_msg_remove_list(&con->out_queue);
562
ceph_msg_remove_list(&con->out_sent);
563
con->out_seq = 0;
564
con->in_seq = 0;
565
con->in_seq_acked = 0;
566
567
if (ceph_msgr2(from_msgr(con->msgr)))
568
ceph_con_v2_reset_session(con);
569
else
570
ceph_con_v1_reset_session(con);
571
}
572
573
/*
574
* mark a peer down. drop any open connections.
575
*/
576
void ceph_con_close(struct ceph_connection *con)
577
{
578
mutex_lock(&con->mutex);
579
dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
580
con->state = CEPH_CON_S_CLOSED;
581
582
ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
583
connect */
584
ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
585
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
586
ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
587
588
ceph_con_reset_protocol(con);
589
ceph_con_reset_session(con);
590
cancel_con(con);
591
mutex_unlock(&con->mutex);
592
}
593
EXPORT_SYMBOL(ceph_con_close);
594
595
/*
596
* Reopen a closed connection, with a new peer address.
597
*/
598
void ceph_con_open(struct ceph_connection *con,
599
__u8 entity_type, __u64 entity_num,
600
struct ceph_entity_addr *addr)
601
{
602
mutex_lock(&con->mutex);
603
dout("con_open %p %s\n", con, ceph_pr_addr(addr));
604
605
WARN_ON(con->state != CEPH_CON_S_CLOSED);
606
con->state = CEPH_CON_S_PREOPEN;
607
608
con->peer_name.type = (__u8) entity_type;
609
con->peer_name.num = cpu_to_le64(entity_num);
610
611
memcpy(&con->peer_addr, addr, sizeof(*addr));
612
con->delay = 0; /* reset backoff memory */
613
mutex_unlock(&con->mutex);
614
queue_con(con);
615
}
616
EXPORT_SYMBOL(ceph_con_open);
617
618
/*
619
* return true if this connection ever successfully opened
620
*/
621
bool ceph_con_opened(struct ceph_connection *con)
622
{
623
if (ceph_msgr2(from_msgr(con->msgr)))
624
return ceph_con_v2_opened(con);
625
626
return ceph_con_v1_opened(con);
627
}
628
629
/*
630
* initialize a new connection.
631
*/
632
void ceph_con_init(struct ceph_connection *con, void *private,
633
const struct ceph_connection_operations *ops,
634
struct ceph_messenger *msgr)
635
{
636
dout("con_init %p\n", con);
637
memset(con, 0, sizeof(*con));
638
con->private = private;
639
con->ops = ops;
640
con->msgr = msgr;
641
642
con_sock_state_init(con);
643
644
mutex_init(&con->mutex);
645
INIT_LIST_HEAD(&con->out_queue);
646
INIT_LIST_HEAD(&con->out_sent);
647
INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
648
649
con->state = CEPH_CON_S_CLOSED;
650
}
651
EXPORT_SYMBOL(ceph_con_init);
652
653
/*
654
* We maintain a global counter to order connection attempts. Get
655
* a unique seq greater than @gt.
656
*/
657
u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
658
{
659
u32 ret;
660
661
spin_lock(&msgr->global_seq_lock);
662
if (msgr->global_seq < gt)
663
msgr->global_seq = gt;
664
ret = ++msgr->global_seq;
665
spin_unlock(&msgr->global_seq_lock);
666
return ret;
667
}
668
669
/*
670
* Discard messages that have been acked by the server.
671
*/
672
void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
673
{
674
struct ceph_msg *msg;
675
u64 seq;
676
677
dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
678
while (!list_empty(&con->out_sent)) {
679
msg = list_first_entry(&con->out_sent, struct ceph_msg,
680
list_head);
681
WARN_ON(msg->needs_out_seq);
682
seq = le64_to_cpu(msg->hdr.seq);
683
if (seq > ack_seq)
684
break;
685
686
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
687
msg, seq);
688
ceph_msg_remove(msg);
689
}
690
}
691
692
/*
693
* Discard messages that have been requeued in con_fault(), up to
694
* reconnect_seq. This avoids gratuitously resending messages that
695
* the server had received and handled prior to reconnect.
696
*/
697
void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
698
{
699
struct ceph_msg *msg;
700
u64 seq;
701
702
dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
703
while (!list_empty(&con->out_queue)) {
704
msg = list_first_entry(&con->out_queue, struct ceph_msg,
705
list_head);
706
if (msg->needs_out_seq)
707
break;
708
seq = le64_to_cpu(msg->hdr.seq);
709
if (seq > reconnect_seq)
710
break;
711
712
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
713
msg, seq);
714
ceph_msg_remove(msg);
715
}
716
}
717
718
#ifdef CONFIG_BLOCK
719
720
/*
721
* For a bio data item, a piece is whatever remains of the next
722
* entry in the current bio iovec, or the first entry in the next
723
* bio in the list.
724
*/
725
static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
726
size_t length)
727
{
728
struct ceph_msg_data *data = cursor->data;
729
struct ceph_bio_iter *it = &cursor->bio_iter;
730
731
cursor->resid = min_t(size_t, length, data->bio_length);
732
*it = data->bio_pos;
733
if (cursor->resid < it->iter.bi_size)
734
it->iter.bi_size = cursor->resid;
735
736
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
737
}
738
739
static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
740
size_t *page_offset,
741
size_t *length)
742
{
743
struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
744
cursor->bio_iter.iter);
745
746
*page_offset = bv.bv_offset;
747
*length = bv.bv_len;
748
return bv.bv_page;
749
}
750
751
static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
752
size_t bytes)
753
{
754
struct ceph_bio_iter *it = &cursor->bio_iter;
755
struct page *page = bio_iter_page(it->bio, it->iter);
756
757
BUG_ON(bytes > cursor->resid);
758
BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
759
cursor->resid -= bytes;
760
bio_advance_iter(it->bio, &it->iter, bytes);
761
762
if (!cursor->resid)
763
return false; /* no more data */
764
765
if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
766
page == bio_iter_page(it->bio, it->iter)))
767
return false; /* more bytes to process in this segment */
768
769
if (!it->iter.bi_size) {
770
it->bio = it->bio->bi_next;
771
it->iter = it->bio->bi_iter;
772
if (cursor->resid < it->iter.bi_size)
773
it->iter.bi_size = cursor->resid;
774
}
775
776
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
777
return true;
778
}
779
#endif /* CONFIG_BLOCK */
780
781
static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
782
size_t length)
783
{
784
struct ceph_msg_data *data = cursor->data;
785
struct bio_vec *bvecs = data->bvec_pos.bvecs;
786
787
cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
788
cursor->bvec_iter = data->bvec_pos.iter;
789
cursor->bvec_iter.bi_size = cursor->resid;
790
791
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
792
}
793
794
static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
795
size_t *page_offset,
796
size_t *length)
797
{
798
struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
799
cursor->bvec_iter);
800
801
*page_offset = bv.bv_offset;
802
*length = bv.bv_len;
803
return bv.bv_page;
804
}
805
806
static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
807
size_t bytes)
808
{
809
struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
810
struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
811
812
BUG_ON(bytes > cursor->resid);
813
BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
814
cursor->resid -= bytes;
815
bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
816
817
if (!cursor->resid)
818
return false; /* no more data */
819
820
if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
821
page == bvec_iter_page(bvecs, cursor->bvec_iter)))
822
return false; /* more bytes to process in this segment */
823
824
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
825
return true;
826
}
827
828
/*
829
* For a page array, a piece comes from the first page in the array
830
* that has not already been fully consumed.
