Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/core/dev.c
29280 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* NET3 Protocol independent device support routines.
4
*
5
* Derived from the non IP parts of dev.c 1.0.19
6
* Authors: Ross Biro
7
* Fred N. van Kempen, <[email protected]>
8
* Mark Evans, <[email protected]>
9
*
10
* Additional Authors:
11
* Florian la Roche <[email protected]>
12
* Alan Cox <[email protected]>
13
* David Hinds <[email protected]>
14
* Alexey Kuznetsov <[email protected]>
15
* Adam Sulmicki <[email protected]>
16
* Pekka Riikonen <[email protected]>
17
*
18
* Changes:
19
* D.J. Barrow : Fixed bug where dev->refcnt gets set
20
* to 2 if register_netdev gets called
21
* before net_dev_init & also removed a
22
* few lines of code in the process.
23
* Alan Cox : device private ioctl copies fields back.
24
* Alan Cox : Transmit queue code does relevant
25
* stunts to keep the queue safe.
26
* Alan Cox : Fixed double lock.
27
* Alan Cox : Fixed promisc NULL pointer trap
28
* ???????? : Support the full private ioctl range
29
* Alan Cox : Moved ioctl permission check into
30
* drivers
31
* Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32
* Alan Cox : 100 backlog just doesn't cut it when
33
* you start doing multicast video 8)
34
* Alan Cox : Rewrote net_bh and list manager.
35
* Alan Cox : Fix ETH_P_ALL echoback lengths.
36
* Alan Cox : Took out transmit every packet pass
37
* Saved a few bytes in the ioctl handler
38
* Alan Cox : Network driver sets packet type before
39
* calling netif_rx. Saves a function
40
* call a packet.
41
* Alan Cox : Hashed net_bh()
42
* Richard Kooijman: Timestamp fixes.
43
* Alan Cox : Wrong field in SIOCGIFDSTADDR
44
* Alan Cox : Device lock protection.
45
* Alan Cox : Fixed nasty side effect of device close
46
* changes.
47
* Rudi Cilibrasi : Pass the right thing to
48
* set_mac_address()
49
* Dave Miller : 32bit quantity for the device lock to
50
* make it work out on a Sparc.
51
* Bjorn Ekwall : Added KERNELD hack.
52
* Alan Cox : Cleaned up the backlog initialise.
53
* Craig Metz : SIOCGIFCONF fix if space for under
54
* 1 device.
55
* Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56
* is no device open function.
57
* Andi Kleen : Fix error reporting for SIOCGIFCONF
58
* Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59
* Cyrus Durgin : Cleaned for KMOD
60
* Adam Sulmicki : Bug Fix : Network Device Unload
61
* A network device unload needs to purge
62
* the backlog queue.
63
* Paul Rusty Russell : SIOCSIFNAME
64
* Pekka Riikonen : Netdev boot-time settings code
65
* Andrew Morton : Make unregister_netdevice wait
66
* indefinitely on dev->refcnt
67
* J Hadi Salim : - Backlog queue sampling
68
* - netif_rx() feedback
69
*/
70
71
#include <linux/uaccess.h>
72
#include <linux/bitmap.h>
73
#include <linux/capability.h>
74
#include <linux/cpu.h>
75
#include <linux/types.h>
76
#include <linux/kernel.h>
77
#include <linux/hash.h>
78
#include <linux/slab.h>
79
#include <linux/sched.h>
80
#include <linux/sched/isolation.h>
81
#include <linux/sched/mm.h>
82
#include <linux/smpboot.h>
83
#include <linux/mutex.h>
84
#include <linux/rwsem.h>
85
#include <linux/string.h>
86
#include <linux/mm.h>
87
#include <linux/socket.h>
88
#include <linux/sockios.h>
89
#include <linux/errno.h>
90
#include <linux/interrupt.h>
91
#include <linux/if_ether.h>
92
#include <linux/netdevice.h>
93
#include <linux/etherdevice.h>
94
#include <linux/ethtool.h>
95
#include <linux/ethtool_netlink.h>
96
#include <linux/skbuff.h>
97
#include <linux/kthread.h>
98
#include <linux/bpf.h>
99
#include <linux/bpf_trace.h>
100
#include <net/net_namespace.h>
101
#include <net/sock.h>
102
#include <net/busy_poll.h>
103
#include <linux/rtnetlink.h>
104
#include <linux/stat.h>
105
#include <net/dsa.h>
106
#include <net/dst.h>
107
#include <net/dst_metadata.h>
108
#include <net/gro.h>
109
#include <net/netdev_queues.h>
110
#include <net/pkt_sched.h>
111
#include <net/pkt_cls.h>
112
#include <net/checksum.h>
113
#include <net/xfrm.h>
114
#include <net/tcx.h>
115
#include <linux/highmem.h>
116
#include <linux/init.h>
117
#include <linux/module.h>
118
#include <linux/netpoll.h>
119
#include <linux/rcupdate.h>
120
#include <linux/delay.h>
121
#include <net/iw_handler.h>
122
#include <asm/current.h>
123
#include <linux/audit.h>
124
#include <linux/dmaengine.h>
125
#include <linux/err.h>
126
#include <linux/ctype.h>
127
#include <linux/if_arp.h>
128
#include <linux/if_vlan.h>
129
#include <linux/ip.h>
130
#include <net/ip.h>
131
#include <net/mpls.h>
132
#include <linux/ipv6.h>
133
#include <linux/in.h>
134
#include <linux/jhash.h>
135
#include <linux/random.h>
136
#include <trace/events/napi.h>
137
#include <trace/events/net.h>
138
#include <trace/events/skb.h>
139
#include <trace/events/qdisc.h>
140
#include <trace/events/xdp.h>
141
#include <linux/inetdevice.h>
142
#include <linux/cpu_rmap.h>
143
#include <linux/static_key.h>
144
#include <linux/hashtable.h>
145
#include <linux/vmalloc.h>
146
#include <linux/if_macvlan.h>
147
#include <linux/errqueue.h>
148
#include <linux/hrtimer.h>
149
#include <linux/netfilter_netdev.h>
150
#include <linux/crash_dump.h>
151
#include <linux/sctp.h>
152
#include <net/udp_tunnel.h>
153
#include <linux/net_namespace.h>
154
#include <linux/indirect_call_wrapper.h>
155
#include <net/devlink.h>
156
#include <linux/pm_runtime.h>
157
#include <linux/prandom.h>
158
#include <linux/once_lite.h>
159
#include <net/netdev_lock.h>
160
#include <net/netdev_rx_queue.h>
161
#include <net/page_pool/types.h>
162
#include <net/page_pool/helpers.h>
163
#include <net/page_pool/memory_provider.h>
164
#include <net/rps.h>
165
#include <linux/phy_link_topology.h>
166
167
#include "dev.h"
168
#include "devmem.h"
169
#include "net-sysfs.h"
170
171
static DEFINE_SPINLOCK(ptype_lock);
172
struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174
static int netif_rx_internal(struct sk_buff *skb);
175
static int call_netdevice_notifiers_extack(unsigned long val,
176
struct net_device *dev,
177
struct netlink_ext_ack *extack);
178
179
static DEFINE_MUTEX(ifalias_mutex);
180
181
/* protects napi_hash addition/deletion and napi_gen_id */
182
static DEFINE_SPINLOCK(napi_hash_lock);
183
184
static unsigned int napi_gen_id = NR_CPUS;
185
static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
187
static inline void dev_base_seq_inc(struct net *net)
188
{
189
unsigned int val = net->dev_base_seq + 1;
190
191
WRITE_ONCE(net->dev_base_seq, val ?: 1);
192
}
193
194
static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195
{
196
unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198
return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199
}
200
201
static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202
{
203
return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204
}
205
206
#ifndef CONFIG_PREEMPT_RT
207
208
static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
210
static int __init setup_backlog_napi_threads(char *arg)
211
{
212
static_branch_enable(&use_backlog_threads_key);
213
return 0;
214
}
215
early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
217
static bool use_backlog_threads(void)
218
{
219
return static_branch_unlikely(&use_backlog_threads_key);
220
}
221
222
#else
223
224
static bool use_backlog_threads(void)
225
{
226
return true;
227
}
228
229
#endif
230
231
static inline void backlog_lock_irq_save(struct softnet_data *sd,
232
unsigned long *flags)
233
{
234
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235
spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236
else
237
local_irq_save(*flags);
238
}
239
240
static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241
{
242
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243
spin_lock_irq(&sd->input_pkt_queue.lock);
244
else
245
local_irq_disable();
246
}
247
248
static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249
unsigned long *flags)
250
{
251
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252
spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253
else
254
local_irq_restore(*flags);
255
}
256
257
static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258
{
259
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260
spin_unlock_irq(&sd->input_pkt_queue.lock);
261
else
262
local_irq_enable();
263
}
264
265
static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266
const char *name)
267
{
268
struct netdev_name_node *name_node;
269
270
name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271
if (!name_node)
272
return NULL;
273
INIT_HLIST_NODE(&name_node->hlist);
274
name_node->dev = dev;
275
name_node->name = name;
276
return name_node;
277
}
278
279
static struct netdev_name_node *
280
netdev_name_node_head_alloc(struct net_device *dev)
281
{
282
struct netdev_name_node *name_node;
283
284
name_node = netdev_name_node_alloc(dev, dev->name);
285
if (!name_node)
286
return NULL;
287
INIT_LIST_HEAD(&name_node->list);
288
return name_node;
289
}
290
291
static void netdev_name_node_free(struct netdev_name_node *name_node)
292
{
293
kfree(name_node);
294
}
295
296
static void netdev_name_node_add(struct net *net,
297
struct netdev_name_node *name_node)
298
{
299
hlist_add_head_rcu(&name_node->hlist,
300
dev_name_hash(net, name_node->name));
301
}
302
303
static void netdev_name_node_del(struct netdev_name_node *name_node)
304
{
305
hlist_del_rcu(&name_node->hlist);
306
}
307
308
static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309
const char *name)
310
{
311
struct hlist_head *head = dev_name_hash(net, name);
312
struct netdev_name_node *name_node;
313
314
hlist_for_each_entry(name_node, head, hlist)
315
if (!strcmp(name_node->name, name))
316
return name_node;
317
return NULL;
318
}
319
320
static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321
const char *name)
322
{
323
struct hlist_head *head = dev_name_hash(net, name);
324
struct netdev_name_node *name_node;
325
326
hlist_for_each_entry_rcu(name_node, head, hlist)
327
if (!strcmp(name_node->name, name))
328
return name_node;
329
return NULL;
330
}
331
332
bool netdev_name_in_use(struct net *net, const char *name)
333
{
334
return netdev_name_node_lookup(net, name);
335
}
336
EXPORT_SYMBOL(netdev_name_in_use);
337
338
int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339
{
340
struct netdev_name_node *name_node;
341
struct net *net = dev_net(dev);
342
343
name_node = netdev_name_node_lookup(net, name);
344
if (name_node)
345
return -EEXIST;
346
name_node = netdev_name_node_alloc(dev, name);
347
if (!name_node)
348
return -ENOMEM;
349
netdev_name_node_add(net, name_node);
350
/* The node that holds dev->name acts as a head of per-device list. */
351
list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353
return 0;
354
}
355
356
static void netdev_name_node_alt_free(struct rcu_head *head)
357
{
358
struct netdev_name_node *name_node =
359
container_of(head, struct netdev_name_node, rcu);
360
361
kfree(name_node->name);
362
netdev_name_node_free(name_node);
363
}
364
365
static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366
{
367
netdev_name_node_del(name_node);
368
list_del(&name_node->list);
369
call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370
}
371
372
int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373
{
374
struct netdev_name_node *name_node;
375
struct net *net = dev_net(dev);
376
377
name_node = netdev_name_node_lookup(net, name);
378
if (!name_node)
379
return -ENOENT;
380
/* lookup might have found our primary name or a name belonging
381
* to another device.
382
*/
383
if (name_node == dev->name_node || name_node->dev != dev)
384
return -EINVAL;
385
386
__netdev_name_node_alt_destroy(name_node);
387
return 0;
388
}
389
390
static void netdev_name_node_alt_flush(struct net_device *dev)
391
{
392
struct netdev_name_node *name_node, *tmp;
393
394
list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395
list_del(&name_node->list);
396
netdev_name_node_alt_free(&name_node->rcu);
397
}
398
}
399
400
/* Device list insertion */
401
static void list_netdevice(struct net_device *dev)
402
{
403
struct netdev_name_node *name_node;
404
struct net *net = dev_net(dev);
405
406
ASSERT_RTNL();
407
408
list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409
netdev_name_node_add(net, dev->name_node);
410
hlist_add_head_rcu(&dev->index_hlist,
411
dev_index_hash(net, dev->ifindex));
412
413
netdev_for_each_altname(dev, name_node)
414
netdev_name_node_add(net, name_node);
415
416
/* We reserved the ifindex, this can't fail */
417
WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419
dev_base_seq_inc(net);
420
}
421
422
/* Device list removal
423
* caller must respect a RCU grace period before freeing/reusing dev
424
*/
425
static void unlist_netdevice(struct net_device *dev)
426
{
427
struct netdev_name_node *name_node;
428
struct net *net = dev_net(dev);
429
430
ASSERT_RTNL();
431
432
xa_erase(&net->dev_by_index, dev->ifindex);
433
434
netdev_for_each_altname(dev, name_node)
435
netdev_name_node_del(name_node);
436
437
/* Unlink dev from the device chain */
438
list_del_rcu(&dev->dev_list);
439
netdev_name_node_del(dev->name_node);
440
hlist_del_rcu(&dev->index_hlist);
441
442
dev_base_seq_inc(dev_net(dev));
443
}
444
445
/*
446
* Our notifier list
447
*/
448
449
static RAW_NOTIFIER_HEAD(netdev_chain);
450
451
/*
452
* Device drivers call our routines to queue packets here. We empty the
453
* queue in the local softnet handler.
454
*/
455
456
DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457
.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458
};
459
EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461
/* Page_pool has a lockless array/stack to alloc/recycle pages.
462
* PP consumers must pay attention to run APIs in the appropriate context
463
* (e.g. NAPI context).
464
*/
465
DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467
};
468
469
#ifdef CONFIG_LOCKDEP
470
/*
471
* register_netdevice() inits txq->_xmit_lock and sets lockdep class
472
* according to dev->type
473
*/
474
static const unsigned short netdev_lock_type[] = {
475
ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476
ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477
ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478
ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479
ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480
ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481
ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482
ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483
ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484
ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485
ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486
ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487
ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488
ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489
ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491
static const char *const netdev_lock_name[] = {
492
"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493
"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494
"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495
"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496
"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497
"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498
"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499
"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500
"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501
"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502
"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503
"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504
"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505
"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506
"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508
static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509
static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
511
static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512
{
513
int i;
514
515
for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516
if (netdev_lock_type[i] == dev_type)
517
return i;
518
/* the last key is used by default */
519
return ARRAY_SIZE(netdev_lock_type) - 1;
520
}
521
522
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523
unsigned short dev_type)
524
{
525
int i;
526
527
i = netdev_lock_pos(dev_type);
528
lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529
netdev_lock_name[i]);
530
}
531
532
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533
{
534
int i;
535
536
i = netdev_lock_pos(dev->type);
537
lockdep_set_class_and_name(&dev->addr_list_lock,
538
&netdev_addr_lock_key[i],
539
netdev_lock_name[i]);
540
}
541
#else
542
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543
unsigned short dev_type)
544
{
545
}
546
547
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548
{
549
}
550
#endif
551
552
/*******************************************************************************
553
*
554
* Protocol management and registration routines
555
*
556
*******************************************************************************/
557
558
559
/*
560
* Add a protocol ID to the list. Now that the input handler is
561
* smarter we can dispense with all the messy stuff that used to be
562
* here.
563
*
564
* BEWARE!!! Protocol handlers, mangling input packets,
565
* MUST BE last in hash buckets and checking protocol handlers
566
* MUST start from promiscuous ptype_all chain in net_bh.
567
* It is true now, do not change it.
568
* Explanation follows: if protocol handler, mangling packet, will
569
* be the first on list, it is not able to sense, that packet
570
* is cloned and should be copied-on-write, so that it will
571
* change it and subsequent readers will get broken packet.
572
* --ANK (980803)
573
*/
574
575
static inline struct list_head *ptype_head(const struct packet_type *pt)
576
{
577
if (pt->type == htons(ETH_P_ALL)) {
578
if (!pt->af_packet_net && !pt->dev)
579
return NULL;
580
581
return pt->dev ? &pt->dev->ptype_all :
582
&pt->af_packet_net->ptype_all;
583
}
584
585
if (pt->dev)
586
return &pt->dev->ptype_specific;
587
588
return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589
&ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590
}
591
592
/**
593
* dev_add_pack - add packet handler
594
* @pt: packet type declaration
595
*
596
* Add a protocol handler to the networking stack. The passed &packet_type
597
* is linked into kernel lists and may not be freed until it has been
598
* removed from the kernel lists.
599
*
600
* This call does not sleep therefore it can not
601
* guarantee all CPU's that are in middle of receiving packets
602
* will see the new packet type (until the next received packet).
603
*/
604
605
void dev_add_pack(struct packet_type *pt)
606
{
607
struct list_head *head = ptype_head(pt);
608
609
if (WARN_ON_ONCE(!head))
610
return;
611
612
spin_lock(&ptype_lock);
613
list_add_rcu(&pt->list, head);
614
spin_unlock(&ptype_lock);
615
}
616
EXPORT_SYMBOL(dev_add_pack);
617
618
/**
619
* __dev_remove_pack - remove packet handler
620
* @pt: packet type declaration
621
*
622
* Remove a protocol handler that was previously added to the kernel
623
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
624
* from the kernel lists and can be freed or reused once this function
625
* returns.
626
*
627
* The packet type might still be in use by receivers
628
* and must not be freed until after all the CPU's have gone
629
* through a quiescent state.
630
*/
631
void __dev_remove_pack(struct packet_type *pt)
632
{
633
struct list_head *head = ptype_head(pt);
634
struct packet_type *pt1;
635
636
if (!head)
637
return;
638
639
spin_lock(&ptype_lock);
640
641
list_for_each_entry(pt1, head, list) {
642
if (pt == pt1) {
643
list_del_rcu(&pt->list);
644
goto out;
645
}
646
}
647
648
pr_warn("dev_remove_pack: %p not found\n", pt);
649
out:
650
spin_unlock(&ptype_lock);
651
}
652
EXPORT_SYMBOL(__dev_remove_pack);
653
654
/**
655
* dev_remove_pack - remove packet handler
656
* @pt: packet type declaration
657
*
658
* Remove a protocol handler that was previously added to the kernel
659
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
660
* from the kernel lists and can be freed or reused once this function
661
* returns.
662
*
663
* This call sleeps to guarantee that no CPU is looking at the packet
664
* type after return.
665
*/
666
void dev_remove_pack(struct packet_type *pt)
667
{
668
__dev_remove_pack(pt);
669
670
synchronize_net();
671
}
672
EXPORT_SYMBOL(dev_remove_pack);
673
674
675
/*******************************************************************************
676
*
677
* Device Interface Subroutines
678
*
679
*******************************************************************************/
680
681
/**
682
* dev_get_iflink - get 'iflink' value of a interface
683
* @dev: targeted interface
684
*
685
* Indicates the ifindex the interface is linked to.
686
* Physical interfaces have the same 'ifindex' and 'iflink' values.
687
*/
688
689
int dev_get_iflink(const struct net_device *dev)
690
{
691
if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692
return dev->netdev_ops->ndo_get_iflink(dev);
693
694
return READ_ONCE(dev->ifindex);
695
}
696
EXPORT_SYMBOL(dev_get_iflink);
697
698
/**
699
* dev_fill_metadata_dst - Retrieve tunnel egress information.
700
* @dev: targeted interface
701
* @skb: The packet.
702
*
703
* For better visibility of tunnel traffic OVS needs to retrieve
704
* egress tunnel information for a packet. Following API allows
705
* user to get this info.
706
*/
707
int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708
{
709
struct ip_tunnel_info *info;
710
711
if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712
return -EINVAL;
713
714
info = skb_tunnel_info_unclone(skb);
715
if (!info)
716
return -ENOMEM;
717
if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718
return -EINVAL;
719
720
return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721
}
722
EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724
static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725
{
726
int k = stack->num_paths++;
727
728
if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729
return NULL;
730
731
return &stack->path[k];
732
}
733
734
int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735
struct net_device_path_stack *stack)
736
{
737
const struct net_device *last_dev;
738
struct net_device_path_ctx ctx = {
739
.dev = dev,
740
};
741
struct net_device_path *path;
742
int ret = 0;
743
744
memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745
stack->num_paths = 0;
746
while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747
last_dev = ctx.dev;
748
path = dev_fwd_path(stack);
749
if (!path)
750
return -1;
751
752
memset(path, 0, sizeof(struct net_device_path));
753
ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754
if (ret < 0)
755
return -1;
756
757
if (WARN_ON_ONCE(last_dev == ctx.dev))
758
return -1;
759
}
760
761
if (!ctx.dev)
762
return ret;
763
764
path = dev_fwd_path(stack);
765
if (!path)
766
return -1;
767
path->type = DEV_PATH_ETHERNET;
768
path->dev = ctx.dev;
769
770
return ret;
771
}
772
EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774
/* must be called under rcu_read_lock(), as we dont take a reference */
775
static struct napi_struct *napi_by_id(unsigned int napi_id)
776
{
777
unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778
struct napi_struct *napi;
779
780
hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781
if (napi->napi_id == napi_id)
782
return napi;
783
784
return NULL;
785
}
786
787
/* must be called under rcu_read_lock(), as we dont take a reference */
788
static struct napi_struct *
789
netdev_napi_by_id(struct net *net, unsigned int napi_id)
790
{
791
struct napi_struct *napi;
792
793
napi = napi_by_id(napi_id);
794
if (!napi)
795
return NULL;
796
797
if (WARN_ON_ONCE(!napi->dev))
798
return NULL;
799
if (!net_eq(net, dev_net(napi->dev)))
800
return NULL;
801
802
return napi;
803
}
804
805
/**
806
* netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807
* @net: the applicable net namespace
808
* @napi_id: ID of a NAPI of a target device
809
*
810
* Find a NAPI instance with @napi_id. Lock its device.
811
* The device must be in %NETREG_REGISTERED state for lookup to succeed.
812
* netdev_unlock() must be called to release it.
813
*
814
* Return: pointer to NAPI, its device with lock held, NULL if not found.
815
*/
816
struct napi_struct *
817
netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818
{
819
struct napi_struct *napi;
820
struct net_device *dev;
821
822
rcu_read_lock();
823
napi = netdev_napi_by_id(net, napi_id);
824
if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825
rcu_read_unlock();
826
return NULL;
827
}
828
829
dev = napi->dev;
830
dev_hold(dev);
831
rcu_read_unlock();
832
833
dev = __netdev_put_lock(dev, net);
834
if (!dev)
835
return NULL;
836
837
rcu_read_lock();
838
napi = netdev_napi_by_id(net, napi_id);
839
if (napi && napi->dev != dev)
840
napi = NULL;
841
rcu_read_unlock();
842
843
if (!napi)
844
netdev_unlock(dev);
845
return napi;
846
}
847
848
/**
849
* __dev_get_by_name - find a device by its name
850
* @net: the applicable net namespace
851
* @name: name to find
852
*
853
* Find an interface by name. Must be called under RTNL semaphore.
854
* If the name is found a pointer to the device is returned.
855
* If the name is not found then %NULL is returned. The
856
* reference counters are not incremented so the caller must be
857
* careful with locks.
858
*/
859
860
struct net_device *__dev_get_by_name(struct net *net, const char *name)
861
{
862
struct netdev_name_node *node_name;
863
864
node_name = netdev_name_node_lookup(net, name);
865
return node_name ? node_name->dev : NULL;
866
}
867
EXPORT_SYMBOL(__dev_get_by_name);
868
869
/**
870
* dev_get_by_name_rcu - find a device by its name
871
* @net: the applicable net namespace
872
* @name: name to find
873
*
874
* Find an interface by name.
875
* If the name is found a pointer to the device is returned.
876
* If the name is not found then %NULL is returned.
877
* The reference counters are not incremented so the caller must be
878
* careful with locks. The caller must hold RCU lock.
879
*/
880
881
struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882
{
883
struct netdev_name_node *node_name;
884
885
node_name = netdev_name_node_lookup_rcu(net, name);
886
return node_name ? node_name->dev : NULL;
887
}
888
EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890
/* Deprecated for new users, call netdev_get_by_name() instead */
891
struct net_device *dev_get_by_name(struct net *net, const char *name)
892
{
893
struct net_device *dev;
894
895
rcu_read_lock();
896
dev = dev_get_by_name_rcu(net, name);
897
dev_hold(dev);
898
rcu_read_unlock();
899
return dev;
900
}
901
EXPORT_SYMBOL(dev_get_by_name);
902
903
/**
904
* netdev_get_by_name() - find a device by its name
905
* @net: the applicable net namespace
906
* @name: name to find
907
* @tracker: tracking object for the acquired reference
908
* @gfp: allocation flags for the tracker
909
*
910
* Find an interface by name. This can be called from any
911
* context and does its own locking. The returned handle has
912
* the usage count incremented and the caller must use netdev_put() to
913
* release it when it is no longer needed. %NULL is returned if no
914
* matching device is found.
915
*/
916
struct net_device *netdev_get_by_name(struct net *net, const char *name,
917
netdevice_tracker *tracker, gfp_t gfp)
918
{
919
struct net_device *dev;
920
921
dev = dev_get_by_name(net, name);
922
if (dev)
923
netdev_tracker_alloc(dev, tracker, gfp);
924
return dev;
925
}
926
EXPORT_SYMBOL(netdev_get_by_name);
927
928
/**
929
* __dev_get_by_index - find a device by its ifindex
930
* @net: the applicable net namespace
931
* @ifindex: index of device
932
*
933
* Search for an interface by index. Returns %NULL if the device
934
* is not found or a pointer to the device. The device has not
935
* had its reference counter increased so the caller must be careful
936
* about locking. The caller must hold the RTNL semaphore.
937
*/
938
939
struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940
{
941
struct net_device *dev;
942
struct hlist_head *head = dev_index_hash(net, ifindex);
943
944
hlist_for_each_entry(dev, head, index_hlist)
945
if (dev->ifindex == ifindex)
946
return dev;
947
948
return NULL;
949
}
950
EXPORT_SYMBOL(__dev_get_by_index);
951
952
/**
953
* dev_get_by_index_rcu - find a device by its ifindex
954
* @net: the applicable net namespace
955
* @ifindex: index of device
956
*
957
* Search for an interface by index. Returns %NULL if the device
958
* is not found or a pointer to the device. The device has not
959
* had its reference counter increased so the caller must be careful
960
* about locking. The caller must hold RCU lock.
961
*/
962
963
struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964
{
965
struct net_device *dev;
966
struct hlist_head *head = dev_index_hash(net, ifindex);
967
968
hlist_for_each_entry_rcu(dev, head, index_hlist)
969
if (dev->ifindex == ifindex)
970
return dev;
971
972
return NULL;
973
}
974
EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976
/* Deprecated for new users, call netdev_get_by_index() instead */
977
struct net_device *dev_get_by_index(struct net *net, int ifindex)
978
{
979
struct net_device *dev;
980
981
rcu_read_lock();
982
dev = dev_get_by_index_rcu(net, ifindex);
983
dev_hold(dev);
984
rcu_read_unlock();
985
return dev;
986
}
987
EXPORT_SYMBOL(dev_get_by_index);
988
989
/**
990
* netdev_get_by_index() - find a device by its ifindex
991
* @net: the applicable net namespace
992
* @ifindex: index of device
993
* @tracker: tracking object for the acquired reference
994
* @gfp: allocation flags for the tracker
995
*
996
* Search for an interface by index. Returns NULL if the device
997
* is not found or a pointer to the device. The device returned has
998
* had a reference added and the pointer is safe until the user calls
999
* netdev_put() to indicate they have finished with it.
1000
*/
1001
struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002
netdevice_tracker *tracker, gfp_t gfp)
1003
{
1004
struct net_device *dev;
1005
1006
dev = dev_get_by_index(net, ifindex);
1007
if (dev)
1008
netdev_tracker_alloc(dev, tracker, gfp);
1009
return dev;
1010
}
1011
EXPORT_SYMBOL(netdev_get_by_index);
1012
1013
/**
1014
* dev_get_by_napi_id - find a device by napi_id
1015
* @napi_id: ID of the NAPI struct
1016
*
1017
* Search for an interface by NAPI ID. Returns %NULL if the device
1018
* is not found or a pointer to the device. The device has not had
1019
* its reference counter increased so the caller must be careful
1020
* about locking. The caller must hold RCU lock.
1021
*/
1022
struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023
{
1024
struct napi_struct *napi;
1025
1026
WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028
if (!napi_id_valid(napi_id))
1029
return NULL;
1030
1031
napi = napi_by_id(napi_id);
1032
1033
return napi ? napi->dev : NULL;
1034
}
1035
1036
/* Release the held reference on the net_device, and if the net_device
1037
* is still registered try to lock the instance lock. If device is being
1038
* unregistered NULL will be returned (but the reference has been released,
1039
* either way!)
1040
*
1041
* This helper is intended for locking net_device after it has been looked up
1042
* using a lockless lookup helper. Lock prevents the instance from going away.
1043
*/
1044
struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045
{
1046
netdev_lock(dev);
1047
if (dev->reg_state > NETREG_REGISTERED ||
1048
dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049
netdev_unlock(dev);
1050
dev_put(dev);
1051
return NULL;
1052
}
1053
dev_put(dev);
1054
return dev;
1055
}
1056
1057
static struct net_device *
1058
__netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059
{
1060
netdev_lock_ops_compat(dev);
1061
if (dev->reg_state > NETREG_REGISTERED ||
1062
dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063
netdev_unlock_ops_compat(dev);
1064
dev_put(dev);
1065
return NULL;
1066
}
1067
dev_put(dev);
1068
return dev;
1069
}
1070
1071
/**
1072
* netdev_get_by_index_lock() - find a device by its ifindex
1073
* @net: the applicable net namespace
1074
* @ifindex: index of device
1075
*
1076
* Search for an interface by index. If a valid device
1077
* with @ifindex is found it will be returned with netdev->lock held.
1078
* netdev_unlock() must be called to release it.
1079
*
1080
* Return: pointer to a device with lock held, NULL if not found.
1081
*/
1082
struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083
{
1084
struct net_device *dev;
1085
1086
dev = dev_get_by_index(net, ifindex);
1087
if (!dev)
1088
return NULL;
1089
1090
return __netdev_put_lock(dev, net);
1091
}
1092
1093
struct net_device *
1094
netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095
{
1096
struct net_device *dev;
1097
1098
dev = dev_get_by_index(net, ifindex);
1099
if (!dev)
1100
return NULL;
1101
1102
return __netdev_put_lock_ops_compat(dev, net);
1103
}
1104
1105
struct net_device *
1106
netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107
unsigned long *index)
1108
{
1109
if (dev)
1110
netdev_unlock(dev);
1111
1112
do {
1113
rcu_read_lock();
1114
dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115
if (!dev) {
1116
rcu_read_unlock();
1117
return NULL;
1118
}
1119
dev_hold(dev);
1120
rcu_read_unlock();
1121
1122
dev = __netdev_put_lock(dev, net);
1123
if (dev)
1124
return dev;
1125
1126
(*index)++;
1127
} while (true);
1128
}
1129
1130
struct net_device *
1131
netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132
unsigned long *index)
1133
{
1134
if (dev)
1135
netdev_unlock_ops_compat(dev);
1136
1137
do {
1138
rcu_read_lock();
1139
dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140
if (!dev) {
1141
rcu_read_unlock();
1142
return NULL;
1143
}
1144
dev_hold(dev);
1145
rcu_read_unlock();
1146
1147
dev = __netdev_put_lock_ops_compat(dev, net);
1148
if (dev)
1149
return dev;
1150
1151
(*index)++;
1152
} while (true);
1153
}
1154
1155
static DEFINE_SEQLOCK(netdev_rename_lock);
1156
1157
void netdev_copy_name(struct net_device *dev, char *name)
1158
{
1159
unsigned int seq;
1160
1161
do {
1162
seq = read_seqbegin(&netdev_rename_lock);
1163
strscpy(name, dev->name, IFNAMSIZ);
1164
} while (read_seqretry(&netdev_rename_lock, seq));
1165
}
1166
1167
/**
1168
* netdev_get_name - get a netdevice name, knowing its ifindex.
1169
* @net: network namespace
1170
* @name: a pointer to the buffer where the name will be stored.
1171
* @ifindex: the ifindex of the interface to get the name from.
1172
*/
1173
int netdev_get_name(struct net *net, char *name, int ifindex)
1174
{
1175
struct net_device *dev;
1176
int ret;
1177
1178
rcu_read_lock();
1179
1180
dev = dev_get_by_index_rcu(net, ifindex);
1181
if (!dev) {
1182
ret = -ENODEV;
1183
goto out;
1184
}
1185
1186
netdev_copy_name(dev, name);
1187
1188
ret = 0;
1189
out:
1190
rcu_read_unlock();
1191
return ret;
1192
}
1193
1194
static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195
const char *ha)
1196
{
1197
return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198
}
1199
1200
/**
1201
* dev_getbyhwaddr_rcu - find a device by its hardware address
1202
* @net: the applicable net namespace
1203
* @type: media type of device
1204
* @ha: hardware address
1205
*
1206
* Search for an interface by MAC address. Returns NULL if the device
1207
* is not found or a pointer to the device.
1208
* The caller must hold RCU.
1209
* The returned device has not had its ref count increased
1210
* and the caller must therefore be careful about locking
1211
*
1212
*/
1213
1214
struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215
const char *ha)
1216
{
1217
struct net_device *dev;
1218
1219
for_each_netdev_rcu(net, dev)
1220
if (dev_addr_cmp(dev, type, ha))
1221
return dev;
1222
1223
return NULL;
1224
}
1225
EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227
/**
1228
* dev_getbyhwaddr() - find a device by its hardware address
1229
* @net: the applicable net namespace
1230
* @type: media type of device
1231
* @ha: hardware address
1232
*
1233
* Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234
* rtnl_lock.
1235
*
1236
* Context: rtnl_lock() must be held.
1237
* Return: pointer to the net_device, or NULL if not found
1238
*/
1239
struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240
const char *ha)
1241
{
1242
struct net_device *dev;
1243
1244
ASSERT_RTNL();
1245
for_each_netdev(net, dev)
1246
if (dev_addr_cmp(dev, type, ha))
1247
return dev;
1248
1249
return NULL;
1250
}
1251
EXPORT_SYMBOL(dev_getbyhwaddr);
1252
1253
struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254
{
1255
struct net_device *dev, *ret = NULL;
1256
1257
rcu_read_lock();
1258
for_each_netdev_rcu(net, dev)
1259
if (dev->type == type) {
1260
dev_hold(dev);
1261
ret = dev;
1262
break;
1263
}
1264
rcu_read_unlock();
1265
return ret;
1266
}
1267
EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269
/**
1270
* netdev_get_by_flags_rcu - find any device with given flags
1271
* @net: the applicable net namespace
1272
* @tracker: tracking object for the acquired reference
1273
* @if_flags: IFF_* values
1274
* @mask: bitmask of bits in if_flags to check
1275
*
1276
* Search for any interface with the given flags.
1277
*
1278
* Context: rcu_read_lock() must be held.
1279
* Returns: NULL if a device is not found or a pointer to the device.
1280
*/
1281
struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282
unsigned short if_flags, unsigned short mask)
1283
{
1284
struct net_device *dev;
1285
1286
for_each_netdev_rcu(net, dev) {
1287
if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288
netdev_hold(dev, tracker, GFP_ATOMIC);
1289
return dev;
1290
}
1291
}
1292
1293
return NULL;
1294
}
1295
EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297
/**
1298
* dev_valid_name - check if name is okay for network device
1299
* @name: name string
1300
*
1301
* Network device names need to be valid file names to
1302
* allow sysfs to work. We also disallow any kind of
1303
* whitespace.
1304
*/
1305
bool dev_valid_name(const char *name)
1306
{
1307
if (*name == '\0')
1308
return false;
1309
if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310
return false;
1311
if (!strcmp(name, ".") || !strcmp(name, ".."))
1312
return false;
1313
1314
while (*name) {
1315
if (*name == '/' || *name == ':' || isspace(*name))
1316
return false;
1317
name++;
1318
}
1319
return true;
1320
}
1321
EXPORT_SYMBOL(dev_valid_name);
1322
1323
/**
1324
* __dev_alloc_name - allocate a name for a device
1325
* @net: network namespace to allocate the device name in
1326
* @name: name format string
1327
* @res: result name string
1328
*
1329
* Passed a format string - eg "lt%d" it will try and find a suitable
1330
* id. It scans list of devices to build up a free map, then chooses
1331
* the first empty slot. The caller must hold the dev_base or rtnl lock
1332
* while allocating the name and adding the device in order to avoid
1333
* duplicates.
1334
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335
* Returns the number of the unit assigned or a negative errno code.
1336
*/
1337
1338
static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339
{
1340
int i = 0;
1341
const char *p;
1342
const int max_netdevices = 8*PAGE_SIZE;
1343
unsigned long *inuse;
1344
struct net_device *d;
1345
char buf[IFNAMSIZ];
1346
1347
/* Verify the string as this thing may have come from the user.
1348
* There must be one "%d" and no other "%" characters.
1349
*/
1350
p = strchr(name, '%');
1351
if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352
return -EINVAL;
1353
1354
/* Use one page as a bit array of possible slots */
1355
inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356
if (!inuse)
1357
return -ENOMEM;
1358
1359
for_each_netdev(net, d) {
1360
struct netdev_name_node *name_node;
1361
1362
netdev_for_each_altname(d, name_node) {
1363
if (!sscanf(name_node->name, name, &i))
1364
continue;
1365
if (i < 0 || i >= max_netdevices)
1366
continue;
1367
1368
/* avoid cases where sscanf is not exact inverse of printf */
1369
snprintf(buf, IFNAMSIZ, name, i);
1370
if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371
__set_bit(i, inuse);
1372
}
1373
if (!sscanf(d->name, name, &i))
1374
continue;
1375
if (i < 0 || i >= max_netdevices)
1376
continue;
1377
1378
/* avoid cases where sscanf is not exact inverse of printf */
1379
snprintf(buf, IFNAMSIZ, name, i);
1380
if (!strncmp(buf, d->name, IFNAMSIZ))
1381
__set_bit(i, inuse);
1382
}
1383
1384
i = find_first_zero_bit(inuse, max_netdevices);
1385
bitmap_free(inuse);
1386
if (i == max_netdevices)
1387
return -ENFILE;
1388
1389
/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390
strscpy(buf, name, IFNAMSIZ);
1391
snprintf(res, IFNAMSIZ, buf, i);
1392
return i;
1393
}
1394
1395
/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396
static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397
const char *want_name, char *out_name,
1398
int dup_errno)
1399
{
1400
if (!dev_valid_name(want_name))
1401
return -EINVAL;
1402
1403
if (strchr(want_name, '%'))
1404
return __dev_alloc_name(net, want_name, out_name);
1405
1406
if (netdev_name_in_use(net, want_name))
1407
return -dup_errno;
1408
if (out_name != want_name)
1409
strscpy(out_name, want_name, IFNAMSIZ);
1410
return 0;
1411
}
1412
1413
/**
1414
* dev_alloc_name - allocate a name for a device
1415
* @dev: device
1416
* @name: name format string
1417
*
1418
* Passed a format string - eg "lt%d" it will try and find a suitable
1419
* id. It scans list of devices to build up a free map, then chooses
1420
* the first empty slot. The caller must hold the dev_base or rtnl lock
1421
* while allocating the name and adding the device in order to avoid
1422
* duplicates.
1423
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424
* Returns the number of the unit assigned or a negative errno code.
1425
*/
1426
1427
int dev_alloc_name(struct net_device *dev, const char *name)
1428
{
1429
return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430
}
1431
EXPORT_SYMBOL(dev_alloc_name);
1432
1433
static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434
const char *name)
1435
{
1436
int ret;
1437
1438
ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439
return ret < 0 ? ret : 0;
1440
}
1441
1442
int netif_change_name(struct net_device *dev, const char *newname)
1443
{
1444
struct net *net = dev_net(dev);
1445
unsigned char old_assign_type;
1446
char oldname[IFNAMSIZ];
1447
int err = 0;
1448
int ret;
1449
1450
ASSERT_RTNL_NET(net);
1451
1452
if (!strncmp(newname, dev->name, IFNAMSIZ))
1453
return 0;
1454
1455
memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457
write_seqlock_bh(&netdev_rename_lock);
1458
err = dev_get_valid_name(net, dev, newname);
1459
write_sequnlock_bh(&netdev_rename_lock);
1460
1461
if (err < 0)
1462
return err;
1463
1464
if (oldname[0] && !strchr(oldname, '%'))
1465
netdev_info(dev, "renamed from %s%s\n", oldname,
1466
dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468
old_assign_type = dev->name_assign_type;
1469
WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471
rollback:
1472
ret = device_rename(&dev->dev, dev->name);
1473
if (ret) {
1474
write_seqlock_bh(&netdev_rename_lock);
1475
memcpy(dev->name, oldname, IFNAMSIZ);
1476
write_sequnlock_bh(&netdev_rename_lock);
1477
WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478
return ret;
1479
}
1480
1481
netdev_adjacent_rename_links(dev, oldname);
1482
1483
netdev_name_node_del(dev->name_node);
1484
1485
synchronize_net();
1486
1487
netdev_name_node_add(net, dev->name_node);
1488
1489
ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490
ret = notifier_to_errno(ret);
1491
1492
if (ret) {
1493
/* err >= 0 after dev_alloc_name() or stores the first errno */
1494
if (err >= 0) {
1495
err = ret;
1496
write_seqlock_bh(&netdev_rename_lock);
1497
memcpy(dev->name, oldname, IFNAMSIZ);
1498
write_sequnlock_bh(&netdev_rename_lock);
1499
memcpy(oldname, newname, IFNAMSIZ);
1500
WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501
old_assign_type = NET_NAME_RENAMED;
1502
goto rollback;
1503
} else {
1504
netdev_err(dev, "name change rollback failed: %d\n",
1505
ret);
1506
}
1507
}
1508
1509
return err;
1510
}
1511
1512
int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513
{
1514
struct dev_ifalias *new_alias = NULL;
1515
1516
if (len >= IFALIASZ)
1517
return -EINVAL;
1518
1519
if (len) {
1520
new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521
if (!new_alias)
1522
return -ENOMEM;
1523
1524
memcpy(new_alias->ifalias, alias, len);
1525
new_alias->ifalias[len] = 0;
1526
}
1527
1528
mutex_lock(&ifalias_mutex);
1529
new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530
mutex_is_locked(&ifalias_mutex));
1531
mutex_unlock(&ifalias_mutex);
1532
1533
if (new_alias)
1534
kfree_rcu(new_alias, rcuhead);
1535
1536
return len;
1537
}
1538
1539
/**
1540
* dev_get_alias - get ifalias of a device
1541
* @dev: device
1542
* @name: buffer to store name of ifalias
1543
* @len: size of buffer
1544
*
1545
* get ifalias for a device. Caller must make sure dev cannot go
1546
* away, e.g. rcu read lock or own a reference count to device.
1547
*/
1548
int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549
{
1550
const struct dev_ifalias *alias;
1551
int ret = 0;
1552
1553
rcu_read_lock();
1554
alias = rcu_dereference(dev->ifalias);
1555
if (alias)
1556
ret = snprintf(name, len, "%s", alias->ifalias);
1557
rcu_read_unlock();
1558
1559
return ret;
1560
}
1561
1562
/**
1563
* netdev_features_change - device changes features
1564
* @dev: device to cause notification
1565
*
1566
* Called to indicate a device has changed features.
1567
*/
1568
void netdev_features_change(struct net_device *dev)
1569
{
1570
call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571
}
1572
EXPORT_SYMBOL(netdev_features_change);
1573
1574
void netif_state_change(struct net_device *dev)
1575
{
1576
netdev_ops_assert_locked_or_invisible(dev);
1577
1578
if (dev->flags & IFF_UP) {
1579
struct netdev_notifier_change_info change_info = {
1580
.info.dev = dev,
1581
};
1582
1583
call_netdevice_notifiers_info(NETDEV_CHANGE,
1584
&change_info.info);
1585
rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586
}
1587
}
1588
1589
/**
1590
* __netdev_notify_peers - notify network peers about existence of @dev,
1591
* to be called when rtnl lock is already held.
1592
* @dev: network device
1593
*
1594
* Generate traffic such that interested network peers are aware of
1595
* @dev, such as by generating a gratuitous ARP. This may be used when
1596
* a device wants to inform the rest of the network about some sort of
1597
* reconfiguration such as a failover event or virtual machine
1598
* migration.
1599
*/
1600
void __netdev_notify_peers(struct net_device *dev)
1601
{
1602
ASSERT_RTNL();
1603
call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604
call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605
}
1606
EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608
/**
1609
* netdev_notify_peers - notify network peers about existence of @dev
1610
* @dev: network device
1611
*
1612
* Generate traffic such that interested network peers are aware of
1613
* @dev, such as by generating a gratuitous ARP. This may be used when
1614
* a device wants to inform the rest of the network about some sort of
1615
* reconfiguration such as a failover event or virtual machine
1616
* migration.
1617
*/
1618
void netdev_notify_peers(struct net_device *dev)
1619
{
1620
rtnl_lock();
1621
__netdev_notify_peers(dev);
1622
rtnl_unlock();
1623
}
1624
EXPORT_SYMBOL(netdev_notify_peers);
1625
1626
static int napi_threaded_poll(void *data);
1627
1628
static int napi_kthread_create(struct napi_struct *n)
1629
{
1630
int err = 0;
1631
1632
/* Create and wake up the kthread once to put it in
1633
* TASK_INTERRUPTIBLE mode to avoid the blocked task
1634
* warning and work with loadavg.
1635
*/
1636
n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637
n->dev->name, n->napi_id);
1638
if (IS_ERR(n->thread)) {
1639
err = PTR_ERR(n->thread);
1640
pr_err("kthread_run failed with err %d\n", err);
1641
n->thread = NULL;
1642
}
1643
1644
return err;
1645
}
1646
1647
static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648
{
1649
const struct net_device_ops *ops = dev->netdev_ops;
1650
int ret;
1651
1652
ASSERT_RTNL();
1653
dev_addr_check(dev);
1654
1655
if (!netif_device_present(dev)) {
1656
/* may be detached because parent is runtime-suspended */
1657
if (dev->dev.parent)
1658
pm_runtime_resume(dev->dev.parent);
1659
if (!netif_device_present(dev))
1660
return -ENODEV;
1661
}
1662
1663
/* Block netpoll from trying to do any rx path servicing.
1664
* If we don't do this there is a chance ndo_poll_controller
1665
* or ndo_poll may be running while we open the device
1666
*/
1667
netpoll_poll_disable(dev);
1668
1669
ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670
ret = notifier_to_errno(ret);
1671
if (ret)
1672
return ret;
1673
1674
set_bit(__LINK_STATE_START, &dev->state);
1675
1676
netdev_ops_assert_locked(dev);
1677
1678
if (ops->ndo_validate_addr)
1679
ret = ops->ndo_validate_addr(dev);
1680
1681
if (!ret && ops->ndo_open)
1682
ret = ops->ndo_open(dev);
1683
1684
netpoll_poll_enable(dev);
1685
1686
if (ret)
1687
clear_bit(__LINK_STATE_START, &dev->state);
1688
else {
1689
netif_set_up(dev, true);
1690
dev_set_rx_mode(dev);
1691
dev_activate(dev);
1692
add_device_randomness(dev->dev_addr, dev->addr_len);
1693
}
1694
1695
return ret;
1696
}
1697
1698
int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699
{
1700
int ret;
1701
1702
if (dev->flags & IFF_UP)
1703
return 0;
1704
1705
ret = __dev_open(dev, extack);
1706
if (ret < 0)
1707
return ret;
1708
1709
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710
call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712
return ret;
1713
}
1714
1715
static void __dev_close_many(struct list_head *head)
1716
{
1717
struct net_device *dev;
1718
1719
ASSERT_RTNL();
1720
might_sleep();
1721
1722
list_for_each_entry(dev, head, close_list) {
1723
/* Temporarily disable netpoll until the interface is down */
1724
netpoll_poll_disable(dev);
1725
1726
call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728
clear_bit(__LINK_STATE_START, &dev->state);
1729
1730
/* Synchronize to scheduled poll. We cannot touch poll list, it
1731
* can be even on different cpu. So just clear netif_running().
