Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/core/net_namespace.c
29280 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/workqueue.h>
5
#include <linux/rtnetlink.h>
6
#include <linux/cache.h>
7
#include <linux/slab.h>
8
#include <linux/list.h>
9
#include <linux/delay.h>
10
#include <linux/sched.h>
11
#include <linux/idr.h>
12
#include <linux/rculist.h>
13
#include <linux/nsproxy.h>
14
#include <linux/fs.h>
15
#include <linux/proc_ns.h>
16
#include <linux/file.h>
17
#include <linux/export.h>
18
#include <linux/user_namespace.h>
19
#include <linux/net_namespace.h>
20
#include <linux/sched/task.h>
21
#include <linux/uidgid.h>
22
#include <linux/proc_fs.h>
23
#include <linux/nstree.h>
24
25
#include <net/aligned_data.h>
26
#include <net/sock.h>
27
#include <net/netlink.h>
28
#include <net/net_namespace.h>
29
#include <net/netns/generic.h>
30
31
/*
32
* Our network namespace constructor/destructor lists
33
*/
34
35
static LIST_HEAD(pernet_list);
36
static struct list_head *first_device = &pernet_list;
37
38
LIST_HEAD(net_namespace_list);
39
EXPORT_SYMBOL_GPL(net_namespace_list);
40
41
/* Protects net_namespace_list. Nests iside rtnl_lock() */
42
DECLARE_RWSEM(net_rwsem);
43
EXPORT_SYMBOL_GPL(net_rwsem);
44
45
#ifdef CONFIG_KEYS
46
static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
47
#endif
48
49
struct net init_net;
50
EXPORT_SYMBOL(init_net);
51
52
static bool init_net_initialized;
53
/*
54
* pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
55
* init_net_initialized and first_device pointer.
56
* This is internal net namespace object. Please, don't use it
57
* outside.
58
*/
59
DECLARE_RWSEM(pernet_ops_rwsem);
60
61
#define MIN_PERNET_OPS_ID \
62
((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63
64
#define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
65
66
static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67
68
static struct net_generic *net_alloc_generic(void)
69
{
70
unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
71
unsigned int generic_size;
72
struct net_generic *ng;
73
74
generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
75
76
ng = kzalloc(generic_size, GFP_KERNEL);
77
if (ng)
78
ng->s.len = gen_ptrs;
79
80
return ng;
81
}
82
83
static int net_assign_generic(struct net *net, unsigned int id, void *data)
84
{
85
struct net_generic *ng, *old_ng;
86
87
BUG_ON(id < MIN_PERNET_OPS_ID);
88
89
old_ng = rcu_dereference_protected(net->gen,
90
lockdep_is_held(&pernet_ops_rwsem));
91
if (old_ng->s.len > id) {
92
old_ng->ptr[id] = data;
93
return 0;
94
}
95
96
ng = net_alloc_generic();
97
if (!ng)
98
return -ENOMEM;
99
100
/*
101
* Some synchronisation notes:
102
*
103
* The net_generic explores the net->gen array inside rcu
104
* read section. Besides once set the net->gen->ptr[x]
105
* pointer never changes (see rules in netns/generic.h).
106
*
107
* That said, we simply duplicate this array and schedule
108
* the old copy for kfree after a grace period.
109
*/
110
111
memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
112
(old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
113
ng->ptr[id] = data;
114
115
rcu_assign_pointer(net->gen, ng);
116
kfree_rcu(old_ng, s.rcu);
117
return 0;
118
}
119
120
static int ops_init(const struct pernet_operations *ops, struct net *net)
121
{
122
struct net_generic *ng;
123
int err = -ENOMEM;
124
void *data = NULL;
125
126
if (ops->id) {
127
data = kzalloc(ops->size, GFP_KERNEL);
128
if (!data)
129
goto out;
130
131
err = net_assign_generic(net, *ops->id, data);
132
if (err)
133
goto cleanup;
134
}
135
err = 0;
136
if (ops->init)
137
err = ops->init(net);
138
if (!err)
139
return 0;
140
141
if (ops->id) {
142
ng = rcu_dereference_protected(net->gen,
143
lockdep_is_held(&pernet_ops_rwsem));
144
ng->ptr[*ops->id] = NULL;
145
}
146
147
cleanup:
148
kfree(data);
149
150
out:
151
return err;
152
}
153
154
static void ops_pre_exit_list(const struct pernet_operations *ops,
155
struct list_head *net_exit_list)
156
{
157
struct net *net;
158
159
if (ops->pre_exit) {
160
list_for_each_entry(net, net_exit_list, exit_list)
161
ops->pre_exit(net);
162
}
163
}
164
165
static void ops_exit_rtnl_list(const struct list_head *ops_list,
166
const struct pernet_operations *ops,
167
struct list_head *net_exit_list)
168
{
169
const struct pernet_operations *saved_ops = ops;
170
LIST_HEAD(dev_kill_list);
171
struct net *net;
172
173
rtnl_lock();
174
175
list_for_each_entry(net, net_exit_list, exit_list) {
176
__rtnl_net_lock(net);
177
178
ops = saved_ops;
179
list_for_each_entry_continue_reverse(ops, ops_list, list) {
180
if (ops->exit_rtnl)
181
ops->exit_rtnl(net, &dev_kill_list);
182
}
183
184
__rtnl_net_unlock(net);
185
}
186
187
unregister_netdevice_many(&dev_kill_list);
188
189
rtnl_unlock();
190
}
191
192
static void ops_exit_list(const struct pernet_operations *ops,
193
struct list_head *net_exit_list)
194
{
195
if (ops->exit) {
196
struct net *net;
197
198
list_for_each_entry(net, net_exit_list, exit_list) {
199
ops->exit(net);
200
cond_resched();
201
}
202
}
203
204
if (ops->exit_batch)
205
ops->exit_batch(net_exit_list);
206
}
207
208
static void ops_free_list(const struct pernet_operations *ops,
209
struct list_head *net_exit_list)
210
{
211
struct net *net;
212
213
if (ops->id) {
214
list_for_each_entry(net, net_exit_list, exit_list)
215
kfree(net_generic(net, *ops->id));
216
}
217
}
218
219
static void ops_undo_list(const struct list_head *ops_list,
220
const struct pernet_operations *ops,
221
struct list_head *net_exit_list,
222
bool expedite_rcu)
223
{
224
const struct pernet_operations *saved_ops;
225
bool hold_rtnl = false;
226
227
if (!ops)
228
ops = list_entry(ops_list, typeof(*ops), list);
229
230
saved_ops = ops;
231
232
list_for_each_entry_continue_reverse(ops, ops_list, list) {
233
hold_rtnl |= !!ops->exit_rtnl;
234
ops_pre_exit_list(ops, net_exit_list);
235
}
236
237
/* Another CPU might be rcu-iterating the list, wait for it.