831
*/
832
static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
833
size_t length)
834
{
835
struct ceph_msg_data *data = cursor->data;
836
int page_count;
837
838
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
839
840
BUG_ON(!data->pages);
841
BUG_ON(!data->length);
842
843
cursor->resid = min(length, data->length);
844
page_count = calc_pages_for(data->alignment, (u64)data->length);
845
cursor->page_offset = data->alignment & ~PAGE_MASK;
846
cursor->page_index = 0;
847
BUG_ON(page_count > (int)USHRT_MAX);
848
cursor->page_count = (unsigned short)page_count;
849
BUG_ON(length > SIZE_MAX - cursor->page_offset);
850
}
851
852
static struct page *
853
ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
854
size_t *page_offset, size_t *length)
855
{
856
struct ceph_msg_data *data = cursor->data;
857
858
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
859
860
BUG_ON(cursor->page_index >= cursor->page_count);
861
BUG_ON(cursor->page_offset >= PAGE_SIZE);
862
863
*page_offset = cursor->page_offset;
864
*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
865
return data->pages[cursor->page_index];
866
}
867
868
static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
869
size_t bytes)
870
{
871
BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
872
873
BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
874
875
/* Advance the cursor page offset */
876
877
cursor->resid -= bytes;
878
cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
879
if (!bytes || cursor->page_offset)
880
return false; /* more bytes to process in the current page */
881
882
if (!cursor->resid)
883
return false; /* no more data */
884
885
/* Move on to the next page; offset is already at 0 */
886
887
BUG_ON(cursor->page_index >= cursor->page_count);
888
cursor->page_index++;
889
return true;
890
}
891
892
/*
893
* For a pagelist, a piece is whatever remains to be consumed in the
894
* first page in the list, or the front of the next page.
895
*/
896
static void
897
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
898
size_t length)
899
{
900
struct ceph_msg_data *data = cursor->data;
901
struct ceph_pagelist *pagelist;
902
struct page *page;
903
904
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906
pagelist = data->pagelist;
907
BUG_ON(!pagelist);
908
909
if (!length)
910
return; /* pagelist can be assigned but empty */
911
912
BUG_ON(list_empty(&pagelist->head));
913
page = list_first_entry(&pagelist->head, struct page, lru);
914
915
cursor->resid = min(length, pagelist->length);
916
cursor->page = page;
917
cursor->offset = 0;
918
}
919
920
static struct page *
921
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
922
size_t *page_offset, size_t *length)
923
{
924
struct ceph_msg_data *data = cursor->data;
925
struct ceph_pagelist *pagelist;
926
927
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
928
929
pagelist = data->pagelist;
930
BUG_ON(!pagelist);
931
932
BUG_ON(!cursor->page);
933
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
934
935
/* offset of first page in pagelist is always 0 */
936
*page_offset = cursor->offset & ~PAGE_MASK;
937
*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
938
return cursor->page;
939
}
940
941
static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
942
size_t bytes)
943
{
944
struct ceph_msg_data *data = cursor->data;
945
struct ceph_pagelist *pagelist;
946
947
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
948
949
pagelist = data->pagelist;
950
BUG_ON(!pagelist);
951
952
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
953
BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
954
955
/* Advance the cursor offset */
956
957
cursor->resid -= bytes;
958
cursor->offset += bytes;
959
/* offset of first page in pagelist is always 0 */
960
if (!bytes || cursor->offset & ~PAGE_MASK)
961
return false; /* more bytes to process in the current page */
962
963
if (!cursor->resid)
964
return false; /* no more data */
965
966
/* Move on to the next page */
967
968
BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
969
cursor->page = list_next_entry(cursor->page, lru);
970
return true;
971
}
972
973
static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
974
size_t length)
975
{
976
struct ceph_msg_data *data = cursor->data;
977
978
cursor->iov_iter = data->iter;
979
cursor->lastlen = 0;
980
iov_iter_truncate(&cursor->iov_iter, length);
981
cursor->resid = iov_iter_count(&cursor->iov_iter);
982
}
983
984
static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
985
size_t *page_offset, size_t *length)
986
{
987
struct page *page;
988
ssize_t len;
989
990
if (cursor->lastlen)
991
iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
992
993
len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
994
1, page_offset);
995
BUG_ON(len < 0);
996
997
cursor->lastlen = len;
998
999
/*
1000
* FIXME: The assumption is that the pages represented by the iov_iter
1001
* are pinned, with the references held by the upper-level
1002
* callers, or by virtue of being under writeback. Eventually,
1003
* we'll get an iov_iter_get_pages2 variant that doesn't take
1004
* page refs. Until then, just put the page ref.
1005
*/
1006
VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1007
put_page(page);
1008
1009
*length = min_t(size_t, len, cursor->resid);
1010
return page;
1011
}
1012
1013
static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1014
size_t bytes)
1015
{
1016
BUG_ON(bytes > cursor->resid);
1017
cursor->resid -= bytes;
1018
1019
if (bytes < cursor->lastlen) {
1020
cursor->lastlen -= bytes;
1021
} else {
1022
iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1023
cursor->lastlen = 0;
1024
}
1025
1026
return cursor->resid;
1027
}
1028
1029
/*
1030
* Message data is handled (sent or received) in pieces, where each
1031
* piece resides on a single page. The network layer might not
1032
* consume an entire piece at once. A data item's cursor keeps
1033
* track of which piece is next to process and how much remains to
1034
* be processed in that piece. It also tracks whether the current
1035
* piece is the last one in the data item.