1732
*
1733
* dev->stop() will invoke napi_disable() on all of it's
1734
* napi_struct instances on this device.
1735
*/
1736
smp_mb__after_atomic(); /* Commit netif_running(). */
1737
}
1738
1739
dev_deactivate_many(head);
1740
1741
list_for_each_entry(dev, head, close_list) {
1742
const struct net_device_ops *ops = dev->netdev_ops;
1743
1744
/*
1745
* Call the device specific close. This cannot fail.
1746
* Only if device is UP
1747
*
1748
* We allow it to be called even after a DETACH hot-plug
1749
* event.
1750
*/
1751
1752
netdev_ops_assert_locked(dev);
1753
1754
if (ops->ndo_stop)
1755
ops->ndo_stop(dev);
1756
1757
netif_set_up(dev, false);
1758
netpoll_poll_enable(dev);
1759
}
1760
}
1761
1762
static void __dev_close(struct net_device *dev)
1763
{
1764
LIST_HEAD(single);
1765
1766
list_add(&dev->close_list, &single);
1767
__dev_close_many(&single);
1768
list_del(&single);
1769
}
1770
1771
void netif_close_many(struct list_head *head, bool unlink)
1772
{
1773
struct net_device *dev, *tmp;
1774
1775
/* Remove the devices that don't need to be closed */
1776
list_for_each_entry_safe(dev, tmp, head, close_list)
1777
if (!(dev->flags & IFF_UP))
1778
list_del_init(&dev->close_list);
1779
1780
__dev_close_many(head);
1781
1782
list_for_each_entry_safe(dev, tmp, head, close_list) {
1783
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784
call_netdevice_notifiers(NETDEV_DOWN, dev);
1785
if (unlink)
1786
list_del_init(&dev->close_list);
1787
}
1788
}
1789
EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
1791
void netif_close(struct net_device *dev)
1792
{
1793
if (dev->flags & IFF_UP) {
1794
LIST_HEAD(single);
1795
1796
list_add(&dev->close_list, &single);
1797
netif_close_many(&single, true);
1798
list_del(&single);
1799
}
1800
}
1801
EXPORT_SYMBOL(netif_close);
1802
1803
void netif_disable_lro(struct net_device *dev)
1804
{
1805
struct net_device *lower_dev;
1806
struct list_head *iter;
1807
1808
dev->wanted_features &= ~NETIF_F_LRO;
1809
netdev_update_features(dev);
1810
1811
if (unlikely(dev->features & NETIF_F_LRO))
1812
netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814
netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815
netdev_lock_ops(lower_dev);
1816
netif_disable_lro(lower_dev);
1817
netdev_unlock_ops(lower_dev);
1818
}
1819
}
1820
EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822
/**
1823
* dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824
* @dev: device
1825
*
1826
* Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827
* called under RTNL. This is needed if Generic XDP is installed on
1828
* the device.
1829
*/
1830
static void dev_disable_gro_hw(struct net_device *dev)
1831
{
1832
dev->wanted_features &= ~NETIF_F_GRO_HW;
1833
netdev_update_features(dev);
1834
1835
if (unlikely(dev->features & NETIF_F_GRO_HW))
1836
netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837
}
1838
1839
const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840
{
1841
#define N(val) \
1842
case NETDEV_##val: \
1843
return "NETDEV_" __stringify(val);
1844
switch (cmd) {
1845
N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846
N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847
N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848
N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849
N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850
N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851
N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852
N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853
N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854
N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855
N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856
N(XDP_FEAT_CHANGE)
1857
}
1858
#undef N
1859
return "UNKNOWN_NETDEV_EVENT";
1860
}
1861
EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
1863
static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864
struct net_device *dev)
1865
{
1866
struct netdev_notifier_info info = {
1867
.dev = dev,
1868
};
1869
1870
return nb->notifier_call(nb, val, &info);
1871
}
1872
1873
static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874
struct net_device *dev)
1875
{
1876
int err;
1877
1878
err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879
err = notifier_to_errno(err);
1880
if (err)
1881
return err;
1882
1883
if (!(dev->flags & IFF_UP))
1884
return 0;
1885
1886
call_netdevice_notifier(nb, NETDEV_UP, dev);
1887
return 0;
1888
}
1889
1890
static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891
struct net_device *dev)
1892
{
1893
if (dev->flags & IFF_UP) {
1894
call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895
dev);
1896
call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897
}
1898
call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899
}
1900
1901
static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902
struct net *net)
1903
{
1904
struct net_device *dev;
1905
int err;
1906
1907
for_each_netdev(net, dev) {
1908
netdev_lock_ops(dev);
1909
err = call_netdevice_register_notifiers(nb, dev);
1910
netdev_unlock_ops(dev);
1911
if (err)
1912
goto rollback;
1913
}
1914
return 0;
1915
1916
rollback:
1917
for_each_netdev_continue_reverse(net, dev)
1918
call_netdevice_unregister_notifiers(nb, dev);
1919
return err;
1920
}
1921
1922
static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923
struct net *net)
1924
{
1925
struct net_device *dev;
1926
1927
for_each_netdev(net, dev)
1928
call_netdevice_unregister_notifiers(nb, dev);
1929
}
1930
1931
static int dev_boot_phase = 1;
1932
1933
/**
1934
* register_netdevice_notifier - register a network notifier block
1935
* @nb: notifier
1936
*
1937
* Register a notifier to be called when network device events occur.
1938
* The notifier passed is linked into the kernel structures and must
1939
* not be reused until it has been unregistered. A negative errno code
1940
* is returned on a failure.
1941
*
1942
* When registered all registration and up events are replayed
1943
* to the new notifier to allow device to have a race free
1944
* view of the network device list.
1945
*/
1946
1947
int register_netdevice_notifier(struct notifier_block *nb)
1948
{
1949
struct net *net;
1950
int err;
1951
1952
/* Close race with setup_net() and cleanup_net() */
1953
down_write(&pernet_ops_rwsem);
1954
1955
/* When RTNL is removed, we need protection for netdev_chain. */
1956
rtnl_lock();
1957
1958
err = raw_notifier_chain_register(&netdev_chain, nb);
1959
if (err)
1960
goto unlock;
1961
if (dev_boot_phase)
1962
goto unlock;
1963
for_each_net(net) {
1964
__rtnl_net_lock(net);
1965
err = call_netdevice_register_net_notifiers(nb, net);
1966
__rtnl_net_unlock(net);
1967
if (err)
1968
goto rollback;
1969
}
1970
1971
unlock:
1972
rtnl_unlock();
1973
up_write(&pernet_ops_rwsem);
1974
return err;
1975
1976
rollback:
1977
for_each_net_continue_reverse(net) {
1978
__rtnl_net_lock(net);
1979
call_netdevice_unregister_net_notifiers(nb, net);
1980
__rtnl_net_unlock(net);
1981
}
1982
1983
raw_notifier_chain_unregister(&netdev_chain, nb);
1984
goto unlock;
1985
}
1986
EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988
/**
1989
* unregister_netdevice_notifier - unregister a network notifier block
1990
* @nb: notifier
1991
*
1992
* Unregister a notifier previously registered by
1993
* register_netdevice_notifier(). The notifier is unlinked into the
1994
* kernel structures and may then be reused. A negative errno code
1995
* is returned on a failure.
1996
*
1997
* After unregistering unregister and down device events are synthesized
1998
* for all devices on the device list to the removed notifier to remove
1999
* the need for special case cleanup code.
2000
*/
2001
2002
int unregister_netdevice_notifier(struct notifier_block *nb)
2003
{
2004
struct net *net;
2005
int err;
2006
2007
/* Close race with setup_net() and cleanup_net() */
2008
down_write(&pernet_ops_rwsem);
2009
rtnl_lock();
2010
err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011
if (err)
2012
goto unlock;
2013
2014
for_each_net(net) {
2015
__rtnl_net_lock(net);
2016
call_netdevice_unregister_net_notifiers(nb, net);
2017
__rtnl_net_unlock(net);
2018
}
2019
2020
unlock:
2021
rtnl_unlock();
2022
up_write(&pernet_ops_rwsem);
2023
return err;
2024
}
2025
EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
2027
static int __register_netdevice_notifier_net(struct net *net,
2028
struct notifier_block *nb,
2029
bool ignore_call_fail)
2030
{
2031
int err;
2032
2033
err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034
if (err)
2035
return err;
2036
if (dev_boot_phase)
2037
return 0;
2038
2039
err = call_netdevice_register_net_notifiers(nb, net);
2040
if (err && !ignore_call_fail)
2041
goto chain_unregister;
2042
2043
return 0;
2044
2045
chain_unregister:
2046
raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047
return err;
2048
}
2049
2050
static int __unregister_netdevice_notifier_net(struct net *net,
2051
struct notifier_block *nb)
2052
{
2053
int err;
2054
2055
err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056
if (err)
2057
return err;
2058
2059
call_netdevice_unregister_net_notifiers(nb, net);
2060
return 0;
2061
}
2062
2063
/**
2064
* register_netdevice_notifier_net - register a per-netns network notifier block
2065
* @net: network namespace
2066
* @nb: notifier
2067
*
2068
* Register a notifier to be called when network device events occur.
2069
* The notifier passed is linked into the kernel structures and must
2070
* not be reused until it has been unregistered. A negative errno code
2071
* is returned on a failure.
2072
*
2073
* When registered all registration and up events are replayed
2074
* to the new notifier to allow device to have a race free
2075
* view of the network device list.
2076
*/
2077
2078
int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079
{
2080
int err;
2081
2082
rtnl_net_lock(net);
2083
err = __register_netdevice_notifier_net(net, nb, false);
2084
rtnl_net_unlock(net);
2085
2086
return err;
2087
}
2088
EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090
/**
2091
* unregister_netdevice_notifier_net - unregister a per-netns
2092
* network notifier block
2093
* @net: network namespace
2094
* @nb: notifier
2095
*
2096
* Unregister a notifier previously registered by
2097
* register_netdevice_notifier_net(). The notifier is unlinked from the
2098
* kernel structures and may then be reused. A negative errno code
2099
* is returned on a failure.
2100
*
2101
* After unregistering unregister and down device events are synthesized
2102
* for all devices on the device list to the removed notifier to remove
2103
* the need for special case cleanup code.
2104
*/
2105
2106
int unregister_netdevice_notifier_net(struct net *net,
2107
struct notifier_block *nb)
2108
{
2109
int err;
2110
2111
rtnl_net_lock(net);
2112
err = __unregister_netdevice_notifier_net(net, nb);
2113
rtnl_net_unlock(net);
2114
2115
return err;
2116
}
2117
EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
2119
static void __move_netdevice_notifier_net(struct net *src_net,
2120
struct net *dst_net,
2121
struct notifier_block *nb)
2122
{
2123
__unregister_netdevice_notifier_net(src_net, nb);
2124
__register_netdevice_notifier_net(dst_net, nb, true);
2125
}
2126
2127
static void rtnl_net_dev_lock(struct net_device *dev)
2128
{
2129
bool again;
2130
2131
do {
2132
struct net *net;
2133
2134
again = false;
2135
2136
/* netns might be being dismantled. */
2137
rcu_read_lock();
2138
net = dev_net_rcu(dev);
2139
net_passive_inc(net);
2140
rcu_read_unlock();
2141
2142
rtnl_net_lock(net);
2143
2144
#ifdef CONFIG_NET_NS
2145
/* dev might have been moved to another netns. */
2146
if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147
rtnl_net_unlock(net);
2148
net_passive_dec(net);
2149
again = true;
2150
}
2151
#endif
2152
} while (again);
2153
}
2154
2155
static void rtnl_net_dev_unlock(struct net_device *dev)
2156
{
2157
struct net *net = dev_net(dev);
2158
2159
rtnl_net_unlock(net);
2160
net_passive_dec(net);
2161
}
2162
2163
int register_netdevice_notifier_dev_net(struct net_device *dev,
2164
struct notifier_block *nb,
2165
struct netdev_net_notifier *nn)
2166
{
2167
int err;
2168
2169
rtnl_net_dev_lock(dev);
2170
err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171
if (!err) {
2172
nn->nb = nb;
2173
list_add(&nn->list, &dev->net_notifier_list);
2174
}
2175
rtnl_net_dev_unlock(dev);
2176
2177
return err;
2178
}
2179
EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
2181
int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182
struct notifier_block *nb,
2183
struct netdev_net_notifier *nn)
2184
{
2185
int err;
2186
2187
rtnl_net_dev_lock(dev);
2188
list_del(&nn->list);
2189
err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190
rtnl_net_dev_unlock(dev);
2191
2192
return err;
2193
}
2194
EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
2196
static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197
struct net *net)
2198
{
2199
struct netdev_net_notifier *nn;
2200
2201
list_for_each_entry(nn, &dev->net_notifier_list, list)
2202
__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203
}
2204
2205
/**
2206
* call_netdevice_notifiers_info - call all network notifier blocks
2207
* @val: value passed unmodified to notifier function
2208
* @info: notifier information data
2209
*
2210
* Call all network notifier blocks. Parameters and return value
2211
* are as for raw_notifier_call_chain().
2212
*/
2213
2214
int call_netdevice_notifiers_info(unsigned long val,
2215
struct netdev_notifier_info *info)
2216
{
2217
struct net *net = dev_net(info->dev);
2218
int ret;
2219
2220
ASSERT_RTNL();
2221
2222
/* Run per-netns notifier block chain first, then run the global one.
2223
* Hopefully, one day, the global one is going to be removed after
2224
* all notifier block registrators get converted to be per-netns.
2225
*/
2226
ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227
if (ret & NOTIFY_STOP_MASK)
2228
return ret;
2229
return raw_notifier_call_chain(&netdev_chain, val, info);
2230
}
2231
2232
/**
2233
* call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234
* for and rollback on error
2235
* @val_up: value passed unmodified to notifier function
2236
* @val_down: value passed unmodified to the notifier function when
2237
* recovering from an error on @val_up
2238
* @info: notifier information data
2239
*
2240
* Call all per-netns network notifier blocks, but not notifier blocks on
2241
* the global notifier chain. Parameters and return value are as for
2242
* raw_notifier_call_chain_robust().
2243
*/
2244
2245
static int
2246
call_netdevice_notifiers_info_robust(unsigned long val_up,
2247
unsigned long val_down,
2248
struct netdev_notifier_info *info)
2249
{
2250
struct net *net = dev_net(info->dev);
2251
2252
ASSERT_RTNL();
2253
2254
return raw_notifier_call_chain_robust(&net->netdev_chain,
2255
val_up, val_down, info);
2256
}
2257
2258
static int call_netdevice_notifiers_extack(unsigned long val,
2259
struct net_device *dev,
2260
struct netlink_ext_ack *extack)
2261
{
2262
struct netdev_notifier_info info = {
2263
.dev = dev,
2264
.extack = extack,
2265
};
2266
2267
return call_netdevice_notifiers_info(val, &info);
2268
}
2269
2270
/**
2271
* call_netdevice_notifiers - call all network notifier blocks
2272
* @val: value passed unmodified to notifier function
2273
* @dev: net_device pointer passed unmodified to notifier function
2274
*
2275
* Call all network notifier blocks. Parameters and return value
2276
* are as for raw_notifier_call_chain().
2277
*/
2278
2279
int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280
{
2281
return call_netdevice_notifiers_extack(val, dev, NULL);
2282
}
2283
EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285
/**
2286
* call_netdevice_notifiers_mtu - call all network notifier blocks
2287
* @val: value passed unmodified to notifier function
2288
* @dev: net_device pointer passed unmodified to notifier function
2289
* @arg: additional u32 argument passed to the notifier function
2290
*
2291
* Call all network notifier blocks. Parameters and return value
2292
* are as for raw_notifier_call_chain().
2293
*/
2294
static int call_netdevice_notifiers_mtu(unsigned long val,
2295
struct net_device *dev, u32 arg)
2296
{
2297
struct netdev_notifier_info_ext info = {
2298
.info.dev = dev,
2299
.ext.mtu = arg,
2300
};
2301
2302
BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304
return call_netdevice_notifiers_info(val, &info.info);
2305
}
2306
2307
#ifdef CONFIG_NET_INGRESS
2308
static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
2310
void net_inc_ingress_queue(void)
2311
{
2312
static_branch_inc(&ingress_needed_key);
2313
}
2314
EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
2316
void net_dec_ingress_queue(void)
2317
{
2318
static_branch_dec(&ingress_needed_key);
2319
}
2320
EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321
#endif
2322
2323
#ifdef CONFIG_NET_EGRESS
2324
static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
2326
void net_inc_egress_queue(void)
2327
{
2328
static_branch_inc(&egress_needed_key);
2329
}
2330
EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
2332
void net_dec_egress_queue(void)
2333
{
2334
static_branch_dec(&egress_needed_key);
2335
}
2336
EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337
#endif
2338
2339
#ifdef CONFIG_NET_CLS_ACT
2340
DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341
EXPORT_SYMBOL(tcf_sw_enabled_key);
2342
#endif
2343
2344
DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345
EXPORT_SYMBOL(netstamp_needed_key);
2346
#ifdef CONFIG_JUMP_LABEL
2347
static atomic_t netstamp_needed_deferred;
2348
static atomic_t netstamp_wanted;
2349
static void netstamp_clear(struct work_struct *work)
2350
{
2351
int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352
int wanted;
2353
2354
wanted = atomic_add_return(deferred, &netstamp_wanted);
2355
if (wanted > 0)
2356
static_branch_enable(&netstamp_needed_key);
2357
else
2358
static_branch_disable(&netstamp_needed_key);
2359
}
2360
static DECLARE_WORK(netstamp_work, netstamp_clear);
2361
#endif
2362
2363
void net_enable_timestamp(void)
2364
{
2365
#ifdef CONFIG_JUMP_LABEL
2366
int wanted = atomic_read(&netstamp_wanted);
2367
2368
while (wanted > 0) {
2369
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370
return;
2371
}
2372
atomic_inc(&netstamp_needed_deferred);
2373
schedule_work(&netstamp_work);
2374
#else
2375
static_branch_inc(&netstamp_needed_key);
2376
#endif
2377
}
2378
EXPORT_SYMBOL(net_enable_timestamp);
2379
2380
void net_disable_timestamp(void)
2381
{
2382
#ifdef CONFIG_JUMP_LABEL
2383
int wanted = atomic_read(&netstamp_wanted);
2384
2385
while (wanted > 1) {
2386
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387
return;
2388
}
2389
atomic_dec(&netstamp_needed_deferred);
2390
schedule_work(&netstamp_work);
2391
#else
2392
static_branch_dec(&netstamp_needed_key);
2393
#endif
2394
}
2395
EXPORT_SYMBOL(net_disable_timestamp);
2396
2397
static inline void net_timestamp_set(struct sk_buff *skb)
2398
{
2399
skb->tstamp = 0;
2400
skb->tstamp_type = SKB_CLOCK_REALTIME;
2401
if (static_branch_unlikely(&netstamp_needed_key))
2402
skb->tstamp = ktime_get_real();
2403
}
2404
2405
#define net_timestamp_check(COND, SKB) \
2406
if (static_branch_unlikely(&netstamp_needed_key)) { \
2407
if ((COND) && !(SKB)->tstamp) \
2408
(SKB)->tstamp = ktime_get_real(); \
2409
} \
2410
2411
bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412
{
2413
return __is_skb_forwardable(dev, skb, true);
2414
}
2415
EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
2417
static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418
bool check_mtu)
2419
{
2420
int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422
if (likely(!ret)) {
2423
skb->protocol = eth_type_trans(skb, dev);
2424
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425
}
2426
2427
return ret;
2428
}
2429
2430
int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431
{
2432
return __dev_forward_skb2(dev, skb, true);
2433
}
2434
EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436
/**
2437
* dev_forward_skb - loopback an skb to another netif
2438
*
2439
* @dev: destination network device
2440
* @skb: buffer to forward
2441
*
2442
* return values:
2443
* NET_RX_SUCCESS (no congestion)
2444
* NET_RX_DROP (packet was dropped, but freed)
2445
*
2446
* dev_forward_skb can be used for injecting an skb from the
2447
* start_xmit function of one device into the receive queue
2448
* of another device.
2449
*
2450
* The receiving device may be in another namespace, so
2451
* we have to clear all information in the skb that could
2452
* impact namespace isolation.
2453
*/
2454
int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455
{
2456
return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457
}
2458
EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
2460
int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461
{
2462
return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463
}
2464
2465
static inline int deliver_skb(struct sk_buff *skb,
2466
struct packet_type *pt_prev,
2467
struct net_device *orig_dev)
2468
{
2469
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470
return -ENOMEM;
2471
refcount_inc(&skb->users);
2472
return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473
}
2474
2475
static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476
struct packet_type **pt,
2477
struct net_device *orig_dev,
2478
__be16 type,
2479
struct list_head *ptype_list)
2480
{
2481
struct packet_type *ptype, *pt_prev = *pt;
2482
2483
list_for_each_entry_rcu(ptype, ptype_list, list) {
2484
if (ptype->type != type)
2485
continue;
2486
if (pt_prev)
2487
deliver_skb(skb, pt_prev, orig_dev);
2488
pt_prev = ptype;
2489
}
2490
*pt = pt_prev;
2491
}
2492
2493
static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494
{
2495
if (!ptype->af_packet_priv || !skb->sk)
2496
return false;
2497
2498
if (ptype->id_match)
2499
return ptype->id_match(ptype, skb->sk);
2500
else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501
return true;
2502
2503
return false;
2504
}
2505
2506
/**
2507
* dev_nit_active_rcu - return true if any network interface taps are in use
2508
*
2509
* The caller must hold the RCU lock
2510
*
2511
* @dev: network device to check for the presence of taps
2512
*/
2513
bool dev_nit_active_rcu(const struct net_device *dev)
2514
{
2515
/* Callers may hold either RCU or RCU BH lock */
2516
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518
return !list_empty(&dev_net(dev)->ptype_all) ||
2519
!list_empty(&dev->ptype_all);
2520
}
2521
EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523
/*
2524
* Support routine. Sends outgoing frames to any network
2525
* taps currently in use.
2526
*/
2527
2528
void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529
{
2530
struct packet_type *ptype, *pt_prev = NULL;
2531
struct list_head *ptype_list;
2532
struct sk_buff *skb2 = NULL;
2533
2534
rcu_read_lock();
2535
ptype_list = &dev_net_rcu(dev)->ptype_all;
2536
again:
2537
list_for_each_entry_rcu(ptype, ptype_list, list) {
2538
if (READ_ONCE(ptype->ignore_outgoing))
2539
continue;
2540
2541
/* Never send packets back to the socket
2542
* they originated from - MvS ([email protected])
2543
*/
2544
if (skb_loop_sk(ptype, skb))
2545
continue;
2546
2547
if (pt_prev) {
2548
deliver_skb(skb2, pt_prev, skb->dev);
2549
pt_prev = ptype;
2550
continue;
2551
}
2552
2553
/* need to clone skb, done only once */
2554
skb2 = skb_clone(skb, GFP_ATOMIC);
2555
if (!skb2)
2556
goto out_unlock;
2557
2558
net_timestamp_set(skb2);
2559
2560
/* skb->nh should be correctly
2561
* set by sender, so that the second statement is
2562
* just protection against buggy protocols.
2563
*/
2564
skb_reset_mac_header(skb2);
2565
2566
if (skb_network_header(skb2) < skb2->data ||
2567
skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568
net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569
ntohs(skb2->protocol),
2570
dev->name);
2571
skb_reset_network_header(skb2);
2572
}
2573
2574
skb2->transport_header = skb2->network_header;
2575
skb2->pkt_type = PACKET_OUTGOING;
2576
pt_prev = ptype;
2577
}
2578
2579
if (ptype_list != &dev->ptype_all) {
2580
ptype_list = &dev->ptype_all;
2581
goto again;
2582
}
2583
out_unlock:
2584
if (pt_prev) {
2585
if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586
pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587
else
2588
kfree_skb(skb2);
2589
}
2590
rcu_read_unlock();
2591
}
2592
EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594
/**
2595
* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596
* @dev: Network device
2597
* @txq: number of queues available
2598
*
2599
* If real_num_tx_queues is changed the tc mappings may no longer be
2600
* valid. To resolve this verify the tc mapping remains valid and if
2601
* not NULL the mapping. With no priorities mapping to this
2602
* offset/count pair it will no longer be used. In the worst case TC0
2603
* is invalid nothing can be done so disable priority mappings. If is
2604
* expected that drivers will fix this mapping if they can before
2605
* calling netif_set_real_num_tx_queues.
2606
*/
2607
static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608
{
2609
int i;
2610
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612
/* If TC0 is invalidated disable TC mapping */
2613
if (tc->offset + tc->count > txq) {
2614
netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615
dev->num_tc = 0;
2616
return;
2617
}
2618
2619
/* Invalidated prio to tc mappings set to TC0 */
2620
for (i = 1; i < TC_BITMASK + 1; i++) {
2621
int q = netdev_get_prio_tc_map(dev, i);
2622
2623
tc = &dev->tc_to_txq[q];
2624
if (tc->offset + tc->count > txq) {
2625
netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626
i, q);
2627
netdev_set_prio_tc_map(dev, i, 0);
2628
}
2629
}
2630
}
2631
2632
int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633
{
2634
if (dev->num_tc) {
2635
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636
int i;
2637
2638
/* walk through the TCs and see if it falls into any of them */
2639
for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640
if ((txq - tc->offset) < tc->count)
2641
return i;
2642
}
2643
2644
/* didn't find it, just return -1 to indicate no match */
2645
return -1;
2646
}
2647
2648
return 0;
2649
}
2650
EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652
#ifdef CONFIG_XPS
2653
static struct static_key xps_needed __read_mostly;
2654
static struct static_key xps_rxqs_needed __read_mostly;
2655
static DEFINE_MUTEX(xps_map_mutex);
2656
#define xmap_dereference(P) \
2657
rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
2659
static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660
struct xps_dev_maps *old_maps, int tci, u16 index)
2661
{
2662
struct xps_map *map = NULL;
2663
int pos;
2664
2665
map = xmap_dereference(dev_maps->attr_map[tci]);
2666
if (!map)
2667
return false;
2668
2669
for (pos = map->len; pos--;) {
2670
if (map->queues[pos] != index)
2671
continue;
2672
2673
if (map->len > 1) {
2674
map->queues[pos] = map->queues[--map->len];
2675
break;
2676
}
2677
2678
if (old_maps)
2679
RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681
kfree_rcu(map, rcu);
2682
return false;
2683
}
2684
2685
return true;
2686
}
2687
2688
static bool remove_xps_queue_cpu(struct net_device *dev,
2689
struct xps_dev_maps *dev_maps,
2690
int cpu, u16 offset, u16 count)
2691
{
2692
int num_tc = dev_maps->num_tc;
2693
bool active = false;
2694
int tci;
2695
2696
for (tci = cpu * num_tc; num_tc--; tci++) {
2697
int i, j;
2698
2699
for (i = count, j = offset; i--; j++) {
2700
if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701
break;
2702
}
2703
2704
active |= i < 0;
2705
}
2706
2707
return active;
2708
}
2709
2710
static void reset_xps_maps(struct net_device *dev,
2711
struct xps_dev_maps *dev_maps,
2712
enum xps_map_type type)
2713
{
2714
static_key_slow_dec_cpuslocked(&xps_needed);
2715
if (type == XPS_RXQS)
2716
static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718
RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720
kfree_rcu(dev_maps, rcu);
2721
}
2722
2723
static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724
u16 offset, u16 count)
2725
{
2726
struct xps_dev_maps *dev_maps;
2727
bool active = false;
2728
int i, j;
2729
2730
dev_maps = xmap_dereference(dev->xps_maps[type]);
2731
if (!dev_maps)
2732
return;
2733
2734
for (j = 0; j < dev_maps->nr_ids; j++)
2735
active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736
if (!active)
2737
reset_xps_maps(dev, dev_maps, type);
2738
2739
if (type == XPS_CPUS) {
2740
for (i = offset + (count - 1); count--; i--)
2741
netdev_queue_numa_node_write(
2742
netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743
}
2744
}
2745
2746
static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747
u16 count)
2748
{
2749
if (!static_key_false(&xps_needed))
2750
return;
2751
2752
cpus_read_lock();
2753
mutex_lock(&xps_map_mutex);
2754
2755
if (static_key_false(&xps_rxqs_needed))
2756
clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758
clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760
mutex_unlock(&xps_map_mutex);
2761
cpus_read_unlock();
2762
}
2763
2764
static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765
{
2766
netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767
}
2768
2769
static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770
u16 index, bool is_rxqs_map)
2771
{
2772
struct xps_map *new_map;
2773
int alloc_len = XPS_MIN_MAP_ALLOC;
2774
int i, pos;
2775
2776
for (pos = 0; map && pos < map->len; pos++) {
2777
if (map->queues[pos] != index)
2778
continue;
2779
return map;
2780
}
2781
2782
/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783
if (map) {
2784
if (pos < map->alloc_len)
2785
return map;
2786
2787
alloc_len = map->alloc_len * 2;
2788
}
2789
2790
/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791
* map
2792
*/
2793
if (is_rxqs_map)
2794
new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795
else
2796
new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797
cpu_to_node(attr_index));
2798
if (!new_map)
2799
return NULL;
2800
2801
for (i = 0; i < pos; i++)
2802
new_map->queues[i] = map->queues[i];
2803
new_map->alloc_len = alloc_len;
2804
new_map->len = pos;
2805
2806
return new_map;
2807
}
2808
2809
/* Copy xps maps at a given index */
2810
static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811
struct xps_dev_maps *new_dev_maps, int index,
2812
int tc, bool skip_tc)
2813
{
2814
int i, tci = index * dev_maps->num_tc;
2815
struct xps_map *map;
2816
2817
/* copy maps belonging to foreign traffic classes */
2818
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819
if (i == tc && skip_tc)
2820
continue;
2821
2822
/* fill in the new device map from the old device map */
2823
map = xmap_dereference(dev_maps->attr_map[tci]);
2824
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825
}
2826
}
2827
2828
/* Must be called under cpus_read_lock */
2829
int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830
u16 index, enum xps_map_type type)
2831
{
2832
struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833
const unsigned long *online_mask = NULL;
2834
bool active = false, copy = false;
2835
int i, j, tci, numa_node_id = -2;
2836
int maps_sz, num_tc = 1, tc = 0;
2837
struct xps_map *map, *new_map;
2838
unsigned int nr_ids;
2839
2840
WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842
if (dev->num_tc) {
2843
/* Do not allow XPS on subordinate device directly */
2844
num_tc = dev->num_tc;
2845
if (num_tc < 0)
2846
return -EINVAL;
2847
2848
/* If queue belongs to subordinate dev use its map */
2849
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851
tc = netdev_txq_to_tc(dev, index);
2852
if (tc < 0)
2853
return -EINVAL;
2854
}
2855
2856
mutex_lock(&xps_map_mutex);
2857
2858
dev_maps = xmap_dereference(dev->xps_maps[type]);
2859
if (type == XPS_RXQS) {
2860
maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861
nr_ids = dev->num_rx_queues;
2862
} else {
2863
maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864
if (num_possible_cpus() > 1)
2865
online_mask = cpumask_bits(cpu_online_mask);
2866
nr_ids = nr_cpu_ids;
2867
}
2868
2869
if (maps_sz < L1_CACHE_BYTES)
2870
maps_sz = L1_CACHE_BYTES;
2871
2872
/* The old dev_maps could be larger or smaller than the one we're
2873
* setting up now, as dev->num_tc or nr_ids could have been updated in
2874
* between. We could try to be smart, but let's be safe instead and only
2875
* copy foreign traffic classes if the two map sizes match.
2876
*/
2877
if (dev_maps &&
2878
dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879
copy = true;
2880
2881
/* allocate memory for queue storage */
2882
for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883
j < nr_ids;) {
2884
if (!new_dev_maps) {
2885
new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886
if (!new_dev_maps) {
2887
mutex_unlock(&xps_map_mutex);
2888
return -ENOMEM;
2889
}
2890
2891
new_dev_maps->nr_ids = nr_ids;
2892
new_dev_maps->num_tc = num_tc;
2893
}
2894
2895
tci = j * num_tc + tc;
2896
map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898
map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899
if (!map)
2900
goto error;
2901
2902
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903
}
2904
2905
if (!new_dev_maps)
2906
goto out_no_new_maps;
2907
2908
if (!dev_maps) {
2909
/* Increment static keys at most once per type */
2910
static_key_slow_inc_cpuslocked(&xps_needed);
2911
if (type == XPS_RXQS)
2912
static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913
}
2914
2915
for (j = 0; j < nr_ids; j++) {
2916
bool skip_tc = false;
2917
2918
tci = j * num_tc + tc;
2919
if (netif_attr_test_mask(j, mask, nr_ids) &&
2920
netif_attr_test_online(j, online_mask, nr_ids)) {
2921
/* add tx-queue to CPU/rx-queue maps */
2922
int pos = 0;
2923
2924
skip_tc = true;
2925
2926
map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927
while ((pos < map->len) && (map->queues[pos] != index))
2928
pos++;
2929
2930
if (pos == map->len)
2931
map->queues[map->len++] = index;
2932
#ifdef CONFIG_NUMA
2933
if (type == XPS_CPUS) {
2934
if (numa_node_id == -2)
2935
numa_node_id = cpu_to_node(j);
2936
else if (numa_node_id != cpu_to_node(j))
2937
numa_node_id = -1;
2938
}
2939
#endif
2940
}
2941
2942
if (copy)
2943
xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944
skip_tc);
2945
}
2946
2947
rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949
/* Cleanup old maps */
2950
if (!dev_maps)
2951
goto out_no_old_maps;
2952
2953
for (j = 0; j < dev_maps->nr_ids; j++) {
2954
for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955
map = xmap_dereference(dev_maps->attr_map[tci]);
2956
if (!map)
2957
continue;
2958
2959
if (copy) {
2960
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961
if (map == new_map)
2962
continue;
2963
}
2964
2965
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966
kfree_rcu(map, rcu);
2967
}
2968
}
2969
2970
old_dev_maps = dev_maps;
2971
2972
out_no_old_maps:
2973
dev_maps = new_dev_maps;
2974
active = true;
2975
2976
out_no_new_maps:
2977
if (type == XPS_CPUS)
2978
/* update Tx queue numa node */
2979
netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980
(numa_node_id >= 0) ?
2981
numa_node_id : NUMA_NO_NODE);
2982
2983
if (!dev_maps)
2984
goto out_no_maps;
2985
2986
/* removes tx-queue from unused CPUs/rx-queues */
2987
for (j = 0; j < dev_maps->nr_ids; j++) {
2988
tci = j * dev_maps->num_tc;
2989
2990
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991
if (i == tc &&
2992
netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993
netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994
continue;
2995
2996
active |= remove_xps_queue(dev_maps,
2997
copy ? old_dev_maps : NULL,
2998
tci, index);
2999
}
3000
}
3001
3002
if (old_dev_maps)
3003
kfree_rcu(old_dev_maps, rcu);
3004
3005
/* free map if not active */
3006
if (!active)
3007
reset_xps_maps(dev, dev_maps, type);
3008
3009
out_no_maps:
3010
mutex_unlock(&xps_map_mutex);
3011
3012
return 0;
3013
error:
3014
/* remove any maps that we added */
3015
for (j = 0; j < nr_ids; j++) {
3016
for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018
map = copy ?
3019
xmap_dereference(dev_maps->attr_map[tci]) :
3020
NULL;
3021
if (new_map && new_map != map)
3022
kfree(new_map);
3023
}
3024
}
3025
3026
mutex_unlock(&xps_map_mutex);
3027
3028
kfree(new_dev_maps);
3029
return -ENOMEM;
3030
}
3031
EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
3033
int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034
u16 index)
3035
{
3036
int ret;
3037
3038
cpus_read_lock();
3039
ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040
cpus_read_unlock();
3041
3042
return ret;
3043
}
3044
EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046
#endif
3047
static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048
{
3049
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051
/* Unbind any subordinate channels */
3052
while (txq-- != &dev->_tx[0]) {
3053
if (txq->sb_dev)
3054
netdev_unbind_sb_channel(dev, txq->sb_dev);
3055
}
3056
}
3057
3058
void netdev_reset_tc(struct net_device *dev)
3059
{
3060
#ifdef CONFIG_XPS
3061
netif_reset_xps_queues_gt(dev, 0);
3062
#endif
3063
netdev_unbind_all_sb_channels(dev);
3064
3065
/* Reset TC configuration of device */
3066
dev->num_tc = 0;
3067
memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068
memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069
}
3070
EXPORT_SYMBOL(netdev_reset_tc);
3071
3072
int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073
{
3074
if (tc >= dev->num_tc)
3075
return -EINVAL;
3076
3077
#ifdef CONFIG_XPS
3078
netif_reset_xps_queues(dev, offset, count);
3079
#endif
3080
dev->tc_to_txq[tc].count = count;
3081
dev->tc_to_txq[tc].offset = offset;
3082
return 0;
3083
}
3084
EXPORT_SYMBOL(netdev_set_tc_queue);
3085
3086
int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087
{
3088
if (num_tc > TC_MAX_QUEUE)
3089
return -EINVAL;
3090
3091
#ifdef CONFIG_XPS
3092
netif_reset_xps_queues_gt(dev, 0);
3093
#endif
3094
netdev_unbind_all_sb_channels(dev);
3095
3096
dev->num_tc = num_tc;
3097
return 0;
3098
}
3099
EXPORT_SYMBOL(netdev_set_num_tc);
3100
3101
void netdev_unbind_sb_channel(struct net_device *dev,
3102
struct net_device *sb_dev)
3103
{
3104
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106
#ifdef CONFIG_XPS
3107
netif_reset_xps_queues_gt(sb_dev, 0);
3108
#endif
3109
memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110
memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112
while (txq-- != &dev->_tx[0]) {
3113
if (txq->sb_dev == sb_dev)
3114
txq->sb_dev = NULL;
3115
}
3116
}
3117
EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
3119
int netdev_bind_sb_channel_queue(struct net_device *dev,
3120
struct net_device *sb_dev,
3121
u8 tc, u16 count, u16 offset)
3122
{
3123
/* Make certain the sb_dev and dev are already configured */
3124
if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125
return -EINVAL;
3126
3127
/* We cannot hand out queues we don't have */
3128
if ((offset + count) > dev->real_num_tx_queues)
3129
return -EINVAL;
3130
3131
/* Record the mapping */
3132
sb_dev->tc_to_txq[tc].count = count;
3133
sb_dev->tc_to_txq[tc].offset = offset;
3134
3135
/* Provide a way for Tx queue to find the tc_to_txq map or
3136
* XPS map for itself.
3137
*/
3138
while (count--)
3139
netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141
return 0;
3142
}
3143
EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
3145
int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146
{
3147
/* Do not use a multiqueue device to represent a subordinate channel */
3148
if (netif_is_multiqueue(dev))
3149
return -ENODEV;
3150
3151
/* We allow channels 1 - 32767 to be used for subordinate channels.
3152
* Channel 0 is meant to be "native" mode and used only to represent
3153
* the main root device. We allow writing 0 to reset the device back
3154
* to normal mode after being used as a subordinate channel.
3155
*/
3156
if (channel > S16_MAX)
3157
return -EINVAL;
3158
3159
dev->num_tc = -channel;
3160
3161
return 0;
3162
}
3163
EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165
/*
3166
* Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167
* greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168
*/
3169
int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170
{
3171
bool disabling;
3172
int rc;
3173
3174
disabling = txq < dev->real_num_tx_queues;
3175
3176
if (txq < 1 || txq > dev->num_tx_queues)
3177
return -EINVAL;
3178
3179
if (dev->reg_state == NETREG_REGISTERED ||
3180
dev->reg_state == NETREG_UNREGISTERING) {
3181
netdev_ops_assert_locked(dev);
3182
3183
rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184
txq);
3185
if (rc)
3186
return rc;
3187
3188
if (dev->num_tc)
3189
netif_setup_tc(dev, txq);
3190
3191
net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193
dev_qdisc_change_real_num_tx(dev, txq);
3194
3195
dev->real_num_tx_queues = txq;
3196
3197
if (disabling) {
3198
synchronize_net();
3199
qdisc_reset_all_tx_gt(dev, txq);
3200
#ifdef CONFIG_XPS
3201
netif_reset_xps_queues_gt(dev, txq);
3202
#endif
3203
}
3204
} else {
3205
dev->real_num_tx_queues = txq;
3206
}
3207
3208
return 0;
3209
}
3210
EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212
/**
3213
* netif_set_real_num_rx_queues - set actual number of RX queues used
3214
* @dev: Network device
3215
* @rxq: Actual number of RX queues
3216
*
3217
* This must be called either with the rtnl_lock held or before
3218
* registration of the net device. Returns 0 on success, or a
3219
* negative error code. If called before registration, it always
3220
* succeeds.
3221
*/
3222
int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223
{
3224
int rc;
3225
3226
if (rxq < 1 || rxq > dev->num_rx_queues)
3227
return -EINVAL;
3228
3229
if (dev->reg_state == NETREG_REGISTERED) {
3230
netdev_ops_assert_locked(dev);
3231
3232
rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233
rxq);
3234
if (rc)
3235
return rc;
3236
}
3237
3238
dev->real_num_rx_queues = rxq;
3239
return 0;
3240
}
3241
EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243
/**
3244
* netif_set_real_num_queues - set actual number of RX and TX queues used
3245
* @dev: Network device
3246
* @txq: Actual number of TX queues
3247
* @rxq: Actual number of RX queues
3248
*
3249
* Set the real number of both TX and RX queues.
3250
* Does nothing if the number of queues is already correct.
3251
*/
3252
int netif_set_real_num_queues(struct net_device *dev,
3253
unsigned int txq, unsigned int rxq)
3254
{
3255
unsigned int old_rxq = dev->real_num_rx_queues;
3256
int err;
3257
3258
if (txq < 1 || txq > dev->num_tx_queues ||
3259
rxq < 1 || rxq > dev->num_rx_queues)
3260
return -EINVAL;
3261
3262
/* Start from increases, so the error path only does decreases -
3263
* decreases can't fail.
3264
*/
3265
if (rxq > dev->real_num_rx_queues) {
3266
err = netif_set_real_num_rx_queues(dev, rxq);
3267
if (err)
3268
return err;
3269
}
3270
if (txq > dev->real_num_tx_queues) {
3271
err = netif_set_real_num_tx_queues(dev, txq);
3272
if (err)
3273
goto undo_rx;
3274
}
3275
if (rxq < dev->real_num_rx_queues)
3276
WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277
if (txq < dev->real_num_tx_queues)
3278
WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280
return 0;
3281
undo_rx:
3282
WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283
return err;
3284
}
3285
EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287
/**
3288
* netif_set_tso_max_size() - set the max size of TSO frames supported
3289
* @dev: netdev to update
3290
* @size: max skb->len of a TSO frame
3291
*
3292
* Set the limit on the size of TSO super-frames the device can handle.
3293
* Unless explicitly set the stack will assume the value of
3294
* %GSO_LEGACY_MAX_SIZE.
3295
*/
3296
void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297
{
3298
dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299
if (size < READ_ONCE(dev->gso_max_size))
3300
netif_set_gso_max_size(dev, size);
3301
if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302
netif_set_gso_ipv4_max_size(dev, size);
3303
}
3304
EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306
/**
3307
* netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308
* @dev: netdev to update
3309
* @segs: max number of TCP segments
3310
*
3311
* Set the limit on the number of TCP segments the device can generate from
3312
* a single TSO super-frame.
3313
* Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314
*/
3315
void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316
{
3317
dev->tso_max_segs = segs;
3318
if (segs < READ_ONCE(dev->gso_max_segs))
3319
netif_set_gso_max_segs(dev, segs);
3320
}
3321
EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323
/**
3324
* netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325
* @to: netdev to update
3326
* @from: netdev from which to copy the limits
3327
*/
3328
void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329
{
3330
netif_set_tso_max_size(to, from->tso_max_size);
3331
netif_set_tso_max_segs(to, from->tso_max_segs);
3332
}
3333
EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335
/**
3336
* netif_get_num_default_rss_queues - default number of RSS queues
3337
*
3338
* Default value is the number of physical cores if there are only 1 or 2, or
3339
* divided by 2 if there are more.
3340
*/
3341
int netif_get_num_default_rss_queues(void)
3342
{
3343
cpumask_var_t cpus;
3344
int cpu, count = 0;
3345
3346
if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347
return 1;
3348
3349
cpumask_copy(cpus, cpu_online_mask);
3350
for_each_cpu(cpu, cpus) {
3351
++count;
3352
cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353
}
3354
free_cpumask_var(cpus);
3355
3356
return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357
}
3358
EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
3360
static void __netif_reschedule(struct Qdisc *q)
3361
{
3362
struct softnet_data *sd;
3363
unsigned long flags;
3364
3365
local_irq_save(flags);
3366
sd = this_cpu_ptr(&softnet_data);
3367
q->next_sched = NULL;
3368
*sd->output_queue_tailp = q;
3369
sd->output_queue_tailp = &q->next_sched;
3370
raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371
local_irq_restore(flags);
3372
}
3373
3374
void __netif_schedule(struct Qdisc *q)
3375
{
3376
if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377
__netif_reschedule(q);
3378
}
3379
EXPORT_SYMBOL(__netif_schedule);
3380
3381
struct dev_kfree_skb_cb {
3382
enum skb_drop_reason reason;
3383
};
3384
3385
static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386
{
3387
return (struct dev_kfree_skb_cb *)skb->cb;
3388
}
3389
3390
void netif_schedule_queue(struct netdev_queue *txq)
3391
{
3392
rcu_read_lock();
3393
if (!netif_xmit_stopped(txq)) {
3394
struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396
__netif_schedule(q);
3397
}
3398
rcu_read_unlock();
3399
}
3400
EXPORT_SYMBOL(netif_schedule_queue);
3401
3402
void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403
{
3404
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405
struct Qdisc *q;
3406
3407
rcu_read_lock();
3408
q = rcu_dereference(dev_queue->qdisc);
3409
__netif_schedule(q);
3410
rcu_read_unlock();
3411
}
3412
}
3413
EXPORT_SYMBOL(netif_tx_wake_queue);
3414
3415
void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416
{
3417
unsigned long flags;
3418
3419
if (unlikely(!skb))
3420
return;
3421
3422
if (likely(refcount_read(&skb->users) == 1)) {
3423
smp_rmb();
3424
refcount_set(&skb->users, 0);
3425
} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426
return;
3427
}
3428
get_kfree_skb_cb(skb)->reason = reason;
3429
local_irq_save(flags);
3430
skb->next = __this_cpu_read(softnet_data.completion_queue);
3431
__this_cpu_write(softnet_data.completion_queue, skb);
3432
raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433
local_irq_restore(flags);
3434
}
3435
EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
3437
void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438
{
3439
if (in_hardirq() || irqs_disabled())
3440
dev_kfree_skb_irq_reason(skb, reason);
3441
else
3442
kfree_skb_reason(skb, reason);
3443
}
3444
EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447
/**
3448
* netif_device_detach - mark device as removed
3449
* @dev: network device
3450
*
3451
* Mark device as removed from system and therefore no longer available.
3452
*/
3453
void netif_device_detach(struct net_device *dev)
3454
{
3455
if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456
netif_running(dev)) {
3457
netif_tx_stop_all_queues(dev);
3458
}
3459
}
3460
EXPORT_SYMBOL(netif_device_detach);
3461
3462
/**
3463
* netif_device_attach - mark device as attached
3464
* @dev: network device
3465
*
3466
* Mark device as attached from system and restart if needed.