238
* This needs to be before calling the exit() notifiers, so the
239
* rcu_barrier() after ops_undo_list() isn't sufficient alone.
240
* Also the pre_exit() and exit() methods need this barrier.
241
*/
242
if (expedite_rcu)
243
synchronize_rcu_expedited();
244
else
245
synchronize_rcu();
246
247
if (hold_rtnl)
248
ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list);
249
250
ops = saved_ops;
251
list_for_each_entry_continue_reverse(ops, ops_list, list)
252
ops_exit_list(ops, net_exit_list);
253
254
ops = saved_ops;
255
list_for_each_entry_continue_reverse(ops, ops_list, list)
256
ops_free_list(ops, net_exit_list);
257
}
258
259
static void ops_undo_single(struct pernet_operations *ops,
260
struct list_head *net_exit_list)
261
{
262
LIST_HEAD(ops_list);
263
264
list_add(&ops->list, &ops_list);
265
ops_undo_list(&ops_list, NULL, net_exit_list, false);
266
list_del(&ops->list);
267
}
268
269
/* should be called with nsid_lock held */
270
static int alloc_netid(struct net *net, struct net *peer, int reqid)
271
{
272
int min = 0, max = 0;
273
274
if (reqid >= 0) {
275
min = reqid;
276
max = reqid + 1;
277
}
278
279
return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
280
}
281
282
/* This function is used by idr_for_each(). If net is equal to peer, the
283
* function returns the id so that idr_for_each() stops. Because we cannot
284
* returns the id 0 (idr_for_each() will not stop), we return the magic value
285
* NET_ID_ZERO (-1) for it.
286
*/
287
#define NET_ID_ZERO -1
288
static int net_eq_idr(int id, void *net, void *peer)
289
{
290
if (net_eq(net, peer))
291
return id ? : NET_ID_ZERO;
292
return 0;
293
}
294
295
/* Must be called from RCU-critical section or with nsid_lock held */
296
static int __peernet2id(const struct net *net, struct net *peer)
297
{
298
int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
299
300
/* Magic value for id 0. */
301
if (id == NET_ID_ZERO)
302
return 0;
303
if (id > 0)
304
return id;
305
306
return NETNSA_NSID_NOT_ASSIGNED;
307
}
308
309
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
310
struct nlmsghdr *nlh, gfp_t gfp);
311
/* This function returns the id of a peer netns. If no id is assigned, one will
312
* be allocated and returned.
313
*/
314
int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
315
{
316
int id;
317
318
if (!check_net(net))
319
return NETNSA_NSID_NOT_ASSIGNED;
320
321
spin_lock(&net->nsid_lock);
322
id = __peernet2id(net, peer);
323
if (id >= 0) {
324
spin_unlock(&net->nsid_lock);
325
return id;
326
}
327
328
/* When peer is obtained from RCU lists, we may race with
329
* its cleanup. Check whether it's alive, and this guarantees
330
* we never hash a peer back to net->netns_ids, after it has
331
* just been idr_remove()'d from there in cleanup_net().
332
*/
333
if (!maybe_get_net(peer)) {
334
spin_unlock(&net->nsid_lock);
335
return NETNSA_NSID_NOT_ASSIGNED;
336
}
337
338
id = alloc_netid(net, peer, -1);
339
spin_unlock(&net->nsid_lock);
340
341
put_net(peer);
342
if (id < 0)
343
return NETNSA_NSID_NOT_ASSIGNED;
344
345
rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
346
347
return id;
348
}
349
EXPORT_SYMBOL_GPL(peernet2id_alloc);
350
351
/* This function returns, if assigned, the id of a peer netns. */
352
int peernet2id(const struct net *net, struct net *peer)
353
{
354
int id;
355
356
rcu_read_lock();
357
id = __peernet2id(net, peer);
358
rcu_read_unlock();
359
360
return id;
361
}
362
EXPORT_SYMBOL(peernet2id);
363
364
/* This function returns true is the peer netns has an id assigned into the
365
* current netns.
366
*/
367
bool peernet_has_id(const struct net *net, struct net *peer)
368
{
369
return peernet2id(net, peer) >= 0;
370
}
371
372
struct net *get_net_ns_by_id(const struct net *net, int id)
373
{
374
struct net *peer;
375
376
if (id < 0)
377
return NULL;
378
379
rcu_read_lock();
380
peer = idr_find(&net->netns_ids, id);
381
if (peer)
382
peer = maybe_get_net(peer);
383
rcu_read_unlock();
384
385
return peer;
386
}
387
EXPORT_SYMBOL_GPL(get_net_ns_by_id);
388
389
static __net_init void preinit_net_sysctl(struct net *net)
390
{
391
net->core.sysctl_somaxconn = SOMAXCONN;
392
/* Limits per socket sk_omem_alloc usage.
393
* TCP zerocopy regular usage needs 128 KB.