1036
*/
1037
static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1038
{
1039
size_t length = cursor->total_resid;
1040
1041
switch (cursor->data->type) {
1042
case CEPH_MSG_DATA_PAGELIST:
1043
ceph_msg_data_pagelist_cursor_init(cursor, length);
1044
break;
1045
case CEPH_MSG_DATA_PAGES:
1046
ceph_msg_data_pages_cursor_init(cursor, length);
1047
break;
1048
#ifdef CONFIG_BLOCK
1049
case CEPH_MSG_DATA_BIO:
1050
ceph_msg_data_bio_cursor_init(cursor, length);
1051
break;
1052
#endif /* CONFIG_BLOCK */
1053
case CEPH_MSG_DATA_BVECS:
1054
ceph_msg_data_bvecs_cursor_init(cursor, length);
1055
break;
1056
case CEPH_MSG_DATA_ITER:
1057
ceph_msg_data_iter_cursor_init(cursor, length);
1058
break;
1059
case CEPH_MSG_DATA_NONE:
1060
default:
1061
/* BUG(); */
1062
break;
1063
}
1064
cursor->need_crc = true;
1065
}
1066
1067
void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1068
struct ceph_msg *msg, size_t length)
1069
{
1070
BUG_ON(!length);
1071
BUG_ON(length > msg->data_length);
1072
BUG_ON(!msg->num_data_items);
1073
1074
cursor->total_resid = length;
1075
cursor->data = msg->data;
1076
cursor->sr_resid = 0;
1077
1078
__ceph_msg_data_cursor_init(cursor);
1079
}
1080
1081
/*
1082
* Return the page containing the next piece to process for a given
1083
* data item, and supply the page offset and length of that piece.
1084
* Indicate whether this is the last piece in this data item.
1085
*/
1086
struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1087
size_t *page_offset, size_t *length)
1088
{
1089
struct page *page;
1090
1091
switch (cursor->data->type) {
1092
case CEPH_MSG_DATA_PAGELIST:
1093
page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1094
break;
1095
case CEPH_MSG_DATA_PAGES:
1096
page = ceph_msg_data_pages_next(cursor, page_offset, length);
1097
break;
1098
#ifdef CONFIG_BLOCK
1099
case CEPH_MSG_DATA_BIO:
1100
page = ceph_msg_data_bio_next(cursor, page_offset, length);
1101
break;
1102
#endif /* CONFIG_BLOCK */
1103
case CEPH_MSG_DATA_BVECS:
1104
page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1105
break;
1106
case CEPH_MSG_DATA_ITER:
1107
page = ceph_msg_data_iter_next(cursor, page_offset, length);
1108
break;
1109
case CEPH_MSG_DATA_NONE:
1110
default:
1111
page = NULL;
1112
break;
1113
}
1114
1115
BUG_ON(!page);
1116
BUG_ON(*page_offset + *length > PAGE_SIZE);
1117
BUG_ON(!*length);
1118
BUG_ON(*length > cursor->resid);
1119
1120
return page;
1121
}
1122
1123
/*
1124
* Returns true if the result moves the cursor on to the next piece
1125
* of the data item.
1126
*/
1127
void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1128
{
1129
bool new_piece;
1130
1131
BUG_ON(bytes > cursor->resid);
1132
switch (cursor->data->type) {
1133
case CEPH_MSG_DATA_PAGELIST:
1134
new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1135
break;
1136
case CEPH_MSG_DATA_PAGES:
1137
new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1138
break;
1139
#ifdef CONFIG_BLOCK
1140
case CEPH_MSG_DATA_BIO:
1141
new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1142
break;
1143
#endif /* CONFIG_BLOCK */
1144
case CEPH_MSG_DATA_BVECS:
1145
new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1146
break;
1147
case CEPH_MSG_DATA_ITER:
1148
new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1149
break;
1150
case CEPH_MSG_DATA_NONE:
1151
default:
1152
BUG();
1153
break;
1154
}
1155
cursor->total_resid -= bytes;
1156
1157
if (!cursor->resid && cursor->total_resid) {
1158
cursor->data++;
1159
__ceph_msg_data_cursor_init(cursor);
1160
new_piece = true;
1161
}
1162
cursor->need_crc = new_piece;
1163
}
1164
1165
u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1166
unsigned int length)
1167
{
1168
char *kaddr;
1169
1170
kaddr = kmap(page);
1171
BUG_ON(kaddr == NULL);
1172
crc = crc32c(crc, kaddr + page_offset, length);
1173
kunmap(page);
1174
1175
return crc;
1176
}
1177
1178
bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1179
{
1180
struct sockaddr_storage ss = addr->in_addr; /* align */
1181
struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1182
struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1183
1184
switch (ss.ss_family) {
1185
case AF_INET:
1186
return addr4->s_addr == htonl(INADDR_ANY);
1187
case AF_INET6:
1188
return ipv6_addr_any(addr6);
1189
default:
1190
return true;
1191
}
1192
}
1193
EXPORT_SYMBOL(ceph_addr_is_blank);
1194
1195
int ceph_addr_port(const struct ceph_entity_addr *addr)
1196
{
1197
switch (get_unaligned(&addr->in_addr.ss_family)) {
1198
case AF_INET:
1199
return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1200
case AF_INET6:
1201
return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1202
}
1203
return 0;
1204
}
1205
1206
void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1207
{
1208
switch (get_unaligned(&addr->in_addr.ss_family)) {
1209
case AF_INET:
1210
put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1211
break;
1212
case AF_INET6:
1213
put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1214
break;
1215
}
1216
}
1217
1218
/*
1219
* Unlike other *_pton function semantics, zero indicates success.
1220
*/
1221
static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1222
char delim, const char **ipend)
1223
{
1224
memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1225
1226
if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1227
put_unaligned(AF_INET, &addr->in_addr.ss_family);
1228
return 0;
1229
}
1230
1231
if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1232
put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1233
return 0;
1234
}
1235
1236
return -EINVAL;
1237
}
1238
1239
/*
1240
* Extract hostname string and resolve using kernel DNS facility.