3467
*/
3468
void netif_device_attach(struct net_device *dev)
3469
{
3470
if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471
netif_running(dev)) {
3472
netif_tx_wake_all_queues(dev);
3473
netdev_watchdog_up(dev);
3474
}
3475
}
3476
EXPORT_SYMBOL(netif_device_attach);
3477
3478
/*
3479
* Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480
* to be used as a distribution range.
3481
*/
3482
static u16 skb_tx_hash(const struct net_device *dev,
3483
const struct net_device *sb_dev,
3484
struct sk_buff *skb)
3485
{
3486
u32 hash;
3487
u16 qoffset = 0;
3488
u16 qcount = dev->real_num_tx_queues;
3489
3490
if (dev->num_tc) {
3491
u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493
qoffset = sb_dev->tc_to_txq[tc].offset;
3494
qcount = sb_dev->tc_to_txq[tc].count;
3495
if (unlikely(!qcount)) {
3496
net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497
sb_dev->name, qoffset, tc);
3498
qoffset = 0;
3499
qcount = dev->real_num_tx_queues;
3500
}
3501
}
3502
3503
if (skb_rx_queue_recorded(skb)) {
3504
DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505
hash = skb_get_rx_queue(skb);
3506
if (hash >= qoffset)
3507
hash -= qoffset;
3508
while (unlikely(hash >= qcount))
3509
hash -= qcount;
3510
return hash + qoffset;
3511
}
3512
3513
return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514
}
3515
3516
void skb_warn_bad_offload(const struct sk_buff *skb)
3517
{
3518
static const netdev_features_t null_features;
3519
struct net_device *dev = skb->dev;
3520
const char *name = "";
3521
3522
if (!net_ratelimit())
3523
return;
3524
3525
if (dev) {
3526
if (dev->dev.parent)
3527
name = dev_driver_string(dev->dev.parent);
3528
else
3529
name = netdev_name(dev);
3530
}
3531
skb_dump(KERN_WARNING, skb, false);
3532
WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533
name, dev ? &dev->features : &null_features,
3534
skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535
}
3536
3537
/*
3538
* Invalidate hardware checksum when packet is to be mangled, and
3539
* complete checksum manually on outgoing path.
3540
*/
3541
int skb_checksum_help(struct sk_buff *skb)
3542
{
3543
__wsum csum;
3544
int ret = 0, offset;
3545
3546
if (skb->ip_summed == CHECKSUM_COMPLETE)
3547
goto out_set_summed;
3548
3549
if (unlikely(skb_is_gso(skb))) {
3550
skb_warn_bad_offload(skb);
3551
return -EINVAL;
3552
}
3553
3554
if (!skb_frags_readable(skb)) {
3555
return -EFAULT;
3556
}
3557
3558
/* Before computing a checksum, we should make sure no frag could
3559
* be modified by an external entity : checksum could be wrong.
3560
*/
3561
if (skb_has_shared_frag(skb)) {
3562
ret = __skb_linearize(skb);
3563
if (ret)
3564
goto out;
3565
}
3566
3567
offset = skb_checksum_start_offset(skb);
3568
ret = -EINVAL;
3569
if (unlikely(offset >= skb_headlen(skb))) {
3570
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571
WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572
offset, skb_headlen(skb));
3573
goto out;
3574
}
3575
csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577
offset += skb->csum_offset;
3578
if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580
WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581
offset + sizeof(__sum16), skb_headlen(skb));
3582
goto out;
3583
}
3584
ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585
if (ret)
3586
goto out;
3587
3588
*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589
out_set_summed:
3590
skb->ip_summed = CHECKSUM_NONE;
3591
out:
3592
return ret;
3593
}
3594
EXPORT_SYMBOL(skb_checksum_help);
3595
3596
#ifdef CONFIG_NET_CRC32C
3597
int skb_crc32c_csum_help(struct sk_buff *skb)
3598
{
3599
u32 crc;
3600
int ret = 0, offset, start;
3601
3602
if (skb->ip_summed != CHECKSUM_PARTIAL)
3603
goto out;
3604
3605
if (unlikely(skb_is_gso(skb)))
3606
goto out;
3607
3608
/* Before computing a checksum, we should make sure no frag could
3609
* be modified by an external entity : checksum could be wrong.
3610
*/
3611
if (unlikely(skb_has_shared_frag(skb))) {
3612
ret = __skb_linearize(skb);
3613
if (ret)
3614
goto out;
3615
}
3616
start = skb_checksum_start_offset(skb);
3617
offset = start + offsetof(struct sctphdr, checksum);
3618
if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619
ret = -EINVAL;
3620
goto out;
3621
}
3622
3623
ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624
if (ret)
3625
goto out;
3626
3627
crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628
*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629
skb_reset_csum_not_inet(skb);
3630
out:
3631
return ret;
3632
}
3633
EXPORT_SYMBOL(skb_crc32c_csum_help);
3634
#endif /* CONFIG_NET_CRC32C */
3635
3636
__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637
{
3638
__be16 type = skb->protocol;
3639
3640
/* Tunnel gso handlers can set protocol to ethernet. */
3641
if (type == htons(ETH_P_TEB)) {
3642
struct ethhdr *eth;
3643
3644
if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645
return 0;
3646
3647
eth = (struct ethhdr *)skb->data;
3648
type = eth->h_proto;
3649
}
3650
3651
return vlan_get_protocol_and_depth(skb, type, depth);
3652
}
3653
3654
3655
/* Take action when hardware reception checksum errors are detected. */
3656
#ifdef CONFIG_BUG
3657
static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658
{
3659
netdev_err(dev, "hw csum failure\n");
3660
skb_dump(KERN_ERR, skb, true);
3661
dump_stack();
3662
}
3663
3664
void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665
{
3666
DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667
}
3668
EXPORT_SYMBOL(netdev_rx_csum_fault);
3669
#endif
3670
3671
/* XXX: check that highmem exists at all on the given machine. */
3672
static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673
{
3674
#ifdef CONFIG_HIGHMEM
3675
int i;
3676
3677
if (!(dev->features & NETIF_F_HIGHDMA)) {
3678
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680
struct page *page = skb_frag_page(frag);
3681
3682
if (page && PageHighMem(page))
3683
return 1;
3684
}
3685
}
3686
#endif
3687
return 0;
3688
}
3689
3690
/* If MPLS offload request, verify we are testing hardware MPLS features
3691
* instead of standard features for the netdev.
3692
*/
3693
#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694
static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695
netdev_features_t features,
3696
__be16 type)
3697
{
3698
if (eth_p_mpls(type))
3699
features &= skb->dev->mpls_features;
3700
3701
return features;
3702
}
3703
#else
3704
static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705
netdev_features_t features,
3706
__be16 type)
3707
{
3708
return features;
3709
}
3710
#endif
3711
3712
static netdev_features_t harmonize_features(struct sk_buff *skb,
3713
netdev_features_t features)
3714
{
3715
__be16 type;
3716
3717
type = skb_network_protocol(skb, NULL);
3718
features = net_mpls_features(skb, features, type);
3719
3720
if (skb->ip_summed != CHECKSUM_NONE &&
3721
!can_checksum_protocol(features, type)) {
3722
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723
}
3724
if (illegal_highdma(skb->dev, skb))
3725
features &= ~NETIF_F_SG;
3726
3727
return features;
3728
}
3729
3730
netdev_features_t passthru_features_check(struct sk_buff *skb,
3731
struct net_device *dev,
3732
netdev_features_t features)
3733
{
3734
return features;
3735
}
3736
EXPORT_SYMBOL(passthru_features_check);
3737
3738
static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739
struct net_device *dev,
3740
netdev_features_t features)
3741
{
3742
return vlan_features_check(skb, features);
3743
}
3744
3745
static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746
struct net_device *dev,
3747
netdev_features_t features)
3748
{
3749
u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751
if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752
return features & ~NETIF_F_GSO_MASK;
3753
3754
if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755
return features & ~NETIF_F_GSO_MASK;
3756
3757
if (!skb_shinfo(skb)->gso_type) {
3758
skb_warn_bad_offload(skb);
3759
return features & ~NETIF_F_GSO_MASK;
3760
}
3761
3762
/* Support for GSO partial features requires software
3763
* intervention before we can actually process the packets
3764
* so we need to strip support for any partial features now
3765
* and we can pull them back in after we have partially
3766
* segmented the frame.
3767
*/
3768
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769
features &= ~dev->gso_partial_features;
3770
3771
/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3772
* has the potential to be fragmented so that TSO does not generate
3773
* segments with the same ID. For encapsulated packets, the ID mangling
3774
* feature is guaranteed not to use the same ID for the outer IPv4
3775
* headers of the generated segments if the headers have the potential
3776
* to be fragmented, so there is no need to clear the IPv4 ID mangling
3777
* feature (see the section about NETIF_F_TSO_MANGLEID in
3778
* segmentation-offloads.rst).
3779
*/
3780
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3781
struct iphdr *iph = skb->encapsulation ?
3782
inner_ip_hdr(skb) : ip_hdr(skb);
3783
3784
if (!(iph->frag_off & htons(IP_DF)))
3785
features &= ~NETIF_F_TSO_MANGLEID;
3786
}
3787
3788
/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3789
* so neither does TSO that depends on it.
3790
*/
3791
if (features & NETIF_F_IPV6_CSUM &&
3792
(skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3793
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3794
vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3795
skb_transport_header_was_set(skb) &&
3796
skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3797
!ipv6_has_hopopt_jumbo(skb))
3798
features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3799
3800
return features;
3801
}
3802
3803
netdev_features_t netif_skb_features(struct sk_buff *skb)
3804
{
3805
struct net_device *dev = skb->dev;
3806
netdev_features_t features = dev->features;
3807
3808
if (skb_is_gso(skb))
3809
features = gso_features_check(skb, dev, features);
3810
3811
/* If encapsulation offload request, verify we are testing
3812
* hardware encapsulation features instead of standard
3813
* features for the netdev
3814
*/
3815
if (skb->encapsulation)
3816
features &= dev->hw_enc_features;
3817
3818
if (skb_vlan_tagged(skb))
3819
features = netdev_intersect_features(features,
3820
dev->vlan_features |
3821
NETIF_F_HW_VLAN_CTAG_TX |
3822
NETIF_F_HW_VLAN_STAG_TX);
3823
3824
if (dev->netdev_ops->ndo_features_check)
3825
features &= dev->netdev_ops->ndo_features_check(skb, dev,
3826
features);
3827
else
3828
features &= dflt_features_check(skb, dev, features);
3829
3830
return harmonize_features(skb, features);
3831
}
3832
EXPORT_SYMBOL(netif_skb_features);
3833
3834
static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3835
struct netdev_queue *txq, bool more)
3836
{
3837
unsigned int len;
3838
int rc;
3839
3840
if (dev_nit_active_rcu(dev))
3841
dev_queue_xmit_nit(skb, dev);
3842
3843
len = skb->len;
3844
trace_net_dev_start_xmit(skb, dev);
3845
rc = netdev_start_xmit(skb, dev, txq, more);
3846
trace_net_dev_xmit(skb, rc, dev, len);
3847
3848
return rc;
3849
}
3850
3851
struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3852
struct netdev_queue *txq, int *ret)
3853
{
3854
struct sk_buff *skb = first;
3855
int rc = NETDEV_TX_OK;
3856
3857
while (skb) {
3858
struct sk_buff *next = skb->next;
3859
3860
skb_mark_not_on_list(skb);
3861
rc = xmit_one(skb, dev, txq, next != NULL);
3862
if (unlikely(!dev_xmit_complete(rc))) {
3863
skb->next = next;
3864
goto out;
3865
}
3866
3867
skb = next;
3868
if (netif_tx_queue_stopped(txq) && skb) {
3869
rc = NETDEV_TX_BUSY;
3870
break;
3871
}
3872
}
3873
3874
out:
3875
*ret = rc;
3876
return skb;
3877
}
3878
3879
static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3880
netdev_features_t features)
3881
{
3882
if (skb_vlan_tag_present(skb) &&
3883
!vlan_hw_offload_capable(features, skb->vlan_proto))
3884
skb = __vlan_hwaccel_push_inside(skb);
3885
return skb;
3886
}
3887
3888
int skb_csum_hwoffload_help(struct sk_buff *skb,
3889
const netdev_features_t features)
3890
{
3891
if (unlikely(skb_csum_is_sctp(skb)))
3892
return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3893
skb_crc32c_csum_help(skb);
3894
3895
if (features & NETIF_F_HW_CSUM)
3896
return 0;
3897
3898
if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3899
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3900
skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3901
!ipv6_has_hopopt_jumbo(skb))
3902
goto sw_checksum;
3903
3904
switch (skb->csum_offset) {
3905
case offsetof(struct tcphdr, check):
3906
case offsetof(struct udphdr, check):
3907
return 0;
3908
}
3909
}
3910
3911
sw_checksum:
3912
return skb_checksum_help(skb);
3913
}
3914
EXPORT_SYMBOL(skb_csum_hwoffload_help);
3915
3916
/* Checks if this SKB belongs to an HW offloaded socket
3917
* and whether any SW fallbacks are required based on dev.
3918
* Check decrypted mark in case skb_orphan() cleared socket.
3919
*/
3920
static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3921
struct net_device *dev)
3922
{
3923
#ifdef CONFIG_SOCK_VALIDATE_XMIT
3924
struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3925
struct sk_buff *skb);
3926
struct sock *sk = skb->sk;
3927
3928
sk_validate = NULL;
3929
if (sk) {
3930
if (sk_fullsock(sk))
3931
sk_validate = sk->sk_validate_xmit_skb;
3932
else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3933
sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3934
}
3935
3936
if (sk_validate) {
3937
skb = sk_validate(sk, dev, skb);
3938
} else if (unlikely(skb_is_decrypted(skb))) {
3939
pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3940
kfree_skb(skb);
3941
skb = NULL;
3942
}
3943
#endif
3944
3945
return skb;
3946
}
3947
3948
static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3949
struct net_device *dev)
3950
{
3951
struct skb_shared_info *shinfo;
3952
struct net_iov *niov;
3953
3954
if (likely(skb_frags_readable(skb)))
3955
goto out;
3956
3957
if (!dev->netmem_tx)
3958
goto out_free;
3959
3960
shinfo = skb_shinfo(skb);
3961
3962
if (shinfo->nr_frags > 0) {
3963
niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3964
if (net_is_devmem_iov(niov) &&
3965
net_devmem_iov_binding(niov)->dev != dev)
3966
goto out_free;
3967
}
3968
3969
out:
3970
return skb;
3971
3972
out_free:
3973
kfree_skb(skb);
3974
return NULL;
3975
}
3976
3977
static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3978
{
3979
netdev_features_t features;
3980
3981
skb = validate_xmit_unreadable_skb(skb, dev);
3982
if (unlikely(!skb))
3983
goto out_null;
3984
3985
features = netif_skb_features(skb);
3986
skb = validate_xmit_vlan(skb, features);
3987
if (unlikely(!skb))
3988
goto out_null;
3989
3990
skb = sk_validate_xmit_skb(skb, dev);
3991
if (unlikely(!skb))
3992
goto out_null;
3993
3994
if (netif_needs_gso(skb, features)) {
3995
struct sk_buff *segs;
3996
3997
segs = skb_gso_segment(skb, features);
3998
if (IS_ERR(segs)) {
3999
goto out_kfree_skb;
4000
} else if (segs) {
4001
consume_skb(skb);
4002
skb = segs;
4003
}
4004
} else {
4005
if (skb_needs_linearize(skb, features) &&
4006
__skb_linearize(skb))
4007
goto out_kfree_skb;
4008
4009
/* If packet is not checksummed and device does not
4010
* support checksumming for this protocol, complete
4011
* checksumming here.
4012
*/
4013
if (skb->ip_summed == CHECKSUM_PARTIAL) {
4014
if (skb->encapsulation)
4015
skb_set_inner_transport_header(skb,
4016
skb_checksum_start_offset(skb));
4017
else
4018
skb_set_transport_header(skb,
4019
skb_checksum_start_offset(skb));
4020
if (skb_csum_hwoffload_help(skb, features))
4021
goto out_kfree_skb;
4022
}
4023
}
4024
4025
skb = validate_xmit_xfrm(skb, features, again);
4026
4027
return skb;
4028
4029
out_kfree_skb:
4030
kfree_skb(skb);
4031
out_null:
4032
dev_core_stats_tx_dropped_inc(dev);
4033
return NULL;
4034
}
4035
4036
struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4037
{
4038
struct sk_buff *next, *head = NULL, *tail;
4039
4040
for (; skb != NULL; skb = next) {
4041
next = skb->next;
4042
skb_mark_not_on_list(skb);
4043
4044
/* in case skb won't be segmented, point to itself */
4045
skb->prev = skb;
4046
4047
skb = validate_xmit_skb(skb, dev, again);
4048
if (!skb)
4049
continue;
4050
4051
if (!head)
4052
head = skb;
4053
else
4054
tail->next = skb;
4055
/* If skb was segmented, skb->prev points to
4056
* the last segment. If not, it still contains skb.
4057
*/
4058
tail = skb->prev;
4059
}
4060
return head;
4061
}
4062
EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4063
4064
static void qdisc_pkt_len_init(struct sk_buff *skb)
4065
{
4066
const struct skb_shared_info *shinfo = skb_shinfo(skb);
4067
4068
qdisc_skb_cb(skb)->pkt_len = skb->len;
4069
4070
/* To get more precise estimation of bytes sent on wire,
4071
* we add to pkt_len the headers size of all segments
4072
*/
4073
if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4074
u16 gso_segs = shinfo->gso_segs;
4075
unsigned int hdr_len;
4076
4077
/* mac layer + network layer */
4078
if (!skb->encapsulation)
4079
hdr_len = skb_transport_offset(skb);
4080
else
4081
hdr_len = skb_inner_transport_offset(skb);
4082
4083
/* + transport layer */
4084
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4085
const struct tcphdr *th;
4086
struct tcphdr _tcphdr;
4087
4088
th = skb_header_pointer(skb, hdr_len,
4089
sizeof(_tcphdr), &_tcphdr);
4090
if (likely(th))
4091
hdr_len += __tcp_hdrlen(th);
4092
} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4093
struct udphdr _udphdr;
4094
4095
if (skb_header_pointer(skb, hdr_len,
4096
sizeof(_udphdr), &_udphdr))
4097
hdr_len += sizeof(struct udphdr);
4098
}
4099
4100
if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4101
int payload = skb->len - hdr_len;
4102
4103
/* Malicious packet. */
4104
if (payload <= 0)
4105
return;
4106
gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4107
}
4108
qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4109
}
4110
}
4111
4112
static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4113
struct sk_buff **to_free,
4114
struct netdev_queue *txq)
4115
{
4116
int rc;
4117
4118
rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4119
if (rc == NET_XMIT_SUCCESS)
4120
trace_qdisc_enqueue(q, txq, skb);
4121
return rc;
4122
}
4123
4124
static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4125
struct net_device *dev,
4126
struct netdev_queue *txq)
4127
{
4128
spinlock_t *root_lock = qdisc_lock(q);
4129
struct sk_buff *to_free = NULL;
4130
bool contended;
4131
int rc;
4132
4133
qdisc_calculate_pkt_len(skb, q);
4134
4135
tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4136
4137
if (q->flags & TCQ_F_NOLOCK) {
4138
if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4139
qdisc_run_begin(q)) {
4140
/* Retest nolock_qdisc_is_empty() within the protection
4141
* of q->seqlock to protect from racing with requeuing.
4142
*/
4143
if (unlikely(!nolock_qdisc_is_empty(q))) {
4144
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4145
__qdisc_run(q);
4146
qdisc_run_end(q);
4147
4148
goto no_lock_out;
4149
}
4150
4151
qdisc_bstats_cpu_update(q, skb);
4152
if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4153
!nolock_qdisc_is_empty(q))
4154
__qdisc_run(q);
4155
4156
qdisc_run_end(q);
4157
return NET_XMIT_SUCCESS;
4158
}
4159
4160
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4161
qdisc_run(q);
4162
4163
no_lock_out:
4164
if (unlikely(to_free))
4165
kfree_skb_list_reason(to_free,
4166
tcf_get_drop_reason(to_free));
4167
return rc;
4168
}
4169
4170
if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4171
kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4172
return NET_XMIT_DROP;
4173
}
4174
/*
4175
* Heuristic to force contended enqueues to serialize on a
4176
* separate lock before trying to get qdisc main lock.
4177
* This permits qdisc->running owner to get the lock more
4178
* often and dequeue packets faster.
4179
* On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4180
* and then other tasks will only enqueue packets. The packets will be
4181
* sent after the qdisc owner is scheduled again. To prevent this
4182
* scenario the task always serialize on the lock.
4183
*/
4184
contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4185
if (unlikely(contended))
4186
spin_lock(&q->busylock);
4187
4188
spin_lock(root_lock);
4189
if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4190
__qdisc_drop(skb, &to_free);
4191
rc = NET_XMIT_DROP;
4192
} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4193
qdisc_run_begin(q)) {
4194
/*
4195
* This is a work-conserving queue; there are no old skbs
4196
* waiting to be sent out; and the qdisc is not running -
4197
* xmit the skb directly.
4198
*/
4199
4200
qdisc_bstats_update(q, skb);
4201
4202
if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4203
if (unlikely(contended)) {
4204
spin_unlock(&q->busylock);
4205
contended = false;
4206
}
4207
__qdisc_run(q);
4208
}
4209
4210
qdisc_run_end(q);
4211
rc = NET_XMIT_SUCCESS;
4212
} else {
4213
WRITE_ONCE(q->owner, smp_processor_id());
4214
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4215
WRITE_ONCE(q->owner, -1);
4216
if (qdisc_run_begin(q)) {
4217
if (unlikely(contended)) {
4218
spin_unlock(&q->busylock);
4219
contended = false;
4220
}
4221
__qdisc_run(q);
4222
qdisc_run_end(q);
4223
}
4224
}
4225
spin_unlock(root_lock);
4226
if (unlikely(to_free))
4227
kfree_skb_list_reason(to_free,
4228
tcf_get_drop_reason(to_free));
4229
if (unlikely(contended))
4230
spin_unlock(&q->busylock);
4231
return rc;
4232
}
4233
4234
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4235
static void skb_update_prio(struct sk_buff *skb)
4236
{
4237
const struct netprio_map *map;
4238
const struct sock *sk;
4239
unsigned int prioidx;
4240
4241
if (skb->priority)
4242
return;
4243
map = rcu_dereference_bh(skb->dev->priomap);
4244
if (!map)
4245
return;
4246
sk = skb_to_full_sk(skb);
4247
if (!sk)
4248
return;
4249
4250
prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4251
4252
if (prioidx < map->priomap_len)
4253
skb->priority = map->priomap[prioidx];
4254
}
4255
#else
4256
#define skb_update_prio(skb)
4257
#endif
4258
4259
/**
4260
* dev_loopback_xmit - loop back @skb
4261
* @net: network namespace this loopback is happening in
4262
* @sk: sk needed to be a netfilter okfn
4263
* @skb: buffer to transmit
4264
*/
4265
int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4266
{
4267
skb_reset_mac_header(skb);
4268
__skb_pull(skb, skb_network_offset(skb));
4269
skb->pkt_type = PACKET_LOOPBACK;
4270
if (skb->ip_summed == CHECKSUM_NONE)
4271
skb->ip_summed = CHECKSUM_UNNECESSARY;
4272
DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4273
skb_dst_force(skb);
4274
netif_rx(skb);
4275
return 0;
4276
}
4277
EXPORT_SYMBOL(dev_loopback_xmit);
4278
4279
#ifdef CONFIG_NET_EGRESS
4280
static struct netdev_queue *
4281
netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4282
{
4283
int qm = skb_get_queue_mapping(skb);
4284
4285
return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4286
}
4287
4288
#ifndef CONFIG_PREEMPT_RT
4289
static bool netdev_xmit_txqueue_skipped(void)
4290
{
4291
return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4292
}
4293
4294
void netdev_xmit_skip_txqueue(bool skip)
4295
{
4296
__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4297
}
4298
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4299
4300
#else
4301
static bool netdev_xmit_txqueue_skipped(void)
4302
{
4303
return current->net_xmit.skip_txqueue;
4304
}
4305
4306
void netdev_xmit_skip_txqueue(bool skip)
4307
{
4308
current->net_xmit.skip_txqueue = skip;
4309
}
4310
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4311
#endif
4312
#endif /* CONFIG_NET_EGRESS */
4313
4314
#ifdef CONFIG_NET_XGRESS
4315
static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4316
enum skb_drop_reason *drop_reason)
4317
{
4318
int ret = TC_ACT_UNSPEC;
4319
#ifdef CONFIG_NET_CLS_ACT
4320
struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4321
struct tcf_result res;
4322
4323
if (!miniq)
4324
return ret;
4325
4326
/* Global bypass */
4327
if (!static_branch_likely(&tcf_sw_enabled_key))
4328
return ret;
4329
4330
/* Block-wise bypass */
4331
if (tcf_block_bypass_sw(miniq->block))
4332
return ret;
4333
4334
tc_skb_cb(skb)->mru = 0;
4335
tc_skb_cb(skb)->post_ct = false;
4336
tcf_set_drop_reason(skb, *drop_reason);
4337
4338
mini_qdisc_bstats_cpu_update(miniq, skb);
4339
ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4340
/* Only tcf related quirks below. */
4341
switch (ret) {
4342
case TC_ACT_SHOT:
4343
*drop_reason = tcf_get_drop_reason(skb);
4344
mini_qdisc_qstats_cpu_drop(miniq);
4345
break;
4346
case TC_ACT_OK:
4347
case TC_ACT_RECLASSIFY:
4348
skb->tc_index = TC_H_MIN(res.classid);
4349
break;
4350
}
4351
#endif /* CONFIG_NET_CLS_ACT */
4352
return ret;
4353
}
4354
4355
static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4356
4357
void tcx_inc(void)
4358
{
4359
static_branch_inc(&tcx_needed_key);
4360
}
4361
4362
void tcx_dec(void)
4363
{
4364
static_branch_dec(&tcx_needed_key);
4365
}
4366
4367
static __always_inline enum tcx_action_base
4368
tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4369
const bool needs_mac)
4370
{
4371
const struct bpf_mprog_fp *fp;
4372
const struct bpf_prog *prog;
4373
int ret = TCX_NEXT;
4374
4375
if (needs_mac)
4376
__skb_push(skb, skb->mac_len);
4377
bpf_mprog_foreach_prog(entry, fp, prog) {
4378
bpf_compute_data_pointers(skb);
4379
ret = bpf_prog_run(prog, skb);
4380
if (ret != TCX_NEXT)
4381
break;
4382
}
4383
if (needs_mac)
4384
__skb_pull(skb, skb->mac_len);
4385
return tcx_action_code(skb, ret);
4386
}
4387
4388
static __always_inline struct sk_buff *
4389
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4390
struct net_device *orig_dev, bool *another)
4391
{
4392
struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4393
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4394
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4395
int sch_ret;
4396
4397
if (!entry)
4398
return skb;
4399
4400
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4401
if (*pt_prev) {
4402
*ret = deliver_skb(skb, *pt_prev, orig_dev);
4403
*pt_prev = NULL;
4404
}
4405
4406
qdisc_skb_cb(skb)->pkt_len = skb->len;
4407
tcx_set_ingress(skb, true);
4408
4409
if (static_branch_unlikely(&tcx_needed_key)) {
4410
sch_ret = tcx_run(entry, skb, true);
4411
if (sch_ret != TC_ACT_UNSPEC)
4412
goto ingress_verdict;
4413
}
4414
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4415
ingress_verdict:
4416
switch (sch_ret) {
4417
case TC_ACT_REDIRECT:
4418
/* skb_mac_header check was done by BPF, so we can safely
4419
* push the L2 header back before redirecting to another
4420
* netdev.
4421
*/
4422
__skb_push(skb, skb->mac_len);
4423
if (skb_do_redirect(skb) == -EAGAIN) {
4424
__skb_pull(skb, skb->mac_len);
4425
*another = true;
4426
break;
4427
}
4428
*ret = NET_RX_SUCCESS;
4429
bpf_net_ctx_clear(bpf_net_ctx);
4430
return NULL;
4431
case TC_ACT_SHOT:
4432
kfree_skb_reason(skb, drop_reason);
4433
*ret = NET_RX_DROP;
4434
bpf_net_ctx_clear(bpf_net_ctx);
4435
return NULL;
4436
/* used by tc_run */
4437
case TC_ACT_STOLEN:
4438
case TC_ACT_QUEUED:
4439
case TC_ACT_TRAP:
4440
consume_skb(skb);
4441
fallthrough;
4442
case TC_ACT_CONSUMED:
4443
*ret = NET_RX_SUCCESS;
4444
bpf_net_ctx_clear(bpf_net_ctx);
4445
return NULL;
4446
}
4447
bpf_net_ctx_clear(bpf_net_ctx);
4448
4449
return skb;
4450
}
4451
4452
static __always_inline struct sk_buff *
4453
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4454
{
4455
struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4456
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4457
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4458
int sch_ret;
4459
4460
if (!entry)
4461
return skb;
4462
4463
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4464
4465
/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4466
* already set by the caller.
4467
*/
4468
if (static_branch_unlikely(&tcx_needed_key)) {
4469
sch_ret = tcx_run(entry, skb, false);
4470
if (sch_ret != TC_ACT_UNSPEC)
4471
goto egress_verdict;
4472
}
4473
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4474
egress_verdict:
4475
switch (sch_ret) {
4476
case TC_ACT_REDIRECT:
4477
/* No need to push/pop skb's mac_header here on egress! */
4478
skb_do_redirect(skb);
4479
*ret = NET_XMIT_SUCCESS;
4480
bpf_net_ctx_clear(bpf_net_ctx);
4481
return NULL;
4482
case TC_ACT_SHOT:
4483
kfree_skb_reason(skb, drop_reason);
4484
*ret = NET_XMIT_DROP;
4485
bpf_net_ctx_clear(bpf_net_ctx);
4486
return NULL;
4487
/* used by tc_run */
4488
case TC_ACT_STOLEN:
4489
case TC_ACT_QUEUED:
4490
case TC_ACT_TRAP:
4491
consume_skb(skb);
4492
fallthrough;
4493
case TC_ACT_CONSUMED:
4494
*ret = NET_XMIT_SUCCESS;
4495
bpf_net_ctx_clear(bpf_net_ctx);
4496
return NULL;
4497
}
4498
bpf_net_ctx_clear(bpf_net_ctx);
4499
4500
return skb;
4501
}
4502
#else
4503
static __always_inline struct sk_buff *
4504
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4505
struct net_device *orig_dev, bool *another)
4506
{
4507
return skb;
4508
}
4509
4510
static __always_inline struct sk_buff *
4511
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4512
{
4513
return skb;
4514
}
4515
#endif /* CONFIG_NET_XGRESS */
4516
4517
#ifdef CONFIG_XPS
4518
static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4519
struct xps_dev_maps *dev_maps, unsigned int tci)
4520
{
4521
int tc = netdev_get_prio_tc_map(dev, skb->priority);
4522
struct xps_map *map;
4523
int queue_index = -1;
4524
4525
if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4526
return queue_index;
4527
4528
tci *= dev_maps->num_tc;
4529
tci += tc;
4530
4531
map = rcu_dereference(dev_maps->attr_map[tci]);
4532
if (map) {
4533
if (map->len == 1)
4534
queue_index = map->queues[0];
4535
else
4536
queue_index = map->queues[reciprocal_scale(
4537
skb_get_hash(skb), map->len)];
4538
if (unlikely(queue_index >= dev->real_num_tx_queues))
4539
queue_index = -1;
4540
}
4541
return queue_index;
4542
}
4543
#endif
4544
4545
static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4546
struct sk_buff *skb)
4547
{
4548
#ifdef CONFIG_XPS
4549
struct xps_dev_maps *dev_maps;
4550
struct sock *sk = skb->sk;
4551
int queue_index = -1;
4552
4553
if (!static_key_false(&xps_needed))
4554
return -1;
4555
4556
rcu_read_lock();
4557
if (!static_key_false(&xps_rxqs_needed))
4558
goto get_cpus_map;
4559
4560
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4561
if (dev_maps) {
4562
int tci = sk_rx_queue_get(sk);
4563
4564
if (tci >= 0)
4565
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4566
tci);
4567
}
4568
4569
get_cpus_map:
4570
if (queue_index < 0) {
4571
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4572
if (dev_maps) {
4573
unsigned int tci = skb->sender_cpu - 1;
4574
4575
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4576
tci);
4577
}
4578
}
4579
rcu_read_unlock();
4580
4581
return queue_index;
4582
#else
4583
return -1;
4584
#endif
4585
}
4586
4587
u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4588
struct net_device *sb_dev)
4589
{
4590
return 0;
4591
}
4592
EXPORT_SYMBOL(dev_pick_tx_zero);
4593
4594
u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4595
struct net_device *sb_dev)
4596
{
4597
struct sock *sk = skb->sk;
4598
int queue_index = sk_tx_queue_get(sk);
4599
4600
sb_dev = sb_dev ? : dev;
4601
4602
if (queue_index < 0 || skb->ooo_okay ||
4603
queue_index >= dev->real_num_tx_queues) {
4604
int new_index = get_xps_queue(dev, sb_dev, skb);
4605
4606
if (new_index < 0)
4607
new_index = skb_tx_hash(dev, sb_dev, skb);
4608
4609
if (queue_index != new_index && sk &&
4610
sk_fullsock(sk) &&
4611
rcu_access_pointer(sk->sk_dst_cache))
4612
sk_tx_queue_set(sk, new_index);
4613
4614
queue_index = new_index;
4615
}
4616
4617
return queue_index;
4618
}
4619
EXPORT_SYMBOL(netdev_pick_tx);
4620
4621
struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4622
struct sk_buff *skb,
4623
struct net_device *sb_dev)
4624
{
4625
int queue_index = 0;
4626
4627
#ifdef CONFIG_XPS
4628
u32 sender_cpu = skb->sender_cpu - 1;
4629
4630
if (sender_cpu >= (u32)NR_CPUS)
4631
skb->sender_cpu = raw_smp_processor_id() + 1;
4632
#endif
4633
4634
if (dev->real_num_tx_queues != 1) {
4635
const struct net_device_ops *ops = dev->netdev_ops;
4636
4637
if (ops->ndo_select_queue)
4638
queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4639
else
4640
queue_index = netdev_pick_tx(dev, skb, sb_dev);
4641
4642
queue_index = netdev_cap_txqueue(dev, queue_index);
4643
}
4644
4645
skb_set_queue_mapping(skb, queue_index);
4646
return netdev_get_tx_queue(dev, queue_index);
4647
}
4648
4649
/**
4650
* __dev_queue_xmit() - transmit a buffer
4651
* @skb: buffer to transmit
4652
* @sb_dev: suboordinate device used for L2 forwarding offload
4653
*
4654
* Queue a buffer for transmission to a network device. The caller must
4655
* have set the device and priority and built the buffer before calling
4656
* this function. The function can be called from an interrupt.
4657
*
4658
* When calling this method, interrupts MUST be enabled. This is because
4659
* the BH enable code must have IRQs enabled so that it will not deadlock.
4660
*
4661
* Regardless of the return value, the skb is consumed, so it is currently
4662
* difficult to retry a send to this method. (You can bump the ref count
4663
* before sending to hold a reference for retry if you are careful.)
4664
*
4665
* Return:
4666
* * 0 - buffer successfully transmitted
4667
* * positive qdisc return code - NET_XMIT_DROP etc.
4668
* * negative errno - other errors
4669
*/
4670
int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4671
{
4672
struct net_device *dev = skb->dev;
4673
struct netdev_queue *txq = NULL;
4674
struct Qdisc *q;
4675
int rc = -ENOMEM;
4676
bool again = false;
4677
4678
skb_reset_mac_header(skb);
4679
skb_assert_len(skb);
4680
4681
if (unlikely(skb_shinfo(skb)->tx_flags &
4682
(SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4683
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4684
4685
/* Disable soft irqs for various locks below. Also
4686
* stops preemption for RCU.
4687
*/
4688
rcu_read_lock_bh();
4689
4690
skb_update_prio(skb);
4691
4692
qdisc_pkt_len_init(skb);
4693
tcx_set_ingress(skb, false);
4694
#ifdef CONFIG_NET_EGRESS
4695
if (static_branch_unlikely(&egress_needed_key)) {
4696
if (nf_hook_egress_active()) {
4697
skb = nf_hook_egress(skb, &rc, dev);
4698
if (!skb)
4699
goto out;
4700
}
4701
4702
netdev_xmit_skip_txqueue(false);
4703
4704
nf_skip_egress(skb, true);
4705
skb = sch_handle_egress(skb, &rc, dev);
4706
if (!skb)
4707
goto out;
4708
nf_skip_egress(skb, false);
4709
4710
if (netdev_xmit_txqueue_skipped())
4711
txq = netdev_tx_queue_mapping(dev, skb);
4712
}
4713
#endif
4714
/* If device/qdisc don't need skb->dst, release it right now while
4715
* its hot in this cpu cache.
4716
*/
4717
if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4718
skb_dst_drop(skb);
4719
else
4720
skb_dst_force(skb);
4721
4722
if (!txq)
4723
txq = netdev_core_pick_tx(dev, skb, sb_dev);
4724
4725
q = rcu_dereference_bh(txq->qdisc);
4726
4727
trace_net_dev_queue(skb);
4728
if (q->enqueue) {
4729
rc = __dev_xmit_skb(skb, q, dev, txq);
4730
goto out;
4731
}
4732
4733
/* The device has no queue. Common case for software devices:
4734
* loopback, all the sorts of tunnels...
4735
4736
* Really, it is unlikely that netif_tx_lock protection is necessary
4737
* here. (f.e. loopback and IP tunnels are clean ignoring statistics
4738
* counters.)
4739
* However, it is possible, that they rely on protection
4740
* made by us here.
4741
4742
* Check this and shot the lock. It is not prone from deadlocks.
4743
*Either shot noqueue qdisc, it is even simpler 8)
4744
*/
4745
if (dev->flags & IFF_UP) {
4746
int cpu = smp_processor_id(); /* ok because BHs are off */
4747
4748
/* Other cpus might concurrently change txq->xmit_lock_owner
4749
* to -1 or to their cpu id, but not to our id.
4750
*/
4751
if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4752
if (dev_xmit_recursion())
4753
goto recursion_alert;
4754
4755
skb = validate_xmit_skb(skb, dev, &again);
4756
if (!skb)
4757
goto out;
4758
4759
HARD_TX_LOCK(dev, txq, cpu);
4760
4761
if (!netif_xmit_stopped(txq)) {
4762
dev_xmit_recursion_inc();
4763
skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4764
dev_xmit_recursion_dec();
4765
if (dev_xmit_complete(rc)) {
4766
HARD_TX_UNLOCK(dev, txq);
4767
goto out;
4768
}
4769
}
4770
HARD_TX_UNLOCK(dev, txq);
4771
net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4772
dev->name);
4773
} else {
4774
/* Recursion is detected! It is possible,
4775
* unfortunately
4776
*/
4777
recursion_alert:
4778
net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4779
dev->name);
4780
}
4781
}
4782
4783
rc = -ENETDOWN;
4784
rcu_read_unlock_bh();
4785
4786
dev_core_stats_tx_dropped_inc(dev);
4787
kfree_skb_list(skb);
4788
return rc;
4789
out:
4790
rcu_read_unlock_bh();
4791
return rc;
4792
}
4793
EXPORT_SYMBOL(__dev_queue_xmit);
4794
4795
int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4796
{
4797
struct net_device *dev = skb->dev;
4798
struct sk_buff *orig_skb = skb;
4799
struct netdev_queue *txq;
4800
int ret = NETDEV_TX_BUSY;
4801
bool again = false;
4802
4803
if (unlikely(!netif_running(dev) ||
4804
!netif_carrier_ok(dev)))
4805
goto drop;
4806
4807
skb = validate_xmit_skb_list(skb, dev, &again);
4808
if (skb != orig_skb)
4809
goto drop;
4810
4811
skb_set_queue_mapping(skb, queue_id);
4812
txq = skb_get_tx_queue(dev, skb);
4813
4814
local_bh_disable();
4815
4816
dev_xmit_recursion_inc();
4817
HARD_TX_LOCK(dev, txq, smp_processor_id());
4818
if (!netif_xmit_frozen_or_drv_stopped(txq))
4819
ret = netdev_start_xmit(skb, dev, txq, false);
4820
HARD_TX_UNLOCK(dev, txq);
4821
dev_xmit_recursion_dec();
4822
4823
local_bh_enable();
4824
return ret;
4825
drop:
4826
dev_core_stats_tx_dropped_inc(dev);
4827
kfree_skb_list(skb);
4828
return NET_XMIT_DROP;
4829
}
4830
EXPORT_SYMBOL(__dev_direct_xmit);
4831
4832
/*************************************************************************
4833
* Receiver routines
4834
*************************************************************************/
4835
static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4836
4837
int weight_p __read_mostly = 64; /* old backlog weight */
4838
int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4839
int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4840
4841
/* Called with irq disabled */
4842
static inline void ____napi_schedule(struct softnet_data *sd,
4843
struct napi_struct *napi)
4844
{
4845
struct task_struct *thread;
4846
4847
lockdep_assert_irqs_disabled();
4848
4849
if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4850
/* Paired with smp_mb__before_atomic() in
4851
* napi_enable()/netif_set_threaded().
4852
* Use READ_ONCE() to guarantee a complete
4853
* read on napi->thread. Only call
4854
* wake_up_process() when it's not NULL.
4855
*/
4856
thread = READ_ONCE(napi->thread);
4857
if (thread) {
4858
if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4859
goto use_local_napi;
4860
4861
set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4862
wake_up_process(thread);
4863
return;
4864
}
4865
}
4866
4867
use_local_napi:
4868
DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4869
list_add_tail(&napi->poll_list, &sd->poll_list);
4870
WRITE_ONCE(napi->list_owner, smp_processor_id());
4871
/* If not called from net_rx_action()
4872
* we have to raise NET_RX_SOFTIRQ.
4873
*/
4874
if (!sd->in_net_rx_action)
4875
raise_softirq_irqoff(NET_RX_SOFTIRQ);
4876
}
4877
4878
#ifdef CONFIG_RPS
4879
4880
struct static_key_false rps_needed __read_mostly;
4881
EXPORT_SYMBOL(rps_needed);
4882
struct static_key_false rfs_needed __read_mostly;
4883
EXPORT_SYMBOL(rfs_needed);
4884
4885
static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4886
{
4887
return hash_32(hash, flow_table->log);
4888
}
4889
4890
#ifdef CONFIG_RFS_ACCEL
4891
/**
4892
* rps_flow_is_active - check whether the flow is recently active.
4893
* @rflow: Specific flow to check activity.
4894
* @flow_table: per-queue flowtable that @rflow belongs to.
4895
* @cpu: CPU saved in @rflow.
4896
*
4897
* If the CPU has processed many packets since the flow's last activity
4898
* (beyond 10 times the table size), the flow is considered stale.
4899
*
4900
* Return: true if flow was recently active.
4901
*/
4902
static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4903
struct rps_dev_flow_table *flow_table,
4904
unsigned int cpu)
4905
{
4906
unsigned int flow_last_active;
4907
unsigned int sd_input_head;
4908
4909
if (cpu >= nr_cpu_ids)
4910
return false;
4911
4912
sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4913
flow_last_active = READ_ONCE(rflow->last_qtail);
4914
4915
return (int)(sd_input_head - flow_last_active) <
4916
(int)(10 << flow_table->log);
4917
}
4918
#endif
4919
4920
static struct rps_dev_flow *
4921
set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4922
struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4923
u32 flow_id)
4924
{
4925
if (next_cpu < nr_cpu_ids) {
4926
u32 head;
4927
#ifdef CONFIG_RFS_ACCEL
4928
struct netdev_rx_queue *rxqueue;
4929
struct rps_dev_flow_table *flow_table;
4930
struct rps_dev_flow *old_rflow;
4931
struct rps_dev_flow *tmp_rflow;
4932
unsigned int tmp_cpu;
4933
u16 rxq_index;
4934
int rc;
4935
4936
/* Should we steer this flow to a different hardware queue? */
4937
if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4938
!(dev->features & NETIF_F_NTUPLE))
4939
goto out;
4940
rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4941
if (rxq_index == skb_get_rx_queue(skb))
4942
goto out;
4943
4944
rxqueue = dev->_rx + rxq_index;
4945
flow_table = rcu_dereference(rxqueue->rps_flow_table);
4946
if (!flow_table)
4947
goto out;
4948
4949
tmp_rflow = &flow_table->flows[flow_id];
4950
tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4951
4952
if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
4953
if (rps_flow_is_active(tmp_rflow, flow_table,
4954
tmp_cpu)) {
4955
if (hash != READ_ONCE(tmp_rflow->hash) ||
4956
next_cpu == tmp_cpu)
4957
goto out;
4958
}
4959
}
4960
4961
rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4962
rxq_index, flow_id);
4963
if (rc < 0)
4964
goto out;
4965
4966
old_rflow = rflow;
4967
rflow = tmp_rflow;
4968
WRITE_ONCE(rflow->filter, rc);
4969
WRITE_ONCE(rflow->hash, hash);
4970
4971
if (old_rflow->filter == rc)
4972
WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4973
out:
4974
#endif
4975
head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4976
rps_input_queue_tail_save(&rflow->last_qtail, head);
4977
}
4978
4979
WRITE_ONCE(rflow->cpu, next_cpu);
4980
return rflow;
4981
}
4982
4983
/*
4984
* get_rps_cpu is called from netif_receive_skb and returns the target
4985
* CPU from the RPS map of the receiving queue for a given skb.
4986
* rcu_read_lock must be held on entry.
4987
*/
4988
static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4989
struct rps_dev_flow **rflowp)
4990
{
4991
const struct rps_sock_flow_table *sock_flow_table;
4992
struct netdev_rx_queue *rxqueue = dev->_rx;
4993
struct rps_dev_flow_table *flow_table;
4994
struct rps_map *map;
4995
int cpu = -1;
4996
u32 flow_id;
4997
u32 tcpu;
4998
u32 hash;
4999
5000
if (skb_rx_queue_recorded(skb)) {
5001
u16 index = skb_get_rx_queue(skb);
5002
5003
if (unlikely(index >= dev->real_num_rx_queues)) {
5004
WARN_ONCE(dev->real_num_rx_queues > 1,
5005
"%s received packet on queue %u, but number "
5006
"of RX queues is %u\n",
5007
dev->name, index, dev->real_num_rx_queues);
5008
goto done;
5009
}
5010
rxqueue += index;
5011
}
5012
5013
/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5014
5015
flow_table = rcu_dereference(rxqueue->rps_flow_table);
5016
map = rcu_dereference(rxqueue->rps_map);
5017
if (!flow_table && !map)
5018
goto done;
5019
5020
skb_reset_network_header(skb);
5021
hash = skb_get_hash(skb);
5022
if (!hash)
5023
goto done;
5024
5025
sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5026
if (flow_table && sock_flow_table) {
5027
struct rps_dev_flow *rflow;
5028
u32 next_cpu;
5029
u32 ident;
5030
5031
/* First check into global flow table if there is a match.
5032
* This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5033
*/
5034
ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5035
if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5036
goto try_rps;
5037
5038
next_cpu = ident & net_hotdata.rps_cpu_mask;
5039
5040
/* OK, now we know there is a match,
5041
* we can look at the local (per receive queue) flow table
5042
*/
5043
flow_id = rfs_slot(hash, flow_table);
5044
rflow = &flow_table->flows[flow_id];
5045
tcpu = rflow->cpu;
5046
5047
/*
5048
* If the desired CPU (where last recvmsg was done) is
5049
* different from current CPU (one in the rx-queue flow
5050
* table entry), switch if one of the following holds:
5051
* - Current CPU is unset (>= nr_cpu_ids).
5052
* - Current CPU is offline.
5053
* - The current CPU's queue tail has advanced beyond the
5054
* last packet that was enqueued using this table entry.
5055
* This guarantees that all previous packets for the flow
5056
* have been dequeued, thus preserving in order delivery.