394
*/
395
net->core.sysctl_optmem_max = 128 * 1024;
396
net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
397
net->core.sysctl_tstamp_allow_data = 1;
398
}
399
400
/* init code that must occur even if setup_net() is not called. */
401
static __net_init int preinit_net(struct net *net, struct user_namespace *user_ns)
402
{
403
int ret;
404
405
ret = ns_common_init(net);
406
if (ret)
407
return ret;
408
409
refcount_set(&net->passive, 1);
410
ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt");
411
ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt");
412
413
get_random_bytes(&net->hash_mix, sizeof(u32));
414
net->dev_base_seq = 1;
415
net->user_ns = user_ns;
416
417
idr_init(&net->netns_ids);
418
spin_lock_init(&net->nsid_lock);
419
mutex_init(&net->ipv4.ra_mutex);
420
421
#ifdef CONFIG_DEBUG_NET_SMALL_RTNL
422
mutex_init(&net->rtnl_mutex);
423
lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
424
#endif
425
426
INIT_LIST_HEAD(&net->ptype_all);
427
INIT_LIST_HEAD(&net->ptype_specific);
428
preinit_net_sysctl(net);
429
return 0;
430
}
431
432
/*
433
* setup_net runs the initializers for the network namespace object.
434
*/
435
static __net_init int setup_net(struct net *net)
436
{
437
/* Must be called with pernet_ops_rwsem held */
438
const struct pernet_operations *ops;
439
LIST_HEAD(net_exit_list);
440
int error = 0;
441
442
net->net_cookie = ns_tree_gen_id(&net->ns);
443
444
list_for_each_entry(ops, &pernet_list, list) {
445
error = ops_init(ops, net);
446
if (error < 0)
447
goto out_undo;
448
}
449
down_write(&net_rwsem);
450
list_add_tail_rcu(&net->list, &net_namespace_list);
451
up_write(&net_rwsem);
452
ns_tree_add_raw(net);
453
out:
454
return error;
455
456
out_undo:
457
/* Walk through the list backwards calling the exit functions
458
* for the pernet modules whose init functions did not fail.
459
*/
460
list_add(&net->exit_list, &net_exit_list);
461
ops_undo_list(&pernet_list, ops, &net_exit_list, false);
462
rcu_barrier();
463
goto out;
464
}
465
466
#ifdef CONFIG_NET_NS
467
static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
468
{
469
return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
470
}
471
472
static void dec_net_namespaces(struct ucounts *ucounts)
473
{
474
dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
475
}
476
477
static struct kmem_cache *net_cachep __ro_after_init;
478
static struct workqueue_struct *netns_wq;
479
480
static struct net *net_alloc(void)
481
{
482
struct net *net = NULL;
483
struct net_generic *ng;
484
485
ng = net_alloc_generic();
486
if (!ng)
487
goto out;
488
489
net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
490
if (!net)
491
goto out_free;
492
493
#ifdef CONFIG_KEYS
494
net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
495
if (!net->key_domain)
496
goto out_free_2;
497
refcount_set(&net->key_domain->usage, 1);
498
#endif
499
500
rcu_assign_pointer(net->gen, ng);
501
out:
502
return net;
503
504
#ifdef CONFIG_KEYS
505
out_free_2:
506
kmem_cache_free(net_cachep, net);
507
net = NULL;
508
#endif
509
out_free:
510
kfree(ng);
511
goto out;
512
}
513
514
static LLIST_HEAD(defer_free_list);
515
516
static void net_complete_free(void)
517
{
518
struct llist_node *kill_list;
519
struct net *net, *next;
520
521
/* Get the list of namespaces to free from last round. */
522
kill_list = llist_del_all(&defer_free_list);
523
524
llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
525
kmem_cache_free(net_cachep, net);
526
527
}
528
529
void net_passive_dec(struct net *net)
530
{
531
if (refcount_dec_and_test(&net->passive)) {
532
kfree(rcu_access_pointer(net->gen));
533
534
/* There should not be any trackers left there. */
535
ref_tracker_dir_exit(&net->notrefcnt_tracker);
536
537
/* Wait for an extra rcu_barrier() before final free. */
538
llist_add(&net->defer_free_list, &defer_free_list);
539
}
540
}
541
542
void net_drop_ns(void *p)
543
{
544
struct net *net = (struct net *)p;
545
546
if (net)
547
net_passive_dec(net);
548
}
549
550
struct net *copy_net_ns(u64 flags,
551
struct user_namespace *user_ns, struct net *old_net)
552
{
553
struct ucounts *ucounts;
554
struct net *net;
555
int rv;
556
557
if (!(flags & CLONE_NEWNET))
558
return get_net(old_net);
559
560
ucounts = inc_net_namespaces(user_ns);
561
if (!ucounts)
562
return ERR_PTR(-ENOSPC);
563
564
net = net_alloc();
565
if (!net) {
566
rv = -ENOMEM;
567
goto dec_ucounts;
568
}
569
570
rv = preinit_net(net, user_ns);
571
if (rv < 0)
572
goto dec_ucounts;
573
net->ucounts = ucounts;
574
get_user_ns(user_ns);
575
576
rv = down_read_killable(&pernet_ops_rwsem);
577
if (rv < 0)
578
goto put_userns;
579
580
rv = setup_net(net);
581
582
up_read(&pernet_ops_rwsem);
583
584
if (rv < 0) {
585
put_userns:
586
ns_common_free(net);
587
#ifdef CONFIG_KEYS
588
key_remove_domain(net->key_domain);
589
#endif
590
put_user_ns(user_ns);
591
net_passive_dec(net);
592
dec_ucounts:
593
dec_net_namespaces(ucounts);
594
return ERR_PTR(rv);
595
}
596
return net;
597
}
598
599
/**
600
* net_ns_get_ownership - get sysfs ownership data for @net
601
* @net: network namespace in question (can be NULL)
602
* @uid: kernel user ID for sysfs objects
603
* @gid: kernel group ID for sysfs objects
604
*
605
* Returns the uid/gid pair of root in the user namespace associated with the
606
* given network namespace.