1241
*/
1242
#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1243
static int ceph_dns_resolve_name(const char *name, size_t namelen,
1244
struct ceph_entity_addr *addr, char delim, const char **ipend)
1245
{
1246
const char *end, *delim_p;
1247
char *colon_p, *ip_addr = NULL;
1248
int ip_len, ret;
1249
1250
/*
1251
* The end of the hostname occurs immediately preceding the delimiter or
1252
* the port marker (':') where the delimiter takes precedence.
1253
*/
1254
delim_p = memchr(name, delim, namelen);
1255
colon_p = memchr(name, ':', namelen);
1256
1257
if (delim_p && colon_p)
1258
end = min(delim_p, colon_p);
1259
else if (!delim_p && colon_p)
1260
end = colon_p;
1261
else {
1262
end = delim_p;
1263
if (!end) /* case: hostname:/ */
1264
end = name + namelen;
1265
}
1266
1267
if (end <= name)
1268
return -EINVAL;
1269
1270
/* do dns_resolve upcall */
1271
ip_len = dns_query(current->nsproxy->net_ns,
1272
NULL, name, end - name, NULL, &ip_addr, NULL, false);
1273
if (ip_len > 0)
1274
ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1275
else
1276
ret = -ESRCH;
1277
1278
kfree(ip_addr);
1279
1280
*ipend = end;
1281
1282
pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1283
ret, ret ? "failed" : ceph_pr_addr(addr));
1284
1285
return ret;
1286
}
1287
#else
1288
static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1289
struct ceph_entity_addr *addr, char delim, const char **ipend)
1290
{
1291
return -EINVAL;
1292
}
1293
#endif
1294
1295
/*
1296
* Parse a server name (IP or hostname). If a valid IP address is not found
1297
* then try to extract a hostname to resolve using userspace DNS upcall.
1298
*/
1299
static int ceph_parse_server_name(const char *name, size_t namelen,
1300
struct ceph_entity_addr *addr, char delim, const char **ipend)
1301
{
1302
int ret;
1303
1304
ret = ceph_pton(name, namelen, addr, delim, ipend);
1305
if (ret)
1306
ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1307
1308
return ret;
1309
}
1310
1311
/*
1312
* Parse an ip[:port] list into an addr array. Use the default
1313
* monitor port if a port isn't specified.
1314
*/
1315
int ceph_parse_ips(const char *c, const char *end,
1316
struct ceph_entity_addr *addr,
1317
int max_count, int *count, char delim)
1318
{
1319
int i, ret = -EINVAL;
1320
const char *p = c;
1321
1322
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1323
for (i = 0; i < max_count; i++) {
1324
char cur_delim = delim;
1325
const char *ipend;
1326
int port;
1327
1328
if (*p == '[') {
1329
cur_delim = ']';
1330
p++;
1331
}
1332
1333
ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1334
&ipend);
1335
if (ret)
1336
goto bad;
1337
ret = -EINVAL;
1338
1339
p = ipend;
1340
1341
if (cur_delim == ']') {
1342
if (*p != ']') {
1343
dout("missing matching ']'\n");
1344
goto bad;
1345
}
1346
p++;
1347
}
1348
1349
/* port? */
1350
if (p < end && *p == ':') {
1351
port = 0;
1352
p++;
1353
while (p < end && *p >= '0' && *p <= '9') {
1354
port = (port * 10) + (*p - '0');
1355
p++;
1356
}
1357
if (port == 0)
1358
port = CEPH_MON_PORT;
1359
else if (port > 65535)
1360
goto bad;
1361
} else {
1362
port = CEPH_MON_PORT;
1363
}
1364
1365
ceph_addr_set_port(&addr[i], port);
1366
/*
1367
* We want the type to be set according to ms_mode
1368
* option, but options are normally parsed after mon
1369
* addresses. Rather than complicating parsing, set
1370
* to LEGACY and override in build_initial_monmap()
1371
* for mon addresses and ceph_messenger_init() for
1372
* ip option.
1373
*/
1374
addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1375
addr[i].nonce = 0;
1376
1377
dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1378
1379
if (p == end)
1380
break;
1381
if (*p != delim)
1382
goto bad;
1383
p++;
1384
}
1385
1386
if (p != end)
1387
goto bad;
1388
1389
if (count)
1390
*count = i + 1;
1391
return 0;
1392
1393
bad:
1394
return ret;
1395
}
1396
1397
/*
1398
* Process message. This happens in the worker thread. The callback should
1399
* be careful not to do anything that waits on other incoming messages or it
1400
* may deadlock.
1401
*/
1402
void ceph_con_process_message(struct ceph_connection *con)
1403
{
1404
struct ceph_msg *msg = con->in_msg;
1405
1406
BUG_ON(con->in_msg->con != con);
1407
con->in_msg = NULL;
1408
1409
/* if first message, set peer_name */
1410
if (con->peer_name.type == 0)
1411
con->peer_name = msg->hdr.src;
1412
1413
con->in_seq++;
1414
mutex_unlock(&con->mutex);
1415
1416
dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1417
msg, le64_to_cpu(msg->hdr.seq),
1418
ENTITY_NAME(msg->hdr.src),
1419
le16_to_cpu(msg->hdr.type),
1420
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1421
le32_to_cpu(msg->hdr.front_len),
1422
le32_to_cpu(msg->hdr.middle_len),
1423
le32_to_cpu(msg->hdr.data_len),
1424
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1425
con->ops->dispatch(con, msg);
1426
1427
mutex_lock(&con->mutex);
1428
}
1429
1430
/*
1431
* Atomically queue work on a connection after the specified delay.
1432
* Bump @con reference to avoid races with connection teardown.
1433
* Returns 0 if work was queued, or an error code otherwise.