5057
*/
5058
if (unlikely(tcpu != next_cpu) &&
5059
(tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5060
((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5061
rflow->last_qtail)) >= 0)) {
5062
tcpu = next_cpu;
5063
rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5064
flow_id);
5065
}
5066
5067
if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5068
*rflowp = rflow;
5069
cpu = tcpu;
5070
goto done;
5071
}
5072
}
5073
5074
try_rps:
5075
5076
if (map) {
5077
tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5078
if (cpu_online(tcpu)) {
5079
cpu = tcpu;
5080
goto done;
5081
}
5082
}
5083
5084
done:
5085
return cpu;
5086
}
5087
5088
#ifdef CONFIG_RFS_ACCEL
5089
5090
/**
5091
* rps_may_expire_flow - check whether an RFS hardware filter may be removed
5092
* @dev: Device on which the filter was set
5093
* @rxq_index: RX queue index
5094
* @flow_id: Flow ID passed to ndo_rx_flow_steer()
5095
* @filter_id: Filter ID returned by ndo_rx_flow_steer()
5096
*
5097
* Drivers that implement ndo_rx_flow_steer() should periodically call
5098
* this function for each installed filter and remove the filters for
5099
* which it returns %true.
5100
*/
5101
bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5102
u32 flow_id, u16 filter_id)
5103
{
5104
struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5105
struct rps_dev_flow_table *flow_table;
5106
struct rps_dev_flow *rflow;
5107
bool expire = true;
5108
5109
rcu_read_lock();
5110
flow_table = rcu_dereference(rxqueue->rps_flow_table);
5111
if (flow_table && flow_id < (1UL << flow_table->log)) {
5112
unsigned int cpu;
5113
5114
rflow = &flow_table->flows[flow_id];
5115
cpu = READ_ONCE(rflow->cpu);
5116
if (READ_ONCE(rflow->filter) == filter_id &&
5117
rps_flow_is_active(rflow, flow_table, cpu))
5118
expire = false;
5119
}
5120
rcu_read_unlock();
5121
return expire;
5122
}
5123
EXPORT_SYMBOL(rps_may_expire_flow);
5124
5125
#endif /* CONFIG_RFS_ACCEL */
5126
5127
/* Called from hardirq (IPI) context */
5128
static void rps_trigger_softirq(void *data)
5129
{
5130
struct softnet_data *sd = data;
5131
5132
____napi_schedule(sd, &sd->backlog);
5133
/* Pairs with READ_ONCE() in softnet_seq_show() */
5134
WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5135
}
5136
5137
#endif /* CONFIG_RPS */
5138
5139
/* Called from hardirq (IPI) context */
5140
static void trigger_rx_softirq(void *data)
5141
{
5142
struct softnet_data *sd = data;
5143
5144
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5145
smp_store_release(&sd->defer_ipi_scheduled, 0);
5146
}
5147
5148
/*
5149
* After we queued a packet into sd->input_pkt_queue,
5150
* we need to make sure this queue is serviced soon.
5151
*
5152
* - If this is another cpu queue, link it to our rps_ipi_list,
5153
* and make sure we will process rps_ipi_list from net_rx_action().
5154
*
5155
* - If this is our own queue, NAPI schedule our backlog.
5156
* Note that this also raises NET_RX_SOFTIRQ.
5157
*/
5158
static void napi_schedule_rps(struct softnet_data *sd)
5159
{
5160
struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5161
5162
#ifdef CONFIG_RPS
5163
if (sd != mysd) {
5164
if (use_backlog_threads()) {
5165
__napi_schedule_irqoff(&sd->backlog);
5166
return;
5167
}
5168
5169
sd->rps_ipi_next = mysd->rps_ipi_list;
5170
mysd->rps_ipi_list = sd;
5171
5172
/* If not called from net_rx_action() or napi_threaded_poll()
5173
* we have to raise NET_RX_SOFTIRQ.
5174
*/
5175
if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5176
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5177
return;
5178
}
5179
#endif /* CONFIG_RPS */
5180
__napi_schedule_irqoff(&mysd->backlog);
5181
}
5182
5183
void kick_defer_list_purge(unsigned int cpu)
5184
{
5185
struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5186
unsigned long flags;
5187
5188
if (use_backlog_threads()) {
5189
backlog_lock_irq_save(sd, &flags);
5190
5191
if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5192
__napi_schedule_irqoff(&sd->backlog);
5193
5194
backlog_unlock_irq_restore(sd, &flags);
5195
5196
} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5197
smp_call_function_single_async(cpu, &sd->defer_csd);
5198
}
5199
}
5200
5201
#ifdef CONFIG_NET_FLOW_LIMIT
5202
int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5203
#endif
5204
5205
static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5206
{
5207
#ifdef CONFIG_NET_FLOW_LIMIT
5208
struct sd_flow_limit *fl;
5209
struct softnet_data *sd;
5210
unsigned int old_flow, new_flow;
5211
5212
if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5213
return false;
5214
5215
sd = this_cpu_ptr(&softnet_data);
5216
5217
rcu_read_lock();
5218
fl = rcu_dereference(sd->flow_limit);
5219
if (fl) {
5220
new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5221
old_flow = fl->history[fl->history_head];
5222
fl->history[fl->history_head] = new_flow;
5223
5224
fl->history_head++;
5225
fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5226
5227
if (likely(fl->buckets[old_flow]))
5228
fl->buckets[old_flow]--;
5229
5230
if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5231
/* Pairs with READ_ONCE() in softnet_seq_show() */
5232
WRITE_ONCE(fl->count, fl->count + 1);
5233
rcu_read_unlock();
5234
return true;
5235
}
5236
}
5237
rcu_read_unlock();
5238
#endif
5239
return false;
5240
}
5241
5242
/*
5243
* enqueue_to_backlog is called to queue an skb to a per CPU backlog
5244
* queue (may be a remote CPU queue).
5245
*/
5246
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5247
unsigned int *qtail)
5248
{
5249
enum skb_drop_reason reason;
5250
struct softnet_data *sd;
5251
unsigned long flags;
5252
unsigned int qlen;
5253
int max_backlog;
5254
u32 tail;
5255
5256
reason = SKB_DROP_REASON_DEV_READY;
5257
if (!netif_running(skb->dev))
5258
goto bad_dev;
5259
5260
reason = SKB_DROP_REASON_CPU_BACKLOG;
5261
sd = &per_cpu(softnet_data, cpu);
5262
5263
qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5264
max_backlog = READ_ONCE(net_hotdata.max_backlog);
5265
if (unlikely(qlen > max_backlog))
5266
goto cpu_backlog_drop;
5267
backlog_lock_irq_save(sd, &flags);
5268
qlen = skb_queue_len(&sd->input_pkt_queue);
5269
if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5270
if (!qlen) {
5271
/* Schedule NAPI for backlog device. We can use
5272
* non atomic operation as we own the queue lock.
5273
*/
5274
if (!__test_and_set_bit(NAPI_STATE_SCHED,
5275
&sd->backlog.state))
5276
napi_schedule_rps(sd);
5277
}
5278
__skb_queue_tail(&sd->input_pkt_queue, skb);
5279
tail = rps_input_queue_tail_incr(sd);
5280
backlog_unlock_irq_restore(sd, &flags);
5281
5282
/* save the tail outside of the critical section */
5283
rps_input_queue_tail_save(qtail, tail);
5284
return NET_RX_SUCCESS;
5285
}
5286
5287
backlog_unlock_irq_restore(sd, &flags);
5288
5289
cpu_backlog_drop:
5290
numa_drop_add(&sd->drop_counters, 1);
5291
bad_dev:
5292
dev_core_stats_rx_dropped_inc(skb->dev);
5293
kfree_skb_reason(skb, reason);
5294
return NET_RX_DROP;
5295
}
5296
5297
static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5298
{
5299
struct net_device *dev = skb->dev;
5300
struct netdev_rx_queue *rxqueue;
5301
5302
rxqueue = dev->_rx;
5303
5304
if (skb_rx_queue_recorded(skb)) {
5305
u16 index = skb_get_rx_queue(skb);
5306
5307
if (unlikely(index >= dev->real_num_rx_queues)) {
5308
WARN_ONCE(dev->real_num_rx_queues > 1,
5309
"%s received packet on queue %u, but number "
5310
"of RX queues is %u\n",
5311
dev->name, index, dev->real_num_rx_queues);
5312
5313
return rxqueue; /* Return first rxqueue */
5314
}
5315
rxqueue += index;
5316
}
5317
return rxqueue;
5318
}
5319
5320
u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5321
const struct bpf_prog *xdp_prog)
5322
{
5323
void *orig_data, *orig_data_end, *hard_start;
5324
struct netdev_rx_queue *rxqueue;
5325
bool orig_bcast, orig_host;
5326
u32 mac_len, frame_sz;
5327
__be16 orig_eth_type;
5328
struct ethhdr *eth;
5329
u32 metalen, act;
5330
int off;
5331
5332
/* The XDP program wants to see the packet starting at the MAC
5333
* header.
5334
*/
5335
mac_len = skb->data - skb_mac_header(skb);
5336
hard_start = skb->data - skb_headroom(skb);
5337
5338
/* SKB "head" area always have tailroom for skb_shared_info */
5339
frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5340
frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5341
5342
rxqueue = netif_get_rxqueue(skb);
5343
xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5344
xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5345
skb_headlen(skb) + mac_len, true);
5346
if (skb_is_nonlinear(skb)) {
5347
skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5348
xdp_buff_set_frags_flag(xdp);
5349
} else {
5350
xdp_buff_clear_frags_flag(xdp);
5351
}
5352
5353
orig_data_end = xdp->data_end;
5354
orig_data = xdp->data;
5355
eth = (struct ethhdr *)xdp->data;
5356
orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5357
orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5358
orig_eth_type = eth->h_proto;
5359
5360
act = bpf_prog_run_xdp(xdp_prog, xdp);
5361
5362
/* check if bpf_xdp_adjust_head was used */
5363
off = xdp->data - orig_data;
5364
if (off) {
5365
if (off > 0)
5366
__skb_pull(skb, off);
5367
else if (off < 0)
5368
__skb_push(skb, -off);
5369
5370
skb->mac_header += off;
5371
skb_reset_network_header(skb);
5372
}
5373
5374
/* check if bpf_xdp_adjust_tail was used */
5375
off = xdp->data_end - orig_data_end;
5376
if (off != 0) {
5377
skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5378
skb->len += off; /* positive on grow, negative on shrink */
5379
}
5380
5381
/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5382
* (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5383
*/
5384
if (xdp_buff_has_frags(xdp))
5385
skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5386
else
5387
skb->data_len = 0;
5388
5389
/* check if XDP changed eth hdr such SKB needs update */
5390
eth = (struct ethhdr *)xdp->data;
5391
if ((orig_eth_type != eth->h_proto) ||
5392
(orig_host != ether_addr_equal_64bits(eth->h_dest,
5393
skb->dev->dev_addr)) ||
5394
(orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5395
__skb_push(skb, ETH_HLEN);
5396
skb->pkt_type = PACKET_HOST;
5397
skb->protocol = eth_type_trans(skb, skb->dev);
5398
}
5399
5400
/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5401
* before calling us again on redirect path. We do not call do_redirect
5402
* as we leave that up to the caller.
5403
*
5404
* Caller is responsible for managing lifetime of skb (i.e. calling
5405
* kfree_skb in response to actions it cannot handle/XDP_DROP).
5406
*/
5407
switch (act) {
5408
case XDP_REDIRECT:
5409
case XDP_TX:
5410
__skb_push(skb, mac_len);
5411
break;
5412
case XDP_PASS:
5413
metalen = xdp->data - xdp->data_meta;
5414
if (metalen)
5415
skb_metadata_set(skb, metalen);
5416
break;
5417
}
5418
5419
return act;
5420
}
5421
5422
static int
5423
netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5424
{
5425
struct sk_buff *skb = *pskb;
5426
int err, hroom, troom;
5427
5428
local_lock_nested_bh(&system_page_pool.bh_lock);
5429
err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5430
local_unlock_nested_bh(&system_page_pool.bh_lock);
5431
if (!err)
5432
return 0;
5433
5434
/* In case we have to go down the path and also linearize,
5435
* then lets do the pskb_expand_head() work just once here.
5436
*/
5437
hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5438
troom = skb->tail + skb->data_len - skb->end;
5439
err = pskb_expand_head(skb,
5440
hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5441
troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5442
if (err)
5443
return err;
5444
5445
return skb_linearize(skb);
5446
}
5447
5448
static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5449
struct xdp_buff *xdp,
5450
const struct bpf_prog *xdp_prog)
5451
{
5452
struct sk_buff *skb = *pskb;
5453
u32 mac_len, act = XDP_DROP;
5454
5455
/* Reinjected packets coming from act_mirred or similar should
5456
* not get XDP generic processing.
5457
*/
5458
if (skb_is_redirected(skb))
5459
return XDP_PASS;
5460
5461
/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5462
* bytes. This is the guarantee that also native XDP provides,
5463
* thus we need to do it here as well.
5464
*/
5465
mac_len = skb->data - skb_mac_header(skb);
5466
__skb_push(skb, mac_len);
5467
5468
if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5469
skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5470
if (netif_skb_check_for_xdp(pskb, xdp_prog))
5471
goto do_drop;
5472
}
5473
5474
__skb_pull(*pskb, mac_len);
5475
5476
act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5477
switch (act) {
5478
case XDP_REDIRECT:
5479
case XDP_TX:
5480
case XDP_PASS:
5481
break;
5482
default:
5483
bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5484
fallthrough;
5485
case XDP_ABORTED:
5486
trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5487
fallthrough;
5488
case XDP_DROP:
5489
do_drop:
5490
kfree_skb(*pskb);
5491
break;
5492
}
5493
5494
return act;
5495
}
5496
5497
/* When doing generic XDP we have to bypass the qdisc layer and the
5498
* network taps in order to match in-driver-XDP behavior. This also means
5499
* that XDP packets are able to starve other packets going through a qdisc,
5500
* and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5501
* queues, so they do not have this starvation issue.
5502
*/
5503
void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5504
{
5505
struct net_device *dev = skb->dev;
5506
struct netdev_queue *txq;
5507
bool free_skb = true;
5508
int cpu, rc;
5509
5510
txq = netdev_core_pick_tx(dev, skb, NULL);
5511
cpu = smp_processor_id();
5512
HARD_TX_LOCK(dev, txq, cpu);
5513
if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5514
rc = netdev_start_xmit(skb, dev, txq, 0);
5515
if (dev_xmit_complete(rc))
5516
free_skb = false;
5517
}
5518
HARD_TX_UNLOCK(dev, txq);
5519
if (free_skb) {
5520
trace_xdp_exception(dev, xdp_prog, XDP_TX);
5521
dev_core_stats_tx_dropped_inc(dev);
5522
kfree_skb(skb);
5523
}
5524
}
5525
5526
static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5527
5528
int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5529
{
5530
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5531
5532
if (xdp_prog) {
5533
struct xdp_buff xdp;
5534
u32 act;
5535
int err;
5536
5537
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5538
act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5539
if (act != XDP_PASS) {
5540
switch (act) {
5541
case XDP_REDIRECT:
5542
err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5543
&xdp, xdp_prog);
5544
if (err)
5545
goto out_redir;
5546
break;
5547
case XDP_TX:
5548
generic_xdp_tx(*pskb, xdp_prog);
5549
break;
5550
}
5551
bpf_net_ctx_clear(bpf_net_ctx);
5552
return XDP_DROP;
5553
}
5554
bpf_net_ctx_clear(bpf_net_ctx);
5555
}
5556
return XDP_PASS;
5557
out_redir:
5558
bpf_net_ctx_clear(bpf_net_ctx);
5559
kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5560
return XDP_DROP;
5561
}
5562
EXPORT_SYMBOL_GPL(do_xdp_generic);
5563
5564
static int netif_rx_internal(struct sk_buff *skb)
5565
{
5566
int ret;
5567
5568
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5569
5570
trace_netif_rx(skb);
5571
5572
#ifdef CONFIG_RPS
5573
if (static_branch_unlikely(&rps_needed)) {
5574
struct rps_dev_flow voidflow, *rflow = &voidflow;
5575
int cpu;
5576
5577
rcu_read_lock();
5578
5579
cpu = get_rps_cpu(skb->dev, skb, &rflow);
5580
if (cpu < 0)
5581
cpu = smp_processor_id();
5582
5583
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5584
5585
rcu_read_unlock();
5586
} else
5587
#endif
5588
{
5589
unsigned int qtail;
5590
5591
ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5592
}
5593
return ret;
5594
}
5595
5596
/**
5597
* __netif_rx - Slightly optimized version of netif_rx
5598
* @skb: buffer to post
5599
*
5600
* This behaves as netif_rx except that it does not disable bottom halves.
5601
* As a result this function may only be invoked from the interrupt context
5602
* (either hard or soft interrupt).
5603
*/
5604
int __netif_rx(struct sk_buff *skb)
5605
{
5606
int ret;
5607
5608
lockdep_assert_once(hardirq_count() | softirq_count());
5609
5610
trace_netif_rx_entry(skb);
5611
ret = netif_rx_internal(skb);
5612
trace_netif_rx_exit(ret);
5613
return ret;
5614
}
5615
EXPORT_SYMBOL(__netif_rx);
5616
5617
/**
5618
* netif_rx - post buffer to the network code
5619
* @skb: buffer to post
5620
*
5621
* This function receives a packet from a device driver and queues it for
5622
* the upper (protocol) levels to process via the backlog NAPI device. It
5623
* always succeeds. The buffer may be dropped during processing for
5624
* congestion control or by the protocol layers.
5625
* The network buffer is passed via the backlog NAPI device. Modern NIC
5626
* driver should use NAPI and GRO.
5627
* This function can used from interrupt and from process context. The
5628
* caller from process context must not disable interrupts before invoking
5629
* this function.
5630
*
5631
* return values:
5632
* NET_RX_SUCCESS (no congestion)
5633
* NET_RX_DROP (packet was dropped)
5634
*
5635
*/
5636
int netif_rx(struct sk_buff *skb)
5637
{
5638
bool need_bh_off = !(hardirq_count() | softirq_count());
5639
int ret;
5640
5641
if (need_bh_off)
5642
local_bh_disable();
5643
trace_netif_rx_entry(skb);
5644
ret = netif_rx_internal(skb);
5645
trace_netif_rx_exit(ret);
5646
if (need_bh_off)
5647
local_bh_enable();
5648
return ret;
5649
}
5650
EXPORT_SYMBOL(netif_rx);
5651
5652
static __latent_entropy void net_tx_action(void)
5653
{
5654
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5655
5656
if (sd->completion_queue) {
5657
struct sk_buff *clist;
5658
5659
local_irq_disable();
5660
clist = sd->completion_queue;
5661
sd->completion_queue = NULL;
5662
local_irq_enable();
5663
5664
while (clist) {
5665
struct sk_buff *skb = clist;
5666
5667
clist = clist->next;
5668
5669
WARN_ON(refcount_read(&skb->users));
5670
if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5671
trace_consume_skb(skb, net_tx_action);
5672
else
5673
trace_kfree_skb(skb, net_tx_action,
5674
get_kfree_skb_cb(skb)->reason, NULL);
5675
5676
if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5677
__kfree_skb(skb);
5678
else
5679
__napi_kfree_skb(skb,
5680
get_kfree_skb_cb(skb)->reason);
5681
}
5682
}
5683
5684
if (sd->output_queue) {
5685
struct Qdisc *head;
5686
5687
local_irq_disable();
5688
head = sd->output_queue;
5689
sd->output_queue = NULL;
5690
sd->output_queue_tailp = &sd->output_queue;
5691
local_irq_enable();
5692
5693
rcu_read_lock();
5694
5695
while (head) {
5696
struct Qdisc *q = head;
5697
spinlock_t *root_lock = NULL;
5698
5699
head = head->next_sched;
5700
5701
/* We need to make sure head->next_sched is read
5702
* before clearing __QDISC_STATE_SCHED
5703
*/
5704
smp_mb__before_atomic();
5705
5706
if (!(q->flags & TCQ_F_NOLOCK)) {
5707
root_lock = qdisc_lock(q);
5708
spin_lock(root_lock);
5709
} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5710
&q->state))) {
5711
/* There is a synchronize_net() between
5712
* STATE_DEACTIVATED flag being set and
5713
* qdisc_reset()/some_qdisc_is_busy() in
5714
* dev_deactivate(), so we can safely bail out
5715
* early here to avoid data race between
5716
* qdisc_deactivate() and some_qdisc_is_busy()
5717
* for lockless qdisc.
5718
*/
5719
clear_bit(__QDISC_STATE_SCHED, &q->state);
5720
continue;
5721
}
5722
5723
clear_bit(__QDISC_STATE_SCHED, &q->state);
5724
qdisc_run(q);
5725
if (root_lock)
5726
spin_unlock(root_lock);
5727
}
5728
5729
rcu_read_unlock();
5730
}
5731
5732
xfrm_dev_backlog(sd);
5733
}
5734
5735
#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5736
/* This hook is defined here for ATM LANE */
5737
int (*br_fdb_test_addr_hook)(struct net_device *dev,
5738
unsigned char *addr) __read_mostly;
5739
EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5740
#endif
5741
5742
/**
5743
* netdev_is_rx_handler_busy - check if receive handler is registered
5744
* @dev: device to check
5745
*
5746
* Check if a receive handler is already registered for a given device.
5747
* Return true if there one.
5748
*
5749
* The caller must hold the rtnl_mutex.
5750
*/
5751
bool netdev_is_rx_handler_busy(struct net_device *dev)
5752
{
5753
ASSERT_RTNL();
5754
return dev && rtnl_dereference(dev->rx_handler);
5755
}
5756
EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5757
5758
/**
5759
* netdev_rx_handler_register - register receive handler
5760
* @dev: device to register a handler for
5761
* @rx_handler: receive handler to register
5762
* @rx_handler_data: data pointer that is used by rx handler
5763
*
5764
* Register a receive handler for a device. This handler will then be
5765
* called from __netif_receive_skb. A negative errno code is returned
5766
* on a failure.
5767
*
5768
* The caller must hold the rtnl_mutex.
5769
*
5770
* For a general description of rx_handler, see enum rx_handler_result.
5771
*/
5772
int netdev_rx_handler_register(struct net_device *dev,
5773
rx_handler_func_t *rx_handler,
5774
void *rx_handler_data)
5775
{
5776
if (netdev_is_rx_handler_busy(dev))
5777
return -EBUSY;
5778
5779
if (dev->priv_flags & IFF_NO_RX_HANDLER)
5780
return -EINVAL;
5781
5782
/* Note: rx_handler_data must be set before rx_handler */
5783
rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5784
rcu_assign_pointer(dev->rx_handler, rx_handler);
5785
5786
return 0;
5787
}
5788
EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5789
5790
/**
5791
* netdev_rx_handler_unregister - unregister receive handler
5792
* @dev: device to unregister a handler from
5793
*
5794
* Unregister a receive handler from a device.
5795
*
5796
* The caller must hold the rtnl_mutex.
5797
*/
5798
void netdev_rx_handler_unregister(struct net_device *dev)
5799
{
5800
5801
ASSERT_RTNL();
5802
RCU_INIT_POINTER(dev->rx_handler, NULL);
5803
/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5804
* section has a guarantee to see a non NULL rx_handler_data
5805
* as well.
5806
*/
5807
synchronize_net();
5808
RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5809
}
5810
EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5811
5812
/*
5813
* Limit the use of PFMEMALLOC reserves to those protocols that implement
5814
* the special handling of PFMEMALLOC skbs.
5815
*/
5816
static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5817
{
5818
switch (skb->protocol) {
5819
case htons(ETH_P_ARP):
5820
case htons(ETH_P_IP):
5821
case htons(ETH_P_IPV6):
5822
case htons(ETH_P_8021Q):
5823
case htons(ETH_P_8021AD):
5824
return true;
5825
default:
5826
return false;
5827
}
5828
}
5829
5830
static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5831
int *ret, struct net_device *orig_dev)
5832
{
5833
if (nf_hook_ingress_active(skb)) {
5834
int ingress_retval;
5835
5836
if (*pt_prev) {
5837
*ret = deliver_skb(skb, *pt_prev, orig_dev);
5838
*pt_prev = NULL;
5839
}
5840
5841
rcu_read_lock();
5842
ingress_retval = nf_hook_ingress(skb);
5843
rcu_read_unlock();
5844
return ingress_retval;
5845
}
5846
return 0;
5847
}
5848
5849
static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5850
struct packet_type **ppt_prev)
5851
{
5852
enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5853
struct packet_type *ptype, *pt_prev;
5854
rx_handler_func_t *rx_handler;
5855
struct sk_buff *skb = *pskb;
5856
struct net_device *orig_dev;
5857
bool deliver_exact = false;
5858
int ret = NET_RX_DROP;
5859
__be16 type;
5860
5861
net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5862
5863
trace_netif_receive_skb(skb);
5864
5865
orig_dev = skb->dev;
5866
5867
skb_reset_network_header(skb);
5868
#if !defined(CONFIG_DEBUG_NET)
5869
/* We plan to no longer reset the transport header here.
5870
* Give some time to fuzzers and dev build to catch bugs
5871
* in network stacks.
5872
*/
5873
if (!skb_transport_header_was_set(skb))
5874
skb_reset_transport_header(skb);
5875
#endif
5876
skb_reset_mac_len(skb);
5877
5878
pt_prev = NULL;
5879
5880
another_round:
5881
skb->skb_iif = skb->dev->ifindex;
5882
5883
__this_cpu_inc(softnet_data.processed);
5884
5885
if (static_branch_unlikely(&generic_xdp_needed_key)) {
5886
int ret2;
5887
5888
migrate_disable();
5889
ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5890
&skb);
5891
migrate_enable();
5892
5893
if (ret2 != XDP_PASS) {
5894
ret = NET_RX_DROP;
5895
goto out;
5896
}
5897
}
5898
5899
if (eth_type_vlan(skb->protocol)) {
5900
skb = skb_vlan_untag(skb);
5901
if (unlikely(!skb))
5902
goto out;
5903
}
5904
5905
if (skb_skip_tc_classify(skb))
5906
goto skip_classify;
5907
5908
if (pfmemalloc)
5909
goto skip_taps;
5910
5911
list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5912
list) {
5913
if (pt_prev)
5914
ret = deliver_skb(skb, pt_prev, orig_dev);
5915
pt_prev = ptype;
5916
}
5917
5918
list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5919
if (pt_prev)
5920
ret = deliver_skb(skb, pt_prev, orig_dev);
5921
pt_prev = ptype;
5922
}
5923
5924
skip_taps:
5925
#ifdef CONFIG_NET_INGRESS
5926
if (static_branch_unlikely(&ingress_needed_key)) {
5927
bool another = false;
5928
5929
nf_skip_egress(skb, true);
5930
skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5931
&another);
5932
if (another)
5933
goto another_round;
5934
if (!skb)
5935
goto out;
5936
5937
nf_skip_egress(skb, false);
5938
if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5939
goto out;
5940
}
5941
#endif
5942
skb_reset_redirect(skb);
5943
skip_classify:
5944
if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5945
drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5946
goto drop;
5947
}
5948
5949
if (skb_vlan_tag_present(skb)) {
5950
if (pt_prev) {
5951
ret = deliver_skb(skb, pt_prev, orig_dev);
5952
pt_prev = NULL;
5953
}
5954
if (vlan_do_receive(&skb))
5955
goto another_round;
5956
else if (unlikely(!skb))
5957
goto out;
5958
}
5959
5960
rx_handler = rcu_dereference(skb->dev->rx_handler);
5961
if (rx_handler) {
5962
if (pt_prev) {
5963
ret = deliver_skb(skb, pt_prev, orig_dev);
5964
pt_prev = NULL;
5965
}
5966
switch (rx_handler(&skb)) {
5967
case RX_HANDLER_CONSUMED:
5968
ret = NET_RX_SUCCESS;
5969
goto out;
5970
case RX_HANDLER_ANOTHER:
5971
goto another_round;
5972
case RX_HANDLER_EXACT:
5973
deliver_exact = true;
5974
break;
5975
case RX_HANDLER_PASS:
5976
break;
5977
default:
5978
BUG();
5979
}
5980
}
5981
5982
if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5983
check_vlan_id:
5984
if (skb_vlan_tag_get_id(skb)) {
5985
/* Vlan id is non 0 and vlan_do_receive() above couldn't
5986
* find vlan device.
5987
*/
5988
skb->pkt_type = PACKET_OTHERHOST;
5989
} else if (eth_type_vlan(skb->protocol)) {
5990
/* Outer header is 802.1P with vlan 0, inner header is
5991
* 802.1Q or 802.1AD and vlan_do_receive() above could
5992
* not find vlan dev for vlan id 0.
5993
*/
5994
__vlan_hwaccel_clear_tag(skb);
5995
skb = skb_vlan_untag(skb);
5996
if (unlikely(!skb))
5997
goto out;
5998
if (vlan_do_receive(&skb))
5999
/* After stripping off 802.1P header with vlan 0
6000
* vlan dev is found for inner header.
6001
*/
6002
goto another_round;
6003
else if (unlikely(!skb))
6004
goto out;
6005
else
6006
/* We have stripped outer 802.1P vlan 0 header.
6007
* But could not find vlan dev.
6008
* check again for vlan id to set OTHERHOST.
6009
*/
6010
goto check_vlan_id;
6011
}
6012
/* Note: we might in the future use prio bits
6013
* and set skb->priority like in vlan_do_receive()
6014
* For the time being, just ignore Priority Code Point
6015
*/
6016
__vlan_hwaccel_clear_tag(skb);
6017
}
6018
6019
type = skb->protocol;
6020
6021
/* deliver only exact match when indicated */
6022
if (likely(!deliver_exact)) {
6023
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6024
&ptype_base[ntohs(type) &
6025
PTYPE_HASH_MASK]);
6026
6027
/* orig_dev and skb->dev could belong to different netns;
6028
* Even in such case we need to traverse only the list
6029
* coming from skb->dev, as the ptype owner (packet socket)
6030
* will use dev_net(skb->dev) to do namespace filtering.
6031
*/
6032
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6033
&dev_net_rcu(skb->dev)->ptype_specific);
6034
}
6035
6036
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6037
&orig_dev->ptype_specific);
6038
6039
if (unlikely(skb->dev != orig_dev)) {
6040
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6041
&skb->dev->ptype_specific);
6042
}
6043
6044
if (pt_prev) {
6045
*ppt_prev = pt_prev;
6046
} else {
6047
drop:
6048
if (!deliver_exact)
6049
dev_core_stats_rx_dropped_inc(skb->dev);
6050
else
6051
dev_core_stats_rx_nohandler_inc(skb->dev);
6052
6053
kfree_skb_reason(skb, drop_reason);
6054
/* Jamal, now you will not able to escape explaining
6055
* me how you were going to use this. :-)
6056
*/
6057
ret = NET_RX_DROP;
6058
}
6059
6060
out:
6061
/* The invariant here is that if *ppt_prev is not NULL
6062
* then skb should also be non-NULL.
6063
*
6064
* Apparently *ppt_prev assignment above holds this invariant due to
6065
* skb dereferencing near it.
6066
*/
6067
*pskb = skb;
6068
return ret;
6069
}
6070
6071
static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6072
{
6073
struct net_device *orig_dev = skb->dev;
6074
struct packet_type *pt_prev = NULL;
6075
int ret;
6076
6077
ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6078
if (pt_prev)
6079
ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6080
skb->dev, pt_prev, orig_dev);
6081
return ret;
6082
}
6083
6084
/**
6085
* netif_receive_skb_core - special purpose version of netif_receive_skb
6086
* @skb: buffer to process
6087
*
6088
* More direct receive version of netif_receive_skb(). It should
6089
* only be used by callers that have a need to skip RPS and Generic XDP.
6090
* Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6091
*
6092
* This function may only be called from softirq context and interrupts
6093
* should be enabled.
6094
*
6095
* Return values (usually ignored):
6096
* NET_RX_SUCCESS: no congestion
6097
* NET_RX_DROP: packet was dropped
6098
*/
6099
int netif_receive_skb_core(struct sk_buff *skb)
6100
{
6101
int ret;
6102
6103
rcu_read_lock();
6104
ret = __netif_receive_skb_one_core(skb, false);
6105
rcu_read_unlock();
6106
6107
return ret;
6108
}
6109
EXPORT_SYMBOL(netif_receive_skb_core);
6110
6111
static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6112
struct packet_type *pt_prev,
6113
struct net_device *orig_dev)
6114
{
6115
struct sk_buff *skb, *next;
6116
6117
if (!pt_prev)
6118
return;
6119
if (list_empty(head))
6120
return;
6121
if (pt_prev->list_func != NULL)
6122
INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6123
ip_list_rcv, head, pt_prev, orig_dev);
6124
else
6125
list_for_each_entry_safe(skb, next, head, list) {
6126
skb_list_del_init(skb);
6127
pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6128
}
6129
}
6130
6131
static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6132
{
6133
/* Fast-path assumptions:
6134
* - There is no RX handler.
6135
* - Only one packet_type matches.
6136
* If either of these fails, we will end up doing some per-packet
6137
* processing in-line, then handling the 'last ptype' for the whole
6138
* sublist. This can't cause out-of-order delivery to any single ptype,
6139
* because the 'last ptype' must be constant across the sublist, and all
6140
* other ptypes are handled per-packet.
6141
*/
6142
/* Current (common) ptype of sublist */
6143
struct packet_type *pt_curr = NULL;
6144
/* Current (common) orig_dev of sublist */
6145
struct net_device *od_curr = NULL;
6146
struct sk_buff *skb, *next;
6147
LIST_HEAD(sublist);
6148
6149
list_for_each_entry_safe(skb, next, head, list) {
6150
struct net_device *orig_dev = skb->dev;
6151
struct packet_type *pt_prev = NULL;
6152
6153
skb_list_del_init(skb);
6154
__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155
if (!pt_prev)
6156
continue;
6157
if (pt_curr != pt_prev || od_curr != orig_dev) {
6158
/* dispatch old sublist */
6159
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6160
/* start new sublist */
6161
INIT_LIST_HEAD(&sublist);
6162
pt_curr = pt_prev;
6163
od_curr = orig_dev;
6164
}
6165
list_add_tail(&skb->list, &sublist);
6166
}
6167
6168
/* dispatch final sublist */
6169
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6170
}
6171
6172
static int __netif_receive_skb(struct sk_buff *skb)
6173
{
6174
int ret;
6175
6176
if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6177
unsigned int noreclaim_flag;
6178
6179
/*
6180
* PFMEMALLOC skbs are special, they should
6181
* - be delivered to SOCK_MEMALLOC sockets only
6182
* - stay away from userspace
6183
* - have bounded memory usage
6184
*
6185
* Use PF_MEMALLOC as this saves us from propagating the allocation
6186
* context down to all allocation sites.
6187
*/
6188
noreclaim_flag = memalloc_noreclaim_save();
6189
ret = __netif_receive_skb_one_core(skb, true);
6190
memalloc_noreclaim_restore(noreclaim_flag);
6191
} else
6192
ret = __netif_receive_skb_one_core(skb, false);
6193
6194
return ret;
6195
}
6196
6197
static void __netif_receive_skb_list(struct list_head *head)
6198
{
6199
unsigned long noreclaim_flag = 0;
6200
struct sk_buff *skb, *next;
6201
bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6202
6203
list_for_each_entry_safe(skb, next, head, list) {
6204
if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6205
struct list_head sublist;
6206
6207
/* Handle the previous sublist */
6208
list_cut_before(&sublist, head, &skb->list);
6209
if (!list_empty(&sublist))
6210
__netif_receive_skb_list_core(&sublist, pfmemalloc);
6211
pfmemalloc = !pfmemalloc;
6212
/* See comments in __netif_receive_skb */
6213
if (pfmemalloc)
6214
noreclaim_flag = memalloc_noreclaim_save();
6215
else
6216
memalloc_noreclaim_restore(noreclaim_flag);
6217
}
6218
}
6219
/* Handle the remaining sublist */
6220
if (!list_empty(head))
6221
__netif_receive_skb_list_core(head, pfmemalloc);
6222
/* Restore pflags */
6223
if (pfmemalloc)
6224
memalloc_noreclaim_restore(noreclaim_flag);
6225
}
6226
6227
static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6228
{
6229
struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6230
struct bpf_prog *new = xdp->prog;
6231
int ret = 0;
6232
6233
switch (xdp->command) {
6234
case XDP_SETUP_PROG:
6235
rcu_assign_pointer(dev->xdp_prog, new);
6236
if (old)
6237
bpf_prog_put(old);
6238
6239
if (old && !new) {
6240
static_branch_dec(&generic_xdp_needed_key);
6241
} else if (new && !old) {
6242
static_branch_inc(&generic_xdp_needed_key);
6243
netif_disable_lro(dev);
6244
dev_disable_gro_hw(dev);
6245
}
6246
break;
6247
6248
default:
6249
ret = -EINVAL;
6250
break;
6251
}
6252
6253
return ret;
6254
}
6255
6256
static int netif_receive_skb_internal(struct sk_buff *skb)
6257
{
6258
int ret;
6259
6260
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6261
6262
if (skb_defer_rx_timestamp(skb))
6263
return NET_RX_SUCCESS;
6264
6265
rcu_read_lock();
6266
#ifdef CONFIG_RPS
6267
if (static_branch_unlikely(&rps_needed)) {
6268
struct rps_dev_flow voidflow, *rflow = &voidflow;
6269
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6270
6271
if (cpu >= 0) {
6272
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6273
rcu_read_unlock();
6274
return ret;
6275
}
6276
}
6277
#endif
6278
ret = __netif_receive_skb(skb);
6279
rcu_read_unlock();
6280
return ret;
6281
}
6282
6283
void netif_receive_skb_list_internal(struct list_head *head)
6284
{
6285
struct sk_buff *skb, *next;
6286
LIST_HEAD(sublist);
6287
6288
list_for_each_entry_safe(skb, next, head, list) {
6289
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6290
skb);
6291
skb_list_del_init(skb);
6292
if (!skb_defer_rx_timestamp(skb))
6293
list_add_tail(&skb->list, &sublist);
6294
}
6295
list_splice_init(&sublist, head);
6296
6297
rcu_read_lock();
6298
#ifdef CONFIG_RPS
6299
if (static_branch_unlikely(&rps_needed)) {
6300
list_for_each_entry_safe(skb, next, head, list) {
6301
struct rps_dev_flow voidflow, *rflow = &voidflow;
6302
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6303
6304
if (cpu >= 0) {
6305
/* Will be handled, remove from list */
6306
skb_list_del_init(skb);
6307
enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6308
}
6309
}
6310
}
6311
#endif
6312
__netif_receive_skb_list(head);
6313
rcu_read_unlock();
6314
}
6315
6316
/**
6317
* netif_receive_skb - process receive buffer from network
6318
* @skb: buffer to process
6319
*
6320
* netif_receive_skb() is the main receive data processing function.
6321
* It always succeeds. The buffer may be dropped during processing
6322
* for congestion control or by the protocol layers.
6323
*
6324
* This function may only be called from softirq context and interrupts
6325
* should be enabled.
6326
*
6327
* Return values (usually ignored):
6328
* NET_RX_SUCCESS: no congestion
6329
* NET_RX_DROP: packet was dropped
6330
*/
6331
int netif_receive_skb(struct sk_buff *skb)
6332
{
6333
int ret;
6334
6335
trace_netif_receive_skb_entry(skb);
6336
6337
ret = netif_receive_skb_internal(skb);
6338
trace_netif_receive_skb_exit(ret);
6339
6340
return ret;
6341
}
6342
EXPORT_SYMBOL(netif_receive_skb);
6343
6344
/**
6345
* netif_receive_skb_list - process many receive buffers from network
6346
* @head: list of skbs to process.
6347
*
6348
* Since return value of netif_receive_skb() is normally ignored, and
6349
* wouldn't be meaningful for a list, this function returns void.
6350
*
6351
* This function may only be called from softirq context and interrupts
6352
* should be enabled.
6353
*/
6354
void netif_receive_skb_list(struct list_head *head)
6355
{
6356
struct sk_buff *skb;
6357
6358
if (list_empty(head))
6359
return;
6360
if (trace_netif_receive_skb_list_entry_enabled()) {
6361
list_for_each_entry(skb, head, list)
6362
trace_netif_receive_skb_list_entry(skb);
6363
}
6364
netif_receive_skb_list_internal(head);
6365
trace_netif_receive_skb_list_exit(0);
6366
}
6367
EXPORT_SYMBOL(netif_receive_skb_list);
6368
6369
/* Network device is going away, flush any packets still pending */
6370
static void flush_backlog(struct work_struct *work)
6371
{
6372
struct sk_buff *skb, *tmp;
6373
struct sk_buff_head list;
6374
struct softnet_data *sd;
6375
6376
__skb_queue_head_init(&list);
6377
local_bh_disable();
6378
sd = this_cpu_ptr(&softnet_data);
6379
6380
backlog_lock_irq_disable(sd);
6381
skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6382
if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6383
__skb_unlink(skb, &sd->input_pkt_queue);
6384
__skb_queue_tail(&list, skb);
6385
rps_input_queue_head_incr(sd);
6386
}
6387
}
6388
backlog_unlock_irq_enable(sd);
6389
6390
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6391
skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6392
if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6393
__skb_unlink(skb, &sd->process_queue);
6394
__skb_queue_tail(&list, skb);
6395
rps_input_queue_head_incr(sd);
6396
}
6397
}
6398
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6399
local_bh_enable();
6400
6401
__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6402
}
6403
6404
static bool flush_required(int cpu)
6405
{
6406
#if IS_ENABLED(CONFIG_RPS)
6407
struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6408
bool do_flush;
6409
6410
backlog_lock_irq_disable(sd);
6411
6412
/* as insertion into process_queue happens with the rps lock held,
6413
* process_queue access may race only with dequeue
6414
*/
6415
do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6416
!skb_queue_empty_lockless(&sd->process_queue);
6417
backlog_unlock_irq_enable(sd);
6418
6419
return do_flush;
6420
#endif
6421
/* without RPS we can't safely check input_pkt_queue: during a
6422
* concurrent remote skb_queue_splice() we can detect as empty both
6423
* input_pkt_queue and process_queue even if the latter could end-up
6424
* containing a lot of packets.
6425
*/
6426
return true;
6427
}
6428
6429
struct flush_backlogs {
6430
cpumask_t flush_cpus;
6431
struct work_struct w[];
6432
};
6433
6434
static struct flush_backlogs *flush_backlogs_alloc(void)
6435
{
6436
return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6437
GFP_KERNEL);
6438
}
6439
6440
static struct flush_backlogs *flush_backlogs_fallback;
6441
static DEFINE_MUTEX(flush_backlogs_mutex);
6442
6443
static void flush_all_backlogs(void)
6444
{
6445
struct flush_backlogs *ptr = flush_backlogs_alloc();
6446
unsigned int cpu;
6447
6448
if (!ptr) {
6449
mutex_lock(&flush_backlogs_mutex);
6450
ptr = flush_backlogs_fallback;
6451
}
6452
cpumask_clear(&ptr->flush_cpus);
6453
6454
cpus_read_lock();
6455
6456
for_each_online_cpu(cpu) {
6457
if (flush_required(cpu)) {
6458
INIT_WORK(&ptr->w[cpu], flush_backlog);
6459
queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6460
__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6461
}
6462
}
6463
6464
/* we can have in flight packet[s] on the cpus we are not flushing,
6465
* synchronize_net() in unregister_netdevice_many() will take care of
6466
* them.
6467
*/
6468
for_each_cpu(cpu, &ptr->flush_cpus)
6469
flush_work(&ptr->w[cpu]);
6470
6471
cpus_read_unlock();
6472
6473
if (ptr != flush_backlogs_fallback)
6474
kfree(ptr);
6475
else
6476
mutex_unlock(&flush_backlogs_mutex);
6477
}
6478
6479
static void net_rps_send_ipi(struct softnet_data *remsd)
6480
{
6481
#ifdef CONFIG_RPS
6482
while (remsd) {
6483
struct softnet_data *next = remsd->rps_ipi_next;
6484
6485
if (cpu_online(remsd->cpu))
6486
smp_call_function_single_async(remsd->cpu, &remsd->csd);
6487
remsd = next;
6488
}
6489
#endif
6490
}
6491
6492
/*
6493
* net_rps_action_and_irq_enable sends any pending IPI's for rps.
6494
* Note: called with local irq disabled, but exits with local irq enabled.
6495
*/
6496
static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6497
{
6498
#ifdef CONFIG_RPS
6499
struct softnet_data *remsd = sd->rps_ipi_list;
6500
6501
if (!use_backlog_threads() && remsd) {
6502
sd->rps_ipi_list = NULL;
6503
6504
local_irq_enable();
6505
6506
/* Send pending IPI's to kick RPS processing on remote cpus. */
6507
net_rps_send_ipi(remsd);
6508
} else
6509
#endif
6510
local_irq_enable();
6511
}
6512
6513
static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6514
{
6515
#ifdef CONFIG_RPS
6516
return !use_backlog_threads() && sd->rps_ipi_list;
6517
#else
6518
return false;
6519
#endif
6520
}
6521
6522
static int process_backlog(struct napi_struct *napi, int quota)
6523
{
6524
struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6525
bool again = true;
6526
int work = 0;
6527
6528
/* Check if we have pending ipi, its better to send them now,
6529
* not waiting net_rx_action() end.
6530
*/
6531
if (sd_has_rps_ipi_waiting(sd)) {
6532
local_irq_disable();
6533
net_rps_action_and_irq_enable(sd);
6534
}
6535
6536
napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6537
while (again) {
6538
struct sk_buff *skb;
6539
6540
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6541
while ((skb = __skb_dequeue(&sd->process_queue))) {
6542
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6543
rcu_read_lock();
6544
__netif_receive_skb(skb);
6545
rcu_read_unlock();
6546
if (++work >= quota) {
6547
rps_input_queue_head_add(sd, work);
6548
return work;
6549
}
6550
6551
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6552
}
6553
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6554
6555
backlog_lock_irq_disable(sd);
6556
if (skb_queue_empty(&sd->input_pkt_queue)) {
6557
/*
6558
* Inline a custom version of __napi_complete().
6559
* only current cpu owns and manipulates this napi,
6560
* and NAPI_STATE_SCHED is the only possible flag set
6561
* on backlog.
6562
* We can use a plain write instead of clear_bit(),
6563
* and we dont need an smp_mb() memory barrier.
6564
*/
6565
napi->state &= NAPIF_STATE_THREADED;
6566
again = false;
6567
} else {
6568
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6569
skb_queue_splice_tail_init(&sd->input_pkt_queue,
6570
&sd->process_queue);
6571
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6572
}
6573
backlog_unlock_irq_enable(sd);
6574
}
6575
6576
if (work)
6577
rps_input_queue_head_add(sd, work);
6578
return work;
6579
}
6580
6581
/**
6582
* __napi_schedule - schedule for receive
6583
* @n: entry to schedule
6584
*
6585
* The entry's receive function will be scheduled to run.
6586
* Consider using __napi_schedule_irqoff() if hard irqs are masked.
6587
*/
6588
void __napi_schedule(struct napi_struct *n)
6589
{
6590
unsigned long flags;
6591
6592
local_irq_save(flags);
6593
____napi_schedule(this_cpu_ptr(&softnet_data), n);
6594
local_irq_restore(flags);
6595
}
6596
EXPORT_SYMBOL(__napi_schedule);
6597
6598
/**
6599
* napi_schedule_prep - check if napi can be scheduled
6600
* @n: napi context
6601
*
6602
* Test if NAPI routine is already running, and if not mark
6603
* it as running. This is used as a condition variable to
6604
* insure only one NAPI poll instance runs. We also make
6605
* sure there is no pending NAPI disable.