607
*/
608
void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
609
{
610
if (net) {
611
kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
612
kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
613
614
if (uid_valid(ns_root_uid))
615
*uid = ns_root_uid;
616
617
if (gid_valid(ns_root_gid))
618
*gid = ns_root_gid;
619
} else {
620
*uid = GLOBAL_ROOT_UID;
621
*gid = GLOBAL_ROOT_GID;
622
}
623
}
624
EXPORT_SYMBOL_GPL(net_ns_get_ownership);
625
626
static void unhash_nsid(struct net *net, struct net *last)
627
{
628
struct net *tmp;
629
/* This function is only called from cleanup_net() work,
630
* and this work is the only process, that may delete
631
* a net from net_namespace_list. So, when the below
632
* is executing, the list may only grow. Thus, we do not
633
* use for_each_net_rcu() or net_rwsem.
634
*/
635
for_each_net(tmp) {
636
int id;
637
638
spin_lock(&tmp->nsid_lock);
639
id = __peernet2id(tmp, net);
640
if (id >= 0)
641
idr_remove(&tmp->netns_ids, id);
642
spin_unlock(&tmp->nsid_lock);
643
if (id >= 0)
644
rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
645
GFP_KERNEL);
646
if (tmp == last)
647
break;
648
}
649
spin_lock(&net->nsid_lock);
650
idr_destroy(&net->netns_ids);
651
spin_unlock(&net->nsid_lock);
652
}
653
654
static LLIST_HEAD(cleanup_list);
655
656
struct task_struct *cleanup_net_task;
657
658
static void cleanup_net(struct work_struct *work)
659
{
660
struct llist_node *net_kill_list;
661
struct net *net, *tmp, *last;
662
LIST_HEAD(net_exit_list);
663
664
WRITE_ONCE(cleanup_net_task, current);
665
666
/* Atomically snapshot the list of namespaces to cleanup */
667
net_kill_list = llist_del_all(&cleanup_list);
668
669
down_read(&pernet_ops_rwsem);
670
671
/* Don't let anyone else find us. */
672
down_write(&net_rwsem);
673
llist_for_each_entry(net, net_kill_list, cleanup_list) {
674
ns_tree_remove(net);
675
list_del_rcu(&net->list);
676
}
677
/* Cache last net. After we unlock rtnl, no one new net
678
* added to net_namespace_list can assign nsid pointer
679
* to a net from net_kill_list (see peernet2id_alloc()).
680
* So, we skip them in unhash_nsid().
681
*
682
* Note, that unhash_nsid() does not delete nsid links
683
* between net_kill_list's nets, as they've already
684
* deleted from net_namespace_list. But, this would be
685
* useless anyway, as netns_ids are destroyed there.
686
*/
687
last = list_last_entry(&net_namespace_list, struct net, list);
688
up_write(&net_rwsem);
689
690
llist_for_each_entry(net, net_kill_list, cleanup_list) {
691
unhash_nsid(net, last);
692
list_add_tail(&net->exit_list, &net_exit_list);
693
}
694
695
ops_undo_list(&pernet_list, NULL, &net_exit_list, true);
696
697
up_read(&pernet_ops_rwsem);
698
699
/* Ensure there are no outstanding rcu callbacks using this
700
* network namespace.
701
*/
702
rcu_barrier();
703
704
net_complete_free();
705
706
/* Finally it is safe to free my network namespace structure */
707
list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
708
list_del_init(&net->exit_list);
709
ns_common_free(net);
710
dec_net_namespaces(net->ucounts);
711
#ifdef CONFIG_KEYS
712
key_remove_domain(net->key_domain);
713
#endif
714
put_user_ns(net->user_ns);
715
net_passive_dec(net);
716
}
717
WRITE_ONCE(cleanup_net_task, NULL);
718
}
719
720
/**
721
* net_ns_barrier - wait until concurrent net_cleanup_work is done
722
*
723
* cleanup_net runs from work queue and will first remove namespaces
724
* from the global list, then run net exit functions.
725
*
726
* Call this in module exit path to make sure that all netns
727
* ->exit ops have been invoked before the function is removed.
728
*/
729
void net_ns_barrier(void)
730
{
731
down_write(&pernet_ops_rwsem);
732
up_write(&pernet_ops_rwsem);
733
}
734
EXPORT_SYMBOL(net_ns_barrier);
735
736
static DECLARE_WORK(net_cleanup_work, cleanup_net);
737
738
void __put_net(struct net *net)
739
{
740
ref_tracker_dir_exit(&net->refcnt_tracker);
741
/* Cleanup the network namespace in process context */
742
if (llist_add(&net->cleanup_list, &cleanup_list))
743
queue_work(netns_wq, &net_cleanup_work);
744
}
745
EXPORT_SYMBOL_GPL(__put_net);
746
747
/**
748
* get_net_ns - increment the refcount of the network namespace
749
* @ns: common namespace (net)
750
*
751
* Returns the net's common namespace or ERR_PTR() if ref is zero.