1434
*/
1435
static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1436
{
1437
if (!con->ops->get(con)) {
1438
dout("%s %p ref count 0\n", __func__, con);
1439
return -ENOENT;
1440
}
1441
1442
if (delay >= HZ)
1443
delay = round_jiffies_relative(delay);
1444
1445
dout("%s %p %lu\n", __func__, con, delay);
1446
if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1447
dout("%s %p - already queued\n", __func__, con);
1448
con->ops->put(con);
1449
return -EBUSY;
1450
}
1451
1452
return 0;
1453
}
1454
1455
static void queue_con(struct ceph_connection *con)
1456
{
1457
(void) queue_con_delay(con, 0);
1458
}
1459
1460
static void cancel_con(struct ceph_connection *con)
1461
{
1462
if (cancel_delayed_work(&con->work)) {
1463
dout("%s %p\n", __func__, con);
1464
con->ops->put(con);
1465
}
1466
}
1467
1468
static bool con_sock_closed(struct ceph_connection *con)
1469
{
1470
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1471
return false;
1472
1473
#define CASE(x) \
1474
case CEPH_CON_S_ ## x: \
1475
con->error_msg = "socket closed (con state " #x ")"; \
1476
break;
1477
1478
switch (con->state) {
1479
CASE(CLOSED);
1480
CASE(PREOPEN);
1481
CASE(V1_BANNER);
1482
CASE(V1_CONNECT_MSG);
1483
CASE(V2_BANNER_PREFIX);
1484
CASE(V2_BANNER_PAYLOAD);
1485
CASE(V2_HELLO);
1486
CASE(V2_AUTH);
1487
CASE(V2_AUTH_SIGNATURE);
1488
CASE(V2_SESSION_CONNECT);
1489
CASE(V2_SESSION_RECONNECT);
1490
CASE(OPEN);
1491
CASE(STANDBY);
1492
default:
1493
BUG();
1494
}
1495
#undef CASE
1496
1497
return true;
1498
}
1499
1500
static bool con_backoff(struct ceph_connection *con)
1501
{
1502
int ret;
1503
1504
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1505
return false;
1506
1507
ret = queue_con_delay(con, con->delay);
1508
if (ret) {
1509
dout("%s: con %p FAILED to back off %lu\n", __func__,
1510
con, con->delay);
1511
BUG_ON(ret == -ENOENT);
1512
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1513
}
1514
1515
return true;
1516
}
1517
1518
/* Finish fault handling; con->mutex must *not* be held here */
1519
1520
static void con_fault_finish(struct ceph_connection *con)
1521
{
1522
dout("%s %p\n", __func__, con);
1523
1524
/*
1525
* in case we faulted due to authentication, invalidate our
1526
* current tickets so that we can get new ones.
1527
*/
1528
if (!ceph_msgr2(from_msgr(con->msgr)) && con->v1.auth_retry) {
1529
dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1530
if (con->ops->invalidate_authorizer)
1531
con->ops->invalidate_authorizer(con);
1532
con->v1.auth_retry = 0;
1533
}
1534
1535
if (con->ops->fault)
1536
con->ops->fault(con);
1537
}
1538
1539
/*
1540
* Do some work on a connection. Drop a connection ref when we're done.
1541
*/
1542
static void ceph_con_workfn(struct work_struct *work)
1543
{
1544
struct ceph_connection *con = container_of(work, struct ceph_connection,
1545
work.work);
1546
bool fault;
1547
1548
mutex_lock(&con->mutex);
1549
while (true) {
1550
int ret;
1551
1552
if ((fault = con_sock_closed(con))) {
1553
dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1554
break;
1555
}
1556
if (con_backoff(con)) {
1557
dout("%s: con %p BACKOFF\n", __func__, con);
1558
break;
1559
}
1560
if (con->state == CEPH_CON_S_STANDBY) {
1561
dout("%s: con %p STANDBY\n", __func__, con);
1562
break;
1563
}
1564
if (con->state == CEPH_CON_S_CLOSED) {
1565
dout("%s: con %p CLOSED\n", __func__, con);
1566
BUG_ON(con->sock);
1567
break;
1568
}
1569
if (con->state == CEPH_CON_S_PREOPEN) {
1570
dout("%s: con %p PREOPEN\n", __func__, con);
1571
BUG_ON(con->sock);
1572
}
1573
1574
if (ceph_msgr2(from_msgr(con->msgr)))
1575
ret = ceph_con_v2_try_read(con);
1576
else
1577
ret = ceph_con_v1_try_read(con);
1578
if (ret < 0) {
1579
if (ret == -EAGAIN)
1580
continue;
1581
if (!con->error_msg)
1582
con->error_msg = "socket error on read";
1583
fault = true;
1584
break;
1585
}
1586
1587
if (ceph_msgr2(from_msgr(con->msgr)))
1588
ret = ceph_con_v2_try_write(con);
1589
else
1590
ret = ceph_con_v1_try_write(con);
1591
if (ret < 0) {
1592
if (ret == -EAGAIN)
1593
continue;
1594
if (!con->error_msg)
1595
con->error_msg = "socket error on write";
1596
fault = true;
1597
}
1598
1599
break; /* If we make it to here, we're done */
1600
}
1601
if (fault)
1602
con_fault(con);
1603
mutex_unlock(&con->mutex);
1604
1605
if (fault)
1606
con_fault_finish(con);
1607
1608
con->ops->put(con);
1609
}
1610
1611
/*
1612
* Generic error/fault handler. A retry mechanism is used with
1613
* exponential backoff
1614
*/
1615
static void con_fault(struct ceph_connection *con)
1616
{
1617
dout("fault %p state %d to peer %s\n",
1618
con, con->state, ceph_pr_addr(&con->peer_addr));
1619
1620
pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1621
ceph_pr_addr(&con->peer_addr), con->error_msg);
1622
con->error_msg = NULL;
1623
1624
WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1625
con->state == CEPH_CON_S_CLOSED);
1626
1627
ceph_con_reset_protocol(con);
1628
1629
if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1630
dout("fault on LOSSYTX channel, marking CLOSED\n");
1631
con->state = CEPH_CON_S_CLOSED;
1632
return;
1633
}
1634
1635
/* Requeue anything that hasn't been acked */
1636
list_splice_init(&con->out_sent, &con->out_queue);
1637
1638
/* If there are no messages queued or keepalive pending, place
1639
* the connection in a STANDBY state */
1640
if (list_empty(&con->out_queue) &&
1641
!ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1642
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1643
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1644
con->state = CEPH_CON_S_STANDBY;
1645
} else {
1646
/* retry after a delay. */
1647
con->state = CEPH_CON_S_PREOPEN;
1648
if (!con->delay) {
1649
con->delay = BASE_DELAY_INTERVAL;
1650
} else if (con->delay < MAX_DELAY_INTERVAL) {
1651
con->delay *= 2;
1652
if (con->delay > MAX_DELAY_INTERVAL)
1653
con->delay = MAX_DELAY_INTERVAL;
1654
}
1655
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1656
queue_con(con);
1657
}
1658
}
1659
1660
void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1661
{
1662
u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1663
msgr->inst.addr.nonce = cpu_to_le32(nonce);
1664
ceph_encode_my_addr(msgr);
1665
}
1666
1667
/*
1668
* initialize a new messenger instance
1669
*/
1670
void ceph_messenger_init(struct ceph_messenger *msgr,
1671
struct ceph_entity_addr *myaddr)
1672
{
1673
spin_lock_init(&msgr->global_seq_lock);
1674
1675
if (myaddr) {
1676
memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1677
sizeof(msgr->inst.addr.in_addr));
1678
ceph_addr_set_port(&msgr->inst.addr, 0);
1679
}
1680
1681
/*
1682
* Since nautilus, clients are identified using type ANY.