6606
*/
6607
bool napi_schedule_prep(struct napi_struct *n)
6608
{
6609
unsigned long new, val = READ_ONCE(n->state);
6610
6611
do {
6612
if (unlikely(val & NAPIF_STATE_DISABLE))
6613
return false;
6614
new = val | NAPIF_STATE_SCHED;
6615
6616
/* Sets STATE_MISSED bit if STATE_SCHED was already set
6617
* This was suggested by Alexander Duyck, as compiler
6618
* emits better code than :
6619
* if (val & NAPIF_STATE_SCHED)
6620
* new |= NAPIF_STATE_MISSED;
6621
*/
6622
new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6623
NAPIF_STATE_MISSED;
6624
} while (!try_cmpxchg(&n->state, &val, new));
6625
6626
return !(val & NAPIF_STATE_SCHED);
6627
}
6628
EXPORT_SYMBOL(napi_schedule_prep);
6629
6630
/**
6631
* __napi_schedule_irqoff - schedule for receive
6632
* @n: entry to schedule
6633
*
6634
* Variant of __napi_schedule() assuming hard irqs are masked.
6635
*
6636
* On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6637
* because the interrupt disabled assumption might not be true
6638
* due to force-threaded interrupts and spinlock substitution.
6639
*/
6640
void __napi_schedule_irqoff(struct napi_struct *n)
6641
{
6642
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6643
____napi_schedule(this_cpu_ptr(&softnet_data), n);
6644
else
6645
__napi_schedule(n);
6646
}
6647
EXPORT_SYMBOL(__napi_schedule_irqoff);
6648
6649
bool napi_complete_done(struct napi_struct *n, int work_done)
6650
{
6651
unsigned long flags, val, new, timeout = 0;
6652
bool ret = true;
6653
6654
/*
6655
* 1) Don't let napi dequeue from the cpu poll list
6656
* just in case its running on a different cpu.
6657
* 2) If we are busy polling, do nothing here, we have
6658
* the guarantee we will be called later.
6659
*/
6660
if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6661
NAPIF_STATE_IN_BUSY_POLL)))
6662
return false;
6663
6664
if (work_done) {
6665
if (n->gro.bitmask)
6666
timeout = napi_get_gro_flush_timeout(n);
6667
n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6668
}
6669
if (n->defer_hard_irqs_count > 0) {
6670
n->defer_hard_irqs_count--;
6671
timeout = napi_get_gro_flush_timeout(n);
6672
if (timeout)
6673
ret = false;
6674
}
6675
6676
/*
6677
* When the NAPI instance uses a timeout and keeps postponing
6678
* it, we need to bound somehow the time packets are kept in
6679
* the GRO layer.
6680
*/
6681
gro_flush_normal(&n->gro, !!timeout);
6682
6683
if (unlikely(!list_empty(&n->poll_list))) {
6684
/* If n->poll_list is not empty, we need to mask irqs */
6685
local_irq_save(flags);
6686
list_del_init(&n->poll_list);
6687
local_irq_restore(flags);
6688
}
6689
WRITE_ONCE(n->list_owner, -1);
6690
6691
val = READ_ONCE(n->state);
6692
do {
6693
WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6694
6695
new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6696
NAPIF_STATE_SCHED_THREADED |
6697
NAPIF_STATE_PREFER_BUSY_POLL);
6698
6699
/* If STATE_MISSED was set, leave STATE_SCHED set,
6700
* because we will call napi->poll() one more time.
6701
* This C code was suggested by Alexander Duyck to help gcc.
6702
*/
6703
new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6704
NAPIF_STATE_SCHED;
6705
} while (!try_cmpxchg(&n->state, &val, new));
6706
6707
if (unlikely(val & NAPIF_STATE_MISSED)) {
6708
__napi_schedule(n);
6709
return false;
6710
}
6711
6712
if (timeout)
6713
hrtimer_start(&n->timer, ns_to_ktime(timeout),
6714
HRTIMER_MODE_REL_PINNED);
6715
return ret;
6716
}
6717
EXPORT_SYMBOL(napi_complete_done);
6718
6719
static void skb_defer_free_flush(void)
6720
{
6721
struct llist_node *free_list;
6722
struct sk_buff *skb, *next;
6723
struct skb_defer_node *sdn;
6724
int node;
6725
6726
for_each_node(node) {
6727
sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6728
6729
if (llist_empty(&sdn->defer_list))
6730
continue;
6731
atomic_long_set(&sdn->defer_count, 0);
6732
free_list = llist_del_all(&sdn->defer_list);
6733
6734
llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6735
napi_consume_skb(skb, 1);
6736
}
6737
}
6738
}
6739
6740
#if defined(CONFIG_NET_RX_BUSY_POLL)
6741
6742
static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6743
{
6744
if (!skip_schedule) {
6745
gro_normal_list(&napi->gro);
6746
__napi_schedule(napi);
6747
return;
6748
}
6749
6750
/* Flush too old packets. If HZ < 1000, flush all packets */
6751
gro_flush_normal(&napi->gro, HZ >= 1000);
6752
6753
clear_bit(NAPI_STATE_SCHED, &napi->state);
6754
}
6755
6756
enum {
6757
NAPI_F_PREFER_BUSY_POLL = 1,
6758
NAPI_F_END_ON_RESCHED = 2,
6759
};
6760
6761
static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6762
unsigned flags, u16 budget)
6763
{
6764
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6765
bool skip_schedule = false;
6766
unsigned long timeout;
6767
int rc;
6768
6769
/* Busy polling means there is a high chance device driver hard irq
6770
* could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6771
* set in napi_schedule_prep().
6772
* Since we are about to call napi->poll() once more, we can safely
6773
* clear NAPI_STATE_MISSED.
6774
*
6775
* Note: x86 could use a single "lock and ..." instruction
6776
* to perform these two clear_bit()
6777
*/
6778
clear_bit(NAPI_STATE_MISSED, &napi->state);
6779
clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6780
6781
local_bh_disable();
6782
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6783
6784
if (flags & NAPI_F_PREFER_BUSY_POLL) {
6785
napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6786
timeout = napi_get_gro_flush_timeout(napi);
6787
if (napi->defer_hard_irqs_count && timeout) {
6788
hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6789
skip_schedule = true;
6790
}
6791
}
6792
6793
/* All we really want here is to re-enable device interrupts.
6794
* Ideally, a new ndo_busy_poll_stop() could avoid another round.
6795
*/
6796
rc = napi->poll(napi, budget);
6797
/* We can't gro_normal_list() here, because napi->poll() might have
6798
* rearmed the napi (napi_complete_done()) in which case it could
6799
* already be running on another CPU.
6800
*/
6801
trace_napi_poll(napi, rc, budget);
6802
netpoll_poll_unlock(have_poll_lock);
6803
if (rc == budget)
6804
__busy_poll_stop(napi, skip_schedule);
6805
bpf_net_ctx_clear(bpf_net_ctx);
6806
local_bh_enable();
6807
}
6808
6809
static void __napi_busy_loop(unsigned int napi_id,
6810
bool (*loop_end)(void *, unsigned long),
6811
void *loop_end_arg, unsigned flags, u16 budget)
6812
{
6813
unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6814
int (*napi_poll)(struct napi_struct *napi, int budget);
6815
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6816
void *have_poll_lock = NULL;
6817
struct napi_struct *napi;
6818
6819
WARN_ON_ONCE(!rcu_read_lock_held());
6820
6821
restart:
6822
napi_poll = NULL;
6823
6824
napi = napi_by_id(napi_id);
6825
if (!napi)
6826
return;
6827
6828
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6829
preempt_disable();
6830
for (;;) {
6831
int work = 0;
6832
6833
local_bh_disable();
6834
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6835
if (!napi_poll) {
6836
unsigned long val = READ_ONCE(napi->state);
6837
6838
/* If multiple threads are competing for this napi,
6839
* we avoid dirtying napi->state as much as we can.
6840
*/
6841
if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6842
NAPIF_STATE_IN_BUSY_POLL)) {
6843
if (flags & NAPI_F_PREFER_BUSY_POLL)
6844
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6845
goto count;
6846
}
6847
if (cmpxchg(&napi->state, val,
6848
val | NAPIF_STATE_IN_BUSY_POLL |
6849
NAPIF_STATE_SCHED) != val) {
6850
if (flags & NAPI_F_PREFER_BUSY_POLL)
6851
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6852
goto count;
6853
}
6854
have_poll_lock = netpoll_poll_lock(napi);
6855
napi_poll = napi->poll;
6856
}
6857
work = napi_poll(napi, budget);
6858
trace_napi_poll(napi, work, budget);
6859
gro_normal_list(&napi->gro);
6860
count:
6861
if (work > 0)
6862
__NET_ADD_STATS(dev_net(napi->dev),
6863
LINUX_MIB_BUSYPOLLRXPACKETS, work);
6864
skb_defer_free_flush();
6865
bpf_net_ctx_clear(bpf_net_ctx);
6866
local_bh_enable();
6867
6868
if (!loop_end || loop_end(loop_end_arg, start_time))
6869
break;
6870
6871
if (unlikely(need_resched())) {
6872
if (flags & NAPI_F_END_ON_RESCHED)
6873
break;
6874
if (napi_poll)
6875
busy_poll_stop(napi, have_poll_lock, flags, budget);
6876
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6877
preempt_enable();
6878
rcu_read_unlock();
6879
cond_resched();
6880
rcu_read_lock();
6881
if (loop_end(loop_end_arg, start_time))
6882
return;
6883
goto restart;
6884
}
6885
cpu_relax();
6886
}
6887
if (napi_poll)
6888
busy_poll_stop(napi, have_poll_lock, flags, budget);
6889
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6890
preempt_enable();
6891
}
6892
6893
void napi_busy_loop_rcu(unsigned int napi_id,
6894
bool (*loop_end)(void *, unsigned long),
6895
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6896
{
6897
unsigned flags = NAPI_F_END_ON_RESCHED;
6898
6899
if (prefer_busy_poll)
6900
flags |= NAPI_F_PREFER_BUSY_POLL;
6901
6902
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6903
}
6904
6905
void napi_busy_loop(unsigned int napi_id,
6906
bool (*loop_end)(void *, unsigned long),
6907
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6908
{
6909
unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6910
6911
rcu_read_lock();
6912
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6913
rcu_read_unlock();
6914
}
6915
EXPORT_SYMBOL(napi_busy_loop);
6916
6917
void napi_suspend_irqs(unsigned int napi_id)
6918
{
6919
struct napi_struct *napi;
6920
6921
rcu_read_lock();
6922
napi = napi_by_id(napi_id);
6923
if (napi) {
6924
unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6925
6926
if (timeout)
6927
hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6928
HRTIMER_MODE_REL_PINNED);
6929
}
6930
rcu_read_unlock();
6931
}
6932
6933
void napi_resume_irqs(unsigned int napi_id)
6934
{
6935
struct napi_struct *napi;
6936
6937
rcu_read_lock();
6938
napi = napi_by_id(napi_id);
6939
if (napi) {
6940
/* If irq_suspend_timeout is set to 0 between the call to
6941
* napi_suspend_irqs and now, the original value still
6942
* determines the safety timeout as intended and napi_watchdog
6943
* will resume irq processing.
6944
*/
6945
if (napi_get_irq_suspend_timeout(napi)) {
6946
local_bh_disable();
6947
napi_schedule(napi);
6948
local_bh_enable();
6949
}
6950
}
6951
rcu_read_unlock();
6952
}
6953
6954
#endif /* CONFIG_NET_RX_BUSY_POLL */
6955
6956
static void __napi_hash_add_with_id(struct napi_struct *napi,
6957
unsigned int napi_id)
6958
{
6959
napi->gro.cached_napi_id = napi_id;
6960
6961
WRITE_ONCE(napi->napi_id, napi_id);
6962
hlist_add_head_rcu(&napi->napi_hash_node,
6963
&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6964
}
6965
6966
static void napi_hash_add_with_id(struct napi_struct *napi,
6967
unsigned int napi_id)
6968
{
6969
unsigned long flags;
6970
6971
spin_lock_irqsave(&napi_hash_lock, flags);
6972
WARN_ON_ONCE(napi_by_id(napi_id));
6973
__napi_hash_add_with_id(napi, napi_id);
6974
spin_unlock_irqrestore(&napi_hash_lock, flags);
6975
}
6976
6977
static void napi_hash_add(struct napi_struct *napi)
6978
{
6979
unsigned long flags;
6980
6981
if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6982
return;
6983
6984
spin_lock_irqsave(&napi_hash_lock, flags);
6985
6986
/* 0..NR_CPUS range is reserved for sender_cpu use */
6987
do {
6988
if (unlikely(!napi_id_valid(++napi_gen_id)))
6989
napi_gen_id = MIN_NAPI_ID;
6990
} while (napi_by_id(napi_gen_id));
6991
6992
__napi_hash_add_with_id(napi, napi_gen_id);
6993
6994
spin_unlock_irqrestore(&napi_hash_lock, flags);
6995
}
6996
6997
/* Warning : caller is responsible to make sure rcu grace period
6998
* is respected before freeing memory containing @napi
6999
*/
7000
static void napi_hash_del(struct napi_struct *napi)
7001
{
7002
unsigned long flags;
7003
7004
spin_lock_irqsave(&napi_hash_lock, flags);
7005
7006
hlist_del_init_rcu(&napi->napi_hash_node);
7007
7008
spin_unlock_irqrestore(&napi_hash_lock, flags);
7009
}
7010
7011
static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7012
{
7013
struct napi_struct *napi;
7014
7015
napi = container_of(timer, struct napi_struct, timer);
7016
7017
/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7018
* NAPI_STATE_MISSED, since we do not react to a device IRQ.
7019
*/
7020
if (!napi_disable_pending(napi) &&
7021
!test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7022
clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7023
__napi_schedule_irqoff(napi);
7024
}
7025
7026
return HRTIMER_NORESTART;
7027
}
7028
7029
static void napi_stop_kthread(struct napi_struct *napi)
7030
{
7031
unsigned long val, new;
7032
7033
/* Wait until the napi STATE_THREADED is unset. */
7034
while (true) {
7035
val = READ_ONCE(napi->state);
7036
7037
/* If napi kthread own this napi or the napi is idle,
7038
* STATE_THREADED can be unset here.
7039
*/
7040
if ((val & NAPIF_STATE_SCHED_THREADED) ||
7041
!(val & NAPIF_STATE_SCHED)) {
7042
new = val & (~NAPIF_STATE_THREADED);
7043
} else {
7044
msleep(20);
7045
continue;
7046
}
7047
7048
if (try_cmpxchg(&napi->state, &val, new))
7049
break;
7050
}
7051
7052
/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7053
* the kthread.
7054
*/
7055
while (true) {
7056
if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7057
break;
7058
7059
msleep(20);
7060
}
7061
7062
kthread_stop(napi->thread);
7063
napi->thread = NULL;
7064
}
7065
7066
int napi_set_threaded(struct napi_struct *napi,
7067
enum netdev_napi_threaded threaded)
7068
{
7069
if (threaded) {
7070
if (!napi->thread) {
7071
int err = napi_kthread_create(napi);
7072
7073
if (err)
7074
return err;
7075
}
7076
}
7077
7078
if (napi->config)
7079
napi->config->threaded = threaded;
7080
7081
/* Setting/unsetting threaded mode on a napi might not immediately
7082
* take effect, if the current napi instance is actively being
7083
* polled. In this case, the switch between threaded mode and
7084
* softirq mode will happen in the next round of napi_schedule().
7085
* This should not cause hiccups/stalls to the live traffic.
7086
*/
7087
if (!threaded && napi->thread) {
7088
napi_stop_kthread(napi);
7089
} else {
7090
/* Make sure kthread is created before THREADED bit is set. */
7091
smp_mb__before_atomic();
7092
assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7093
}
7094
7095
return 0;
7096
}
7097
7098
int netif_set_threaded(struct net_device *dev,
7099
enum netdev_napi_threaded threaded)
7100
{
7101
struct napi_struct *napi;
7102
int i, err = 0;
7103
7104
netdev_assert_locked_or_invisible(dev);
7105
7106
if (threaded) {
7107
list_for_each_entry(napi, &dev->napi_list, dev_list) {
7108
if (!napi->thread) {
7109
err = napi_kthread_create(napi);
7110
if (err) {
7111
threaded = NETDEV_NAPI_THREADED_DISABLED;
7112
break;
7113
}
7114
}
7115
}
7116
}
7117
7118
WRITE_ONCE(dev->threaded, threaded);
7119
7120
/* The error should not occur as the kthreads are already created. */
7121
list_for_each_entry(napi, &dev->napi_list, dev_list)
7122
WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7123
7124
/* Override the config for all NAPIs even if currently not listed */
7125
for (i = 0; i < dev->num_napi_configs; i++)
7126
dev->napi_config[i].threaded = threaded;
7127
7128
return err;
7129
}
7130
7131
/**
7132
* netif_threaded_enable() - enable threaded NAPIs
7133
* @dev: net_device instance
7134
*
7135
* Enable threaded mode for the NAPI instances of the device. This may be useful
7136
* for devices where multiple NAPI instances get scheduled by a single
7137
* interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7138
* than the core where IRQ is mapped.
7139
*
7140
* This function should be called before @dev is registered.
7141
*/
7142
void netif_threaded_enable(struct net_device *dev)
7143
{
7144
WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7145
}
7146
EXPORT_SYMBOL(netif_threaded_enable);
7147
7148
/**
7149
* netif_queue_set_napi - Associate queue with the napi
7150
* @dev: device to which NAPI and queue belong
7151
* @queue_index: Index of queue
7152
* @type: queue type as RX or TX
7153
* @napi: NAPI context, pass NULL to clear previously set NAPI
7154
*
7155
* Set queue with its corresponding napi context. This should be done after
7156
* registering the NAPI handler for the queue-vector and the queues have been
7157
* mapped to the corresponding interrupt vector.
7158
*/
7159
void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7160
enum netdev_queue_type type, struct napi_struct *napi)
7161
{
7162
struct netdev_rx_queue *rxq;
7163
struct netdev_queue *txq;
7164
7165
if (WARN_ON_ONCE(napi && !napi->dev))
7166
return;
7167
netdev_ops_assert_locked_or_invisible(dev);
7168
7169
switch (type) {
7170
case NETDEV_QUEUE_TYPE_RX:
7171
rxq = __netif_get_rx_queue(dev, queue_index);
7172
rxq->napi = napi;
7173
return;
7174
case NETDEV_QUEUE_TYPE_TX:
7175
txq = netdev_get_tx_queue(dev, queue_index);
7176
txq->napi = napi;
7177
return;
7178
default:
7179
return;
7180
}
7181
}
7182
EXPORT_SYMBOL(netif_queue_set_napi);
7183
7184
static void
7185
netif_napi_irq_notify(struct irq_affinity_notify *notify,
7186
const cpumask_t *mask)
7187
{
7188
struct napi_struct *napi =
7189
container_of(notify, struct napi_struct, notify);
7190
#ifdef CONFIG_RFS_ACCEL
7191
struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7192
int err;
7193
#endif
7194
7195
if (napi->config && napi->dev->irq_affinity_auto)
7196
cpumask_copy(&napi->config->affinity_mask, mask);
7197
7198
#ifdef CONFIG_RFS_ACCEL
7199
if (napi->dev->rx_cpu_rmap_auto) {
7200
err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7201
if (err)
7202
netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7203
err);
7204
}
7205
#endif
7206
}
7207
7208
#ifdef CONFIG_RFS_ACCEL
7209
static void netif_napi_affinity_release(struct kref *ref)
7210
{
7211
struct napi_struct *napi =
7212
container_of(ref, struct napi_struct, notify.kref);
7213
struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7214
7215
netdev_assert_locked(napi->dev);
7216
WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7217
&napi->state));
7218
7219
if (!napi->dev->rx_cpu_rmap_auto)
7220
return;
7221
rmap->obj[napi->napi_rmap_idx] = NULL;
7222
napi->napi_rmap_idx = -1;
7223
cpu_rmap_put(rmap);
7224
}
7225
7226
int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7227
{
7228
if (dev->rx_cpu_rmap_auto)
7229
return 0;
7230
7231
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7232
if (!dev->rx_cpu_rmap)
7233
return -ENOMEM;
7234
7235
dev->rx_cpu_rmap_auto = true;
7236
return 0;
7237
}
7238
EXPORT_SYMBOL(netif_enable_cpu_rmap);
7239
7240
static void netif_del_cpu_rmap(struct net_device *dev)
7241
{
7242
struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7243
7244
if (!dev->rx_cpu_rmap_auto)
7245
return;
7246
7247
/* Free the rmap */
7248
cpu_rmap_put(rmap);
7249
dev->rx_cpu_rmap = NULL;
7250
dev->rx_cpu_rmap_auto = false;
7251
}
7252
7253
#else
7254
static void netif_napi_affinity_release(struct kref *ref)
7255
{
7256
}
7257
7258
int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7259
{
7260
return 0;
7261
}
7262
EXPORT_SYMBOL(netif_enable_cpu_rmap);
7263
7264
static void netif_del_cpu_rmap(struct net_device *dev)
7265
{
7266
}
7267
#endif
7268
7269
void netif_set_affinity_auto(struct net_device *dev)
7270
{
7271
unsigned int i, maxqs, numa;
7272
7273
maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7274
numa = dev_to_node(&dev->dev);
7275
7276
for (i = 0; i < maxqs; i++)
7277
cpumask_set_cpu(cpumask_local_spread(i, numa),
7278
&dev->napi_config[i].affinity_mask);
7279
7280
dev->irq_affinity_auto = true;
7281
}
7282
EXPORT_SYMBOL(netif_set_affinity_auto);
7283
7284
void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7285
{
7286
int rc;
7287
7288
netdev_assert_locked_or_invisible(napi->dev);
7289
7290
if (napi->irq == irq)
7291
return;
7292
7293
/* Remove existing resources */
7294
if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7295
irq_set_affinity_notifier(napi->irq, NULL);
7296
7297
napi->irq = irq;
7298
if (irq < 0 ||
7299
(!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7300
return;
7301
7302
/* Abort for buggy drivers */
7303
if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7304
return;
7305
7306
#ifdef CONFIG_RFS_ACCEL
7307
if (napi->dev->rx_cpu_rmap_auto) {
7308
rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7309
if (rc < 0)
7310
return;
7311
7312
cpu_rmap_get(napi->dev->rx_cpu_rmap);
7313
napi->napi_rmap_idx = rc;
7314
}
7315
#endif
7316
7317
/* Use core IRQ notifier */
7318
napi->notify.notify = netif_napi_irq_notify;
7319
napi->notify.release = netif_napi_affinity_release;
7320
rc = irq_set_affinity_notifier(irq, &napi->notify);
7321
if (rc) {
7322
netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7323
rc);
7324
goto put_rmap;
7325
}
7326
7327
set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7328
return;
7329
7330
put_rmap:
7331
#ifdef CONFIG_RFS_ACCEL
7332
if (napi->dev->rx_cpu_rmap_auto) {
7333
napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7334
cpu_rmap_put(napi->dev->rx_cpu_rmap);
7335
napi->napi_rmap_idx = -1;
7336
}
7337
#endif
7338
napi->notify.notify = NULL;
7339
napi->notify.release = NULL;
7340
}
7341
EXPORT_SYMBOL(netif_napi_set_irq_locked);
7342
7343
static void napi_restore_config(struct napi_struct *n)
7344
{
7345
n->defer_hard_irqs = n->config->defer_hard_irqs;
7346
n->gro_flush_timeout = n->config->gro_flush_timeout;
7347
n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7348
7349
if (n->dev->irq_affinity_auto &&
7350
test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7351
irq_set_affinity(n->irq, &n->config->affinity_mask);
7352
7353
/* a NAPI ID might be stored in the config, if so use it. if not, use
7354
* napi_hash_add to generate one for us.
7355
*/
7356
if (n->config->napi_id) {
7357
napi_hash_add_with_id(n, n->config->napi_id);
7358
} else {
7359
napi_hash_add(n);
7360
n->config->napi_id = n->napi_id;
7361
}
7362
7363
WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7364
}
7365
7366
static void napi_save_config(struct napi_struct *n)
7367
{
7368
n->config->defer_hard_irqs = n->defer_hard_irqs;
7369
n->config->gro_flush_timeout = n->gro_flush_timeout;
7370
n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7371
napi_hash_del(n);
7372
}
7373
7374
/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7375
* inherit an existing ID try to insert it at the right position.
7376
*/
7377
static void
7378
netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7379
{
7380
unsigned int new_id, pos_id;
7381
struct list_head *higher;
7382
struct napi_struct *pos;
7383
7384
new_id = UINT_MAX;
7385
if (napi->config && napi->config->napi_id)
7386
new_id = napi->config->napi_id;
7387
7388
higher = &dev->napi_list;
7389
list_for_each_entry(pos, &dev->napi_list, dev_list) {
7390
if (napi_id_valid(pos->napi_id))
7391
pos_id = pos->napi_id;
7392
else if (pos->config)
7393
pos_id = pos->config->napi_id;
7394
else
7395
pos_id = UINT_MAX;
7396
7397
if (pos_id <= new_id)
7398
break;
7399
higher = &pos->dev_list;
7400
}
7401
list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7402
}
7403
7404
/* Double check that napi_get_frags() allocates skbs with
7405
* skb->head being backed by slab, not a page fragment.
7406
* This is to make sure bug fixed in 3226b158e67c
7407
* ("net: avoid 32 x truesize under-estimation for tiny skbs")
7408
* does not accidentally come back.
7409
*/
7410
static void napi_get_frags_check(struct napi_struct *napi)
7411
{
7412
struct sk_buff *skb;
7413
7414
local_bh_disable();
7415
skb = napi_get_frags(napi);
7416
WARN_ON_ONCE(skb && skb->head_frag);
7417
napi_free_frags(napi);
7418
local_bh_enable();
7419
}
7420
7421
void netif_napi_add_weight_locked(struct net_device *dev,
7422
struct napi_struct *napi,
7423
int (*poll)(struct napi_struct *, int),
7424
int weight)
7425
{
7426
netdev_assert_locked(dev);
7427
if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7428
return;
7429
7430
INIT_LIST_HEAD(&napi->poll_list);
7431
INIT_HLIST_NODE(&napi->napi_hash_node);
7432
hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7433
gro_init(&napi->gro);
7434
napi->skb = NULL;
7435
napi->poll = poll;
7436
if (weight > NAPI_POLL_WEIGHT)
7437
netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7438
weight);
7439
napi->weight = weight;
7440
napi->dev = dev;
7441
#ifdef CONFIG_NETPOLL
7442
napi->poll_owner = -1;
7443
#endif
7444
napi->list_owner = -1;
7445
set_bit(NAPI_STATE_SCHED, &napi->state);
7446
set_bit(NAPI_STATE_NPSVC, &napi->state);
7447
netif_napi_dev_list_add(dev, napi);
7448
7449
/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7450
* configuration will be loaded in napi_enable
7451
*/
7452
napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7453
napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7454
7455
napi_get_frags_check(napi);
7456
/* Create kthread for this napi if dev->threaded is set.
7457
* Clear dev->threaded if kthread creation failed so that
7458
* threaded mode will not be enabled in napi_enable().
7459
*/
7460
if (napi_get_threaded_config(dev, napi))
7461
if (napi_kthread_create(napi))
7462
dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7463
netif_napi_set_irq_locked(napi, -1);
7464
}
7465
EXPORT_SYMBOL(netif_napi_add_weight_locked);
7466
7467
void napi_disable_locked(struct napi_struct *n)
7468
{
7469
unsigned long val, new;
7470
7471
might_sleep();
7472
netdev_assert_locked(n->dev);
7473
7474
set_bit(NAPI_STATE_DISABLE, &n->state);
7475
7476
val = READ_ONCE(n->state);
7477
do {
7478
while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7479
usleep_range(20, 200);
7480
val = READ_ONCE(n->state);
7481
}
7482
7483
new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7484
new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7485
} while (!try_cmpxchg(&n->state, &val, new));
7486
7487
hrtimer_cancel(&n->timer);
7488
7489
if (n->config)
7490
napi_save_config(n);
7491
else
7492
napi_hash_del(n);
7493
7494
clear_bit(NAPI_STATE_DISABLE, &n->state);
7495
}
7496
EXPORT_SYMBOL(napi_disable_locked);
7497
7498
/**
7499
* napi_disable() - prevent NAPI from scheduling
7500
* @n: NAPI context
7501
*
7502
* Stop NAPI from being scheduled on this context.
7503
* Waits till any outstanding processing completes.
7504
* Takes netdev_lock() for associated net_device.
7505
*/
7506
void napi_disable(struct napi_struct *n)
7507
{
7508
netdev_lock(n->dev);
7509
napi_disable_locked(n);
7510
netdev_unlock(n->dev);
7511
}
7512
EXPORT_SYMBOL(napi_disable);
7513
7514
void napi_enable_locked(struct napi_struct *n)
7515
{
7516
unsigned long new, val = READ_ONCE(n->state);
7517
7518
if (n->config)
7519
napi_restore_config(n);
7520
else
7521
napi_hash_add(n);
7522
7523
do {
7524
BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7525
7526
new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7527
if (n->dev->threaded && n->thread)
7528
new |= NAPIF_STATE_THREADED;
7529
} while (!try_cmpxchg(&n->state, &val, new));
7530
}
7531
EXPORT_SYMBOL(napi_enable_locked);
7532
7533
/**
7534
* napi_enable() - enable NAPI scheduling
7535
* @n: NAPI context
7536
*
7537
* Enable scheduling of a NAPI instance.
7538
* Must be paired with napi_disable().
7539
* Takes netdev_lock() for associated net_device.
7540
*/
7541
void napi_enable(struct napi_struct *n)
7542
{
7543
netdev_lock(n->dev);
7544
napi_enable_locked(n);
7545
netdev_unlock(n->dev);
7546
}
7547
EXPORT_SYMBOL(napi_enable);
7548
7549
/* Must be called in process context */
7550
void __netif_napi_del_locked(struct napi_struct *napi)
7551
{
7552
netdev_assert_locked(napi->dev);
7553
7554
if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7555
return;
7556
7557
/* Make sure NAPI is disabled (or was never enabled). */
7558
WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7559
7560
if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7561
irq_set_affinity_notifier(napi->irq, NULL);
7562
7563
if (napi->config) {
7564
napi->index = -1;
7565
napi->config = NULL;
7566
}
7567
7568
list_del_rcu(&napi->dev_list);
7569
napi_free_frags(napi);
7570
7571
gro_cleanup(&napi->gro);
7572
7573
if (napi->thread) {
7574
kthread_stop(napi->thread);
7575
napi->thread = NULL;
7576
}
7577
}
7578
EXPORT_SYMBOL(__netif_napi_del_locked);
7579
7580
static int __napi_poll(struct napi_struct *n, bool *repoll)
7581
{
7582
int work, weight;
7583
7584
weight = n->weight;
7585
7586
/* This NAPI_STATE_SCHED test is for avoiding a race
7587
* with netpoll's poll_napi(). Only the entity which
7588
* obtains the lock and sees NAPI_STATE_SCHED set will
7589
* actually make the ->poll() call. Therefore we avoid
7590
* accidentally calling ->poll() when NAPI is not scheduled.
7591
*/
7592
work = 0;
7593
if (napi_is_scheduled(n)) {
7594
work = n->poll(n, weight);
7595
trace_napi_poll(n, work, weight);
7596
7597
xdp_do_check_flushed(n);
7598
}
7599
7600
if (unlikely(work > weight))
7601
netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7602
n->poll, work, weight);
7603
7604
if (likely(work < weight))
7605
return work;
7606
7607
/* Drivers must not modify the NAPI state if they
7608
* consume the entire weight. In such cases this code
7609
* still "owns" the NAPI instance and therefore can
7610
* move the instance around on the list at-will.
7611
*/
7612
if (unlikely(napi_disable_pending(n))) {
7613
napi_complete(n);
7614
return work;
7615
}
7616
7617
/* The NAPI context has more processing work, but busy-polling
7618
* is preferred. Exit early.
7619
*/
7620
if (napi_prefer_busy_poll(n)) {
7621
if (napi_complete_done(n, work)) {
7622
/* If timeout is not set, we need to make sure
7623
* that the NAPI is re-scheduled.
7624
*/
7625
napi_schedule(n);
7626
}
7627
return work;
7628
}
7629
7630
/* Flush too old packets. If HZ < 1000, flush all packets */
7631
gro_flush_normal(&n->gro, HZ >= 1000);
7632
7633
/* Some drivers may have called napi_schedule
7634
* prior to exhausting their budget.
7635
*/
7636
if (unlikely(!list_empty(&n->poll_list))) {
7637
pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7638
n->dev ? n->dev->name : "backlog");
7639
return work;
7640
}
7641
7642
*repoll = true;
7643
7644
return work;
7645
}
7646
7647
static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7648
{
7649
bool do_repoll = false;
7650
void *have;
7651
int work;
7652
7653
list_del_init(&n->poll_list);
7654
7655
have = netpoll_poll_lock(n);
7656
7657
work = __napi_poll(n, &do_repoll);
7658
7659
if (do_repoll) {
7660
#if defined(CONFIG_DEBUG_NET)
7661
if (unlikely(!napi_is_scheduled(n)))
7662
pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7663
n->dev->name, n->poll);
7664
#endif
7665
list_add_tail(&n->poll_list, repoll);
7666
}
7667
netpoll_poll_unlock(have);
7668
7669
return work;
7670
}
7671
7672
static int napi_thread_wait(struct napi_struct *napi)
7673
{
7674
set_current_state(TASK_INTERRUPTIBLE);
7675
7676
while (!kthread_should_stop()) {
7677
/* Testing SCHED_THREADED bit here to make sure the current
7678
* kthread owns this napi and could poll on this napi.
7679
* Testing SCHED bit is not enough because SCHED bit might be
7680
* set by some other busy poll thread or by napi_disable().
7681
*/
7682
if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7683
WARN_ON(!list_empty(&napi->poll_list));
7684
__set_current_state(TASK_RUNNING);
7685
return 0;
7686
}
7687
7688
schedule();
7689
set_current_state(TASK_INTERRUPTIBLE);
7690
}
7691
__set_current_state(TASK_RUNNING);
7692
7693
return -1;
7694
}
7695
7696
static void napi_threaded_poll_loop(struct napi_struct *napi)
7697
{
7698
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7699
struct softnet_data *sd;
7700
unsigned long last_qs = jiffies;
7701
7702
for (;;) {
7703
bool repoll = false;
7704
void *have;
7705
7706
local_bh_disable();
7707
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7708
7709
sd = this_cpu_ptr(&softnet_data);
7710
sd->in_napi_threaded_poll = true;
7711
7712
have = netpoll_poll_lock(napi);
7713
__napi_poll(napi, &repoll);
7714
netpoll_poll_unlock(have);
7715
7716
sd->in_napi_threaded_poll = false;
7717
barrier();
7718
7719
if (sd_has_rps_ipi_waiting(sd)) {
7720
local_irq_disable();
7721
net_rps_action_and_irq_enable(sd);
7722
}
7723
skb_defer_free_flush();
7724
bpf_net_ctx_clear(bpf_net_ctx);
7725
local_bh_enable();
7726
7727
if (!repoll)
7728
break;
7729
7730
rcu_softirq_qs_periodic(last_qs);
7731
cond_resched();
7732
}
7733
}
7734
7735
static int napi_threaded_poll(void *data)
7736
{
7737
struct napi_struct *napi = data;
7738
7739
while (!napi_thread_wait(napi))
7740
napi_threaded_poll_loop(napi);
7741
7742
return 0;
7743
}
7744
7745
static __latent_entropy void net_rx_action(void)
7746
{
7747
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7748
unsigned long time_limit = jiffies +
7749
usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7750
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7751
int budget = READ_ONCE(net_hotdata.netdev_budget);
7752
LIST_HEAD(list);
7753
LIST_HEAD(repoll);
7754
7755
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7756
start:
7757
sd->in_net_rx_action = true;
7758
local_irq_disable();
7759
list_splice_init(&sd->poll_list, &list);
7760
local_irq_enable();
7761
7762
for (;;) {
7763
struct napi_struct *n;
7764
7765
skb_defer_free_flush();
7766
7767
if (list_empty(&list)) {
7768
if (list_empty(&repoll)) {
7769
sd->in_net_rx_action = false;
7770
barrier();
7771
/* We need to check if ____napi_schedule()
7772
* had refilled poll_list while
7773
* sd->in_net_rx_action was true.
7774
*/
7775
if (!list_empty(&sd->poll_list))
7776
goto start;
7777
if (!sd_has_rps_ipi_waiting(sd))
7778
goto end;
7779
}
7780
break;
7781
}
7782
7783
n = list_first_entry(&list, struct napi_struct, poll_list);
7784
budget -= napi_poll(n, &repoll);
7785
7786
/* If softirq window is exhausted then punt.
7787
* Allow this to run for 2 jiffies since which will allow
7788
* an average latency of 1.5/HZ.
7789
*/
7790
if (unlikely(budget <= 0 ||
7791
time_after_eq(jiffies, time_limit))) {
7792
/* Pairs with READ_ONCE() in softnet_seq_show() */
7793
WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7794
break;
7795
}
7796
}
7797
7798
local_irq_disable();
7799
7800
list_splice_tail_init(&sd->poll_list, &list);
7801
list_splice_tail(&repoll, &list);
7802
list_splice(&list, &sd->poll_list);
7803
if (!list_empty(&sd->poll_list))
7804
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7805
else
7806
sd->in_net_rx_action = false;
7807
7808
net_rps_action_and_irq_enable(sd);
7809
end:
7810
bpf_net_ctx_clear(bpf_net_ctx);
7811
}
7812
7813
struct netdev_adjacent {
7814
struct net_device *dev;
7815
netdevice_tracker dev_tracker;
7816
7817
/* upper master flag, there can only be one master device per list */
7818
bool master;
7819
7820
/* lookup ignore flag */
7821
bool ignore;
7822
7823
/* counter for the number of times this device was added to us */
7824
u16 ref_nr;
7825
7826
/* private field for the users */
7827
void *private;
7828
7829
struct list_head list;
7830
struct rcu_head rcu;
7831
};
7832
7833
static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7834
struct list_head *adj_list)
7835
{
7836
struct netdev_adjacent *adj;
7837
7838
list_for_each_entry(adj, adj_list, list) {
7839
if (adj->dev == adj_dev)
7840
return adj;
7841
}
7842
return NULL;
7843
}
7844
7845
static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7846
struct netdev_nested_priv *priv)
7847
{
7848
struct net_device *dev = (struct net_device *)priv->data;
7849
7850
return upper_dev == dev;
7851
}
7852
7853
/**
7854
* netdev_has_upper_dev - Check if device is linked to an upper device
7855
* @dev: device
7856
* @upper_dev: upper device to check
7857
*
7858
* Find out if a device is linked to specified upper device and return true
7859
* in case it is. Note that this checks only immediate upper device,
7860
* not through a complete stack of devices. The caller must hold the RTNL lock.
7861
*/
7862
bool netdev_has_upper_dev(struct net_device *dev,
7863
struct net_device *upper_dev)
7864
{
7865
struct netdev_nested_priv priv = {
7866
.data = (void *)upper_dev,
7867
};
7868
7869
ASSERT_RTNL();
7870
7871
return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7872
&priv);
7873
}
7874
EXPORT_SYMBOL(netdev_has_upper_dev);
7875
7876
/**
7877
* netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7878
* @dev: device
7879
* @upper_dev: upper device to check
7880
*
7881
* Find out if a device is linked to specified upper device and return true
7882
* in case it is. Note that this checks the entire upper device chain.
7883
* The caller must hold rcu lock.
7884
*/
7885
7886
bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7887
struct net_device *upper_dev)
7888
{
7889
struct netdev_nested_priv priv = {
7890
.data = (void *)upper_dev,
7891
};
7892
7893
return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7894
&priv);
7895
}
7896
EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7897
7898
/**
7899
* netdev_has_any_upper_dev - Check if device is linked to some device
7900
* @dev: device
7901
*
7902
* Find out if a device is linked to an upper device and return true in case
7903
* it is. The caller must hold the RTNL lock.
7904
*/
7905
bool netdev_has_any_upper_dev(struct net_device *dev)
7906
{
7907
ASSERT_RTNL();
7908
7909
return !list_empty(&dev->adj_list.upper);
7910
}
7911
EXPORT_SYMBOL(netdev_has_any_upper_dev);
7912
7913
/**
7914
* netdev_master_upper_dev_get - Get master upper device
7915
* @dev: device
7916
*
7917
* Find a master upper device and return pointer to it or NULL in case
7918
* it's not there. The caller must hold the RTNL lock.
7919
*/
7920
struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7921
{
7922
struct netdev_adjacent *upper;
7923
7924
ASSERT_RTNL();
7925
7926
if (list_empty(&dev->adj_list.upper))
7927
return NULL;
7928
7929
upper = list_first_entry(&dev->adj_list.upper,
7930
struct netdev_adjacent, list);
7931
if (likely(upper->master))
7932
return upper->dev;
7933
return NULL;
7934
}
7935
EXPORT_SYMBOL(netdev_master_upper_dev_get);
7936
7937
static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7938
{
7939
struct netdev_adjacent *upper;
7940
7941
ASSERT_RTNL();
7942
7943
if (list_empty(&dev->adj_list.upper))
7944
return NULL;
7945
7946
upper = list_first_entry(&dev->adj_list.upper,
7947
struct netdev_adjacent, list);
7948
if (likely(upper->master) && !upper->ignore)
7949
return upper->dev;
7950
return NULL;
7951
}
7952
7953
/**
7954
* netdev_has_any_lower_dev - Check if device is linked to some device
7955
* @dev: device
7956
*
7957
* Find out if a device is linked to a lower device and return true in case
7958
* it is. The caller must hold the RTNL lock.
7959
*/
7960
static bool netdev_has_any_lower_dev(struct net_device *dev)
7961
{
7962
ASSERT_RTNL();
7963
7964
return !list_empty(&dev->adj_list.lower);
7965
}
7966
7967
void *netdev_adjacent_get_private(struct list_head *adj_list)
7968
{
7969
struct netdev_adjacent *adj;
7970
7971
adj = list_entry(adj_list, struct netdev_adjacent, list);
7972
7973
return adj->private;
7974
}
7975
EXPORT_SYMBOL(netdev_adjacent_get_private);
7976
7977
/**
7978
* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7979
* @dev: device
7980
* @iter: list_head ** of the current position
7981
*
7982
* Gets the next device from the dev's upper list, starting from iter
7983
* position. The caller must hold RCU read lock.
7984
*/
7985
struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7986
struct list_head **iter)
7987
{
7988
struct netdev_adjacent *upper;
7989
7990
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7991
7992
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7993
7994
if (&upper->list == &dev->adj_list.upper)
7995
return NULL;
7996
7997
*iter = &upper->list;
7998
7999
return upper->dev;
8000
}
8001
EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8002
8003
static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8004
struct list_head **iter,
8005
bool *ignore)
8006
{
8007
struct netdev_adjacent *upper;
8008
8009
upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8010
8011
if (&upper->list == &dev->adj_list.upper)
8012
return NULL;
8013
8014
*iter = &upper->list;
8015
*ignore = upper->ignore;
8016
8017
return upper->dev;
8018
}
8019
8020
static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8021
struct list_head **iter)
8022
{
8023
struct netdev_adjacent *upper;
8024
8025
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8026
8027
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8028
8029
if (&upper->list == &dev->adj_list.upper)
8030
return NULL;
8031
8032
*iter = &upper->list;
8033
8034
return upper->dev;
8035
}
8036
8037
static int __netdev_walk_all_upper_dev(struct net_device *dev,
8038
int (*fn)(struct net_device *dev,
8039
struct netdev_nested_priv *priv),
8040
struct netdev_nested_priv *priv)
8041
{
8042
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8043
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8044
int ret, cur = 0;
8045
bool ignore;
8046
8047
now = dev;
8048
iter = &dev->adj_list.upper;
8049
8050
while (1) {
8051
if (now != dev) {
8052
ret = fn(now, priv);
8053
if (ret)
8054
return ret;
8055
}
8056
8057
next = NULL;
8058
while (1) {
8059
udev = __netdev_next_upper_dev(now, &iter, &ignore);
8060
if (!udev)
8061
break;
8062
if (ignore)
8063
continue;
8064
8065
next = udev;
8066
niter = &udev->adj_list.upper;
8067
dev_stack[cur] = now;
8068
iter_stack[cur++] = iter;
8069
break;
8070
}
8071
8072
if (!next) {
8073
if (!cur)
8074
return 0;
8075
next = dev_stack[--cur];
8076
niter = iter_stack[cur];
8077
}
8078
8079
now = next;
8080
iter = niter;
8081
}
8082
8083
return 0;
8084
}
8085
8086
int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8087
int (*fn)(struct net_device *dev,
8088
struct netdev_nested_priv *priv),
8089
struct netdev_nested_priv *priv)
8090
{
8091
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8092
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8093
int ret, cur = 0;
8094
8095
now = dev;
8096
iter = &dev->adj_list.upper;
8097
8098
while (1) {
8099
if (now != dev) {
8100
ret = fn(now, priv);
8101
if (ret)
8102
return ret;
8103
}
8104
8105
next = NULL;
8106
while (1) {
8107
udev = netdev_next_upper_dev_rcu(now, &iter);
8108
if (!udev)
8109
break;
8110
8111
next = udev;
8112
niter = &udev->adj_list.upper;
8113
dev_stack[cur] = now;
8114
iter_stack[cur++] = iter;
8115
break;
8116
}
8117
8118
if (!next) {
8119
if (!cur)
8120
return 0;
8121
next = dev_stack[--cur];
8122
niter = iter_stack[cur];
8123
}
8124
8125
now = next;
8126
iter = niter;
8127
}
8128
8129
return 0;
8130
}
8131
EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8132
8133
static bool __netdev_has_upper_dev(struct net_device *dev,
8134
struct net_device *upper_dev)
8135
{
8136
struct netdev_nested_priv priv = {
8137
.flags = 0,
8138
.data = (void *)upper_dev,
8139
};
8140
8141
ASSERT_RTNL();
8142
8143
return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8144
&priv);
8145
}
8146
8147
/**
8148
* netdev_lower_get_next_private - Get the next ->private from the
8149
* lower neighbour list
8150
* @dev: device
8151
* @iter: list_head ** of the current position
8152
*
8153
* Gets the next netdev_adjacent->private from the dev's lower neighbour
8154
* list, starting from iter position. The caller must hold either hold the
8155
* RTNL lock or its own locking that guarantees that the neighbour lower
8156
* list will remain unchanged.
8157
*/
8158
void *netdev_lower_get_next_private(struct net_device *dev,
8159
struct list_head **iter)
8160
{
8161
struct netdev_adjacent *lower;
8162
8163
lower = list_entry(*iter, struct netdev_adjacent, list);
8164
8165
if (&lower->list == &dev->adj_list.lower)
8166
return NULL;
8167
8168
*iter = lower->list.next;
8169
8170
return lower->private;
8171
}
8172
EXPORT_SYMBOL(netdev_lower_get_next_private);
8173
8174
/**
8175
* netdev_lower_get_next_private_rcu - Get the next ->private from the
8176
* lower neighbour list, RCU
8177
* variant
8178
* @dev: device
8179
* @iter: list_head ** of the current position
8180
*
8181
* Gets the next netdev_adjacent->private from the dev's lower neighbour
8182
* list, starting from iter position. The caller must hold RCU read lock.
8183
*/
8184
void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8185
struct list_head **iter)
8186
{
8187
struct netdev_adjacent *lower;
8188
8189
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8190
8191
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8192
8193
if (&lower->list == &dev->adj_list.lower)
8194
return NULL;
8195
8196
*iter = &lower->list;
8197
8198
return lower->private;
8199
}
8200
EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8201
8202
/**
8203
* netdev_lower_get_next - Get the next device from the lower neighbour
8204
* list
8205
* @dev: device
8206
* @iter: list_head ** of the current position
8207
*
8208
* Gets the next netdev_adjacent from the dev's lower neighbour
8209
* list, starting from iter position. The caller must hold RTNL lock or
8210
* its own locking that guarantees that the neighbour lower
8211
* list will remain unchanged.