752
*/
753
struct ns_common *get_net_ns(struct ns_common *ns)
754
{
755
struct net *net;
756
757
net = maybe_get_net(container_of(ns, struct net, ns));
758
if (net)
759
return &net->ns;
760
return ERR_PTR(-EINVAL);
761
}
762
EXPORT_SYMBOL_GPL(get_net_ns);
763
764
struct net *get_net_ns_by_fd(int fd)
765
{
766
CLASS(fd, f)(fd);
767
768
if (fd_empty(f))
769
return ERR_PTR(-EBADF);
770
771
if (proc_ns_file(fd_file(f))) {
772
struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
773
if (ns->ops == &netns_operations)
774
return get_net(container_of(ns, struct net, ns));
775
}
776
777
return ERR_PTR(-EINVAL);
778
}
779
EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
780
#endif
781
782
struct net *get_net_ns_by_pid(pid_t pid)
783
{
784
struct task_struct *tsk;
785
struct net *net;
786
787
/* Lookup the network namespace */
788
net = ERR_PTR(-ESRCH);
789
rcu_read_lock();
790
tsk = find_task_by_vpid(pid);
791
if (tsk) {
792
struct nsproxy *nsproxy;
793
task_lock(tsk);
794
nsproxy = tsk->nsproxy;
795
if (nsproxy)
796
net = get_net(nsproxy->net_ns);
797
task_unlock(tsk);
798
}
799
rcu_read_unlock();
800
return net;
801
}
802
EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
803
804
#ifdef CONFIG_NET_NS_REFCNT_TRACKER
805
static void net_ns_net_debugfs(struct net *net)
806
{
807
ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt",
808
net->net_cookie, net->ns.inum);
809
ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt",
810
net->net_cookie, net->ns.inum);
811
}
812
813
static int __init init_net_debugfs(void)
814
{
815
ref_tracker_dir_debugfs(&init_net.refcnt_tracker);
816
ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker);
817
net_ns_net_debugfs(&init_net);
818
return 0;
819
}
820
late_initcall(init_net_debugfs);
821
#else
822
static void net_ns_net_debugfs(struct net *net)
823
{
824
}
825
#endif
826
827
static __net_init int net_ns_net_init(struct net *net)
828
{
829
net_ns_net_debugfs(net);
830
return 0;
831
}
832
833
static struct pernet_operations __net_initdata net_ns_ops = {
834
.init = net_ns_net_init,
835
};
836
837
static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
838
[NETNSA_NONE] = { .type = NLA_UNSPEC },
839
[NETNSA_NSID] = { .type = NLA_S32 },
840
[NETNSA_PID] = { .type = NLA_U32 },
841
[NETNSA_FD] = { .type = NLA_U32 },
842
[NETNSA_TARGET_NSID] = { .type = NLA_S32 },
843
};
844
845
static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
846
struct netlink_ext_ack *extack)
847
{
848
struct net *net = sock_net(skb->sk);
849
struct nlattr *tb[NETNSA_MAX + 1];
850
struct nlattr *nla;
851
struct net *peer;
852
int nsid, err;
853
854
err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
855
NETNSA_MAX, rtnl_net_policy, extack);
856
if (err < 0)
857
return err;
858
if (!tb[NETNSA_NSID]) {
859
NL_SET_ERR_MSG(extack, "nsid is missing");
860
return -EINVAL;
861
}
862
nsid = nla_get_s32(tb[NETNSA_NSID]);
863
864
if (tb[NETNSA_PID]) {
865
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
866
nla = tb[NETNSA_PID];
867
} else if (tb[NETNSA_FD]) {
868
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
869
nla = tb[NETNSA_FD];
870
} else {
871
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
872
return -EINVAL;
873
}
874
if (IS_ERR(peer)) {
875
NL_SET_BAD_ATTR(extack, nla);
876
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
877
return PTR_ERR(peer);
878
}
879
880
spin_lock(&net->nsid_lock);
881
if (__peernet2id(net, peer) >= 0) {
882
spin_unlock(&net->nsid_lock);
883
err = -EEXIST;
884
NL_SET_BAD_ATTR(extack, nla);
885
NL_SET_ERR_MSG(extack,
886
"Peer netns already has a nsid assigned");
887
goto out;
888
}
889
890
err = alloc_netid(net, peer, nsid);
891
spin_unlock(&net->nsid_lock);
892
if (err >= 0) {
893
rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
894
nlh, GFP_KERNEL);
895
err = 0;
896
} else if (err == -ENOSPC && nsid >= 0) {
897
err = -EEXIST;
898
NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
899
NL_SET_ERR_MSG(extack, "The specified nsid is already used");
900
}
901
out:
902
put_net(peer);
903
return err;
904
}
905
906
static int rtnl_net_get_size(void)
907
{
908
return NLMSG_ALIGN(sizeof(struct rtgenmsg))
909
+ nla_total_size(sizeof(s32)) /* NETNSA_NSID */
910
+ nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
911
;
912
}
913
914
struct net_fill_args {
915
u32 portid;
916
u32 seq;
917
int flags;
918
int cmd;
919
int nsid;
920
bool add_ref;
921
int ref_nsid;
922
};
923
924
static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
925
{
926
struct nlmsghdr *nlh;
927
struct rtgenmsg *rth;
928
929
nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
930
args->flags);
931
if (!nlh)
932
return -EMSGSIZE;
933
934
rth = nlmsg_data(nlh);
935
rth->rtgen_family = AF_UNSPEC;
936
937
if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
938
goto nla_put_failure;
939
940
if (args->add_ref &&
941
nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
942
goto nla_put_failure;
943
944
nlmsg_end(skb, nlh);
945
return 0;
946
947
nla_put_failure:
948
nlmsg_cancel(skb, nlh);
949
return -EMSGSIZE;
950
}
951
952
static int rtnl_net_valid_getid_req(struct sk_buff *skb,
953
const struct nlmsghdr *nlh,
954
struct nlattr **tb,
955
struct netlink_ext_ack *extack)
956
{
957
int i, err;
958
959
if (!netlink_strict_get_check(skb))
960
return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
961
tb, NETNSA_MAX, rtnl_net_policy,
962
extack);
963
964
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
965
NETNSA_MAX, rtnl_net_policy,
966
extack);
967
if (err)
968
return err;
969
970
for (i = 0; i <= NETNSA_MAX; i++) {
971
if (!tb[i])
972
continue;
973
974
switch (i) {
975
case NETNSA_PID:
976
