Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/arp.c
54332 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* linux/net/ipv4/arp.c
3
*
4
* Copyright (C) 1994 by Florian La Roche
5
*
6
* This module implements the Address Resolution Protocol ARP (RFC 826),
7
* which is used to convert IP addresses (or in the future maybe other
8
* high-level addresses) into a low-level hardware address (like an Ethernet
9
* address).
10
*
11
* Fixes:
12
* Alan Cox : Removed the Ethernet assumptions in
13
* Florian's code
14
* Alan Cox : Fixed some small errors in the ARP
15
* logic
16
* Alan Cox : Allow >4K in /proc
17
* Alan Cox : Make ARP add its own protocol entry
18
* Ross Martin : Rewrote arp_rcv() and arp_get_info()
19
* Stephen Henson : Add AX25 support to arp_get_info()
20
* Alan Cox : Drop data when a device is downed.
21
* Alan Cox : Use init_timer().
22
* Alan Cox : Double lock fixes.
23
* Martin Seine : Move the arphdr structure
24
* to if_arp.h for compatibility.
25
* with BSD based programs.
26
* Andrew Tridgell : Added ARP netmask code and
27
* re-arranged proxy handling.
28
* Alan Cox : Changed to use notifiers.
29
* Niibe Yutaka : Reply for this device or proxies only.
30
* Alan Cox : Don't proxy across hardware types!
31
* Jonathan Naylor : Added support for NET/ROM.
32
* Mike Shaver : RFC1122 checks.
33
* Jonathan Naylor : Only lookup the hardware address for
34
* the correct hardware type.
35
* Germano Caronni : Assorted subtle races.
36
* Craig Schlenter : Don't modify permanent entry
37
* during arp_rcv.
38
* Russ Nelson : Tidied up a few bits.
39
* Alexey Kuznetsov: Major changes to caching and behaviour,
40
* eg intelligent arp probing and
41
* generation
42
* of host down events.
43
* Alan Cox : Missing unlock in device events.
44
* Eckes : ARP ioctl control errors.
45
* Alexey Kuznetsov: Arp free fix.
46
* Manuel Rodriguez: Gratuitous ARP.
47
* Jonathan Layes : Added arpd support through kerneld
48
* message queue (960314)
49
* Mike Shaver : /proc/sys/net/ipv4/arp_* support
50
* Mike McLagan : Routing by source
51
* Stuart Cheshire : Metricom and grat arp fixes
52
* *** FOR 2.1 clean this up ***
53
* Lawrence V. Stefani: (08/12/96) Added FDDI support.
54
* Alan Cox : Took the AP1000 nasty FDDI hack and
55
* folded into the mainstream FDDI code.
56
* Ack spit, Linus how did you allow that
57
* one in...
58
* Jes Sorensen : Make FDDI work again in 2.1.x and
59
* clean up the APFDDI & gen. FDDI bits.
60
* Alexey Kuznetsov: new arp state machine;
61
* now it is in net/core/neighbour.c.
62
* Krzysztof Halasa: Added Frame Relay ARP support.
63
* Arnaldo C. Melo : convert /proc/net/arp to seq_file
64
* Shmulik Hen: Split arp_send to arp_create and
65
* arp_xmit so intermediate drivers like
66
* bonding can change the skb before
67
* sending (e.g. insert 8021q tag).
68
* Harald Welte : convert to make use of jenkins hash
69
* Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70
*/
71
72
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74
#include <linux/module.h>
75
#include <linux/types.h>
76
#include <linux/string.h>
77
#include <linux/kernel.h>
78
#include <linux/capability.h>
79
#include <linux/socket.h>
80
#include <linux/sockios.h>
81
#include <linux/errno.h>
82
#include <linux/hex.h>
83
#include <linux/in.h>
84
#include <linux/mm.h>
85
#include <linux/inet.h>
86
#include <linux/inetdevice.h>
87
#include <linux/netdevice.h>
88
#include <linux/etherdevice.h>
89
#include <linux/fddidevice.h>
90
#include <linux/if_arp.h>
91
#include <linux/skbuff.h>
92
#include <linux/proc_fs.h>
93
#include <linux/seq_file.h>
94
#include <linux/stat.h>
95
#include <linux/init.h>
96
#include <linux/net.h>
97
#include <linux/rcupdate.h>
98
#include <linux/slab.h>
99
#ifdef CONFIG_SYSCTL
100
#include <linux/sysctl.h>
101
#endif
102
103
#include <net/net_namespace.h>
104
#include <net/ip.h>
105
#include <net/icmp.h>
106
#include <net/route.h>
107
#include <net/protocol.h>
108
#include <net/tcp.h>
109
#include <net/sock.h>
110
#include <net/arp.h>
111
#include <net/ax25.h>
112
#include <net/netrom.h>
113
#include <net/dst_metadata.h>
114
#include <net/ip_tunnels.h>
115
116
#include <linux/uaccess.h>
117
118
#include <linux/netfilter_arp.h>
119
120
/*
121
* Interface to generic neighbour cache.