8212
*/
8213
void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8214
{
8215
struct netdev_adjacent *lower;
8216
8217
lower = list_entry(*iter, struct netdev_adjacent, list);
8218
8219
if (&lower->list == &dev->adj_list.lower)
8220
return NULL;
8221
8222
*iter = lower->list.next;
8223
8224
return lower->dev;
8225
}
8226
EXPORT_SYMBOL(netdev_lower_get_next);
8227
8228
static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8229
struct list_head **iter)
8230
{
8231
struct netdev_adjacent *lower;
8232
8233
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8234
8235
if (&lower->list == &dev->adj_list.lower)
8236
return NULL;
8237
8238
*iter = &lower->list;
8239
8240
return lower->dev;
8241
}
8242
8243
static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8244
struct list_head **iter,
8245
bool *ignore)
8246
{
8247
struct netdev_adjacent *lower;
8248
8249
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8250
8251
if (&lower->list == &dev->adj_list.lower)
8252
return NULL;
8253
8254
*iter = &lower->list;
8255
*ignore = lower->ignore;
8256
8257
return lower->dev;
8258
}
8259
8260
int netdev_walk_all_lower_dev(struct net_device *dev,
8261
int (*fn)(struct net_device *dev,
8262
struct netdev_nested_priv *priv),
8263
struct netdev_nested_priv *priv)
8264
{
8265
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8266
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8267
int ret, cur = 0;
8268
8269
now = dev;
8270
iter = &dev->adj_list.lower;
8271
8272
while (1) {
8273
if (now != dev) {
8274
ret = fn(now, priv);
8275
if (ret)
8276
return ret;
8277
}
8278
8279
next = NULL;
8280
while (1) {
8281
ldev = netdev_next_lower_dev(now, &iter);
8282
if (!ldev)
8283
break;
8284
8285
next = ldev;
8286
niter = &ldev->adj_list.lower;
8287
dev_stack[cur] = now;
8288
iter_stack[cur++] = iter;
8289
break;
8290
}
8291
8292
if (!next) {
8293
if (!cur)
8294
return 0;
8295
next = dev_stack[--cur];
8296
niter = iter_stack[cur];
8297
}
8298
8299
now = next;
8300
iter = niter;
8301
}
8302
8303
return 0;
8304
}
8305
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8306
8307
static int __netdev_walk_all_lower_dev(struct net_device *dev,
8308
int (*fn)(struct net_device *dev,
8309
struct netdev_nested_priv *priv),
8310
struct netdev_nested_priv *priv)
8311
{
8312
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8313
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8314
int ret, cur = 0;
8315
bool ignore;
8316
8317
now = dev;
8318
iter = &dev->adj_list.lower;
8319
8320
while (1) {
8321
if (now != dev) {
8322
ret = fn(now, priv);
8323
if (ret)
8324
return ret;
8325
}
8326
8327
next = NULL;
8328
while (1) {
8329
ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8330
if (!ldev)
8331
break;
8332
if (ignore)
8333
continue;
8334
8335
next = ldev;
8336
niter = &ldev->adj_list.lower;
8337
dev_stack[cur] = now;
8338
iter_stack[cur++] = iter;
8339
break;
8340
}
8341
8342
if (!next) {
8343
if (!cur)
8344
return 0;
8345
next = dev_stack[--cur];
8346
niter = iter_stack[cur];
8347
}
8348
8349
now = next;
8350
iter = niter;
8351
}
8352
8353
return 0;
8354
}
8355
8356
struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8357
struct list_head **iter)
8358
{
8359
struct netdev_adjacent *lower;
8360
8361
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8362
if (&lower->list == &dev->adj_list.lower)
8363
return NULL;
8364
8365
*iter = &lower->list;
8366
8367
return lower->dev;
8368
}
8369
EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8370
8371
static u8 __netdev_upper_depth(struct net_device *dev)
8372
{
8373
struct net_device *udev;
8374
struct list_head *iter;
8375
u8 max_depth = 0;
8376
bool ignore;
8377
8378
for (iter = &dev->adj_list.upper,
8379
udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8380
udev;
8381
udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8382
if (ignore)
8383
continue;
8384
if (max_depth < udev->upper_level)
8385
max_depth = udev->upper_level;
8386
}
8387
8388
return max_depth;
8389
}
8390
8391
static u8 __netdev_lower_depth(struct net_device *dev)
8392
{
8393
struct net_device *ldev;
8394
struct list_head *iter;
8395
u8 max_depth = 0;
8396
bool ignore;
8397
8398
for (iter = &dev->adj_list.lower,
8399
ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8400
ldev;
8401
ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8402
if (ignore)
8403
continue;
8404
if (max_depth < ldev->lower_level)
8405
max_depth = ldev->lower_level;
8406
}
8407
8408
return max_depth;
8409
}
8410
8411
static int __netdev_update_upper_level(struct net_device *dev,
8412
struct netdev_nested_priv *__unused)
8413
{
8414
dev->upper_level = __netdev_upper_depth(dev) + 1;
8415
return 0;
8416
}
8417
8418
#ifdef CONFIG_LOCKDEP
8419
static LIST_HEAD(net_unlink_list);
8420
8421
static void net_unlink_todo(struct net_device *dev)
8422
{
8423
if (list_empty(&dev->unlink_list))
8424
list_add_tail(&dev->unlink_list, &net_unlink_list);
8425
}
8426
#endif
8427
8428
static int __netdev_update_lower_level(struct net_device *dev,
8429
struct netdev_nested_priv *priv)
8430
{
8431
dev->lower_level = __netdev_lower_depth(dev) + 1;
8432
8433
#ifdef CONFIG_LOCKDEP
8434
if (!priv)
8435
return 0;
8436
8437
if (priv->flags & NESTED_SYNC_IMM)
8438
dev->nested_level = dev->lower_level - 1;
8439
if (priv->flags & NESTED_SYNC_TODO)
8440
net_unlink_todo(dev);
8441
#endif
8442
return 0;
8443
}
8444
8445
int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8446
int (*fn)(struct net_device *dev,
8447
struct netdev_nested_priv *priv),
8448
struct netdev_nested_priv *priv)
8449
{
8450
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8451
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8452
int ret, cur = 0;
8453
8454
now = dev;
8455
iter = &dev->adj_list.lower;
8456
8457
while (1) {
8458
if (now != dev) {
8459
ret = fn(now, priv);
8460
if (ret)
8461
return ret;
8462
}
8463
8464
next = NULL;
8465
while (1) {
8466
ldev = netdev_next_lower_dev_rcu(now, &iter);
8467
if (!ldev)
8468
break;
8469
8470
next = ldev;
8471
niter = &ldev->adj_list.lower;
8472
dev_stack[cur] = now;
8473
iter_stack[cur++] = iter;
8474
break;
8475
}
8476
8477
if (!next) {
8478
if (!cur)
8479
return 0;
8480
next = dev_stack[--cur];
8481
niter = iter_stack[cur];
8482
}
8483
8484
now = next;
8485
iter = niter;
8486
}
8487
8488
return 0;
8489
}
8490
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8491
8492
/**
8493
* netdev_lower_get_first_private_rcu - Get the first ->private from the
8494
* lower neighbour list, RCU
8495
* variant
8496
* @dev: device
8497
*
8498
* Gets the first netdev_adjacent->private from the dev's lower neighbour
8499
* list. The caller must hold RCU read lock.
8500
*/
8501
void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8502
{
8503
struct netdev_adjacent *lower;
8504
8505
lower = list_first_or_null_rcu(&dev->adj_list.lower,
8506
struct netdev_adjacent, list);
8507
if (lower)
8508
return lower->private;
8509
return NULL;
8510
}
8511
EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8512
8513
/**
8514
* netdev_master_upper_dev_get_rcu - Get master upper device
8515
* @dev: device
8516
*
8517
* Find a master upper device and return pointer to it or NULL in case
8518
* it's not there. The caller must hold the RCU read lock.
8519
*/
8520
struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8521
{
8522
struct netdev_adjacent *upper;
8523
8524
upper = list_first_or_null_rcu(&dev->adj_list.upper,
8525
struct netdev_adjacent, list);
8526
if (upper && likely(upper->master))
8527
return upper->dev;
8528
return NULL;
8529
}
8530
EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8531
8532
static int netdev_adjacent_sysfs_add(struct net_device *dev,
8533
struct net_device *adj_dev,
8534
struct list_head *dev_list)
8535
{
8536
char linkname[IFNAMSIZ+7];
8537
8538
sprintf(linkname, dev_list == &dev->adj_list.upper ?
8539
"upper_%s" : "lower_%s", adj_dev->name);
8540
return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8541
linkname);
8542
}
8543
static void netdev_adjacent_sysfs_del(struct net_device *dev,
8544
char *name,
8545
struct list_head *dev_list)
8546
{
8547
char linkname[IFNAMSIZ+7];
8548
8549
sprintf(linkname, dev_list == &dev->adj_list.upper ?
8550
"upper_%s" : "lower_%s", name);
8551
sysfs_remove_link(&(dev->dev.kobj), linkname);
8552
}
8553
8554
static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8555
struct net_device *adj_dev,
8556
struct list_head *dev_list)
8557
{
8558
return (dev_list == &dev->adj_list.upper ||
8559
dev_list == &dev->adj_list.lower) &&
8560
net_eq(dev_net(dev), dev_net(adj_dev));
8561
}
8562
8563
static int __netdev_adjacent_dev_insert(struct net_device *dev,
8564
struct net_device *adj_dev,
8565
struct list_head *dev_list,
8566
void *private, bool master)
8567
{
8568
struct netdev_adjacent *adj;
8569
int ret;
8570
8571
adj = __netdev_find_adj(adj_dev, dev_list);
8572
8573
if (adj) {
8574
adj->ref_nr += 1;
8575
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8576
dev->name, adj_dev->name, adj->ref_nr);
8577
8578
return 0;
8579
}
8580
8581
adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8582
if (!adj)
8583
return -ENOMEM;
8584
8585
adj->dev = adj_dev;
8586
adj->master = master;
8587
adj->ref_nr = 1;
8588
adj->private = private;
8589
adj->ignore = false;
8590
netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8591
8592
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8593
dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8594
8595
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8596
ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8597
if (ret)
8598
goto free_adj;
8599
}
8600
8601
/* Ensure that master link is always the first item in list. */
8602
if (master) {
8603
ret = sysfs_create_link(&(dev->dev.kobj),
8604
&(adj_dev->dev.kobj), "master");
8605
if (ret)
8606
goto remove_symlinks;
8607
8608
list_add_rcu(&adj->list, dev_list);
8609
} else {
8610
list_add_tail_rcu(&adj->list, dev_list);
8611
}
8612
8613
return 0;
8614
8615
remove_symlinks:
8616
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8617
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8618
free_adj:
8619
netdev_put(adj_dev, &adj->dev_tracker);
8620
kfree(adj);
8621
8622
return ret;
8623
}
8624
8625
static void __netdev_adjacent_dev_remove(struct net_device *dev,
8626
struct net_device *adj_dev,
8627
u16 ref_nr,
8628
struct list_head *dev_list)
8629
{
8630
struct netdev_adjacent *adj;
8631
8632
pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8633
dev->name, adj_dev->name, ref_nr);
8634
8635
adj = __netdev_find_adj(adj_dev, dev_list);
8636
8637
if (!adj) {
8638
pr_err("Adjacency does not exist for device %s from %s\n",
8639
dev->name, adj_dev->name);
8640
WARN_ON(1);
8641
return;
8642
}
8643
8644
if (adj->ref_nr > ref_nr) {
8645
pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8646
dev->name, adj_dev->name, ref_nr,
8647
adj->ref_nr - ref_nr);
8648
adj->ref_nr -= ref_nr;
8649
return;
8650
}
8651
8652
if (adj->master)
8653
sysfs_remove_link(&(dev->dev.kobj), "master");
8654
8655
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8656
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8657
8658
list_del_rcu(&adj->list);
8659
pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8660
adj_dev->name, dev->name, adj_dev->name);
8661
netdev_put(adj_dev, &adj->dev_tracker);
8662
kfree_rcu(adj, rcu);
8663
}
8664
8665
static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8666
struct net_device *upper_dev,
8667
struct list_head *up_list,
8668
struct list_head *down_list,
8669
void *private, bool master)
8670
{
8671
int ret;
8672
8673
ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8674
private, master);
8675
if (ret)
8676
return ret;
8677
8678
ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8679
private, false);
8680
if (ret) {
8681
__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8682
return ret;
8683
}
8684
8685
return 0;
8686
}
8687
8688
static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8689
struct net_device *upper_dev,
8690
u16 ref_nr,
8691
struct list_head *up_list,
8692
struct list_head *down_list)
8693
{
8694
__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8695
__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8696
}
8697
8698
static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8699
struct net_device *upper_dev,
8700
void *private, bool master)
8701
{
8702
return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8703
&dev->adj_list.upper,
8704
&upper_dev->adj_list.lower,
8705
private, master);
8706
}
8707
8708
static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8709
struct net_device *upper_dev)
8710
{
8711
__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8712
&dev->adj_list.upper,
8713
&upper_dev->adj_list.lower);
8714
}
8715
8716
static int __netdev_upper_dev_link(struct net_device *dev,
8717
struct net_device *upper_dev, bool master,
8718
void *upper_priv, void *upper_info,
8719
struct netdev_nested_priv *priv,
8720
struct netlink_ext_ack *extack)
8721
{
8722
struct netdev_notifier_changeupper_info changeupper_info = {
8723
.info = {
8724
.dev = dev,
8725
.extack = extack,
8726
},
8727
.upper_dev = upper_dev,
8728
.master = master,
8729
.linking = true,
8730
.upper_info = upper_info,
8731
};
8732
struct net_device *master_dev;
8733
int ret = 0;
8734
8735
ASSERT_RTNL();
8736
8737
if (dev == upper_dev)
8738
return -EBUSY;
8739
8740
/* To prevent loops, check if dev is not upper device to upper_dev. */
8741
if (__netdev_has_upper_dev(upper_dev, dev))
8742
return -EBUSY;
8743
8744
if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8745
return -EMLINK;
8746
8747
if (!master) {
8748
if (__netdev_has_upper_dev(dev, upper_dev))
8749
return -EEXIST;
8750
} else {
8751
master_dev = __netdev_master_upper_dev_get(dev);
8752
if (master_dev)
8753
return master_dev == upper_dev ? -EEXIST : -EBUSY;
8754
}
8755
8756
ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8757
&changeupper_info.info);
8758
ret = notifier_to_errno(ret);
8759
if (ret)
8760
return ret;
8761
8762
ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8763
master);
8764
if (ret)
8765
return ret;
8766
8767
ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8768
&changeupper_info.info);
8769
ret = notifier_to_errno(ret);
8770
if (ret)
8771
goto rollback;
8772
8773
__netdev_update_upper_level(dev, NULL);
8774
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8775
8776
__netdev_update_lower_level(upper_dev, priv);
8777
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8778
priv);
8779
8780
return 0;
8781
8782
rollback:
8783
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8784
8785
return ret;
8786
}
8787
8788
/**
8789
* netdev_upper_dev_link - Add a link to the upper device
8790
* @dev: device
8791
* @upper_dev: new upper device
8792
* @extack: netlink extended ack
8793
*
8794
* Adds a link to device which is upper to this one. The caller must hold
8795
* the RTNL lock. On a failure a negative errno code is returned.
8796
* On success the reference counts are adjusted and the function
8797
* returns zero.
8798
*/
8799
int netdev_upper_dev_link(struct net_device *dev,
8800
struct net_device *upper_dev,
8801
struct netlink_ext_ack *extack)
8802
{
8803
struct netdev_nested_priv priv = {
8804
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8805
.data = NULL,
8806
};
8807
8808
return __netdev_upper_dev_link(dev, upper_dev, false,
8809
NULL, NULL, &priv, extack);
8810
}
8811
EXPORT_SYMBOL(netdev_upper_dev_link);
8812
8813
/**
8814
* netdev_master_upper_dev_link - Add a master link to the upper device
8815
* @dev: device
8816
* @upper_dev: new upper device
8817
* @upper_priv: upper device private
8818
* @upper_info: upper info to be passed down via notifier
8819
* @extack: netlink extended ack
8820
*
8821
* Adds a link to device which is upper to this one. In this case, only
8822
* one master upper device can be linked, although other non-master devices
8823
* might be linked as well. The caller must hold the RTNL lock.
8824
* On a failure a negative errno code is returned. On success the reference
8825
* counts are adjusted and the function returns zero.
8826
*/
8827
int netdev_master_upper_dev_link(struct net_device *dev,
8828
struct net_device *upper_dev,
8829
void *upper_priv, void *upper_info,
8830
struct netlink_ext_ack *extack)
8831
{
8832
struct netdev_nested_priv priv = {
8833
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8834
.data = NULL,
8835
};
8836
8837
return __netdev_upper_dev_link(dev, upper_dev, true,
8838
upper_priv, upper_info, &priv, extack);
8839
}
8840
EXPORT_SYMBOL(netdev_master_upper_dev_link);
8841
8842
static void __netdev_upper_dev_unlink(struct net_device *dev,
8843
struct net_device *upper_dev,
8844
struct netdev_nested_priv *priv)
8845
{
8846
struct netdev_notifier_changeupper_info changeupper_info = {
8847
.info = {
8848
.dev = dev,
8849
},
8850
.upper_dev = upper_dev,
8851
.linking = false,
8852
};
8853
8854
ASSERT_RTNL();
8855
8856
changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8857
8858
call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8859
&changeupper_info.info);
8860
8861
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8862
8863
call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8864
&changeupper_info.info);
8865
8866
__netdev_update_upper_level(dev, NULL);
8867
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8868
8869
__netdev_update_lower_level(upper_dev, priv);
8870
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8871
priv);
8872
}
8873
8874
/**
8875
* netdev_upper_dev_unlink - Removes a link to upper device
8876
* @dev: device
8877
* @upper_dev: new upper device
8878
*
8879
* Removes a link to device which is upper to this one. The caller must hold
8880
* the RTNL lock.
8881
*/
8882
void netdev_upper_dev_unlink(struct net_device *dev,
8883
struct net_device *upper_dev)
8884
{
8885
struct netdev_nested_priv priv = {
8886
.flags = NESTED_SYNC_TODO,
8887
.data = NULL,
8888
};
8889
8890
__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8891
}
8892
EXPORT_SYMBOL(netdev_upper_dev_unlink);
8893
8894
static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8895
struct net_device *lower_dev,
8896
bool val)
8897
{
8898
struct netdev_adjacent *adj;
8899
8900
adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8901
if (adj)
8902
adj->ignore = val;
8903
8904
adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8905
if (adj)
8906
adj->ignore = val;
8907
}
8908
8909
static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8910
struct net_device *lower_dev)
8911
{
8912
__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8913
}
8914
8915
static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8916
struct net_device *lower_dev)
8917
{
8918
__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8919
}
8920
8921
int netdev_adjacent_change_prepare(struct net_device *old_dev,
8922
struct net_device *new_dev,
8923
struct net_device *dev,
8924
struct netlink_ext_ack *extack)
8925
{
8926
struct netdev_nested_priv priv = {
8927
.flags = 0,
8928
.data = NULL,
8929
};
8930
int err;
8931
8932
if (!new_dev)
8933
return 0;
8934
8935
if (old_dev && new_dev != old_dev)
8936
netdev_adjacent_dev_disable(dev, old_dev);
8937
err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8938
extack);
8939
if (err) {
8940
if (old_dev && new_dev != old_dev)
8941
netdev_adjacent_dev_enable(dev, old_dev);
8942
return err;
8943
}
8944
8945
return 0;
8946
}
8947
EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8948
8949
void netdev_adjacent_change_commit(struct net_device *old_dev,
8950
struct net_device *new_dev,
8951
struct net_device *dev)
8952
{
8953
struct netdev_nested_priv priv = {
8954
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8955
.data = NULL,
8956
};
8957
8958
if (!new_dev || !old_dev)
8959
return;
8960
8961
if (new_dev == old_dev)
8962
return;
8963
8964
netdev_adjacent_dev_enable(dev, old_dev);
8965
__netdev_upper_dev_unlink(old_dev, dev, &priv);
8966
}
8967
EXPORT_SYMBOL(netdev_adjacent_change_commit);
8968
8969
void netdev_adjacent_change_abort(struct net_device *old_dev,
8970
struct net_device *new_dev,
8971
struct net_device *dev)
8972
{
8973
struct netdev_nested_priv priv = {
8974
.flags = 0,
8975
.data = NULL,
8976
};
8977
8978
if (!new_dev)
8979
return;
8980
8981
if (old_dev && new_dev != old_dev)
8982
netdev_adjacent_dev_enable(dev, old_dev);
8983
8984
__netdev_upper_dev_unlink(new_dev, dev, &priv);
8985
}
8986
EXPORT_SYMBOL(netdev_adjacent_change_abort);
8987
8988
/**
8989
* netdev_bonding_info_change - Dispatch event about slave change
8990
* @dev: device
8991
* @bonding_info: info to dispatch
8992
*
8993
* Send NETDEV_BONDING_INFO to netdev notifiers with info.
8994
* The caller must hold the RTNL lock.
8995
*/
8996
void netdev_bonding_info_change(struct net_device *dev,
8997
struct netdev_bonding_info *bonding_info)
8998
{
8999
struct netdev_notifier_bonding_info info = {
9000
.info.dev = dev,
9001
};
9002
9003
memcpy(&info.bonding_info, bonding_info,
9004
sizeof(struct netdev_bonding_info));
9005
call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9006
&info.info);
9007
}
9008
EXPORT_SYMBOL(netdev_bonding_info_change);
9009
9010
static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9011
struct netlink_ext_ack *extack)
9012
{
9013
struct netdev_notifier_offload_xstats_info info = {
9014
.info.dev = dev,
9015
.info.extack = extack,
9016
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9017
};
9018
int err;
9019
int rc;
9020
9021
dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9022
GFP_KERNEL);
9023
if (!dev->offload_xstats_l3)
9024
return -ENOMEM;
9025
9026
rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9027
NETDEV_OFFLOAD_XSTATS_DISABLE,
9028
&info.info);
9029
err = notifier_to_errno(rc);
9030
if (err)
9031
goto free_stats;
9032
9033
return 0;
9034
9035
free_stats:
9036
kfree(dev->offload_xstats_l3);
9037
dev->offload_xstats_l3 = NULL;
9038
return err;
9039
}
9040
9041
int netdev_offload_xstats_enable(struct net_device *dev,
9042
enum netdev_offload_xstats_type type,
9043
struct netlink_ext_ack *extack)
9044
{
9045
ASSERT_RTNL();
9046
9047
if (netdev_offload_xstats_enabled(dev, type))
9048
return -EALREADY;
9049
9050
switch (type) {
9051
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9052
return netdev_offload_xstats_enable_l3(dev, extack);
9053
}
9054
9055
WARN_ON(1);
9056
return -EINVAL;
9057
}
9058
EXPORT_SYMBOL(netdev_offload_xstats_enable);
9059
9060
static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9061
{
9062
struct netdev_notifier_offload_xstats_info info = {
9063
.info.dev = dev,
9064
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9065
};
9066
9067
call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9068
&info.info);
9069
kfree(dev->offload_xstats_l3);
9070
dev->offload_xstats_l3 = NULL;
9071
}
9072
9073
int netdev_offload_xstats_disable(struct net_device *dev,
9074
enum netdev_offload_xstats_type type)
9075
{
9076
ASSERT_RTNL();
9077
9078
if (!netdev_offload_xstats_enabled(dev, type))
9079
return -EALREADY;
9080
9081
switch (type) {
9082
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9083
netdev_offload_xstats_disable_l3(dev);
9084
return 0;
9085
}
9086
9087
WARN_ON(1);
9088
return -EINVAL;
9089
}
9090
EXPORT_SYMBOL(netdev_offload_xstats_disable);
9091
9092
static void netdev_offload_xstats_disable_all(struct net_device *dev)
9093
{
9094
netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9095
}
9096
9097
static struct rtnl_hw_stats64 *
9098
netdev_offload_xstats_get_ptr(const struct net_device *dev,
9099
enum netdev_offload_xstats_type type)
9100
{
9101
switch (type) {
9102
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9103
return dev->offload_xstats_l3;
9104
}
9105
9106
WARN_ON(1);
9107
return NULL;
9108
}
9109
9110
bool netdev_offload_xstats_enabled(const struct net_device *dev,
9111
enum netdev_offload_xstats_type type)
9112
{
9113
ASSERT_RTNL();
9114
9115
return netdev_offload_xstats_get_ptr(dev, type);
9116
}
9117
EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9118
9119
struct netdev_notifier_offload_xstats_ru {
9120
bool used;
9121
};
9122
9123
struct netdev_notifier_offload_xstats_rd {
9124
struct rtnl_hw_stats64 stats;
9125
bool used;
9126
};
9127
9128
static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9129
const struct rtnl_hw_stats64 *src)
9130
{
9131
dest->rx_packets += src->rx_packets;
9132
dest->tx_packets += src->tx_packets;
9133
dest->rx_bytes += src->rx_bytes;
9134
dest->tx_bytes += src->tx_bytes;
9135
dest->rx_errors += src->rx_errors;
9136
dest->tx_errors += src->tx_errors;
9137
dest->rx_dropped += src->rx_dropped;
9138
dest->tx_dropped += src->tx_dropped;
9139
dest->multicast += src->multicast;
9140
}
9141
9142
static int netdev_offload_xstats_get_used(struct net_device *dev,
9143
enum netdev_offload_xstats_type type,
9144
bool *p_used,
9145
struct netlink_ext_ack *extack)
9146
{
9147
struct netdev_notifier_offload_xstats_ru report_used = {};
9148
struct netdev_notifier_offload_xstats_info info = {
9149
.info.dev = dev,
9150
.info.extack = extack,
9151
.type = type,
9152
.report_used = &report_used,
9153
};
9154
int rc;
9155
9156
WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9157
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9158
&info.info);
9159
*p_used = report_used.used;
9160
return notifier_to_errno(rc);
9161
}
9162
9163
static int netdev_offload_xstats_get_stats(struct net_device *dev,
9164
enum netdev_offload_xstats_type type,
9165
struct rtnl_hw_stats64 *p_stats,
9166
bool *p_used,
9167
struct netlink_ext_ack *extack)
9168
{
9169
struct netdev_notifier_offload_xstats_rd report_delta = {};
9170
struct netdev_notifier_offload_xstats_info info = {
9171
.info.dev = dev,
9172
.info.extack = extack,
9173
.type = type,
9174
.report_delta = &report_delta,
9175
};
9176
struct rtnl_hw_stats64 *stats;
9177
int rc;
9178
9179
stats = netdev_offload_xstats_get_ptr(dev, type);
9180
if (WARN_ON(!stats))
9181
return -EINVAL;
9182
9183
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9184
&info.info);
9185
9186
/* Cache whatever we got, even if there was an error, otherwise the
9187
* successful stats retrievals would get lost.
9188
*/
9189
netdev_hw_stats64_add(stats, &report_delta.stats);
9190
9191
if (p_stats)
9192
*p_stats = *stats;
9193
*p_used = report_delta.used;
9194
9195
return notifier_to_errno(rc);
9196
}
9197
9198
int netdev_offload_xstats_get(struct net_device *dev,
9199
enum netdev_offload_xstats_type type,
9200
struct rtnl_hw_stats64 *p_stats, bool *p_used,
9201
struct netlink_ext_ack *extack)
9202
{
9203
ASSERT_RTNL();
9204
9205
if (p_stats)
9206
return netdev_offload_xstats_get_stats(dev, type, p_stats,
9207
p_used, extack);
9208
else
9209
return netdev_offload_xstats_get_used(dev, type, p_used,
9210
extack);
9211
}
9212
EXPORT_SYMBOL(netdev_offload_xstats_get);
9213
9214
void
9215
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9216
const struct rtnl_hw_stats64 *stats)
9217
{
9218
report_delta->used = true;
9219
netdev_hw_stats64_add(&report_delta->stats, stats);
9220
}
9221
EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9222
9223
void
9224
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9225
{
9226
report_used->used = true;
9227
}
9228
EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9229
9230
void netdev_offload_xstats_push_delta(struct net_device *dev,
9231
enum netdev_offload_xstats_type type,
9232
const struct rtnl_hw_stats64 *p_stats)
9233
{
9234
struct rtnl_hw_stats64 *stats;
9235
9236
ASSERT_RTNL();
9237
9238
stats = netdev_offload_xstats_get_ptr(dev, type);
9239
if (WARN_ON(!stats))
9240
return;
9241
9242
netdev_hw_stats64_add(stats, p_stats);
9243
}
9244
EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9245
9246
/**
9247
* netdev_get_xmit_slave - Get the xmit slave of master device
9248
* @dev: device
9249
* @skb: The packet
9250
* @all_slaves: assume all the slaves are active
9251
*
9252
* The reference counters are not incremented so the caller must be
9253
* careful with locks. The caller must hold RCU lock.
9254
* %NULL is returned if no slave is found.
9255
*/
9256
9257
struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9258
struct sk_buff *skb,
9259
bool all_slaves)
9260
{
9261
const struct net_device_ops *ops = dev->netdev_ops;
9262
9263
if (!ops->ndo_get_xmit_slave)
9264
return NULL;
9265
return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9266
}
9267
EXPORT_SYMBOL(netdev_get_xmit_slave);
9268
9269
static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9270
struct sock *sk)
9271
{
9272
const struct net_device_ops *ops = dev->netdev_ops;
9273
9274
if (!ops->ndo_sk_get_lower_dev)
9275
return NULL;
9276
return ops->ndo_sk_get_lower_dev(dev, sk);
9277
}
9278
9279
/**
9280
* netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9281
* @dev: device
9282
* @sk: the socket
9283
*
9284
* %NULL is returned if no lower device is found.
9285
*/
9286
9287
struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9288
struct sock *sk)
9289
{
9290
struct net_device *lower;
9291
9292
lower = netdev_sk_get_lower_dev(dev, sk);
9293
while (lower) {
9294
dev = lower;
9295
lower = netdev_sk_get_lower_dev(dev, sk);
9296
}
9297
9298
return dev;
9299
}
9300
EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9301
9302
static void netdev_adjacent_add_links(struct net_device *dev)
9303
{
9304
struct netdev_adjacent *iter;
9305
9306
struct net *net = dev_net(dev);
9307
9308
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9309
if (!net_eq(net, dev_net(iter->dev)))
9310
continue;
9311
netdev_adjacent_sysfs_add(iter->dev, dev,
9312
&iter->dev->adj_list.lower);
9313
netdev_adjacent_sysfs_add(dev, iter->dev,
9314
&dev->adj_list.upper);
9315
}
9316
9317
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9318
if (!net_eq(net, dev_net(iter->dev)))
9319
continue;
9320
netdev_adjacent_sysfs_add(iter->dev, dev,
9321
&iter->dev->adj_list.upper);
9322
netdev_adjacent_sysfs_add(dev, iter->dev,
9323
&dev->adj_list.lower);
9324
}
9325
}
9326
9327
static void netdev_adjacent_del_links(struct net_device *dev)
9328
{
9329
struct netdev_adjacent *iter;
9330
9331
struct net *net = dev_net(dev);
9332
9333
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9334
if (!net_eq(net, dev_net(iter->dev)))
9335
continue;
9336
netdev_adjacent_sysfs_del(iter->dev, dev->name,
9337
&iter->dev->adj_list.lower);
9338
netdev_adjacent_sysfs_del(dev, iter->dev->name,
9339
&dev->adj_list.upper);
9340
}
9341
9342
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9343
if (!net_eq(net, dev_net(iter->dev)))
9344
continue;
9345
netdev_adjacent_sysfs_del(iter->dev, dev->name,
9346
&iter->dev->adj_list.upper);
9347
netdev_adjacent_sysfs_del(dev, iter->dev->name,
9348
&dev->adj_list.lower);
9349
}
9350
}
9351
9352
void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9353
{
9354
struct netdev_adjacent *iter;
9355
9356
struct net *net = dev_net(dev);
9357
9358
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9359
if (!net_eq(net, dev_net(iter->dev)))
9360
continue;
9361
netdev_adjacent_sysfs_del(iter->dev, oldname,
9362
&iter->dev->adj_list.lower);
9363
netdev_adjacent_sysfs_add(iter->dev, dev,
9364
&iter->dev->adj_list.lower);
9365
}
9366
9367
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9368
if (!net_eq(net, dev_net(iter->dev)))
9369
continue;
9370
netdev_adjacent_sysfs_del(iter->dev, oldname,
9371
&iter->dev->adj_list.upper);
9372
netdev_adjacent_sysfs_add(iter->dev, dev,
9373
&iter->dev->adj_list.upper);
9374
}
9375
}
9376
9377
void *netdev_lower_dev_get_private(struct net_device *dev,
9378
struct net_device *lower_dev)
9379
{
9380
struct netdev_adjacent *lower;
9381
9382
if (!lower_dev)
9383
return NULL;
9384
lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9385
if (!lower)
9386
return NULL;
9387
9388
return lower->private;
9389
}
9390
EXPORT_SYMBOL(netdev_lower_dev_get_private);
9391
9392
9393
/**
9394
* netdev_lower_state_changed - Dispatch event about lower device state change
9395
* @lower_dev: device
9396
* @lower_state_info: state to dispatch
9397
*
9398
* Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9399
* The caller must hold the RTNL lock.
9400
*/
9401
void netdev_lower_state_changed(struct net_device *lower_dev,
9402
void *lower_state_info)
9403
{
9404
struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9405
.info.dev = lower_dev,
9406
};
9407
9408
ASSERT_RTNL();
9409
changelowerstate_info.lower_state_info = lower_state_info;
9410
call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9411
&changelowerstate_info.info);
9412
}
9413
EXPORT_SYMBOL(netdev_lower_state_changed);
9414
9415
static void dev_change_rx_flags(struct net_device *dev, int flags)
9416
{
9417
const struct net_device_ops *ops = dev->netdev_ops;
9418
9419
if (ops->ndo_change_rx_flags)
9420
ops->ndo_change_rx_flags(dev, flags);
9421
}
9422
9423
static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9424
{
9425
unsigned int old_flags = dev->flags;
9426
unsigned int promiscuity, flags;
9427
kuid_t uid;
9428
kgid_t gid;
9429
9430
ASSERT_RTNL();
9431
9432
promiscuity = dev->promiscuity + inc;
9433
if (promiscuity == 0) {
9434
/*
9435
* Avoid overflow.
9436
* If inc causes overflow, untouch promisc and return error.
9437
*/
9438
if (unlikely(inc > 0)) {
9439
netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9440
return -EOVERFLOW;
9441
}
9442
flags = old_flags & ~IFF_PROMISC;
9443
} else {
9444
flags = old_flags | IFF_PROMISC;
9445
}
9446
WRITE_ONCE(dev->promiscuity, promiscuity);
9447
if (flags != old_flags) {
9448
WRITE_ONCE(dev->flags, flags);
9449
netdev_info(dev, "%s promiscuous mode\n",
9450
dev->flags & IFF_PROMISC ? "entered" : "left");
9451
if (audit_enabled) {
9452
current_uid_gid(&uid, &gid);
9453
audit_log(audit_context(), GFP_ATOMIC,
9454
AUDIT_ANOM_PROMISCUOUS,
9455
"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9456
dev->name, (dev->flags & IFF_PROMISC),
9457
(old_flags & IFF_PROMISC),
9458
from_kuid(&init_user_ns, audit_get_loginuid(current)),
9459
from_kuid(&init_user_ns, uid),
9460
from_kgid(&init_user_ns, gid),
9461
audit_get_sessionid(current));
9462
}
9463
9464
dev_change_rx_flags(dev, IFF_PROMISC);
9465
}
9466
if (notify) {
9467
/* The ops lock is only required to ensure consistent locking
9468
* for `NETDEV_CHANGE` notifiers. This function is sometimes
9469
* called without the lock, even for devices that are ops
9470
* locked, such as in `dev_uc_sync_multiple` when using
9471
* bonding or teaming.
9472
*/
9473
netdev_ops_assert_locked(dev);
9474
__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9475
}
9476
return 0;
9477
}
9478
9479
int netif_set_promiscuity(struct net_device *dev, int inc)
9480
{
9481
unsigned int old_flags = dev->flags;
9482
int err;
9483
9484
err = __dev_set_promiscuity(dev, inc, true);
9485
if (err < 0)
9486
return err;
9487
if (dev->flags != old_flags)
9488
dev_set_rx_mode(dev);
9489
return err;
9490
}
9491
9492
int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9493
{
9494
unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9495
unsigned int allmulti, flags;
9496
9497
ASSERT_RTNL();
9498
9499
allmulti = dev->allmulti + inc;
9500
if (allmulti == 0) {
9501
/*
9502
* Avoid overflow.
9503
* If inc causes overflow, untouch allmulti and return error.
9504
*/
9505
if (unlikely(inc > 0)) {
9506
netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9507
return -EOVERFLOW;
9508
}
9509
flags = old_flags & ~IFF_ALLMULTI;
9510
} else {
9511
flags = old_flags | IFF_ALLMULTI;
9512
}
9513
WRITE_ONCE(dev->allmulti, allmulti);
9514
if (flags != old_flags) {
9515
WRITE_ONCE(dev->flags, flags);
9516
netdev_info(dev, "%s allmulticast mode\n",
9517
dev->flags & IFF_ALLMULTI ? "entered" : "left");
9518
dev_change_rx_flags(dev, IFF_ALLMULTI);
9519
dev_set_rx_mode(dev);
9520
if (notify)
9521
__dev_notify_flags(dev, old_flags,
9522
dev->gflags ^ old_gflags, 0, NULL);
9523
}
9524
return 0;
9525
}
9526
9527
/*
9528
* Upload unicast and multicast address lists to device and
9529
* configure RX filtering. When the device doesn't support unicast
9530
* filtering it is put in promiscuous mode while unicast addresses
9531
* are present.
9532
*/
9533
void __dev_set_rx_mode(struct net_device *dev)
9534
{
9535
const struct net_device_ops *ops = dev->netdev_ops;
9536
9537
/* dev_open will call this function so the list will stay sane. */
9538
if (!(dev->flags&IFF_UP))
9539
return;
9540
9541
if (!netif_device_present(dev))
9542
return;
9543
9544
if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9545
/* Unicast addresses changes may only happen under the rtnl,
9546
* therefore calling __dev_set_promiscuity here is safe.
9547
*/
9548
if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9549
__dev_set_promiscuity(dev, 1, false);
9550
dev->uc_promisc = true;
9551
} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9552
__dev_set_promiscuity(dev, -1, false);
9553
dev->uc_promisc = false;
9554
}
9555
}
9556
9557
if (ops->ndo_set_rx_mode)
9558
ops->ndo_set_rx_mode(dev);
9559
}
9560
9561
void dev_set_rx_mode(struct net_device *dev)
9562
{
9563
netif_addr_lock_bh(dev);
9564
__dev_set_rx_mode(dev);
9565
netif_addr_unlock_bh(dev);
9566
}
9567
9568
/**
9569
* netif_get_flags() - get flags reported to userspace
9570
* @dev: device
9571
*
9572
* Get the combination of flag bits exported through APIs to userspace.
9573
*/
9574
unsigned int netif_get_flags(const struct net_device *dev)
9575
{
9576
unsigned int flags;
9577
9578
flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9579
IFF_ALLMULTI |
9580
IFF_RUNNING |
9581
IFF_LOWER_UP |
9582
IFF_DORMANT)) |
9583
(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9584
IFF_ALLMULTI));
9585
9586
if (netif_running(dev)) {
9587
if (netif_oper_up(dev))
9588
flags |= IFF_RUNNING;
9589
if (netif_carrier_ok(dev))
9590
flags |= IFF_LOWER_UP;
9591
if (netif_dormant(dev))
9592
flags |= IFF_DORMANT;
9593
}
9594
9595
return flags;
9596
}
9597
EXPORT_SYMBOL(netif_get_flags);
9598
9599
int __dev_change_flags(struct net_device *dev, unsigned int flags,
9600
struct netlink_ext_ack *extack)
9601
{
9602
unsigned int old_flags = dev->flags;
9603
int ret;
9604
9605
ASSERT_RTNL();
9606
9607
/*
9608
* Set the flags on our device.
9609
*/
9610
9611
dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9612
IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9613
IFF_AUTOMEDIA)) |
9614
(dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9615
IFF_ALLMULTI));
9616
9617
/*
9618
* Load in the correct multicast list now the flags have changed.
9619
*/
9620
9621
if ((old_flags ^ flags) & IFF_MULTICAST)
9622
dev_change_rx_flags(dev, IFF_MULTICAST);
9623
9624
dev_set_rx_mode(dev);
9625
9626
/*
9627
* Have we downed the interface. We handle IFF_UP ourselves
9628
* according to user attempts to set it, rather than blindly
9629
* setting it.
9630
*/
9631
9632
ret = 0;
9633
if ((old_flags ^ flags) & IFF_UP) {
9634
if (old_flags & IFF_UP)
9635
__dev_close(dev);
9636
else
9637
ret = __dev_open(dev, extack);
9638
}
9639
9640
if ((flags ^ dev->gflags) & IFF_PROMISC) {
9641
int inc = (flags & IFF_PROMISC) ? 1 : -1;
9642
old_flags = dev->flags;
9643
9644
dev->gflags ^= IFF_PROMISC;
9645
9646
if (__dev_set_promiscuity(dev, inc, false) >= 0)
9647
if (dev->flags != old_flags)
9648
dev_set_rx_mode(dev);
9649
}
9650
9651
/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9652
* is important. Some (broken) drivers set IFF_PROMISC, when
9653
* IFF_ALLMULTI is requested not asking us and not reporting.
9654
*/
9655
if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9656
int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9657
9658
dev->gflags ^= IFF_ALLMULTI;
9659
netif_set_allmulti(dev, inc, false);
9660
}
9661
9662
return ret;
9663
}
9664
9665
void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9666
unsigned int gchanges, u32 portid,
9667
const struct nlmsghdr *nlh)
9668
{
9669
unsigned int changes = dev->flags ^ old_flags;
9670
9671
if (gchanges)
9672
rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9673
9674
if (changes & IFF_UP) {
9675
if (dev->flags & IFF_UP)
9676
call_netdevice_notifiers(NETDEV_UP, dev);
9677
else
9678
call_netdevice_notifiers(NETDEV_DOWN, dev);
9679
}
9680
9681
if (dev->flags & IFF_UP &&
9682
(changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9683
struct netdev_notifier_change_info change_info = {
9684
.info = {
9685
.dev = dev,
9686
},
9687
.flags_changed = changes,
9688
};
9689
9690
call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9691
}
9692
}
9693
9694
int netif_change_flags(struct net_device *dev, unsigned int flags,
9695
struct netlink_ext_ack *extack)
9696
{
9697
int ret;
9698
unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9699
9700
ret = __dev_change_flags(dev, flags, extack);
9701
if (ret < 0)
9702
return ret;
9703
9704
changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9705
__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9706
return ret;
9707
}
9708
9709
int __netif_set_mtu(struct net_device *dev, int new_mtu)
9710
{
9711
const struct net_device_ops *ops = dev->netdev_ops;
9712
9713
if (ops->ndo_change_mtu)
9714
return ops->ndo_change_mtu(dev, new_mtu);
9715
9716
/* Pairs with all the lockless reads of dev->mtu in the stack */
9717
WRITE_ONCE(dev->mtu, new_mtu);
9718
return 0;
9719
}
9720
EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9721
9722
int dev_validate_mtu(struct net_device *dev, int new_mtu,
9723
struct netlink_ext_ack *extack)
9724
{
9725
/* MTU must be positive, and in range */
9726
if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9727
NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9728
return -EINVAL;
9729
}
9730
9731
if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9732
NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9733
return -EINVAL;
9734
}
9735
return 0;
9736
}
9737
9738
/**
9739
* netif_set_mtu_ext() - Change maximum transfer unit
9740
* @dev: device
9741
* @new_mtu: new transfer unit
9742
* @extack: netlink extended ack
9743
*
9744
* Change the maximum transfer size of the network device.
9745
*
9746
* Return: 0 on success, -errno on failure.
9747
*/
9748
int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9749
struct netlink_ext_ack *extack)
9750
{
9751
int err, orig_mtu;
9752
9753
netdev_ops_assert_locked(dev);
9754
9755
if (new_mtu == dev->mtu)
9756
return 0;
9757
9758
err = dev_validate_mtu(dev, new_mtu, extack);
9759
if (err)
9760
return err;
9761
9762
if (!netif_device_present(dev))
9763
return -ENODEV;
9764
9765
err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9766
err = notifier_to_errno(err);
9767
if (err)
9768
return err;
9769
9770
orig_mtu = dev->mtu;
9771
err = __netif_set_mtu(dev, new_mtu);
9772
9773
if (!err) {
9774
err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9775
orig_mtu);
9776
err = notifier_to_errno(err);
9777
if (err) {
9778
/* setting mtu back and notifying everyone again,
9779
* so that they have a chance to revert changes.
9780
*/
9781
__netif_set_mtu(dev, orig_mtu);
9782
call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9783
new_mtu);
9784
}
9785
}
9786
return err;
9787
}
9788
9789
int netif_set_mtu(struct net_device *dev, int new_mtu)
9790
{
9791
struct netlink_ext_ack extack;
9792
int err;
9793
9794
memset(&extack, 0, sizeof(extack));
9795
err = netif_set_mtu_ext(dev, new_mtu, &extack);
9796
if (err && extack._msg)
9797
net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9798
return err;
9799
}
9800
EXPORT_SYMBOL(netif_set_mtu);
9801
9802
int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9803
{
9804
unsigned int orig_len = dev->tx_queue_len;
9805
int res;
9806
9807
if (new_len != (unsigned int)new_len)
9808
return -ERANGE;
9809
9810
if (new_len != orig_len) {
9811
WRITE_ONCE(dev->tx_queue_len, new_len);
9812
res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9813
res = notifier_to_errno(res);
9814
if (res)
9815
goto err_rollback;
9816
res = dev_qdisc_change_tx_queue_len(dev);
9817
if (res)
9818
goto err_rollback;
9819
}
9820
9821
return 0;
9822
9823
err_rollback:
9824
netdev_err(dev, "refused to change device tx_queue_len\n");
9825
WRITE_ONCE(dev->tx_queue_len, orig_len);
9826
return res;
9827
}
9828
9829
void netif_set_group(struct net_device *dev, int new_group)
9830
{
9831
dev->group = new_group;
9832
}
9833
9834
/**
9835
* netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9836
* @dev: device
9837
* @addr: new address
9838
* @extack: netlink extended ack
9839
*
9840
* Return: 0 on success, -errno on failure.