case NETNSA_FD:
977
case NETNSA_NSID:
978
case NETNSA_TARGET_NSID:
979
break;
980
default:
981
NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
982
return -EINVAL;
983
}
984
}
985
986
return 0;
987
}
988
989
static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
990
struct netlink_ext_ack *extack)
991
{
992
struct net *net = sock_net(skb->sk);
993
struct nlattr *tb[NETNSA_MAX + 1];
994
struct net_fill_args fillargs = {
995
.portid = NETLINK_CB(skb).portid,
996
.seq = nlh->nlmsg_seq,
997
.cmd = RTM_NEWNSID,
998
};
999
struct net *peer, *target = net;
1000
struct nlattr *nla;
1001
struct sk_buff *msg;
1002
int err;
1003
1004
err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
1005
if (err < 0)
1006
return err;
1007
if (tb[NETNSA_PID]) {
1008
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
1009
nla = tb[NETNSA_PID];
1010
} else if (tb[NETNSA_FD]) {
1011
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
1012
nla = tb[NETNSA_FD];
1013
} else if (tb[NETNSA_NSID]) {
1014
peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
1015
if (!peer)
1016
peer = ERR_PTR(-ENOENT);
1017
nla = tb[NETNSA_NSID];
1018
} else {
1019
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
1020
return -EINVAL;
1021
}
1022
1023
if (IS_ERR(peer)) {
1024
NL_SET_BAD_ATTR(extack, nla);
1025
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
1026
return PTR_ERR(peer);
1027
}
1028
1029
if (tb[NETNSA_TARGET_NSID]) {
1030
int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
1031
1032
target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
1033
if (IS_ERR(target)) {
1034
NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
1035
NL_SET_ERR_MSG(extack,
1036
"Target netns reference is invalid");
1037
err = PTR_ERR(target);
1038
goto out;
1039
}
1040
fillargs.add_ref = true;
1041
fillargs.ref_nsid = peernet2id(net, peer);
1042
}
1043
1044
msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1045
if (!msg) {
1046
err = -ENOMEM;
1047
goto out;
1048
}
1049
1050
fillargs.nsid = peernet2id(target, peer);
1051
err = rtnl_net_fill(msg, &fillargs);
1052
if (err < 0)
1053
goto err_out;
1054
1055
err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
1056
goto out;
1057
1058
err_out:
1059
nlmsg_free(msg);
1060
out:
1061
if (fillargs.add_ref)
1062
put_net(target);
1063
put_net(peer);
1064
return err;
1065
}
1066
1067
struct rtnl_net_dump_cb {
1068
struct net *tgt_net;
1069
struct net *ref_net;
1070
struct sk_buff *skb;
1071
struct net_fill_args fillargs;
1072
int idx;
1073
int s_idx;
1074
};
1075
1076
/* Runs in RCU-critical section. */
1077
static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1078
{
1079
struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1080
int ret;
1081
1082
if (net_cb->idx < net_cb->s_idx)
1083
goto cont;
1084
1085
net_cb->fillargs.nsid = id;
1086
if (net_cb->fillargs.add_ref)
1087
net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1088
ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1089
if (ret < 0)
1090
return ret;
1091
1092
cont:
1093
net_cb->idx++;
1094
return 0;
1095
}
1096
1097
static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1098
struct rtnl_net_dump_cb *net_cb,
1099
struct netlink_callback *cb)
1100
{
1101
struct netlink_ext_ack *extack = cb->extack;
1102
struct nlattr *tb[NETNSA_MAX + 1];
1103
int err, i;
1104
1105
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1106
NETNSA_MAX, rtnl_net_policy,
1107
extack);
1108
if (err < 0)
1109
return err;
1110
1111
for (i = 0; i <= NETNSA_MAX; i++) {
1112
if (!tb[i])
1113
continue;
1114
1115
if (i == NETNSA_TARGET_NSID) {
1116
struct net *net;
1117
1118
net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1119
if (IS_ERR(net)) {
1120
NL_SET_BAD_ATTR(extack, tb[i]);
1121
NL_SET_ERR_MSG(extack,
1122
"Invalid target network namespace id");
1123
return PTR_ERR(net);
1124
}
1125
net_cb->fillargs.add_ref = true;
1126
net_cb->ref_net = net_cb->tgt_net;
1127
net_cb->tgt_net = net;
1128
} else {
1129
NL_SET_BAD_ATTR(extack, tb[i]);
1130
NL_SET_ERR_MSG(extack,
1131
"Unsupported attribute in dump request");
1132
return -EINVAL;
1133
}
1134
}
1135
1136
return 0;
1137
}
1138
1139
static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1140
{
1141
struct rtnl_net_dump_cb net_cb = {
1142
.tgt_net = sock_net(skb->sk),
1143
.skb = skb,
1144
.fillargs = {
1145
.portid = NETLINK_CB(cb->skb).portid,
1146
.seq = cb->nlh->nlmsg_seq,
1147
.flags = NLM_F_MULTI,
1148
.cmd = RTM_NEWNSID,
1149
},
1150
.idx = 0,
1151
.s_idx = cb->args[0],
1152
};
1153
int err = 0;
1154
1155
if (cb->strict_check) {
1156
err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1157
if (err < 0)
1158
goto end;
1159
}
1160
1161
rcu_read_lock();
1162
idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1163
rcu_read_unlock();
1164
1165
cb->args[0] = net_cb.idx;
1166
end:
1167
if (net_cb.fillargs.add_ref)
1168
put_net(net_cb.tgt_net);
1169
return err;
1170
}
1171
1172
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1173
struct nlmsghdr *nlh, gfp_t gfp)
1174
{
1175
struct net_fill_args fillargs = {
1176
.portid = portid,
1177
.seq = nlh ? nlh->nlmsg_seq : 0,
1178
.cmd = cmd,
1179
.nsid = id,
1180
};
1181
struct sk_buff *msg;
1182
int err = -ENOMEM;
1183
1184
msg = nlmsg_new(rtnl_net_get_size(), gfp);
1185
if (!msg)
1186
goto out;
1187
1188
err = rtnl_net_fill(msg, &fillargs);
1189
if (err < 0)
1190
goto err_out;
1191
1192
rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1193
return;
1194
1195
err_out:
1196
nlmsg_free(msg);
1197
out:
1198
rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1199
}
1200
1201
#ifdef CONFIG_NET_NS
1202
static void __init netns_ipv4_struct_check(void)
1203
{
1204