1683
* For msgr1, ceph_encode_banner_addr() munges it to NONE.
1684
*/
1685
msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1686
1687
/* generate a random non-zero nonce */
1688
do {
1689
get_random_bytes(&msgr->inst.addr.nonce,
1690
sizeof(msgr->inst.addr.nonce));
1691
} while (!msgr->inst.addr.nonce);
1692
ceph_encode_my_addr(msgr);
1693
1694
atomic_set(&msgr->stopping, 0);
1695
write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1696
1697
dout("%s %p\n", __func__, msgr);
1698
}
1699
1700
void ceph_messenger_fini(struct ceph_messenger *msgr)
1701
{
1702
put_net(read_pnet(&msgr->net));
1703
}
1704
1705
static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1706
{
1707
if (msg->con)
1708
msg->con->ops->put(msg->con);
1709
1710
msg->con = con ? con->ops->get(con) : NULL;
1711
BUG_ON(msg->con != con);
1712
}
1713
1714
static void clear_standby(struct ceph_connection *con)
1715
{
1716
/* come back from STANDBY? */
1717
if (con->state == CEPH_CON_S_STANDBY) {
1718
dout("clear_standby %p\n", con);
1719
con->state = CEPH_CON_S_PREOPEN;
1720
if (!ceph_msgr2(from_msgr(con->msgr)))
1721
con->v1.connect_seq++;
1722
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1723
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1724
}
1725
}
1726
1727
/*
1728
* Queue up an outgoing message on the given connection.
1729
*
1730
* Consumes a ref on @msg.
1731
*/
1732
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1733
{
1734
/* set src+dst */
1735
msg->hdr.src = con->msgr->inst.name;
1736
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1737
msg->needs_out_seq = true;
1738
1739
mutex_lock(&con->mutex);
1740
1741
if (con->state == CEPH_CON_S_CLOSED) {
1742
dout("con_send %p closed, dropping %p\n", con, msg);
1743
ceph_msg_put(msg);
1744
mutex_unlock(&con->mutex);
1745
return;
1746
}
1747
1748
msg_con_set(msg, con);
1749
1750
BUG_ON(!list_empty(&msg->list_head));
1751
list_add_tail(&msg->list_head, &con->out_queue);
1752
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1753
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1754
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1755
le32_to_cpu(msg->hdr.front_len),
1756
le32_to_cpu(msg->hdr.middle_len),
1757
le32_to_cpu(msg->hdr.data_len));
1758
1759
clear_standby(con);
1760
mutex_unlock(&con->mutex);
1761
1762
/* if there wasn't anything waiting to send before, queue
1763
* new work */
1764
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1765
queue_con(con);
1766
}
1767
EXPORT_SYMBOL(ceph_con_send);
1768
1769
/*
1770
* Revoke a message that was previously queued for send
1771
*/
1772
void ceph_msg_revoke(struct ceph_msg *msg)
1773
{
1774
struct ceph_connection *con = msg->con;
1775
1776
if (!con) {
1777
dout("%s msg %p null con\n", __func__, msg);
1778
return; /* Message not in our possession */
1779
}
1780
1781
mutex_lock(&con->mutex);
1782
if (list_empty(&msg->list_head)) {
1783
WARN_ON(con->out_msg == msg);
1784
dout("%s con %p msg %p not linked\n", __func__, con, msg);
1785
mutex_unlock(&con->mutex);
1786
return;
1787
}
1788
1789
dout("%s con %p msg %p was linked\n", __func__, con, msg);
1790
msg->hdr.seq = 0;
1791
ceph_msg_remove(msg);
1792
1793
if (con->out_msg == msg) {
1794
WARN_ON(con->state != CEPH_CON_S_OPEN);
1795
dout("%s con %p msg %p was sending\n", __func__, con, msg);
1796
if (ceph_msgr2(from_msgr(con->msgr)))
1797
ceph_con_v2_revoke(con);
1798
else
1799
ceph_con_v1_revoke(con);
1800
ceph_msg_put(con->out_msg);
1801
con->out_msg = NULL;
1802
} else {
1803
dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1804
con, msg, con->out_msg);
1805
}
1806
mutex_unlock(&con->mutex);
1807
}
1808
1809
/*
1810
* Revoke a message that we may be reading data into
1811
*/
1812
void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1813
{
1814
struct ceph_connection *con = msg->con;
1815
1816
if (!con) {
1817
dout("%s msg %p null con\n", __func__, msg);
1818
return; /* Message not in our possession */
1819
}
1820
1821
mutex_lock(&con->mutex);
1822
if (con->in_msg == msg) {
1823
WARN_ON(con->state != CEPH_CON_S_OPEN);
1824
dout("%s con %p msg %p was recving\n", __func__, con, msg);
1825
if (ceph_msgr2(from_msgr(con->msgr)))
1826
ceph_con_v2_revoke_incoming(con);
1827
else
1828
ceph_con_v1_revoke_incoming(con);
1829
ceph_msg_put(con->in_msg);
1830
con->in_msg = NULL;
1831
} else {
1832
dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1833
con, msg, con->in_msg);
1834
}
1835
mutex_unlock(&con->mutex);
1836
}
1837
1838
/*
1839
* Queue a keepalive byte to ensure the tcp connection is alive.