9841
*/
9842
int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9843
struct netlink_ext_ack *extack)
9844
{
9845
struct netdev_notifier_pre_changeaddr_info info = {
9846
.info.dev = dev,
9847
.info.extack = extack,
9848
.dev_addr = addr,
9849
};
9850
int rc;
9851
9852
rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9853
return notifier_to_errno(rc);
9854
}
9855
EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9856
9857
int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9858
struct netlink_ext_ack *extack)
9859
{
9860
const struct net_device_ops *ops = dev->netdev_ops;
9861
int err;
9862
9863
if (!ops->ndo_set_mac_address)
9864
return -EOPNOTSUPP;
9865
if (ss->ss_family != dev->type)
9866
return -EINVAL;
9867
if (!netif_device_present(dev))
9868
return -ENODEV;
9869
err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9870
if (err)
9871
return err;
9872
if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9873
err = ops->ndo_set_mac_address(dev, ss);
9874
if (err)
9875
return err;
9876
}
9877
dev->addr_assign_type = NET_ADDR_SET;
9878
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9879
add_device_randomness(dev->dev_addr, dev->addr_len);
9880
return 0;
9881
}
9882
9883
DECLARE_RWSEM(dev_addr_sem);
9884
9885
/* "sa" is a true struct sockaddr with limited "sa_data" member. */
9886
int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9887
{
9888
size_t size = sizeof(sa->sa_data_min);
9889
struct net_device *dev;
9890
int ret = 0;
9891
9892
down_read(&dev_addr_sem);
9893
rcu_read_lock();
9894
9895
dev = dev_get_by_name_rcu(net, dev_name);
9896
if (!dev) {
9897
ret = -ENODEV;
9898
goto unlock;
9899
}
9900
if (!dev->addr_len)
9901
memset(sa->sa_data, 0, size);
9902
else
9903
memcpy(sa->sa_data, dev->dev_addr,
9904
min_t(size_t, size, dev->addr_len));
9905
sa->sa_family = dev->type;
9906
9907
unlock:
9908
rcu_read_unlock();
9909
up_read(&dev_addr_sem);
9910
return ret;
9911
}
9912
EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9913
9914
int netif_change_carrier(struct net_device *dev, bool new_carrier)
9915
{
9916
const struct net_device_ops *ops = dev->netdev_ops;
9917
9918
if (!ops->ndo_change_carrier)
9919
return -EOPNOTSUPP;
9920
if (!netif_device_present(dev))
9921
return -ENODEV;
9922
return ops->ndo_change_carrier(dev, new_carrier);
9923
}
9924
9925
/**
9926
* dev_get_phys_port_id - Get device physical port ID
9927
* @dev: device
9928
* @ppid: port ID
9929
*
9930
* Get device physical port ID
9931
*/
9932
int dev_get_phys_port_id(struct net_device *dev,
9933
struct netdev_phys_item_id *ppid)
9934
{
9935
const struct net_device_ops *ops = dev->netdev_ops;
9936
9937
if (!ops->ndo_get_phys_port_id)
9938
return -EOPNOTSUPP;
9939
return ops->ndo_get_phys_port_id(dev, ppid);
9940
}
9941
9942
/**
9943
* dev_get_phys_port_name - Get device physical port name
9944
* @dev: device
9945
* @name: port name
9946
* @len: limit of bytes to copy to name
9947
*
9948
* Get device physical port name
9949
*/
9950
int dev_get_phys_port_name(struct net_device *dev,
9951
char *name, size_t len)
9952
{
9953
const struct net_device_ops *ops = dev->netdev_ops;
9954
int err;
9955
9956
if (ops->ndo_get_phys_port_name) {
9957
err = ops->ndo_get_phys_port_name(dev, name, len);
9958
if (err != -EOPNOTSUPP)
9959
return err;
9960
}
9961
return devlink_compat_phys_port_name_get(dev, name, len);
9962
}
9963
9964
/**
9965
* netif_get_port_parent_id() - Get the device's port parent identifier
9966
* @dev: network device
9967
* @ppid: pointer to a storage for the port's parent identifier
9968
* @recurse: allow/disallow recursion to lower devices
9969
*
9970
* Get the devices's port parent identifier.
9971
*
9972
* Return: 0 on success, -errno on failure.
9973
*/
9974
int netif_get_port_parent_id(struct net_device *dev,
9975
struct netdev_phys_item_id *ppid, bool recurse)
9976
{
9977
const struct net_device_ops *ops = dev->netdev_ops;
9978
struct netdev_phys_item_id first = { };
9979
struct net_device *lower_dev;
9980
struct list_head *iter;
9981
int err;
9982
9983
if (ops->ndo_get_port_parent_id) {
9984
err = ops->ndo_get_port_parent_id(dev, ppid);
9985
if (err != -EOPNOTSUPP)
9986
return err;
9987
}
9988
9989
err = devlink_compat_switch_id_get(dev, ppid);
9990
if (!recurse || err != -EOPNOTSUPP)
9991
return err;
9992
9993
netdev_for_each_lower_dev(dev, lower_dev, iter) {
9994
err = netif_get_port_parent_id(lower_dev, ppid, true);
9995
if (err)
9996
break;
9997
if (!first.id_len)
9998
first = *ppid;
9999
else if (memcmp(&first, ppid, sizeof(*ppid)))
10000
return -EOPNOTSUPP;
10001
}
10002
10003
return err;
10004
}
10005
EXPORT_SYMBOL(netif_get_port_parent_id);
10006
10007
/**
10008
* netdev_port_same_parent_id - Indicate if two network devices have
10009
* the same port parent identifier
10010
* @a: first network device
10011
* @b: second network device
10012
*/
10013
bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10014
{
10015
struct netdev_phys_item_id a_id = { };
10016
struct netdev_phys_item_id b_id = { };
10017
10018
if (netif_get_port_parent_id(a, &a_id, true) ||
10019
netif_get_port_parent_id(b, &b_id, true))
10020
return false;
10021
10022
return netdev_phys_item_id_same(&a_id, &b_id);
10023
}
10024
EXPORT_SYMBOL(netdev_port_same_parent_id);
10025
10026
int netif_change_proto_down(struct net_device *dev, bool proto_down)
10027
{
10028
if (!dev->change_proto_down)
10029
return -EOPNOTSUPP;
10030
if (!netif_device_present(dev))
10031
return -ENODEV;
10032
if (proto_down)
10033
netif_carrier_off(dev);
10034
else
10035
netif_carrier_on(dev);
10036
WRITE_ONCE(dev->proto_down, proto_down);
10037
return 0;
10038
}
10039
10040
/**
10041
* netdev_change_proto_down_reason_locked - proto down reason
10042
*
10043
* @dev: device
10044
* @mask: proto down mask
10045
* @value: proto down value
10046
*/
10047
void netdev_change_proto_down_reason_locked(struct net_device *dev,
10048
unsigned long mask, u32 value)
10049
{
10050
u32 proto_down_reason;
10051
int b;
10052
10053
if (!mask) {
10054
proto_down_reason = value;
10055
} else {
10056
proto_down_reason = dev->proto_down_reason;
10057
for_each_set_bit(b, &mask, 32) {
10058
if (value & (1 << b))
10059
proto_down_reason |= BIT(b);
10060
else
10061
proto_down_reason &= ~BIT(b);
10062
}
10063
}
10064
WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10065
}
10066
10067
struct bpf_xdp_link {
10068
struct bpf_link link;
10069
struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10070
int flags;
10071
};
10072
10073
static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10074
{
10075
if (flags & XDP_FLAGS_HW_MODE)
10076
return XDP_MODE_HW;
10077
if (flags & XDP_FLAGS_DRV_MODE)
10078
return XDP_MODE_DRV;
10079
if (flags & XDP_FLAGS_SKB_MODE)
10080
return XDP_MODE_SKB;
10081
return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10082
}
10083
10084
static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10085
{
10086
switch (mode) {
10087
case XDP_MODE_SKB:
10088
return generic_xdp_install;
10089
case XDP_MODE_DRV:
10090
case XDP_MODE_HW:
10091
return dev->netdev_ops->ndo_bpf;
10092
default:
10093
return NULL;
10094
}
10095
}
10096
10097
static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10098
enum bpf_xdp_mode mode)
10099
{
10100
return dev->xdp_state[mode].link;
10101
}
10102
10103
static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10104
enum bpf_xdp_mode mode)
10105
{
10106
struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10107
10108
if (link)
10109
return link->link.prog;
10110
return dev->xdp_state[mode].prog;
10111
}
10112
10113
u8 dev_xdp_prog_count(struct net_device *dev)
10114
{
10115
u8 count = 0;
10116
int i;
10117
10118
for (i = 0; i < __MAX_XDP_MODE; i++)
10119
if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10120
count++;
10121
return count;
10122
}
10123
EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10124
10125
u8 dev_xdp_sb_prog_count(struct net_device *dev)
10126
{
10127
u8 count = 0;
10128
int i;
10129
10130
for (i = 0; i < __MAX_XDP_MODE; i++)
10131
if (dev->xdp_state[i].prog &&
10132
!dev->xdp_state[i].prog->aux->xdp_has_frags)
10133
count++;
10134
return count;
10135
}
10136
10137
int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10138
{
10139
if (!dev->netdev_ops->ndo_bpf)
10140
return -EOPNOTSUPP;
10141
10142
if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10143
bpf->command == XDP_SETUP_PROG &&
10144
bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10145
NL_SET_ERR_MSG(bpf->extack,
10146
"unable to propagate XDP to device using tcp-data-split");
10147
return -EBUSY;
10148
}
10149
10150
if (dev_get_min_mp_channel_count(dev)) {
10151
NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10152
return -EBUSY;
10153
}
10154
10155
return dev->netdev_ops->ndo_bpf(dev, bpf);
10156
}
10157
EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10158
10159
u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10160
{
10161
struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10162
10163
return prog ? prog->aux->id : 0;
10164
}
10165
10166
static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10167
struct bpf_xdp_link *link)
10168
{
10169
dev->xdp_state[mode].link = link;
10170
dev->xdp_state[mode].prog = NULL;
10171
}
10172
10173
static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10174
struct bpf_prog *prog)
10175
{
10176
dev->xdp_state[mode].link = NULL;
10177
dev->xdp_state[mode].prog = prog;
10178
}
10179
10180
static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10181
bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10182
u32 flags, struct bpf_prog *prog)
10183
{
10184
struct netdev_bpf xdp;
10185
int err;
10186
10187
netdev_ops_assert_locked(dev);
10188
10189
if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10190
prog && !prog->aux->xdp_has_frags) {
10191
NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10192
return -EBUSY;
10193
}
10194
10195
if (dev_get_min_mp_channel_count(dev)) {
10196
NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10197
return -EBUSY;
10198
}
10199
10200
memset(&xdp, 0, sizeof(xdp));
10201
xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10202
xdp.extack = extack;
10203
xdp.flags = flags;
10204
xdp.prog = prog;
10205
10206
/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10207
* "moved" into driver), so they don't increment it on their own, but
10208
* they do decrement refcnt when program is detached or replaced.
10209
* Given net_device also owns link/prog, we need to bump refcnt here
10210
* to prevent drivers from underflowing it.
10211
*/
10212
if (prog)
10213
bpf_prog_inc(prog);
10214
err = bpf_op(dev, &xdp);
10215
if (err) {
10216
if (prog)
10217
bpf_prog_put(prog);
10218
return err;
10219
}
10220
10221
if (mode != XDP_MODE_HW)
10222
bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10223
10224
return 0;
10225
}
10226
10227
static void dev_xdp_uninstall(struct net_device *dev)
10228
{
10229
struct bpf_xdp_link *link;
10230
struct bpf_prog *prog;
10231
enum bpf_xdp_mode mode;
10232
bpf_op_t bpf_op;
10233
10234
ASSERT_RTNL();
10235
10236
for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10237
prog = dev_xdp_prog(dev, mode);
10238
if (!prog)
10239
continue;
10240
10241
bpf_op = dev_xdp_bpf_op(dev, mode);
10242
if (!bpf_op)
10243
continue;
10244
10245
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10246
10247
/* auto-detach link from net device */
10248
link = dev_xdp_link(dev, mode);
10249
if (link)
10250
link->dev = NULL;
10251
else
10252
bpf_prog_put(prog);
10253
10254
dev_xdp_set_link(dev, mode, NULL);
10255
}
10256
}
10257
10258
static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10259
struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10260
struct bpf_prog *old_prog, u32 flags)
10261
{
10262
unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10263
struct bpf_prog *cur_prog;
10264
struct net_device *upper;
10265
struct list_head *iter;
10266
enum bpf_xdp_mode mode;
10267
bpf_op_t bpf_op;
10268
int err;
10269
10270
ASSERT_RTNL();
10271
10272
/* either link or prog attachment, never both */
10273
if (link && (new_prog || old_prog))
10274
return -EINVAL;
10275
/* link supports only XDP mode flags */
10276
if (link && (flags & ~XDP_FLAGS_MODES)) {
10277
NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10278
return -EINVAL;
10279
}
10280
/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10281
if (num_modes > 1) {
10282
NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10283
return -EINVAL;
10284
}
10285
/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10286
if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10287
NL_SET_ERR_MSG(extack,
10288
"More than one program loaded, unset mode is ambiguous");
10289
return -EINVAL;
10290
}
10291
/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10292
if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10293
NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10294
return -EINVAL;
10295
}
10296
10297
mode = dev_xdp_mode(dev, flags);
10298
/* can't replace attached link */
10299
if (dev_xdp_link(dev, mode)) {
10300
NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10301
return -EBUSY;
10302
}
10303
10304
/* don't allow if an upper device already has a program */
10305
netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10306
if (dev_xdp_prog_count(upper) > 0) {
10307
NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10308
return -EEXIST;
10309
}
10310
}
10311
10312
cur_prog = dev_xdp_prog(dev, mode);
10313
/* can't replace attached prog with link */
10314
if (link && cur_prog) {
10315
NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10316
return -EBUSY;
10317
}
10318
if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10319
NL_SET_ERR_MSG(extack, "Active program does not match expected");
10320
return -EEXIST;
10321
}
10322
10323
/* put effective new program into new_prog */
10324
if (link)
10325
new_prog = link->link.prog;
10326
10327
if (new_prog) {
10328
bool offload = mode == XDP_MODE_HW;
10329
enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10330
? XDP_MODE_DRV : XDP_MODE_SKB;
10331
10332
if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10333
NL_SET_ERR_MSG(extack, "XDP program already attached");
10334
return -EBUSY;
10335
}
10336
if (!offload && dev_xdp_prog(dev, other_mode)) {
10337
NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10338
return -EEXIST;
10339
}
10340
if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10341
NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10342
return -EINVAL;
10343
}
10344
if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10345
NL_SET_ERR_MSG(extack, "Program bound to different device");
10346
return -EINVAL;
10347
}
10348
if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10349
NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10350
return -EINVAL;
10351
}
10352
if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10353
NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10354
return -EINVAL;
10355
}
10356
if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10357
NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10358
return -EINVAL;
10359
}
10360
}
10361
10362
/* don't call drivers if the effective program didn't change */
10363
if (new_prog != cur_prog) {
10364
bpf_op = dev_xdp_bpf_op(dev, mode);
10365
if (!bpf_op) {
10366
NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10367
return -EOPNOTSUPP;
10368
}
10369
10370
err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10371
if (err)
10372
return err;
10373
}
10374
10375
if (link)
10376
dev_xdp_set_link(dev, mode, link);
10377
else
10378
dev_xdp_set_prog(dev, mode, new_prog);
10379
if (cur_prog)
10380
bpf_prog_put(cur_prog);
10381
10382
return 0;
10383
}
10384
10385
static int dev_xdp_attach_link(struct net_device *dev,
10386
struct netlink_ext_ack *extack,
10387
struct bpf_xdp_link *link)
10388
{
10389
return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10390
}
10391
10392
static int dev_xdp_detach_link(struct net_device *dev,
10393
struct netlink_ext_ack *extack,
10394
struct bpf_xdp_link *link)
10395
{
10396
enum bpf_xdp_mode mode;
10397
bpf_op_t bpf_op;
10398
10399
ASSERT_RTNL();
10400
10401
mode = dev_xdp_mode(dev, link->flags);
10402
if (dev_xdp_link(dev, mode) != link)
10403
return -EINVAL;
10404
10405
bpf_op = dev_xdp_bpf_op(dev, mode);
10406
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10407
dev_xdp_set_link(dev, mode, NULL);
10408
return 0;
10409
}
10410
10411
static void bpf_xdp_link_release(struct bpf_link *link)
10412
{
10413
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10414
10415
rtnl_lock();
10416
10417
/* if racing with net_device's tear down, xdp_link->dev might be
10418
* already NULL, in which case link was already auto-detached
10419
*/
10420
if (xdp_link->dev) {
10421
netdev_lock_ops(xdp_link->dev);
10422
WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10423
netdev_unlock_ops(xdp_link->dev);
10424
xdp_link->dev = NULL;
10425
}
10426
10427
rtnl_unlock();
10428
}
10429
10430
static int bpf_xdp_link_detach(struct bpf_link *link)
10431
{
10432
bpf_xdp_link_release(link);
10433
return 0;
10434
}
10435
10436
static void bpf_xdp_link_dealloc(struct bpf_link *link)
10437
{
10438
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10439
10440
kfree(xdp_link);
10441
}
10442
10443
static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10444
struct seq_file *seq)
10445
{
10446
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10447
u32 ifindex = 0;
10448
10449
rtnl_lock();
10450
if (xdp_link->dev)
10451
ifindex = xdp_link->dev->ifindex;
10452
rtnl_unlock();
10453
10454
seq_printf(seq, "ifindex:\t%u\n", ifindex);
10455
}
10456
10457
static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10458
struct bpf_link_info *info)
10459
{
10460
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10461
u32 ifindex = 0;
10462
10463
rtnl_lock();
10464
if (xdp_link->dev)
10465
ifindex = xdp_link->dev->ifindex;
10466
rtnl_unlock();
10467
10468
info->xdp.ifindex = ifindex;
10469
return 0;
10470
}
10471
10472
static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10473
struct bpf_prog *old_prog)
10474
{
10475
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10476
enum bpf_xdp_mode mode;
10477
bpf_op_t bpf_op;
10478
int err = 0;
10479
10480
rtnl_lock();
10481
10482
/* link might have been auto-released already, so fail */
10483
if (!xdp_link->dev) {
10484
err = -ENOLINK;
10485
goto out_unlock;
10486
}
10487
10488
if (old_prog && link->prog != old_prog) {
10489
err = -EPERM;
10490
goto out_unlock;
10491
}
10492
old_prog = link->prog;
10493
if (old_prog->type != new_prog->type ||
10494
old_prog->expected_attach_type != new_prog->expected_attach_type) {
10495
err = -EINVAL;
10496
goto out_unlock;
10497
}
10498
10499
if (old_prog == new_prog) {
10500
/* no-op, don't disturb drivers */
10501
bpf_prog_put(new_prog);
10502
goto out_unlock;
10503
}
10504
10505
netdev_lock_ops(xdp_link->dev);
10506
mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10507
bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10508
err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10509
xdp_link->flags, new_prog);
10510
netdev_unlock_ops(xdp_link->dev);
10511
if (err)
10512
goto out_unlock;
10513
10514
old_prog = xchg(&link->prog, new_prog);
10515
bpf_prog_put(old_prog);
10516
10517
out_unlock:
10518
rtnl_unlock();
10519
return err;
10520
}
10521
10522
static const struct bpf_link_ops bpf_xdp_link_lops = {
10523
.release = bpf_xdp_link_release,
10524
.dealloc = bpf_xdp_link_dealloc,
10525
.detach = bpf_xdp_link_detach,
10526
.show_fdinfo = bpf_xdp_link_show_fdinfo,
10527
.fill_link_info = bpf_xdp_link_fill_link_info,
10528
.update_prog = bpf_xdp_link_update,
10529
};
10530
10531
int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10532
{
10533
struct net *net = current->nsproxy->net_ns;
10534
struct bpf_link_primer link_primer;
10535
struct netlink_ext_ack extack = {};
10536
struct bpf_xdp_link *link;
10537
struct net_device *dev;
10538
int err, fd;
10539
10540
rtnl_lock();
10541
dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10542
if (!dev) {
10543
rtnl_unlock();
10544
return -EINVAL;
10545
}
10546
10547
link = kzalloc(sizeof(*link), GFP_USER);
10548
if (!link) {
10549
err = -ENOMEM;
10550
goto unlock;
10551
}
10552
10553
bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10554
attr->link_create.attach_type);
10555
link->dev = dev;
10556
link->flags = attr->link_create.flags;
10557
10558
err = bpf_link_prime(&link->link, &link_primer);
10559
if (err) {
10560
kfree(link);
10561
goto unlock;
10562
}
10563
10564
netdev_lock_ops(dev);
10565
err = dev_xdp_attach_link(dev, &extack, link);
10566
netdev_unlock_ops(dev);
10567
rtnl_unlock();
10568
10569
if (err) {
10570
link->dev = NULL;
10571
bpf_link_cleanup(&link_primer);
10572
trace_bpf_xdp_link_attach_failed(extack._msg);
10573
goto out_put_dev;
10574
}
10575
10576
fd = bpf_link_settle(&link_primer);
10577
/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10578
dev_put(dev);
10579
return fd;
10580
10581
unlock:
10582
rtnl_unlock();
10583
10584
out_put_dev:
10585
dev_put(dev);
10586
return err;
10587
}
10588
10589
/**
10590
* dev_change_xdp_fd - set or clear a bpf program for a device rx path
10591
* @dev: device
10592
* @extack: netlink extended ack
10593
* @fd: new program fd or negative value to clear
10594
* @expected_fd: old program fd that userspace expects to replace or clear
10595
* @flags: xdp-related flags
10596
*
10597
* Set or clear a bpf program for a device
10598
*/
10599
int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10600
int fd, int expected_fd, u32 flags)
10601
{
10602
enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10603
struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10604
int err;
10605
10606
ASSERT_RTNL();
10607
10608
if (fd >= 0) {
10609
new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10610
mode != XDP_MODE_SKB);
10611
if (IS_ERR(new_prog))
10612
return PTR_ERR(new_prog);
10613
}
10614
10615
if (expected_fd >= 0) {
10616
old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10617
mode != XDP_MODE_SKB);
10618
if (IS_ERR(old_prog)) {
10619
err = PTR_ERR(old_prog);
10620
old_prog = NULL;
10621
goto err_out;
10622
}
10623
}
10624
10625
err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10626
10627
err_out:
10628
if (err && new_prog)
10629
bpf_prog_put(new_prog);
10630
if (old_prog)
10631
bpf_prog_put(old_prog);
10632
return err;
10633
}
10634
10635
u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10636
{
10637
int i;
10638
10639
netdev_ops_assert_locked(dev);
10640
10641
for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10642
if (dev->_rx[i].mp_params.mp_priv)
10643
/* The channel count is the idx plus 1. */
10644
return i + 1;
10645
10646
return 0;
10647
}
10648
10649
/**
10650
* dev_index_reserve() - allocate an ifindex in a namespace
10651
* @net: the applicable net namespace
10652
* @ifindex: requested ifindex, pass %0 to get one allocated
10653
*
10654
* Allocate a ifindex for a new device. Caller must either use the ifindex
10655
* to store the device (via list_netdevice()) or call dev_index_release()
10656
* to give the index up.
10657
*
10658
* Return: a suitable unique value for a new device interface number or -errno.
10659
*/
10660
static int dev_index_reserve(struct net *net, u32 ifindex)
10661
{
10662
int err;
10663
10664
if (ifindex > INT_MAX) {
10665
DEBUG_NET_WARN_ON_ONCE(1);
10666
return -EINVAL;
10667
}
10668
10669
if (!ifindex)
10670
err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10671
xa_limit_31b, &net->ifindex, GFP_KERNEL);
10672
else
10673
err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10674
if (err < 0)
10675
return err;
10676
10677
return ifindex;
10678
}
10679
10680
static void dev_index_release(struct net *net, int ifindex)
10681
{
10682
/* Expect only unused indexes, unlist_netdevice() removes the used */
10683
WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10684
}
10685
10686
static bool from_cleanup_net(void)
10687
{
10688
#ifdef CONFIG_NET_NS
10689
return current == READ_ONCE(cleanup_net_task);
10690
#else
10691
return false;
10692
#endif
10693
}
10694
10695
/* Delayed registration/unregisteration */
10696
LIST_HEAD(net_todo_list);
10697
DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10698
atomic_t dev_unreg_count = ATOMIC_INIT(0);
10699
10700
static void net_set_todo(struct net_device *dev)
10701
{
10702
list_add_tail(&dev->todo_list, &net_todo_list);
10703
}
10704
10705
static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10706
struct net_device *upper, netdev_features_t features)
10707
{
10708
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10709
netdev_features_t feature;
10710
int feature_bit;
10711
10712
for_each_netdev_feature(upper_disables, feature_bit) {
10713
feature = __NETIF_F_BIT(feature_bit);
10714
if (!(upper->wanted_features & feature)
10715
&& (features & feature)) {
10716
netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10717
&feature, upper->name);
10718
features &= ~feature;
10719
}
10720
}
10721
10722
return features;
10723
}
10724
10725
static void netdev_sync_lower_features(struct net_device *upper,
10726
struct net_device *lower, netdev_features_t features)
10727
{
10728
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10729
netdev_features_t feature;
10730
int feature_bit;
10731
10732
for_each_netdev_feature(upper_disables, feature_bit) {
10733
feature = __NETIF_F_BIT(feature_bit);
10734
if (!(features & feature) && (lower->features & feature)) {
10735
netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10736
&feature, lower->name);
10737
netdev_lock_ops(lower);
10738
lower->wanted_features &= ~feature;
10739
__netdev_update_features(lower);
10740
10741
if (unlikely(lower->features & feature))
10742
netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10743
&feature, lower->name);
10744
else
10745
netdev_features_change(lower);
10746
netdev_unlock_ops(lower);
10747
}
10748
}
10749
}
10750
10751
static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10752
{
10753
netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10754
bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10755
bool hw_csum = features & NETIF_F_HW_CSUM;
10756
10757
return ip_csum || hw_csum;
10758
}
10759
10760
static netdev_features_t netdev_fix_features(struct net_device *dev,
10761
netdev_features_t features)
10762
{
10763
/* Fix illegal checksum combinations */
10764
if ((features & NETIF_F_HW_CSUM) &&
10765
(features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10766
netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10767
features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10768
}
10769
10770
/* TSO requires that SG is present as well. */
10771
if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10772
netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10773
features &= ~NETIF_F_ALL_TSO;
10774
}
10775
10776
if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10777
!(features & NETIF_F_IP_CSUM)) {
10778
netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10779
features &= ~NETIF_F_TSO;
10780
features &= ~NETIF_F_TSO_ECN;
10781
}
10782
10783
if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10784
!(features & NETIF_F_IPV6_CSUM)) {
10785
netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10786
features &= ~NETIF_F_TSO6;
10787
}
10788
10789
/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10790
if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10791
features &= ~NETIF_F_TSO_MANGLEID;
10792
10793
/* TSO ECN requires that TSO is present as well. */
10794
if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10795
features &= ~NETIF_F_TSO_ECN;
10796
10797
/* Software GSO depends on SG. */
10798
if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10799
netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10800
features &= ~NETIF_F_GSO;
10801
}
10802
10803
/* GSO partial features require GSO partial be set */
10804
if ((features & dev->gso_partial_features) &&
10805
!(features & NETIF_F_GSO_PARTIAL)) {
10806
netdev_dbg(dev,
10807
"Dropping partially supported GSO features since no GSO partial.\n");
10808
features &= ~dev->gso_partial_features;
10809
}
10810
10811
if (!(features & NETIF_F_RXCSUM)) {
10812
/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10813
* successfully merged by hardware must also have the
10814
* checksum verified by hardware. If the user does not
10815
* want to enable RXCSUM, logically, we should disable GRO_HW.
10816
*/
10817
if (features & NETIF_F_GRO_HW) {
10818
netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10819
features &= ~NETIF_F_GRO_HW;
10820
}
10821
}
10822
10823
/* LRO/HW-GRO features cannot be combined with RX-FCS */
10824
if (features & NETIF_F_RXFCS) {
10825
if (features & NETIF_F_LRO) {
10826
netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10827
features &= ~NETIF_F_LRO;
10828
}
10829
10830
if (features & NETIF_F_GRO_HW) {
10831
netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10832
features &= ~NETIF_F_GRO_HW;
10833
}
10834
}
10835
10836
if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10837
netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10838
features &= ~NETIF_F_LRO;
10839
}
10840
10841
if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10842
netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10843
features &= ~NETIF_F_HW_TLS_TX;
10844
}
10845
10846
if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10847
netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10848
features &= ~NETIF_F_HW_TLS_RX;
10849
}
10850
10851
if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10852
netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10853
features &= ~NETIF_F_GSO_UDP_L4;
10854
}
10855
10856
return features;
10857
}
10858
10859
int __netdev_update_features(struct net_device *dev)
10860
{
10861
struct net_device *upper, *lower;
10862
netdev_features_t features;
10863
struct list_head *iter;
10864
int err = -1;
10865
10866
ASSERT_RTNL();
10867
netdev_ops_assert_locked(dev);
10868
10869
features = netdev_get_wanted_features(dev);
10870
10871
if (dev->netdev_ops->ndo_fix_features)
10872
features = dev->netdev_ops->ndo_fix_features(dev, features);
10873
10874
/* driver might be less strict about feature dependencies */
10875
features = netdev_fix_features(dev, features);
10876
10877
/* some features can't be enabled if they're off on an upper device */
10878
netdev_for_each_upper_dev_rcu(dev, upper, iter)
10879
features = netdev_sync_upper_features(dev, upper, features);
10880
10881
if (dev->features == features)
10882
goto sync_lower;
10883
10884
netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10885
&dev->features, &features);
10886
10887
if (dev->netdev_ops->ndo_set_features)
10888
err = dev->netdev_ops->ndo_set_features(dev, features);
10889
else
10890
err = 0;
10891
10892
if (unlikely(err < 0)) {
10893
netdev_err(dev,
10894
"set_features() failed (%d); wanted %pNF, left %pNF\n",
10895
err, &features, &dev->features);
10896
/* return non-0 since some features might have changed and
10897
* it's better to fire a spurious notification than miss it
10898
*/
10899
return -1;
10900
}
10901
10902
sync_lower:
10903
/* some features must be disabled on lower devices when disabled
10904
* on an upper device (think: bonding master or bridge)
10905
*/
10906
netdev_for_each_lower_dev(dev, lower, iter)
10907
netdev_sync_lower_features(dev, lower, features);
10908
10909
if (!err) {
10910
netdev_features_t diff = features ^ dev->features;
10911
10912
if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10913
/* udp_tunnel_{get,drop}_rx_info both need
10914
* NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10915
* device, or they won't do anything.
10916
* Thus we need to update dev->features
10917
* *before* calling udp_tunnel_get_rx_info,
10918
* but *after* calling udp_tunnel_drop_rx_info.
10919
*/
10920
udp_tunnel_nic_lock(dev);
10921
if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10922
dev->features = features;
10923
udp_tunnel_get_rx_info(dev);
10924
} else {
10925
udp_tunnel_drop_rx_info(dev);
10926
}
10927
udp_tunnel_nic_unlock(dev);
10928
}
10929
10930
if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10931
if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10932
dev->features = features;
10933
err |= vlan_get_rx_ctag_filter_info(dev);
10934
} else {
10935
vlan_drop_rx_ctag_filter_info(dev);
10936
}
10937
}
10938
10939
if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10940
if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10941
dev->features = features;
10942
err |= vlan_get_rx_stag_filter_info(dev);
10943
} else {
10944
vlan_drop_rx_stag_filter_info(dev);
10945
}
10946
}
10947
10948
dev->features = features;
10949
}
10950
10951
return err < 0 ? 0 : 1;
10952
}
10953
10954
/**
10955
* netdev_update_features - recalculate device features
10956
* @dev: the device to check
10957
*
10958
* Recalculate dev->features set and send notifications if it
10959
* has changed. Should be called after driver or hardware dependent
10960
* conditions might have changed that influence the features.
10961
*/
10962
void netdev_update_features(struct net_device *dev)
10963
{
10964
if (__netdev_update_features(dev))
10965
netdev_features_change(dev);
10966
}
10967
EXPORT_SYMBOL(netdev_update_features);
10968
10969
/**
10970
* netdev_change_features - recalculate device features
10971
* @dev: the device to check
10972
*
10973
* Recalculate dev->features set and send notifications even
10974
* if they have not changed. Should be called instead of
10975
* netdev_update_features() if also dev->vlan_features might
10976
* have changed to allow the changes to be propagated to stacked
10977
* VLAN devices.
10978
*/
10979
void netdev_change_features(struct net_device *dev)
10980
{
10981
__netdev_update_features(dev);
10982
netdev_features_change(dev);
10983
}
10984
EXPORT_SYMBOL(netdev_change_features);
10985
10986
/**
10987
* netif_stacked_transfer_operstate - transfer operstate
10988
* @rootdev: the root or lower level device to transfer state from
10989
* @dev: the device to transfer operstate to
10990
*
10991
* Transfer operational state from root to device. This is normally
10992
* called when a stacking relationship exists between the root
10993
* device and the device(a leaf device).
10994
*/
10995
void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10996
struct net_device *dev)
10997
{
10998
if (rootdev->operstate == IF_OPER_DORMANT)
10999
netif_dormant_on(dev);
11000
else
11001
netif_dormant_off(dev);
11002
11003
if (rootdev->operstate == IF_OPER_TESTING)
11004
netif_testing_on(dev);
11005
else
11006
netif_testing_off(dev);
11007
11008
if (netif_carrier_ok(rootdev))
11009
netif_carrier_on(dev);
11010
else
11011
netif_carrier_off(dev);
11012
}
11013
EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11014
11015
static int netif_alloc_rx_queues(struct net_device *dev)
11016
{
11017
unsigned int i, count = dev->num_rx_queues;
11018
struct netdev_rx_queue *rx;
11019
size_t sz = count * sizeof(*rx);
11020
int err = 0;
11021
11022
BUG_ON(count < 1);
11023
11024
rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11025
if (!rx)
11026
return -ENOMEM;
11027
11028
dev->_rx = rx;
11029
11030
for (i = 0; i < count; i++) {
11031
rx[i].dev = dev;
11032
11033
/* XDP RX-queue setup */
11034
err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11035
if (err < 0)
11036
goto err_rxq_info;
11037
}
11038
return 0;
11039
11040
err_rxq_info:
11041
/* Rollback successful reg's and free other resources */
11042
while (i--)
11043
xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11044
kvfree(dev->_rx);
11045
dev->_rx = NULL;
11046
return err;
11047
}
11048
11049
static void netif_free_rx_queues(struct net_device *dev)
11050
{
11051
unsigned int i, count = dev->num_rx_queues;
11052
11053
/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11054
if (!dev->_rx)
11055
return;
11056
11057
for (i = 0; i < count; i++)
11058
xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11059
11060
kvfree(dev->_rx);
11061
}
11062
11063
static void netdev_init_one_queue(struct net_device *dev,
11064
struct netdev_queue *queue, void *_unused)
11065
{
11066
/* Initialize queue lock */
11067
spin_lock_init(&queue->_xmit_lock);
11068
netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11069
queue->xmit_lock_owner = -1;
11070
netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11071
queue->dev = dev;
11072
#ifdef CONFIG_BQL
11073
dql_init(&queue->dql, HZ);
11074
#endif
11075
}
11076
11077
static void netif_free_tx_queues(struct net_device *dev)
11078
{
11079
kvfree(dev->_tx);
11080
}
11081
11082
static int netif_alloc_netdev_queues(struct net_device *dev)
11083
{
11084
unsigned int count = dev->num_tx_queues;
11085
struct netdev_queue *tx;
11086
size_t sz = count * sizeof(*tx);
11087
11088
if (count < 1 || count > 0xffff)
11089
return -EINVAL;
11090
11091
tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11092
if (!tx)
11093
return -ENOMEM;
11094
11095
dev->_tx = tx;
11096
11097
netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11098
spin_lock_init(&dev->tx_global_lock);
11099
11100
return 0;
11101
}
11102
11103
void netif_tx_stop_all_queues(struct net_device *dev)
11104
{
11105
unsigned int i;
11106
11107
for (i = 0; i < dev->num_tx_queues; i++) {
11108
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11109
11110
netif_tx_stop_queue(txq);
11111
}
11112
}
11113
EXPORT_SYMBOL(netif_tx_stop_all_queues);
11114
11115
static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11116
{
11117
void __percpu *v;
11118
11119
/* Drivers implementing ndo_get_peer_dev must support tstat
11120
* accounting, so that skb_do_redirect() can bump the dev's
11121
* RX stats upon network namespace switch.
11122
*/
11123
if (dev->netdev_ops->ndo_get_peer_dev &&
11124
dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11125
return -EOPNOTSUPP;
11126
11127
switch (dev->pcpu_stat_type) {
11128
case NETDEV_PCPU_STAT_NONE:
11129
return 0;
11130
case NETDEV_PCPU_STAT_LSTATS:
11131
v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11132
break;
11133
case NETDEV_PCPU_STAT_TSTATS:
11134
v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11135
break;
11136
case NETDEV_PCPU_STAT_DSTATS:
11137
v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11138
break;
11139
default:
11140
return -EINVAL;
11141
}
11142
11143
return v ? 0 : -ENOMEM;
11144
}
11145
11146
static void netdev_do_free_pcpu_stats(struct net_device *dev)
11147
{
11148
switch (dev->pcpu_stat_type) {
11149
case NETDEV_PCPU_STAT_NONE:
11150
return;
11151
case NETDEV_PCPU_STAT_LSTATS:
11152
free_percpu(dev->lstats);
11153
break;
11154
case NETDEV_PCPU_STAT_TSTATS:
11155
free_percpu(dev->tstats);
11156
break;
11157
case NETDEV_PCPU_STAT_DSTATS:
11158
free_percpu(dev->dstats);
11159
break;
11160
}
11161
}
11162
11163
static void netdev_free_phy_link_topology(struct net_device *dev)
11164
{
11165
struct phy_link_topology *topo = dev->link_topo;
11166
11167
if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11168
xa_destroy(&topo->phys);
11169
kfree(topo);
11170
dev->link_topo = NULL;
11171
}
11172
}
11173
11174
/**
11175
* register_netdevice() - register a network device
11176
* @dev: device to register
11177
*
11178
* Take a prepared network device structure and make it externally accessible.
11179
* A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11180
* Callers must hold the rtnl lock - you may want register_netdev()
11181
* instead of this.
11182
*/
11183
int register_netdevice(struct net_device *dev)
11184
{
11185
int ret;
11186
struct net *net = dev_net(dev);
11187
11188
BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11189
NETDEV_FEATURE_COUNT);
11190
BUG_ON(dev_boot_phase);
11191
ASSERT_RTNL();
11192
11193
might_sleep();
11194
11195
/* When net_device's are persistent, this will be fatal. */
11196
BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11197
BUG_ON(!net);
11198
11199
ret = ethtool_check_ops(dev->ethtool_ops);
11200
if (ret)
11201
return ret;
11202
11203
/* rss ctx ID 0 is reserved for the default context, start from 1 */
11204
xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11205
mutex_init(&dev->ethtool->rss_lock);
11206
11207
spin_lock_init(&dev->addr_list_lock);
11208
netdev_set_addr_lockdep_class(dev);
11209
11210
ret = dev_get_valid_name(net, dev, dev->name);
11211
if (ret < 0)
11212
goto out;
11213
11214
ret = -ENOMEM;
11215
dev->name_node = netdev_name_node_head_alloc(dev);
11216
if (!dev->name_node)
11217
goto out;
11218
11219
/* Init, if this function is available */
11220
if (dev->netdev_ops->ndo_init) {
11221
ret = dev->netdev_ops->ndo_init(dev);
11222
if (ret) {
11223
if (ret > 0)
11224
ret = -EIO;
11225
goto err_free_name;
11226
}
11227
}
11228
11229
if (((dev->hw_features | dev->features) &
11230
NETIF_F_HW_VLAN_CTAG_FILTER) &&
11231
(!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11232
!dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11233
netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11234
ret = -EINVAL;
11235
goto err_uninit;
11236
}
11237
11238
ret = netdev_do_alloc_pcpu_stats(dev);
11239
if (ret)
11240
goto err_uninit;
11241
11242
ret = dev_index_reserve(net, dev->ifindex);
11243
if (ret < 0)
11244
goto err_free_pcpu;
11245
dev->ifindex = ret;
11246
11247
/* Transfer changeable features to wanted_features and enable
11248
* software offloads (GSO and GRO).
11249
*/
11250
dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11251
dev->features |= NETIF_F_SOFT_FEATURES;
11252
11253
if (dev->udp_tunnel_nic_info) {
11254
dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11255
dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11256
}
11257
11258
dev->wanted_features = dev->features & dev->hw_features;
11259
11260
if (!(dev->flags & IFF_LOOPBACK))
11261
dev->hw_features |= NETIF_F_NOCACHE_COPY;
11262
11263
/* If IPv4 TCP segmentation offload is supported we should also
11264
* allow the device to enable segmenting the frame with the option
11265
* of ignoring a static IP ID value. This doesn't enable the
11266
* feature itself but allows the user to enable it later.
11267
*/
11268
if (dev->hw_features & NETIF_F_TSO)
11269
dev->hw_features |= NETIF_F_TSO_MANGLEID;
11270
if (dev->vlan_features & NETIF_F_TSO)
11271
dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11272
if (dev->mpls_features & NETIF_F_TSO)
11273
dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11274
if (dev->hw_enc_features & NETIF_F_TSO)
11275
dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11276
11277
/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11278
*/
11279
dev->vlan_features |= NETIF_F_HIGHDMA;
11280
11281
/* Make NETIF_F_SG inheritable to tunnel devices.
11282
*/
11283
dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11284
11285
/* Make NETIF_F_SG inheritable to MPLS.
11286
*/
11287
dev->mpls_features |= NETIF_F_SG;
11288
11289
ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11290
ret = notifier_to_errno(ret);
11291
if (ret)
11292
goto err_ifindex_release;
11293
11294
ret = netdev_register_kobject(dev);
11295
11296
netdev_lock(dev);
11297
WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11298
netdev_unlock(dev);
11299
11300
if (ret)
11301
goto err_uninit_notify;
11302
11303
netdev_lock_ops(dev);
11304
__netdev_update_features(dev);
11305
netdev_unlock_ops(dev);
11306
11307
/*
11308
* Default initial state at registry is that the
11309
* device is present.
11310
*/
11311
11312
set_bit(__LINK_STATE_PRESENT, &dev->state);
11313
11314
linkwatch_init_dev(dev);
11315
11316
dev_init_scheduler(dev);
11317
11318
netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11319
list_netdevice(dev);
11320
11321
add_device_randomness(dev->dev_addr, dev->addr_len);
11322
11323
/* If the device has permanent device address, driver should
11324
* set dev_addr and also addr_assign_type should be set to
11325
* NET_ADDR_PERM (default value).
11326
*/
11327
if (dev->addr_assign_type == NET_ADDR_PERM)
11328
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11329
11330
/* Notify protocols, that a new device appeared. */
11331
netdev_lock_ops(dev);
11332
ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11333
netdev_unlock_ops(dev);
11334
ret = notifier_to_errno(ret);
11335
if (ret) {
11336
/* Expect explicit free_netdev() on failure */
11337
dev->needs_free_netdev = false;
11338
unregister_netdevice_queue(dev, NULL);
11339
goto out;
11340
}
11341
/*
11342
* Prevent userspace races by waiting until the network
11343
* device is fully setup before sending notifications.
11344
*/
11345
if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11346
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11347
11348
out:
11349
return ret;
11350
11351
err_uninit_notify:
11352
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11353
err_ifindex_release:
11354
dev_index_release(net, dev->ifindex);
11355
err_free_pcpu:
11356
netdev_do_free_pcpu_stats(dev);
11357
err_uninit:
11358
if (dev->netdev_ops->ndo_uninit)
11359
dev->netdev_ops->ndo_uninit(dev);
11360
if (dev->priv_destructor)
11361
dev->priv_destructor(dev);
11362
err_free_name:
11363
netdev_name_node_free(dev->name_node);
11364
goto out;
11365
}
11366
EXPORT_SYMBOL(register_netdevice);
11367
11368
/* Initialize the core of a dummy net device.
11369
* The setup steps dummy netdevs need which normal netdevs get by going
11370
* through register_netdevice().
11371
*/
11372
static void init_dummy_netdev(struct net_device *dev)
11373
{
11374
/* make sure we BUG if trying to hit standard
11375
* register/unregister code path
11376
*/
11377
dev->reg_state = NETREG_DUMMY;
11378
11379
/* a dummy interface is started by default */
11380
set_bit(__LINK_STATE_PRESENT, &dev->state);
11381
set_bit(__LINK_STATE_START, &dev->state);
11382
11383
/* Note : We dont allocate pcpu_refcnt for dummy devices,
11384
* because users of this 'device' dont need to change
11385
* its refcount.
11386
*/
11387
}
11388
11389
/**
11390
* register_netdev - register a network device
11391
* @dev: device to register
11392
*
11393
* Take a completed network device structure and add it to the kernel
11394
* interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11395
* chain. 0 is returned on success. A negative errno code is returned
11396
* on a failure to set up the device, or if the name is a duplicate.
11397
*
11398
* This is a wrapper around register_netdevice that takes the rtnl semaphore
11399
* and expands the device name if you passed a format string to
11400
* alloc_netdev.
11401
*/
11402
int register_netdev(struct net_device *dev)
11403
{
11404
struct net *net = dev_net(dev);
11405
int err;
11406
11407
if (rtnl_net_lock_killable(net))
11408
return -EINTR;
11409
11410
err = register_netdevice(dev);
11411
11412
rtnl_net_unlock(net);
11413
11414
return err;
11415
}
11416
EXPORT_SYMBOL(register_netdev);
11417
11418
int netdev_refcnt_read(const struct net_device *dev)
11419
{
11420
#ifdef CONFIG_PCPU_DEV_REFCNT
11421
int i, refcnt = 0;
11422
11423
for_each_possible_cpu(i)
11424
refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11425
return refcnt;
11426
#else
11427
return refcount_read(&dev->dev_refcnt);
11428
#endif
11429
}
11430
EXPORT_SYMBOL(netdev_refcnt_read);
11431
11432
int netdev_unregister_timeout_secs __read_mostly = 10;
11433
11434
#define WAIT_REFS_MIN_MSECS 1
11435
#define WAIT_REFS_MAX_MSECS 250
11436
/**
11437
* netdev_wait_allrefs_any - wait until all references are gone.
11438
* @list: list of net_devices to wait on
11439
*
11440
* This is called when unregistering network devices.
11441
*
11442
* Any protocol or device that holds a reference should register
11443
* for netdevice notification, and cleanup and put back the
11444
* reference if they receive an UNREGISTER event.
11445
* We can get stuck here if buggy protocols don't correctly
11446
* call dev_put.
11447
*/
11448
static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11449
{
11450
unsigned long rebroadcast_time, warning_time;
11451
struct net_device *dev;
11452
int wait = 0;
11453
11454
rebroadcast_time = warning_time = jiffies;
11455
11456
list_for_each_entry(dev, list, todo_list)
11457
if (netdev_refcnt_read(dev) == 1)
11458
return dev;
11459
11460
while (true) {
11461
if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11462
rtnl_lock();
11463
11464
/* Rebroadcast unregister notification */
11465
list_for_each_entry(dev, list, todo_list)
11466
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11467
11468
__rtnl_unlock();
11469
rcu_barrier();
11470
rtnl_lock();
11471
11472
list_for_each_entry(dev, list, todo_list)
11473
if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11474
&dev->state)) {
11475
/* We must not have linkwatch events
11476
* pending on unregister. If this
11477
* happens, we simply run the queue
11478
* unscheduled, resulting in a noop
11479
* for this device.
11480
*/
11481
linkwatch_run_queue();
11482
break;
11483
}
11484
11485
__rtnl_unlock();
11486
11487
rebroadcast_time = jiffies;
11488
}
11489
11490
rcu_barrier();
11491
11492
if (!wait) {
11493
wait = WAIT_REFS_MIN_MSECS;
11494
} else {
11495
msleep(wait);
11496
wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11497
}
11498
11499
list_for_each_entry(dev, list, todo_list)
11500
if (netdev_refcnt_read(dev) == 1)
11501
return dev;
11502
11503
if (time_after(jiffies, warning_time +
11504
READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11505
list_for_each_entry(dev, list, todo_list) {
11506
pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11507
dev->name, netdev_refcnt_read(dev));
11508
ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11509
}
11510
11511
warning_time = jiffies;
11512
}
11513
}
11514
}
11515
11516
/* The sequence is:
11517
*
11518
* rtnl_lock();
11519
* ...
11520
* register_netdevice(x1);
11521
* register_netdevice(x2);
11522
* ...
11523
* unregister_netdevice(y1);
11524
* unregister_netdevice(y2);
11525
* ...
11526
* rtnl_unlock();
11527
* free_netdev(y1);
11528
* free_netdev(y2);
11529
*
11530
* We are invoked by rtnl_unlock().
11531
* This allows us to deal with problems:
11532
* 1) We can delete sysfs objects which invoke hotplug
11533
* without deadlocking with linkwatch via keventd.
11534
* 2) Since we run with the RTNL semaphore not held, we can sleep
11535
* safely in order to wait for the netdev refcnt to drop to zero.
11536
*
11537
* We must not return until all unregister events added during
11538
* the interval the lock was held have been completed.