/* TX readonly hotpath cache lines */
1205
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1206
sysctl_tcp_early_retrans);
1207
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1208
sysctl_tcp_tso_win_divisor);
1209
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1210
sysctl_tcp_tso_rtt_log);
1211
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1212
sysctl_tcp_autocorking);
1213
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1214
sysctl_tcp_min_snd_mss);
1215
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1216
sysctl_tcp_notsent_lowat);
1217
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1218
sysctl_tcp_limit_output_bytes);
1219
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1220
sysctl_tcp_min_rtt_wlen);
1221
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1222
sysctl_tcp_wmem);
1223
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1224
sysctl_ip_fwd_use_pmtu);
1225
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1226
1227
/* TXRX readonly hotpath cache lines */
1228
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1229
sysctl_tcp_moderate_rcvbuf);
1230
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1231
1232
/* RX readonly hotpath cache line */
1233
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1234
sysctl_ip_early_demux);
1235
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1236
sysctl_tcp_early_demux);
1237
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1238
sysctl_tcp_l3mdev_accept);
1239
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1240
sysctl_tcp_reordering);
1241
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1242
sysctl_tcp_rmem);
1243
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1244
}
1245
#endif
1246
1247
static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1248
{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1249
.flags = RTNL_FLAG_DOIT_UNLOCKED},
1250
{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1251
.dumpit = rtnl_net_dumpid,
1252
.flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1253
};
1254
1255
void __init net_ns_init(void)
1256
{
1257
struct net_generic *ng;
1258
1259
#ifdef CONFIG_NET_NS
1260
netns_ipv4_struct_check();
1261
net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1262
SMP_CACHE_BYTES,
1263
SLAB_PANIC|SLAB_ACCOUNT, NULL);
1264
1265
/* Create workqueue for cleanup */
1266
netns_wq = create_singlethread_workqueue("netns");
1267
if (!netns_wq)
1268
panic("Could not create netns workq");
1269
#endif
1270
1271
ng = net_alloc_generic();
1272
if (!ng)
1273
panic("Could not allocate generic netns");
1274
1275
rcu_assign_pointer(init_net.gen, ng);
1276
1277
#ifdef CONFIG_KEYS
1278
init_net.key_domain = &init_net_key_domain;
1279
#endif
1280
/*
1281
* This currently cannot fail as the initial network namespace
1282
* has a static inode number.
1283
*/
1284
if (preinit_net(&init_net, &init_user_ns))
1285
panic("Could not preinitialize the initial network namespace");
1286
1287
down_write(&pernet_ops_rwsem);
1288
if (setup_net(&init_net))
1289
panic("Could not setup the initial network namespace");
1290
1291
init_net_initialized = true;
1292
up_write(&pernet_ops_rwsem);
1293
1294
if (register_pernet_subsys(&net_ns_ops))
1295
panic("Could not register network namespace subsystems");
1296
1297
rtnl_register_many(net_ns_rtnl_msg_handlers);
1298
}
1299
1300
#ifdef CONFIG_NET_NS
1301
static int __register_pernet_operations(struct list_head *list,
1302
struct pernet_operations *ops)
1303
{
1304
LIST_HEAD(net_exit_list);
1305
struct net *net;
1306
int error;
1307
1308
list_add_tail(&ops->list, list);
1309
if (ops->init || ops->id) {
1310
/* We held write locked pernet_ops_rwsem, and parallel
1311
* setup_net() and cleanup_net() are not possible.
1312
*/
1313
for_each_net(net) {
1314
error = ops_init(ops, net);
1315
if (error)
1316
goto out_undo;
1317
list_add_tail(&net->exit_list, &net_exit_list);
1318
}
1319
}
1320
return 0;
1321
1322
out_undo:
1323
/* If I have an error cleanup all namespaces I initialized */
1324
list_del(&ops->list);
1325
ops_undo_single(ops, &net_exit_list);
1326
return error;
1327
}
1328
1329
static void __unregister_pernet_operations(struct pernet_operations *ops)
1330
{
1331
LIST_HEAD(net_exit_list);
1332
struct net *net;
1333
1334
/* See comment in __register_pernet_operations() */
1335
for_each_net(net)
1336
list_add_tail(&net->exit_list, &net_exit_list);
1337
1338
list_del(&ops->list);
1339
ops_undo_single(ops, &net_exit_list);
1340
}
1341
1342
#else
1343
1344
static int __register_pernet_operations(struct list_head *list,
1345
struct pernet_operations *ops)
1346
{
1347
if (!init_net_initialized) {
1348
list_add_tail(&ops->list, list);
1349
return 0;
1350
}
1351
1352
return ops_init(ops, &init_net);
1353
}
1354
1355
static void __unregister_pernet_operations(struct pernet_operations *ops)
1356
{
1357
if (!init_net_initialized) {
1358
list_del(&ops->list);
1359
} else {
1360
LIST_HEAD(net_exit_list);
1361
1362
list_add(&init_net.exit_list, &net_exit_list);
1363
ops_undo_single(ops, &net_exit_list);
1364
}
1365
}
1366
1367
#endif /* CONFIG_NET_NS */
1368
1369
static DEFINE_IDA(net_generic_ids);
1370
1371
static int register_pernet_operations(struct list_head *list,
1372
struct pernet_operations *ops)
1373
{
1374
int error;
1375
1376
if (WARN_ON(!!ops->id ^ !!ops->size))
1377
return -EINVAL;
1378
1379
if (ops->id) {
1380
error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1381
GFP_KERNEL);
1382
if (error < 0)
1383
return error;
1384
*ops->id = error;
1385
/* This does not require READ_ONCE as writers already hold
1386
* pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1387
* net_alloc_generic.