122
*/
123
static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
124
static bool arp_key_eq(const struct neighbour *n, const void *pkey);
125
static int arp_constructor(struct neighbour *neigh);
126
static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127
static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128
static void parp_redo(struct sk_buff *skb);
129
static int arp_is_multicast(const void *pkey);
130
131
static const struct neigh_ops arp_generic_ops = {
132
.family = AF_INET,
133
.solicit = arp_solicit,
134
.error_report = arp_error_report,
135
.output = neigh_resolve_output,
136
.connected_output = neigh_connected_output,
137
};
138
139
static const struct neigh_ops arp_hh_ops = {
140
.family = AF_INET,
141
.solicit = arp_solicit,
142
.error_report = arp_error_report,
143
.output = neigh_resolve_output,
144
.connected_output = neigh_resolve_output,
145
};
146
147
static const struct neigh_ops arp_direct_ops = {
148
.family = AF_INET,
149
.output = neigh_direct_output,
150
.connected_output = neigh_direct_output,
151
};
152
153
struct neigh_table arp_tbl = {
154
.family = AF_INET,
155
.key_len = 4,
156
.protocol = cpu_to_be16(ETH_P_IP),
157
.hash = arp_hash,
158
.key_eq = arp_key_eq,
159
.constructor = arp_constructor,
160
.proxy_redo = parp_redo,
161
.is_multicast = arp_is_multicast,
162
.id = "arp_cache",
163
.parms = {
164
.tbl = &arp_tbl,
165
.reachable_time = 30 * HZ,
166
.data = {
167
[NEIGH_VAR_MCAST_PROBES] = 3,
168
[NEIGH_VAR_UCAST_PROBES] = 3,
169
[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
170
[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
171
[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
172
[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
173
[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174
[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_DEFAULT,
175
[NEIGH_VAR_PROXY_QLEN] = 64,
176
[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177
[NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
178
[NEIGH_VAR_LOCKTIME] = 1 * HZ,
179
},
180
},
181
.gc_interval = 30 * HZ,
182
.gc_thresh1 = 128,
183
.gc_thresh2 = 512,
184
.gc_thresh3 = 1024,
185
};
186
EXPORT_SYMBOL(arp_tbl);
187
188
int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189
{
190
switch (dev->type) {
191
case ARPHRD_ETHER:
192
case ARPHRD_FDDI:
193
case ARPHRD_IEEE802:
194
ip_eth_mc_map(addr, haddr);
195
return 0;
196
case ARPHRD_INFINIBAND:
197
ip_ib_mc_map(addr, dev->broadcast, haddr);
198
return 0;
199
case ARPHRD_IPGRE:
200
ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201
return 0;
202
default:
203
if (dir) {
204
memcpy(haddr, dev->broadcast, dev->addr_len);
205
return 0;
206
}
207
}
208
return -EINVAL;
209
}
210
211
212
static u32 arp_hash(const void *pkey,
213
const struct net_device *dev,
214
__u32 *hash_rnd)
215
{
216
return arp_hashfn(pkey, dev, hash_rnd);
217
}
218
219
static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220
{
221
return neigh_key_eq32(neigh, pkey);
222
}
223
224
static int arp_constructor(struct neighbour *neigh)
225
{
226
__be32 addr;
227
struct net_device *dev = neigh->dev;
228
struct in_device *in_dev;
229
struct neigh_parms *parms;
230
u32 inaddr_any = INADDR_ANY;
231
232
if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
233
memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
234
235
addr = *(__be32 *)neigh->primary_key;
236
rcu_read_lock();
237
in_dev = __in_dev_get_rcu(dev);
238
if (!in_dev) {
239
rcu_read_unlock();
240
return -EINVAL;
241
}
242
243
neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
244
245
parms = in_dev->arp_parms;
246
__neigh_parms_put(neigh->parms);
247
neigh->parms = neigh_parms_clone(parms);
248
rcu_read_unlock();
249
250
if (!dev->header_ops) {
251
neigh->nud_state = NUD_NOARP;
252
neigh->ops = &arp_direct_ops;
253
neigh->output = neigh_direct_output;
254
} else {
255
/* Good devices (checked by reading texts, but only Ethernet is
256
tested)
257
258
ARPHRD_ETHER: (ethernet, apfddi)
259
ARPHRD_FDDI: (fddi)
260
ARPHRD_IEEE802: (tr)
261
ARPHRD_METRICOM: (strip)
262
ARPHRD_ARCNET:
263
etc. etc. etc.