11539
*/
11540
void netdev_run_todo(void)
11541
{
11542
struct net_device *dev, *tmp;
11543
struct list_head list;
11544
int cnt;
11545
#ifdef CONFIG_LOCKDEP
11546
struct list_head unlink_list;
11547
11548
list_replace_init(&net_unlink_list, &unlink_list);
11549
11550
while (!list_empty(&unlink_list)) {
11551
dev = list_first_entry(&unlink_list, struct net_device,
11552
unlink_list);
11553
list_del_init(&dev->unlink_list);
11554
dev->nested_level = dev->lower_level - 1;
11555
}
11556
#endif
11557
11558
/* Snapshot list, allow later requests */
11559
list_replace_init(&net_todo_list, &list);
11560
11561
__rtnl_unlock();
11562
11563
/* Wait for rcu callbacks to finish before next phase */
11564
if (!list_empty(&list))
11565
rcu_barrier();
11566
11567
list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11568
if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11569
netdev_WARN(dev, "run_todo but not unregistering\n");
11570
list_del(&dev->todo_list);
11571
continue;
11572
}
11573
11574
netdev_lock(dev);
11575
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11576
netdev_unlock(dev);
11577
linkwatch_sync_dev(dev);
11578
}
11579
11580
cnt = 0;
11581
while (!list_empty(&list)) {
11582
dev = netdev_wait_allrefs_any(&list);
11583
list_del(&dev->todo_list);
11584
11585
/* paranoia */
11586
BUG_ON(netdev_refcnt_read(dev) != 1);
11587
BUG_ON(!list_empty(&dev->ptype_all));
11588
BUG_ON(!list_empty(&dev->ptype_specific));
11589
WARN_ON(rcu_access_pointer(dev->ip_ptr));
11590
WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11591
11592
netdev_do_free_pcpu_stats(dev);
11593
if (dev->priv_destructor)
11594
dev->priv_destructor(dev);
11595
if (dev->needs_free_netdev)
11596
free_netdev(dev);
11597
11598
cnt++;
11599
11600
/* Free network device */
11601
kobject_put(&dev->dev.kobj);
11602
}
11603
if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11604
wake_up(&netdev_unregistering_wq);
11605
}
11606
11607
/* Collate per-cpu network dstats statistics
11608
*
11609
* Read per-cpu network statistics from dev->dstats and populate the related
11610
* fields in @s.
11611
*/
11612
static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11613
const struct pcpu_dstats __percpu *dstats)
11614
{
11615
int cpu;
11616
11617
for_each_possible_cpu(cpu) {
11618
u64 rx_packets, rx_bytes, rx_drops;
11619
u64 tx_packets, tx_bytes, tx_drops;
11620
const struct pcpu_dstats *stats;
11621
unsigned int start;
11622
11623
stats = per_cpu_ptr(dstats, cpu);
11624
do {
11625
start = u64_stats_fetch_begin(&stats->syncp);
11626
rx_packets = u64_stats_read(&stats->rx_packets);
11627
rx_bytes = u64_stats_read(&stats->rx_bytes);
11628
rx_drops = u64_stats_read(&stats->rx_drops);
11629
tx_packets = u64_stats_read(&stats->tx_packets);
11630
tx_bytes = u64_stats_read(&stats->tx_bytes);
11631
tx_drops = u64_stats_read(&stats->tx_drops);
11632
} while (u64_stats_fetch_retry(&stats->syncp, start));
11633
11634
s->rx_packets += rx_packets;
11635
s->rx_bytes += rx_bytes;
11636
s->rx_dropped += rx_drops;
11637
s->tx_packets += tx_packets;
11638
s->tx_bytes += tx_bytes;
11639
s->tx_dropped += tx_drops;
11640
}
11641
}
11642
11643
/* ndo_get_stats64 implementation for dtstats-based accounting.
11644
*
11645
* Populate @s from dev->stats and dev->dstats. This is used internally by the
11646
* core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11647
*/
11648
static void dev_get_dstats64(const struct net_device *dev,
11649
struct rtnl_link_stats64 *s)
11650
{
11651
netdev_stats_to_stats64(s, &dev->stats);
11652
dev_fetch_dstats(s, dev->dstats);
11653
}
11654
11655
/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11656
* all the same fields in the same order as net_device_stats, with only
11657
* the type differing, but rtnl_link_stats64 may have additional fields
11658
* at the end for newer counters.
11659
*/
11660
void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11661
const struct net_device_stats *netdev_stats)
11662
{
11663
size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11664
const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11665
u64 *dst = (u64 *)stats64;
11666
11667
BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11668
for (i = 0; i < n; i++)
11669
dst[i] = (unsigned long)atomic_long_read(&src[i]);
11670
/* zero out counters that only exist in rtnl_link_stats64 */
11671
memset((char *)stats64 + n * sizeof(u64), 0,
11672
sizeof(*stats64) - n * sizeof(u64));
11673
}
11674
EXPORT_SYMBOL(netdev_stats_to_stats64);
11675
11676
static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11677
struct net_device *dev)
11678
{
11679
struct net_device_core_stats __percpu *p;
11680
11681
p = alloc_percpu_gfp(struct net_device_core_stats,
11682
GFP_ATOMIC | __GFP_NOWARN);
11683
11684
if (p && cmpxchg(&dev->core_stats, NULL, p))
11685
free_percpu(p);
11686
11687
/* This READ_ONCE() pairs with the cmpxchg() above */
11688
return READ_ONCE(dev->core_stats);
11689
}
11690
11691
noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11692
{
11693
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11694
struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11695
unsigned long __percpu *field;
11696
11697
if (unlikely(!p)) {
11698
p = netdev_core_stats_alloc(dev);
11699
if (!p)
11700
return;
11701
}
11702
11703
field = (unsigned long __percpu *)((void __percpu *)p + offset);
11704
this_cpu_inc(*field);
11705
}
11706
EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11707
11708
/**
11709
* dev_get_stats - get network device statistics
11710
* @dev: device to get statistics from
11711
* @storage: place to store stats
11712
*
11713
* Get network statistics from device. Return @storage.
11714
* The device driver may provide its own method by setting
11715
* dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11716
* otherwise the internal statistics structure is used.
11717
*/
11718
struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11719
struct rtnl_link_stats64 *storage)
11720
{
11721
const struct net_device_ops *ops = dev->netdev_ops;
11722
const struct net_device_core_stats __percpu *p;
11723
11724
/*
11725
* IPv{4,6} and udp tunnels share common stat helpers and use
11726
* different stat type (NETDEV_PCPU_STAT_TSTATS vs
11727
* NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11728
*/
11729
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11730
offsetof(struct pcpu_dstats, rx_bytes));
11731
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11732
offsetof(struct pcpu_dstats, rx_packets));
11733
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11734
offsetof(struct pcpu_dstats, tx_bytes));
11735
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11736
offsetof(struct pcpu_dstats, tx_packets));
11737
11738
if (ops->ndo_get_stats64) {
11739
memset(storage, 0, sizeof(*storage));
11740
ops->ndo_get_stats64(dev, storage);
11741
} else if (ops->ndo_get_stats) {
11742
netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11743
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11744
dev_get_tstats64(dev, storage);
11745
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11746
dev_get_dstats64(dev, storage);
11747
} else {
11748
netdev_stats_to_stats64(storage, &dev->stats);
11749
}
11750
11751
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11752
p = READ_ONCE(dev->core_stats);
11753
if (p) {
11754
const struct net_device_core_stats *core_stats;
11755
int i;
11756
11757
for_each_possible_cpu(i) {
11758
core_stats = per_cpu_ptr(p, i);
11759
storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11760
storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11761
storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11762
storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11763
}
11764
}
11765
return storage;
11766
}
11767
EXPORT_SYMBOL(dev_get_stats);
11768
11769
/**
11770
* dev_fetch_sw_netstats - get per-cpu network device statistics
11771
* @s: place to store stats
11772
* @netstats: per-cpu network stats to read from
11773
*
11774
* Read per-cpu network statistics and populate the related fields in @s.
11775
*/
11776
void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11777
const struct pcpu_sw_netstats __percpu *netstats)
11778
{
11779
int cpu;
11780
11781
for_each_possible_cpu(cpu) {
11782
u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11783
const struct pcpu_sw_netstats *stats;
11784
unsigned int start;
11785
11786
stats = per_cpu_ptr(netstats, cpu);
11787
do {
11788
start = u64_stats_fetch_begin(&stats->syncp);
11789
rx_packets = u64_stats_read(&stats->rx_packets);
11790
rx_bytes = u64_stats_read(&stats->rx_bytes);
11791
tx_packets = u64_stats_read(&stats->tx_packets);
11792
tx_bytes = u64_stats_read(&stats->tx_bytes);
11793
} while (u64_stats_fetch_retry(&stats->syncp, start));
11794
11795
s->rx_packets += rx_packets;
11796
s->rx_bytes += rx_bytes;
11797
s->tx_packets += tx_packets;
11798
s->tx_bytes += tx_bytes;
11799
}
11800
}
11801
EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11802
11803
/**
11804
* dev_get_tstats64 - ndo_get_stats64 implementation
11805
* @dev: device to get statistics from
11806
* @s: place to store stats
11807
*
11808
* Populate @s from dev->stats and dev->tstats. Can be used as
11809
* ndo_get_stats64() callback.
11810
*/
11811
void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11812
{
11813
netdev_stats_to_stats64(s, &dev->stats);
11814
dev_fetch_sw_netstats(s, dev->tstats);
11815
}
11816
EXPORT_SYMBOL_GPL(dev_get_tstats64);
11817
11818
struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11819
{
11820
struct netdev_queue *queue = dev_ingress_queue(dev);
11821
11822
#ifdef CONFIG_NET_CLS_ACT
11823
if (queue)
11824
return queue;
11825
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11826
if (!queue)
11827
return NULL;
11828
netdev_init_one_queue(dev, queue, NULL);
11829
RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11830
RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11831
rcu_assign_pointer(dev->ingress_queue, queue);
11832
#endif
11833
return queue;
11834
}
11835
11836
static const struct ethtool_ops default_ethtool_ops;
11837
11838
void netdev_set_default_ethtool_ops(struct net_device *dev,
11839
const struct ethtool_ops *ops)
11840
{
11841
if (dev->ethtool_ops == &default_ethtool_ops)
11842
dev->ethtool_ops = ops;
11843
}
11844
EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11845
11846
/**
11847
* netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11848
* @dev: netdev to enable the IRQ coalescing on
11849
*
11850
* Sets a conservative default for SW IRQ coalescing. Users can use
11851
* sysfs attributes to override the default values.
11852
*/
11853
void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11854
{
11855
WARN_ON(dev->reg_state == NETREG_REGISTERED);
11856
11857
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11858
netdev_set_gro_flush_timeout(dev, 20000);
11859
netdev_set_defer_hard_irqs(dev, 1);
11860
}
11861
}
11862
EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11863
11864
/**
11865
* alloc_netdev_mqs - allocate network device
11866
* @sizeof_priv: size of private data to allocate space for
11867
* @name: device name format string
11868
* @name_assign_type: origin of device name
11869
* @setup: callback to initialize device
11870
* @txqs: the number of TX subqueues to allocate
11871
* @rxqs: the number of RX subqueues to allocate
11872
*
11873
* Allocates a struct net_device with private data area for driver use
11874
* and performs basic initialization. Also allocates subqueue structs
11875
* for each queue on the device.
11876
*/
11877
struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11878
unsigned char name_assign_type,
11879
void (*setup)(struct net_device *),
11880
unsigned int txqs, unsigned int rxqs)
11881
{
11882
struct net_device *dev;
11883
size_t napi_config_sz;
11884
unsigned int maxqs;
11885
11886
BUG_ON(strlen(name) >= sizeof(dev->name));
11887
11888
if (txqs < 1) {
11889
pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11890
return NULL;
11891
}
11892
11893
if (rxqs < 1) {
11894
pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11895
return NULL;
11896
}
11897
11898
maxqs = max(txqs, rxqs);
11899
11900
dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11901
GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11902
if (!dev)
11903
return NULL;
11904
11905
dev->priv_len = sizeof_priv;
11906
11907
ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11908
#ifdef CONFIG_PCPU_DEV_REFCNT
11909
dev->pcpu_refcnt = alloc_percpu(int);
11910
if (!dev->pcpu_refcnt)
11911
goto free_dev;
11912
__dev_hold(dev);
11913
#else
11914
refcount_set(&dev->dev_refcnt, 1);
11915
#endif
11916
11917
if (dev_addr_init(dev))
11918
goto free_pcpu;
11919
11920
dev_mc_init(dev);
11921
dev_uc_init(dev);
11922
11923
dev_net_set(dev, &init_net);
11924
11925
dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11926
dev->xdp_zc_max_segs = 1;
11927
dev->gso_max_segs = GSO_MAX_SEGS;
11928
dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11929
dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11930
dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11931
dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11932
dev->tso_max_segs = TSO_MAX_SEGS;
11933
dev->upper_level = 1;
11934
dev->lower_level = 1;
11935
#ifdef CONFIG_LOCKDEP
11936
dev->nested_level = 0;
11937
INIT_LIST_HEAD(&dev->unlink_list);
11938
#endif
11939
11940
INIT_LIST_HEAD(&dev->napi_list);
11941
INIT_LIST_HEAD(&dev->unreg_list);
11942
INIT_LIST_HEAD(&dev->close_list);
11943
INIT_LIST_HEAD(&dev->link_watch_list);
11944
INIT_LIST_HEAD(&dev->adj_list.upper);
11945
INIT_LIST_HEAD(&dev->adj_list.lower);
11946
INIT_LIST_HEAD(&dev->ptype_all);
11947
INIT_LIST_HEAD(&dev->ptype_specific);
11948
INIT_LIST_HEAD(&dev->net_notifier_list);
11949
#ifdef CONFIG_NET_SCHED
11950
hash_init(dev->qdisc_hash);
11951
#endif
11952
11953
mutex_init(&dev->lock);
11954
11955
dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11956
setup(dev);
11957
11958
if (!dev->tx_queue_len) {
11959
dev->priv_flags |= IFF_NO_QUEUE;
11960
dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11961
}
11962
11963
dev->num_tx_queues = txqs;
11964
dev->real_num_tx_queues = txqs;
11965
if (netif_alloc_netdev_queues(dev))
11966
goto free_all;
11967
11968
dev->num_rx_queues = rxqs;
11969
dev->real_num_rx_queues = rxqs;
11970
if (netif_alloc_rx_queues(dev))
11971
goto free_all;
11972
dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11973
if (!dev->ethtool)
11974
goto free_all;
11975
11976
dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11977
if (!dev->cfg)
11978
goto free_all;
11979
dev->cfg_pending = dev->cfg;
11980
11981
dev->num_napi_configs = maxqs;
11982
napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11983
dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11984
if (!dev->napi_config)
11985
goto free_all;
11986
11987
strscpy(dev->name, name);
11988
dev->name_assign_type = name_assign_type;
11989
dev->group = INIT_NETDEV_GROUP;
11990
if (!dev->ethtool_ops)
11991
dev->ethtool_ops = &default_ethtool_ops;
11992
11993
nf_hook_netdev_init(dev);
11994
11995
return dev;
11996
11997
free_all:
11998
free_netdev(dev);
11999
return NULL;
12000
12001
free_pcpu:
12002
#ifdef CONFIG_PCPU_DEV_REFCNT
12003
free_percpu(dev->pcpu_refcnt);
12004
free_dev:
12005
#endif
12006
kvfree(dev);
12007
return NULL;
12008
}
12009
EXPORT_SYMBOL(alloc_netdev_mqs);
12010
12011
static void netdev_napi_exit(struct net_device *dev)
12012
{
12013
if (!list_empty(&dev->napi_list)) {
12014
struct napi_struct *p, *n;
12015
12016
netdev_lock(dev);
12017
list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12018
__netif_napi_del_locked(p);
12019
netdev_unlock(dev);
12020
12021
synchronize_net();
12022
}
12023
12024
kvfree(dev->napi_config);
12025
}
12026
12027
/**
12028
* free_netdev - free network device
12029
* @dev: device
12030
*
12031
* This function does the last stage of destroying an allocated device
12032
* interface. The reference to the device object is released. If this
12033
* is the last reference then it will be freed.Must be called in process
12034
* context.
12035
*/
12036
void free_netdev(struct net_device *dev)
12037
{
12038
might_sleep();
12039
12040
/* When called immediately after register_netdevice() failed the unwind
12041
* handling may still be dismantling the device. Handle that case by
12042
* deferring the free.
12043
*/
12044
if (dev->reg_state == NETREG_UNREGISTERING) {
12045
ASSERT_RTNL();
12046
dev->needs_free_netdev = true;
12047
return;
12048
}
12049
12050
WARN_ON(dev->cfg != dev->cfg_pending);
12051
kfree(dev->cfg);
12052
kfree(dev->ethtool);
12053
netif_free_tx_queues(dev);
12054
netif_free_rx_queues(dev);
12055
12056
kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12057
12058
/* Flush device addresses */
12059
dev_addr_flush(dev);
12060
12061
netdev_napi_exit(dev);
12062
12063
netif_del_cpu_rmap(dev);
12064
12065
ref_tracker_dir_exit(&dev->refcnt_tracker);
12066
#ifdef CONFIG_PCPU_DEV_REFCNT
12067
free_percpu(dev->pcpu_refcnt);
12068
dev->pcpu_refcnt = NULL;
12069
#endif
12070
free_percpu(dev->core_stats);
12071
dev->core_stats = NULL;
12072
free_percpu(dev->xdp_bulkq);
12073
dev->xdp_bulkq = NULL;
12074
12075
netdev_free_phy_link_topology(dev);
12076
12077
mutex_destroy(&dev->lock);
12078
12079
/* Compatibility with error handling in drivers */
12080
if (dev->reg_state == NETREG_UNINITIALIZED ||
12081
dev->reg_state == NETREG_DUMMY) {
12082
kvfree(dev);
12083
return;
12084
}
12085
12086
BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12087
WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12088
12089
/* will free via device release */
12090
put_device(&dev->dev);
12091
}
12092
EXPORT_SYMBOL(free_netdev);
12093
12094
/**
12095
* alloc_netdev_dummy - Allocate and initialize a dummy net device.
12096
* @sizeof_priv: size of private data to allocate space for
12097
*
12098
* Return: the allocated net_device on success, NULL otherwise
12099
*/
12100
struct net_device *alloc_netdev_dummy(int sizeof_priv)
12101
{
12102
return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12103
init_dummy_netdev);
12104
}
12105
EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12106
12107
/**
12108
* synchronize_net - Synchronize with packet receive processing
12109
*
12110
* Wait for packets currently being received to be done.
12111
* Does not block later packets from starting.
12112
*/
12113
void synchronize_net(void)
12114
{
12115
might_sleep();
12116
if (from_cleanup_net() || rtnl_is_locked())
12117
synchronize_rcu_expedited();
12118
else
12119
synchronize_rcu();
12120
}
12121
EXPORT_SYMBOL(synchronize_net);
12122
12123
static void netdev_rss_contexts_free(struct net_device *dev)
12124
{
12125
struct ethtool_rxfh_context *ctx;
12126
unsigned long context;
12127
12128
mutex_lock(&dev->ethtool->rss_lock);
12129
xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12130
xa_erase(&dev->ethtool->rss_ctx, context);
12131
dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12132
kfree(ctx);
12133
}
12134
xa_destroy(&dev->ethtool->rss_ctx);
12135
mutex_unlock(&dev->ethtool->rss_lock);
12136
}
12137
12138
/**
12139
* unregister_netdevice_queue - remove device from the kernel
12140
* @dev: device
12141
* @head: list
12142
*
12143
* This function shuts down a device interface and removes it
12144
* from the kernel tables.
12145
* If head not NULL, device is queued to be unregistered later.
12146
*
12147
* Callers must hold the rtnl semaphore. You may want
12148
* unregister_netdev() instead of this.
12149
*/
12150
12151
void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12152
{
12153
ASSERT_RTNL();
12154
12155
if (head) {
12156
list_move_tail(&dev->unreg_list, head);
12157
} else {
12158
LIST_HEAD(single);
12159
12160
list_add(&dev->unreg_list, &single);
12161
unregister_netdevice_many(&single);
12162
}
12163
}
12164
EXPORT_SYMBOL(unregister_netdevice_queue);
12165
12166
static void dev_memory_provider_uninstall(struct net_device *dev)
12167
{
12168
unsigned int i;
12169
12170
for (i = 0; i < dev->real_num_rx_queues; i++) {
12171
struct netdev_rx_queue *rxq = &dev->_rx[i];
12172
struct pp_memory_provider_params *p = &rxq->mp_params;
12173
12174
if (p->mp_ops && p->mp_ops->uninstall)
12175
p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12176
}
12177
}
12178
12179
void unregister_netdevice_many_notify(struct list_head *head,
12180
u32 portid, const struct nlmsghdr *nlh)
12181
{
12182
struct net_device *dev, *tmp;
12183
LIST_HEAD(close_head);
12184
int cnt = 0;
12185
12186
BUG_ON(dev_boot_phase);
12187
ASSERT_RTNL();
12188
12189
if (list_empty(head))
12190
return;
12191
12192
list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12193
/* Some devices call without registering
12194
* for initialization unwind. Remove those
12195
* devices and proceed with the remaining.
12196
*/
12197
if (dev->reg_state == NETREG_UNINITIALIZED) {
12198
pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12199
dev->name, dev);
12200
12201
WARN_ON(1);
12202
list_del(&dev->unreg_list);
12203
continue;
12204
}
12205
dev->dismantle = true;
12206
BUG_ON(dev->reg_state != NETREG_REGISTERED);
12207
}
12208
12209
/* If device is running, close it first. Start with ops locked... */
12210
list_for_each_entry(dev, head, unreg_list) {
12211
if (netdev_need_ops_lock(dev)) {
12212
list_add_tail(&dev->close_list, &close_head);
12213
netdev_lock(dev);
12214
}
12215
}
12216
netif_close_many(&close_head, true);
12217
/* ... now unlock them and go over the rest. */
12218
list_for_each_entry(dev, head, unreg_list) {
12219
if (netdev_need_ops_lock(dev))
12220
netdev_unlock(dev);
12221
else
12222
list_add_tail(&dev->close_list, &close_head);
12223
}
12224
netif_close_many(&close_head, true);
12225
12226
list_for_each_entry(dev, head, unreg_list) {
12227
/* And unlink it from device chain. */
12228
unlist_netdevice(dev);
12229
netdev_lock(dev);
12230
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12231
netdev_unlock(dev);
12232
}
12233
flush_all_backlogs();
12234
12235
synchronize_net();
12236
12237
list_for_each_entry(dev, head, unreg_list) {
12238
struct sk_buff *skb = NULL;
12239
12240
/* Shutdown queueing discipline. */
12241
netdev_lock_ops(dev);
12242
dev_shutdown(dev);
12243
dev_tcx_uninstall(dev);
12244
dev_xdp_uninstall(dev);
12245
dev_memory_provider_uninstall(dev);
12246
netdev_unlock_ops(dev);
12247
bpf_dev_bound_netdev_unregister(dev);
12248
12249
netdev_offload_xstats_disable_all(dev);
12250
12251
/* Notify protocols, that we are about to destroy
12252
* this device. They should clean all the things.
12253
*/
12254
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12255
12256
if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12257
skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12258
GFP_KERNEL, NULL, 0,
12259
portid, nlh);
12260
12261
/*
12262
* Flush the unicast and multicast chains
12263
*/
12264
dev_uc_flush(dev);
12265
dev_mc_flush(dev);
12266
12267
netdev_name_node_alt_flush(dev);
12268
netdev_name_node_free(dev->name_node);
12269
12270
netdev_rss_contexts_free(dev);
12271
12272
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12273
12274
if (dev->netdev_ops->ndo_uninit)
12275
dev->netdev_ops->ndo_uninit(dev);
12276
12277
mutex_destroy(&dev->ethtool->rss_lock);
12278
12279
net_shaper_flush_netdev(dev);
12280
12281
if (skb)
12282
rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12283
12284
/* Notifier chain MUST detach us all upper devices. */
12285
WARN_ON(netdev_has_any_upper_dev(dev));
12286
WARN_ON(netdev_has_any_lower_dev(dev));
12287
12288
/* Remove entries from kobject tree */
12289
netdev_unregister_kobject(dev);
12290
#ifdef CONFIG_XPS
12291
/* Remove XPS queueing entries */
12292
netif_reset_xps_queues_gt(dev, 0);
12293
#endif
12294
}
12295
12296
synchronize_net();
12297
12298
list_for_each_entry(dev, head, unreg_list) {
12299
netdev_put(dev, &dev->dev_registered_tracker);
12300
net_set_todo(dev);
12301
cnt++;
12302
}
12303
atomic_add(cnt, &dev_unreg_count);
12304
12305
list_del(head);
12306
}
12307
12308
/**
12309
* unregister_netdevice_many - unregister many devices
12310
* @head: list of devices
12311
*
12312
* Note: As most callers use a stack allocated list_head,
12313
* we force a list_del() to make sure stack won't be corrupted later.
12314
*/
12315
void unregister_netdevice_many(struct list_head *head)
12316
{
12317
unregister_netdevice_many_notify(head, 0, NULL);
12318
}
12319
EXPORT_SYMBOL(unregister_netdevice_many);
12320
12321
/**
12322
* unregister_netdev - remove device from the kernel
12323
* @dev: device
12324
*
12325
* This function shuts down a device interface and removes it
12326
* from the kernel tables.
12327
*
12328
* This is just a wrapper for unregister_netdevice that takes
12329
* the rtnl semaphore. In general you want to use this and not
12330
* unregister_netdevice.
12331
*/
12332
void unregister_netdev(struct net_device *dev)
12333
{
12334
rtnl_net_dev_lock(dev);
12335
unregister_netdevice(dev);
12336
rtnl_net_dev_unlock(dev);
12337
}
12338
EXPORT_SYMBOL(unregister_netdev);
12339
12340
int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12341
const char *pat, int new_ifindex,
12342
struct netlink_ext_ack *extack)
12343
{
12344
struct netdev_name_node *name_node;
12345
struct net *net_old = dev_net(dev);
12346
char new_name[IFNAMSIZ] = {};
12347
int err, new_nsid;
12348
12349
ASSERT_RTNL();
12350
12351
/* Don't allow namespace local devices to be moved. */
12352
err = -EINVAL;
12353
if (dev->netns_immutable) {
12354
NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12355
goto out;
12356
}
12357
12358
/* Ensure the device has been registered */
12359
if (dev->reg_state != NETREG_REGISTERED) {
12360
NL_SET_ERR_MSG(extack, "The interface isn't registered");
12361
goto out;
12362
}
12363
12364
/* Get out if there is nothing todo */
12365
err = 0;
12366
if (net_eq(net_old, net))
12367
goto out;
12368
12369
/* Pick the destination device name, and ensure
12370
* we can use it in the destination network namespace.
12371
*/
12372
err = -EEXIST;
12373
if (netdev_name_in_use(net, dev->name)) {
12374
/* We get here if we can't use the current device name */
12375
if (!pat) {
12376
NL_SET_ERR_MSG(extack,
12377
"An interface with the same name exists in the target netns");
12378
goto out;
12379
}
12380
err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12381
if (err < 0) {
12382
NL_SET_ERR_MSG_FMT(extack,
12383
"Unable to use '%s' for the new interface name in the target netns",
12384
pat);
12385
goto out;
12386
}
12387
}
12388
/* Check that none of the altnames conflicts. */
12389
err = -EEXIST;
12390
netdev_for_each_altname(dev, name_node) {
12391
if (netdev_name_in_use(net, name_node->name)) {
12392
NL_SET_ERR_MSG_FMT(extack,
12393
"An interface with the altname %s exists in the target netns",
12394
name_node->name);
12395
goto out;
12396
}
12397
}
12398
12399
/* Check that new_ifindex isn't used yet. */
12400
if (new_ifindex) {
12401
err = dev_index_reserve(net, new_ifindex);
12402
if (err < 0) {
12403
NL_SET_ERR_MSG_FMT(extack,
12404
"The ifindex %d is not available in the target netns",
12405
new_ifindex);
12406
goto out;
12407
}
12408
} else {
12409
/* If there is an ifindex conflict assign a new one */
12410
err = dev_index_reserve(net, dev->ifindex);
12411
if (err == -EBUSY)
12412
err = dev_index_reserve(net, 0);
12413
if (err < 0) {
12414
NL_SET_ERR_MSG(extack,
12415
"Unable to allocate a new ifindex in the target netns");
12416
goto out;
12417
}
12418
new_ifindex = err;
12419
}
12420
12421
/*
12422
* And now a mini version of register_netdevice unregister_netdevice.
12423
*/
12424
12425
netdev_lock_ops(dev);
12426
/* If device is running close it first. */
12427
netif_close(dev);
12428
/* And unlink it from device chain */
12429
unlist_netdevice(dev);
12430
12431
if (!netdev_need_ops_lock(dev))
12432
netdev_lock(dev);
12433
dev->moving_ns = true;
12434
netdev_unlock(dev);
12435
12436
synchronize_net();
12437
12438
/* Shutdown queueing discipline. */
12439
netdev_lock_ops(dev);
12440
dev_shutdown(dev);
12441
netdev_unlock_ops(dev);
12442
12443
/* Notify protocols, that we are about to destroy
12444
* this device. They should clean all the things.
12445
*
12446
* Note that dev->reg_state stays at NETREG_REGISTERED.
12447
* This is wanted because this way 8021q and macvlan know
12448
* the device is just moving and can keep their slaves up.
12449
*/
12450
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12451
rcu_barrier();
12452
12453
new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12454
12455
rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12456
new_ifindex);
12457
12458
/*
12459
* Flush the unicast and multicast chains
12460
*/
12461
dev_uc_flush(dev);
12462
dev_mc_flush(dev);
12463
12464
/* Send a netdev-removed uevent to the old namespace */
12465
kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12466
netdev_adjacent_del_links(dev);
12467
12468
/* Move per-net netdevice notifiers that are following the netdevice */
12469
move_netdevice_notifiers_dev_net(dev, net);
12470
12471
/* Actually switch the network namespace */
12472
netdev_lock(dev);
12473
dev_net_set(dev, net);
12474
netdev_unlock(dev);
12475
dev->ifindex = new_ifindex;
12476
12477
if (new_name[0]) {
12478
/* Rename the netdev to prepared name */
12479
write_seqlock_bh(&netdev_rename_lock);
12480
strscpy(dev->name, new_name, IFNAMSIZ);
12481
write_sequnlock_bh(&netdev_rename_lock);
12482
}
12483
12484
/* Fixup kobjects */
12485
dev_set_uevent_suppress(&dev->dev, 1);
12486
err = device_rename(&dev->dev, dev->name);
12487
dev_set_uevent_suppress(&dev->dev, 0);
12488
WARN_ON(err);
12489
12490
/* Send a netdev-add uevent to the new namespace */
12491
kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12492
netdev_adjacent_add_links(dev);
12493
12494
/* Adapt owner in case owning user namespace of target network
12495
* namespace is different from the original one.
12496
*/
12497
err = netdev_change_owner(dev, net_old, net);
12498
WARN_ON(err);
12499
12500
netdev_lock(dev);
12501
dev->moving_ns = false;
12502
if (!netdev_need_ops_lock(dev))
12503
netdev_unlock(dev);
12504
12505
/* Add the device back in the hashes */
12506
list_netdevice(dev);
12507
/* Notify protocols, that a new device appeared. */
12508
call_netdevice_notifiers(NETDEV_REGISTER, dev);
12509
netdev_unlock_ops(dev);
12510
12511
/*
12512
* Prevent userspace races by waiting until the network
12513
* device is fully setup before sending notifications.
12514
*/
12515
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12516
12517
synchronize_net();
12518
err = 0;
12519
out:
12520
return err;
12521
}
12522
12523
static int dev_cpu_dead(unsigned int oldcpu)
12524
{
12525
struct sk_buff **list_skb;
12526
struct sk_buff *skb;
12527
unsigned int cpu;
12528
struct softnet_data *sd, *oldsd, *remsd = NULL;
12529
12530
local_irq_disable();
12531
cpu = smp_processor_id();
12532
sd = &per_cpu(softnet_data, cpu);
12533
oldsd = &per_cpu(softnet_data, oldcpu);
12534
12535
/* Find end of our completion_queue. */
12536
list_skb = &sd->completion_queue;
12537
while (*list_skb)
12538
list_skb = &(*list_skb)->next;
12539
/* Append completion queue from offline CPU. */
12540
*list_skb = oldsd->completion_queue;
12541
oldsd->completion_queue = NULL;
12542
12543
/* Append output queue from offline CPU. */
12544
if (oldsd->output_queue) {
12545
*sd->output_queue_tailp = oldsd->output_queue;
12546
sd->output_queue_tailp = oldsd->output_queue_tailp;
12547
oldsd->output_queue = NULL;
12548
oldsd->output_queue_tailp = &oldsd->output_queue;
12549
}
12550
/* Append NAPI poll list from offline CPU, with one exception :
12551
* process_backlog() must be called by cpu owning percpu backlog.
12552
* We properly handle process_queue & input_pkt_queue later.
12553
*/
12554
while (!list_empty(&oldsd->poll_list)) {
12555
struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12556
struct napi_struct,
12557
poll_list);
12558
12559
list_del_init(&napi->poll_list);
12560
if (napi->poll == process_backlog)
12561
napi->state &= NAPIF_STATE_THREADED;
12562
else
12563
____napi_schedule(sd, napi);
12564
}
12565
12566
raise_softirq_irqoff(NET_TX_SOFTIRQ);
12567
local_irq_enable();
12568
12569
if (!use_backlog_threads()) {
12570
#ifdef CONFIG_RPS
12571
remsd = oldsd->rps_ipi_list;
12572
oldsd->rps_ipi_list = NULL;
12573
#endif
12574
/* send out pending IPI's on offline CPU */
12575
net_rps_send_ipi(remsd);
12576
}
12577
12578
/* Process offline CPU's input_pkt_queue */
12579
while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12580
netif_rx(skb);
12581
rps_input_queue_head_incr(oldsd);
12582
}
12583
while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12584
netif_rx(skb);
12585
rps_input_queue_head_incr(oldsd);
12586
}
12587
12588
return 0;
12589
}
12590
12591
/**
12592
* netdev_increment_features - increment feature set by one
12593
* @all: current feature set
12594
* @one: new feature set
12595
* @mask: mask feature set
12596
*
12597
* Computes a new feature set after adding a device with feature set
12598
* @one to the master device with current feature set @all. Will not
12599
* enable anything that is off in @mask. Returns the new feature set.
12600
*/
12601
netdev_features_t netdev_increment_features(netdev_features_t all,
12602
netdev_features_t one, netdev_features_t mask)
12603
{
12604
if (mask & NETIF_F_HW_CSUM)
12605
mask |= NETIF_F_CSUM_MASK;
12606
mask |= NETIF_F_VLAN_CHALLENGED;
12607
12608
all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12609
all &= one | ~NETIF_F_ALL_FOR_ALL;
12610
12611
/* If one device supports hw checksumming, set for all. */
12612
if (all & NETIF_F_HW_CSUM)
12613
all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12614
12615
return all;
12616
}
12617
EXPORT_SYMBOL(netdev_increment_features);
12618
12619
static struct hlist_head * __net_init netdev_create_hash(void)
12620
{
12621
int i;
12622
struct hlist_head *hash;
12623
12624
hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12625
if (hash != NULL)
12626
for (i = 0; i < NETDEV_HASHENTRIES; i++)
12627
INIT_HLIST_HEAD(&hash[i]);
12628
12629
return hash;
12630
}
12631
12632
/* Initialize per network namespace state */
12633
static int __net_init netdev_init(struct net *net)
12634
{
12635
BUILD_BUG_ON(GRO_HASH_BUCKETS >
12636
BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12637
12638
INIT_LIST_HEAD(&net->dev_base_head);
12639
12640
net->dev_name_head = netdev_create_hash();
12641
if (net->dev_name_head == NULL)
12642
goto err_name;
12643
12644
net->dev_index_head = netdev_create_hash();
12645
if (net->dev_index_head == NULL)
12646
goto err_idx;
12647
12648
xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12649
12650
RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12651
12652
return 0;
12653
12654
err_idx:
12655
kfree(net->dev_name_head);
12656
err_name:
12657
return -ENOMEM;
12658
}
12659
12660
/**
12661
* netdev_drivername - network driver for the device
12662
* @dev: network device
12663
*
12664
* Determine network driver for device.
12665
*/
12666
const char *netdev_drivername(const struct net_device *dev)
12667
{
12668
const struct device_driver *driver;
12669
const struct device *parent;
12670
const char *empty = "";
12671
12672
parent = dev->dev.parent;
12673
if (!parent)
12674
return empty;
12675
12676
driver = parent->driver;
12677
if (driver && driver->name)
12678
return driver->name;
12679
return empty;
12680
}
12681
12682
static void __netdev_printk(const char *level, const struct net_device *dev,
12683
struct va_format *vaf)
12684
{
12685
if (dev && dev->dev.parent) {
12686
dev_printk_emit(level[1] - '0',
12687
dev->dev.parent,
12688
"%s %s %s%s: %pV",
12689
dev_driver_string(dev->dev.parent),
12690
dev_name(dev->dev.parent),
12691
netdev_name(dev), netdev_reg_state(dev),
12692
vaf);
12693
} else if (dev) {
12694
printk("%s%s%s: %pV",
12695
level, netdev_name(dev), netdev_reg_state(dev), vaf);
12696
} else {
12697
printk("%s(NULL net_device): %pV", level, vaf);
12698
}
12699
}
12700
12701
void netdev_printk(const char *level, const struct net_device *dev,
12702
const char *format, ...)
12703
{
12704
struct va_format vaf;
12705
va_list args;
12706
12707
va_start(args, format);
12708
12709
vaf.fmt = format;
12710
vaf.va = &args;
12711
12712
__netdev_printk(level, dev, &vaf);
12713
12714
va_end(args);
12715
}
12716
EXPORT_SYMBOL(netdev_printk);
12717
12718
#define define_netdev_printk_level(func, level) \
12719
void func(const struct net_device *dev, const char *fmt, ...) \
12720
{ \
12721
struct va_format vaf; \
12722
va_list args; \
12723
\
12724
va_start(args, fmt); \
12725
\
12726
vaf.fmt = fmt; \
12727
vaf.va = &args; \
12728
\
12729
__netdev_printk(level, dev, &vaf); \
12730
\
12731
va_end(args); \
12732
} \
12733
EXPORT_SYMBOL(func);
12734
12735
define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12736
define_netdev_printk_level(netdev_alert, KERN_ALERT);
12737
define_netdev_printk_level(netdev_crit, KERN_CRIT);
12738
define_netdev_printk_level(netdev_err, KERN_ERR);
12739
define_netdev_printk_level(netdev_warn, KERN_WARNING);
12740
define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12741
define_netdev_printk_level(netdev_info, KERN_INFO);
12742
12743
static void __net_exit netdev_exit(struct net *net)
12744
{
12745
kfree(net->dev_name_head);
12746
kfree(net->dev_index_head);
12747
xa_destroy(&net->dev_by_index);
12748
if (net != &init_net)
12749
WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12750
}
12751
12752
static struct pernet_operations __net_initdata netdev_net_ops = {
12753
.init = netdev_init,
12754
.exit = netdev_exit,
12755
};
12756
12757
static void __net_exit default_device_exit_net(struct net *net)
12758
{
12759
struct netdev_name_node *name_node, *tmp;
12760
struct net_device *dev, *aux;
12761
/*
12762
* Push all migratable network devices back to the
12763
* initial network namespace
12764
*/
12765
ASSERT_RTNL();
12766
for_each_netdev_safe(net, dev, aux) {
12767
int err;
12768
char fb_name[IFNAMSIZ];
12769
12770
/* Ignore unmoveable devices (i.e. loopback) */
12771
if (dev->netns_immutable)
12772
continue;
12773
12774
/* Leave virtual devices for the generic cleanup */
12775
if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12776
continue;
12777
12778
/* Push remaining network devices to init_net */
12779
snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12780
if (netdev_name_in_use(&init_net, fb_name))
12781
snprintf(fb_name, IFNAMSIZ, "dev%%d");
12782
12783
netdev_for_each_altname_safe(dev, name_node, tmp)
12784
if (netdev_name_in_use(&init_net, name_node->name))
12785
__netdev_name_node_alt_destroy(name_node);
12786
12787
err = dev_change_net_namespace(dev, &init_net, fb_name);
12788
if (err) {
12789
pr_emerg("%s: failed to move %s to init_net: %d\n",
12790
__func__, dev->name, err);
12791
BUG();
12792
}
12793
}
12794
}
12795
12796
static void __net_exit default_device_exit_batch(struct list_head *net_list)
12797
{
12798
/* At exit all network devices most be removed from a network
12799
* namespace. Do this in the reverse order of registration.
12800
* Do this across as many network namespaces as possible to
12801
* improve batching efficiency.
12802
*/
12803
struct net_device *dev;
12804
struct net *net;
12805
LIST_HEAD(dev_kill_list);
12806
12807
rtnl_lock();
12808
list_for_each_entry(net, net_list, exit_list) {
12809
default_device_exit_net(net);
12810
cond_resched();
12811
}
12812
12813
list_for_each_entry(net, net_list, exit_list) {
12814
for_each_netdev_reverse(net, dev) {
12815
if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12816
dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12817
else
12818
unregister_netdevice_queue(dev, &dev_kill_list);
12819
}
12820
}
12821
unregister_netdevice_many(&dev_kill_list);
12822
rtnl_unlock();
12823
}
12824
12825
static struct pernet_operations __net_initdata default_device_ops = {
12826
.exit_batch = default_device_exit_batch,
12827
};
12828
12829
static void __init net_dev_struct_check(void)
12830
{
12831
/* TX read-mostly hotpath */
12832
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12833
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12834
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12835
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12836
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12837
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12838
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12839
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12840
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12841
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12842
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12843
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12844
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12845
#ifdef CONFIG_XPS
12846
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12847
#endif
12848
#ifdef CONFIG_NETFILTER_EGRESS
12849
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12850
#endif
12851
#ifdef CONFIG_NET_XGRESS
12852
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12853
#endif
12854
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12855
12856
/* TXRX read-mostly hotpath */
12857
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12858
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12859
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12860
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12861
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12862
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12863
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12864
12865
/* RX read-mostly hotpath */
12866
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12867
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12868
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12869
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12870
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12871
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12872
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12873
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12874
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12875
#ifdef CONFIG_NETPOLL
12876
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12877
#endif
12878
#ifdef CONFIG_NET_XGRESS
12879
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12880
#endif
12881
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12882
}
12883
12884
/*
12885
* Initialize the DEV module. At boot time this walks the device list and
12886
* unhooks any devices that fail to initialise (normally hardware not
12887
* present) and leaves us with a valid list of present and active devices.
12888
*
12889
*/
12890
12891
/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12892
#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12893
12894
static int net_page_pool_create(int cpuid)
12895
{
12896
#if IS_ENABLED(CONFIG_PAGE_POOL)
12897
struct page_pool_params page_pool_params = {
12898
.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12899
.flags = PP_FLAG_SYSTEM_POOL,
12900
.nid = cpu_to_mem(cpuid),
12901
};
12902
struct page_pool *pp_ptr;
12903
int err;
12904
12905
pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12906
if (IS_ERR(pp_ptr))
12907
return -ENOMEM;
12908
12909
err = xdp_reg_page_pool(pp_ptr);
12910
if (err) {
12911
page_pool_destroy(pp_ptr);
12912
return err;
12913
}
12914
12915
per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12916
#endif
12917
return 0;
12918
}
12919
12920
static int backlog_napi_should_run(unsigned int cpu)
12921
{
12922
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12923
struct napi_struct *napi = &sd->backlog;
12924
12925
return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12926
}
12927
12928
static void run_backlog_napi(unsigned int cpu)
12929
{
12930
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12931
12932
napi_threaded_poll_loop(&sd->backlog);
12933
}
12934
12935
static void backlog_napi_setup(unsigned int cpu)
12936
{
12937
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12938
struct napi_struct *napi = &sd->backlog;
12939
12940
napi->thread = this_cpu_read(backlog_napi);
12941
set_bit(NAPI_STATE_THREADED, &napi->state);
12942
}
12943
12944
static struct smp_hotplug_thread backlog_threads = {
12945
.store = &backlog_napi,
12946
.thread_should_run = backlog_napi_should_run,
12947
.thread_fn = run_backlog_napi,
12948
.thread_comm = "backlog_napi/%u",
12949
.setup = backlog_napi_setup,
12950
};
12951
12952
/*
12953
* This is called single threaded during boot, so no need
12954
* to take the rtnl semaphore.
12955
*/
12956
static int __init net_dev_init(void)
12957
{
12958
int i, rc = -ENOMEM;
12959
12960
BUG_ON(!dev_boot_phase);
12961
12962
net_dev_struct_check();
12963
12964
if (dev_proc_init())
12965
goto out;
12966
12967
if (netdev_kobject_init())
12968
goto out;
12969
12970
for (i = 0; i < PTYPE_HASH_SIZE; i++)
12971
INIT_LIST_HEAD(&ptype_base[i]);
12972
12973
if (register_pernet_subsys(&netdev_net_ops))
12974
goto out;
12975
12976
/*
12977
* Initialise the packet receive queues.
12978
*/
12979
12980
flush_backlogs_fallback = flush_backlogs_alloc();
12981
if (!flush_backlogs_fallback)
12982
goto out;
12983
12984
for_each_possible_cpu(i) {
12985
struct softnet_data *sd = &per_cpu(softnet_data, i);
12986
12987
skb_queue_head_init(&sd->input_pkt_queue);
12988
skb_queue_head_init(&sd->process_queue);
12989
#ifdef CONFIG_XFRM_OFFLOAD
12990
skb_queue_head_init(&sd->xfrm_backlog);
12991
#endif
12992
INIT_LIST_HEAD(&sd->poll_list);
12993
sd->output_queue_tailp = &sd->output_queue;
12994
#ifdef CONFIG_RPS
12995
INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12996
sd->cpu = i;
12997
#endif
12998
INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12999
13000
gro_init(&sd->backlog.gro);
13001
sd->backlog.poll = process_backlog;
13002
sd->backlog.weight = weight_p;
13003
INIT_LIST_HEAD(&sd->backlog.poll_list);
13004
13005
if (net_page_pool_create(i))
13006
goto out;
13007
}
13008
net_hotdata.skb_defer_nodes =
13009
__alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13010
__alignof__(struct skb_defer_node));
13011
if (!net_hotdata.skb_defer_nodes)
13012
goto out;
13013
if (use_backlog_threads())
13014
smpboot_register_percpu_thread(&backlog_threads);
13015
13016
dev_boot_phase = 0;
13017
13018
/* The loopback device is special if any other network devices
13019
* is present in a network namespace the loopback device must
13020
* be present. Since we now dynamically allocate and free the
13021
* loopback device ensure this invariant is maintained by
13022
* keeping the loopback device as the first device on the
13023
* list of network devices. Ensuring the loopback devices
13024
* is the first device that appears and the last network device
13025
* that disappears.
13026
*/
13027
if (register_pernet_device(&loopback_net_ops))
13028
goto out;
13029
13030
if (register_pernet_device(&default_device_ops))
13031
goto out;
13032
13033
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13034
open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13035
13036
rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13037
NULL, dev_cpu_dead);
13038
WARN_ON(rc < 0);
13039
rc = 0;
13040
13041
/* avoid static key IPIs to isolated CPUs */
13042
if (housekeeping_enabled(HK_TYPE_MISC))
13043
net_enable_timestamp();
13044
out:
13045
if (rc < 0) {
13046
for_each_possible_cpu(i) {
13047
struct page_pool *pp_ptr;
13048
13049
pp_ptr = per_cpu(system_page_pool.pool, i);
13050
if (!pp_ptr)
13051
continue;
13052
13053
xdp_unreg_page_pool(pp_ptr);
13054
page_pool_destroy(pp_ptr);
13055
per_cpu(system_page_pool.pool, i) = NULL;
13056
}
13057
}
13058
13059
return rc;
13060
}
13061
13062
subsys_initcall(net_dev_init);
13063
13064