1388
*/
1389
WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1390
}
1391
error = __register_pernet_operations(list, ops);
1392
if (error) {
1393
rcu_barrier();
1394
if (ops->id)
1395
ida_free(&net_generic_ids, *ops->id);
1396
}
1397
1398
return error;
1399
}
1400
1401
static void unregister_pernet_operations(struct pernet_operations *ops)
1402
{
1403
__unregister_pernet_operations(ops);
1404
rcu_barrier();
1405
if (ops->id)
1406
ida_free(&net_generic_ids, *ops->id);
1407
}
1408
1409
/**
1410
* register_pernet_subsys - register a network namespace subsystem
1411
* @ops: pernet operations structure for the subsystem
1412
*
1413
* Register a subsystem which has init and exit functions
1414
* that are called when network namespaces are created and
1415
* destroyed respectively.
1416
*
1417
* When registered all network namespace init functions are
1418
* called for every existing network namespace. Allowing kernel
1419
* modules to have a race free view of the set of network namespaces.
1420
*
1421
* When a new network namespace is created all of the init
1422
* methods are called in the order in which they were registered.
1423
*
1424
* When a network namespace is destroyed all of the exit methods
1425
* are called in the reverse of the order with which they were
1426
* registered.
1427
*/
1428
int register_pernet_subsys(struct pernet_operations *ops)
1429
{
1430
int error;
1431
down_write(&pernet_ops_rwsem);
1432
error = register_pernet_operations(first_device, ops);
1433
up_write(&pernet_ops_rwsem);
1434
return error;
1435
}
1436
EXPORT_SYMBOL_GPL(register_pernet_subsys);
1437
1438
/**
1439
* unregister_pernet_subsys - unregister a network namespace subsystem
1440
* @ops: pernet operations structure to manipulate
1441
*
1442
* Remove the pernet operations structure from the list to be
1443
* used when network namespaces are created or destroyed. In
1444
* addition run the exit method for all existing network
1445
* namespaces.
1446
*/
1447
void unregister_pernet_subsys(struct pernet_operations *ops)
1448
{
1449
down_write(&pernet_ops_rwsem);
1450
unregister_pernet_operations(ops);
1451
up_write(&pernet_ops_rwsem);
1452
}
1453
EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1454
1455
/**
1456
* register_pernet_device - register a network namespace device
1457
* @ops: pernet operations structure for the subsystem
1458
*
1459
* Register a device which has init and exit functions
1460
* that are called when network namespaces are created and
1461
* destroyed respectively.
1462
*
1463
* When registered all network namespace init functions are
1464
* called for every existing network namespace. Allowing kernel
1465
* modules to have a race free view of the set of network namespaces.
1466
*
1467
* When a new network namespace is created all of the init
1468
* methods are called in the order in which they were registered.
1469
*
1470
* When a network namespace is destroyed all of the exit methods
1471
* are called in the reverse of the order with which they were
1472
* registered.
1473
*/
1474
int register_pernet_device(struct pernet_operations *ops)
1475
{
1476
int error;
1477
down_write(&pernet_ops_rwsem);
1478
error = register_pernet_operations(&pernet_list, ops);
1479
if (!error && (first_device == &pernet_list))
1480
first_device = &ops->list;
1481
up_write(&pernet_ops_rwsem);
1482
return error;
1483
}
1484
EXPORT_SYMBOL_GPL(register_pernet_device);
1485
1486
/**
1487
* unregister_pernet_device - unregister a network namespace netdevice
1488
* @ops: pernet operations structure to manipulate
1489
*
1490
* Remove the pernet operations structure from the list to be
1491
* used when network namespaces are created or destroyed. In
1492
* addition run the exit method for all existing network
1493
* namespaces.
1494
*/
1495
void unregister_pernet_device(struct pernet_operations *ops)
1496
{
1497
down_write(&pernet_ops_rwsem);
1498
if (&ops->list == first_device)
1499
first_device = first_device->next;
1500
unregister_pernet_operations(ops);
1501
up_write(&pernet_ops_rwsem);
1502
}
1503
EXPORT_SYMBOL_GPL(unregister_pernet_device);
1504
1505
#ifdef CONFIG_NET_NS
1506
static struct ns_common *netns_get(struct task_struct *task)
1507
{
1508
struct net *net = NULL;
1509
struct nsproxy *nsproxy;
1510
1511
task_lock(task);
1512
nsproxy = task->nsproxy;
1513
if (nsproxy)
1514
net = get_net(nsproxy->net_ns);
1515
task_unlock(task);
1516
1517
return net ? &net->ns : NULL;
1518
}
1519
1520
static void netns_put(struct ns_common *ns)
1521
{
1522
put_net(to_net_ns(ns));
1523
}
1524
1525
static int netns_install(struct nsset *nsset, struct ns_common *ns)
1526
{
1527
struct nsproxy *nsproxy = nsset->nsproxy;
1528
struct net *net = to_net_ns(ns);
1529
1530
if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1531
!ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1532
return -EPERM;
1533
1534
put_net(nsproxy->net_ns);
1535
nsproxy->net_ns = get_net(net);
1536
return 0;
1537
}
1538
1539
static struct user_namespace *netns_owner(struct ns_common *ns)
1540
{
1541
return to_net_ns(ns)->user_ns;
1542
}
1543
1544
const struct proc_ns_operations netns_operations = {
1545
.name = "net",
1546
.get = netns_get,
1547
.put = netns_put,
1548
.install = netns_install,
1549
.owner = netns_owner,
1550
};
1551
#endif
1552
1553