1840
*/
1841
void ceph_con_keepalive(struct ceph_connection *con)
1842
{
1843
dout("con_keepalive %p\n", con);
1844
mutex_lock(&con->mutex);
1845
clear_standby(con);
1846
ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1847
mutex_unlock(&con->mutex);
1848
1849
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1850
queue_con(con);
1851
}
1852
EXPORT_SYMBOL(ceph_con_keepalive);
1853
1854
bool ceph_con_keepalive_expired(struct ceph_connection *con,
1855
unsigned long interval)
1856
{
1857
if (interval > 0 &&
1858
(con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1859
struct timespec64 now;
1860
struct timespec64 ts;
1861
ktime_get_real_ts64(&now);
1862
jiffies_to_timespec64(interval, &ts);
1863
ts = timespec64_add(con->last_keepalive_ack, ts);
1864
return timespec64_compare(&now, &ts) >= 0;
1865
}
1866
return false;
1867
}
1868
1869
static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1870
{
1871
BUG_ON(msg->num_data_items >= msg->max_data_items);
1872
return &msg->data[msg->num_data_items++];
1873
}
1874
1875
static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1876
{
1877
if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1878
int num_pages = calc_pages_for(data->alignment, data->length);
1879
ceph_release_page_vector(data->pages, num_pages);
1880
} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1881
ceph_pagelist_release(data->pagelist);
1882
}
1883
}
1884
1885
void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1886
size_t length, size_t alignment, bool own_pages)
1887
{
1888
struct ceph_msg_data *data;
1889
1890
BUG_ON(!pages);
1891
BUG_ON(!length);
1892
1893
data = ceph_msg_data_add(msg);
1894
data->type = CEPH_MSG_DATA_PAGES;
1895
data->pages = pages;
1896
data->length = length;
1897
data->alignment = alignment & ~PAGE_MASK;
1898
data->own_pages = own_pages;
1899
1900
msg->data_length += length;
1901
}
1902
EXPORT_SYMBOL(ceph_msg_data_add_pages);
1903
1904
void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1905
struct ceph_pagelist *pagelist)
1906
{
1907
struct ceph_msg_data *data;
1908
1909
BUG_ON(!pagelist);
1910
BUG_ON(!pagelist->length);
1911
1912
data = ceph_msg_data_add(msg);
1913
data->type = CEPH_MSG_DATA_PAGELIST;
1914
refcount_inc(&pagelist->refcnt);
1915
data->pagelist = pagelist;
1916
1917
msg->data_length += pagelist->length;
1918
}
1919
EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1920
1921
#ifdef CONFIG_BLOCK
1922
void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1923
u32 length)
1924
{
1925
struct ceph_msg_data *data;
1926
1927
data = ceph_msg_data_add(msg);
1928
data->type = CEPH_MSG_DATA_BIO;
1929
data->bio_pos = *bio_pos;
1930
data->bio_length = length;
1931
1932
msg->data_length += length;
1933
}
1934
EXPORT_SYMBOL(ceph_msg_data_add_bio);
1935
#endif /* CONFIG_BLOCK */
1936
1937
void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1938
struct ceph_bvec_iter *bvec_pos)
1939
{
1940
struct ceph_msg_data *data;
1941
1942
data = ceph_msg_data_add(msg);
1943
data->type = CEPH_MSG_DATA_BVECS;
1944
data->bvec_pos = *bvec_pos;
1945
1946
msg->data_length += bvec_pos->iter.bi_size;
1947
}
1948
EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1949
1950
void ceph_msg_data_add_iter(struct ceph_msg *msg,
1951
struct iov_iter *iter)
1952
{
1953
struct ceph_msg_data *data;
1954
1955
data = ceph_msg_data_add(msg);
1956
data->type = CEPH_MSG_DATA_ITER;
1957
data->iter = *iter;
1958
1959
msg->data_length += iov_iter_count(&data->iter);
1960
}
1961
1962
/*
1963
* construct a new message with given type, size
1964
* the new msg has a ref count of 1.
1965
*/
1966
struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1967
gfp_t flags, bool can_fail)
1968
{
1969
struct ceph_msg *m;
1970
1971
m = kmem_cache_zalloc(ceph_msg_cache, flags);
1972
if (m == NULL)
1973
goto out;
1974
1975
m->hdr.type = cpu_to_le16(type);
1976
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1977
m->hdr.front_len = cpu_to_le32(front_len);
1978
1979
INIT_LIST_HEAD(&m->list_head);
1980
kref_init(&m->kref);
1981
1982
/* front */
1983
if (front_len) {
1984
m->front.iov_base = kvmalloc(front_len, flags);
1985
if (m->front.iov_base == NULL) {
1986
dout("ceph_msg_new can't allocate %d bytes\n",
1987
front_len);
1988
goto out2;
1989
}
1990
} else {
1991
m->front.iov_base = NULL;
1992
}
1993
m->front_alloc_len = m->front.iov_len = front_len;
1994
1995
if (max_data_items) {
1996
m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1997
flags);
1998
if (!m->data)
1999
goto out2;
2000
2001
m->max_data_items = max_data_items;
2002
}
2003
2004
dout("ceph_msg_new %p front %d\n", m, front_len);
2005
return m;
2006
2007
out2:
2008
ceph_msg_put(m);
2009
out:
2010
if (!can_fail) {
2011
pr_err("msg_new can't create type %d front %d\n", type,
2012
front_len);
2013
WARN_ON(1);
2014
} else {
2015
dout("msg_new can't create type %d front %d\n", type,
2016
front_len);
2017
}
2018
return NULL;
2019
}
2020
EXPORT_SYMBOL(ceph_msg_new2);
2021
2022
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2023
bool can_fail)
2024
{
2025
return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2026
}
2027
EXPORT_SYMBOL(ceph_msg_new);
2028
2029
/*
2030
* Allocate "middle" portion of a message, if it is needed and wasn't
2031
* allocated by alloc_msg. This allows us to read a small fixed-size
2032
* per-type header in the front and then gracefully fail (i.e.,
2033
* propagate the error to the caller based on info in the front) when
2034
* the middle is too large.
2035
*/
2036
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2037
{
2038
int type = le16_to_cpu(msg->hdr.type);
2039
int middle_len = le32_to_cpu(msg->hdr.middle_len);
2040
2041
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2042
ceph_msg_type_name(type), middle_len);
2043
BUG_ON(!middle_len);
2044
BUG_ON(msg->middle);
2045
2046
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2047
if (!msg->middle)
2048
return -ENOMEM;
2049
return 0;
2050
}
2051
2052
/*
2053
* Allocate a message for receiving an incoming message on a
2054
* connection, and save the result in con->in_msg. Uses the
2055
* connection's private alloc_msg op if available.
2056
*
2057
* Returns 0 on success, or a negative error code.
2058
*
2059
* On success, if we set *skip = 1:
2060
* - the next message should be skipped and ignored.
2061
* - con->in_msg == NULL
2062
* or if we set *skip = 0:
2063
* - con->in_msg is non-null.
2064
* On error (ENOMEM, EAGAIN, ...),
2065
* - con->in_msg == NULL
2066
*/
2067
int ceph_con_in_msg_alloc(struct ceph_connection *con,
2068
struct ceph_msg_header *hdr, int *skip)
2069
{
2070
int middle_len = le32_to_cpu(hdr->middle_len);
2071
struct ceph_msg *msg;
2072
int ret = 0;
2073
2074
BUG_ON(con->in_msg != NULL);
2075
BUG_ON(!con->ops->alloc_msg);
2076
2077
mutex_unlock(&con->mutex);
2078
msg = con->ops->alloc_msg(con, hdr, skip);
2079
mutex_lock(&con->mutex);
2080
if (con->state != CEPH_CON_S_OPEN) {
2081
if (msg)
2082
ceph_msg_put(msg);
2083
return -EAGAIN;
2084
}
2085
if (msg) {
2086
BUG_ON(*skip);
2087
msg_con_set(msg, con);
2088
con->in_msg = msg;
2089
} else {
2090
/*
2091
* Null message pointer means either we should skip
2092
* this message or we couldn't allocate memory. The
2093
* former is not an error.
2094
*/
2095
if (*skip)
2096
return 0;
2097
2098
con->error_msg = "error allocating memory for incoming message";
2099
return -ENOMEM;
2100
}
2101
memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2102
2103
if (middle_len && !con->in_msg->middle) {
2104
ret = ceph_alloc_middle(con, con->in_msg);
2105
if (ret < 0) {
2106
ceph_msg_put(con->in_msg);
2107
con->in_msg = NULL;
2108
}
2109
}
2110
2111
return ret;
2112
}
2113
2114
void ceph_con_get_out_msg(struct ceph_connection *con)
2115
{
2116
struct ceph_msg *msg;
2117
2118
BUG_ON(list_empty(&con->out_queue));
2119
msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2120
WARN_ON(msg->con != con);
2121
2122
/*
2123
* Put the message on "sent" list using a ref from ceph_con_send().
2124
* It is put when the message is acked or revoked.
2125
*/
2126
list_move_tail(&msg->list_head, &con->out_sent);
2127
2128
/*
2129
* Only assign outgoing seq # if we haven't sent this message
2130
* yet. If it is requeued, resend with it's original seq.
2131
*/
2132
if (msg->needs_out_seq) {
2133
msg->hdr.seq = cpu_to_le64(++con->out_seq);
2134
msg->needs_out_seq = false;
2135
2136
if (con->ops->reencode_message)
2137
con->ops->reencode_message(msg);
2138
}
2139
2140
/*
2141
* Get a ref for out_msg. It is put when we are done sending the
2142
* message or in case of a fault.
2143
*/
2144
WARN_ON(con->out_msg);
2145
con->out_msg = ceph_msg_get(msg);
2146
}
2147
2148
/*
2149
* Free a generically kmalloc'd message.
2150
*/
2151
static void ceph_msg_free(struct ceph_msg *m)
2152
{
2153
dout("%s %p\n", __func__, m);
2154
kvfree(m->front.iov_base);
2155
kfree(m->data);
2156
kmem_cache_free(ceph_msg_cache, m);
2157
}
2158
2159
static void ceph_msg_release(struct kref *kref)
2160
{
2161
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2162
int i;
2163
2164
dout("%s %p\n", __func__, m);
2165
WARN_ON(!list_empty(&m->list_head));
2166
2167
msg_con_set(m, NULL);
2168
2169
/* drop middle, data, if any */
2170
if (m->middle) {
2171
ceph_buffer_put(m->middle);
2172
m->middle = NULL;
2173
}
2174
2175
for (i = 0; i < m->num_data_items; i++)
2176
ceph_msg_data_destroy(&m->data[i]);
2177
2178
if (m->pool)
2179
ceph_msgpool_put(m->pool, m);
2180
else
2181
ceph_msg_free(m);
2182
}
2183
2184
struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2185
{
2186
dout("%s %p (was %d)\n", __func__, msg,
2187
kref_read(&msg->kref));
2188
kref_get(&msg->kref);
2189
return msg;
2190
}
2191
EXPORT_SYMBOL(ceph_msg_get);
2192
2193
void ceph_msg_put(struct ceph_msg *msg)
2194
{
2195
dout("%s %p (was %d)\n", __func__, msg,
2196
kref_read(&msg->kref));
2197
kref_put(&msg->kref, ceph_msg_release);
2198
}
2199
EXPORT_SYMBOL(ceph_msg_put);
2200
2201
void ceph_msg_dump(struct ceph_msg *msg)
2202
{
2203
pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2204
msg->front_alloc_len, msg->data_length);
2205
print_hex_dump(KERN_DEBUG, "header: ",
2206
DUMP_PREFIX_OFFSET, 16, 1,
2207
&msg->hdr, sizeof(msg->hdr), true);
2208
print_hex_dump(KERN_DEBUG, " front: ",
2209
DUMP_PREFIX_OFFSET, 16, 1,
2210
msg->front.iov_base, msg->front.iov_len, true);
2211
if (msg->middle)
2212
print_hex_dump(KERN_DEBUG, "middle: ",
2213
DUMP_PREFIX_OFFSET, 16, 1,
2214
msg->middle->vec.iov_base,
2215
msg->middle->vec.iov_len, true);
2216
print_hex_dump(KERN_DEBUG, "footer: ",
2217
DUMP_PREFIX_OFFSET, 16, 1,
2218
&msg->footer, sizeof(msg->footer), true);
2219
}
2220
EXPORT_SYMBOL(ceph_msg_dump);
2221
2222