264
265
ARPHRD_IPDDP will also work, if author repairs it.
266
I did not it, because this driver does not work even
267
in old paradigm.
268
*/
269
270
if (neigh->type == RTN_MULTICAST) {
271
neigh->nud_state = NUD_NOARP;
272
arp_mc_map(addr, neigh->ha, dev, 1);
273
} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
274
neigh->nud_state = NUD_NOARP;
275
memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
276
} else if (neigh->type == RTN_BROADCAST ||
277
(dev->flags & IFF_POINTOPOINT)) {
278
neigh->nud_state = NUD_NOARP;
279
memcpy(neigh->ha, dev->broadcast, dev->addr_len);
280
}
281
282
if (dev->header_ops->cache)
283
neigh->ops = &arp_hh_ops;
284
else
285
neigh->ops = &arp_generic_ops;
286
287
if (neigh->nud_state & NUD_VALID)
288
neigh->output = neigh->ops->connected_output;
289
else
290
neigh->output = neigh->ops->output;
291
}
292
return 0;
293
}
294
295
static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
296
{
297
dst_link_failure(skb);
298
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
299
}
300
301
/* Create and send an arp packet. */
302
static void arp_send_dst(int type, int ptype, __be32 dest_ip,
303
struct net_device *dev, __be32 src_ip,
304
const unsigned char *dest_hw,
305
const unsigned char *src_hw,
306
const unsigned char *target_hw,
307
struct dst_entry *dst)
308
{
309
struct sk_buff *skb;
310
311
/* arp on this interface. */
312
if (dev->flags & IFF_NOARP)
313
return;
314
315
skb = arp_create(type, ptype, dest_ip, dev, src_ip,
316
dest_hw, src_hw, target_hw);
317
if (!skb)
318
return;
319
320
skb_dst_set(skb, dst_clone(dst));
321
arp_xmit(skb);
322
}
323
324
void arp_send(int type, int ptype, __be32 dest_ip,
325
struct net_device *dev, __be32 src_ip,
326
const unsigned char *dest_hw, const unsigned char *src_hw,
327
const unsigned char *target_hw)
328
{
329
arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
330
target_hw, NULL);
331
}
332
EXPORT_SYMBOL(arp_send);
333
334
static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
335
{
336
__be32 saddr = 0;
337
u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
338
struct net_device *dev = neigh->dev;
339
__be32 target = *(__be32 *)neigh->primary_key;
340
int probes = atomic_read(&neigh->probes);
341
struct in_device *in_dev;
342
struct dst_entry *dst = NULL;
343
344
rcu_read_lock();
345
in_dev = __in_dev_get_rcu(dev);
346
if (!in_dev) {
347
rcu_read_unlock();
348
return;
349
}
350
switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
351
default:
352
case 0: /* By default announce any local IP */
353
if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
354
ip_hdr(skb)->saddr) == RTN_LOCAL)
355
saddr = ip_hdr(skb)->saddr;
356
break;
357
case 1: /* Restrict announcements of saddr in same subnet */
358
if (!skb)
359
break;
360
saddr = ip_hdr(skb)->saddr;
361
if (inet_addr_type_dev_table(dev_net(dev), dev,
362
saddr) == RTN_LOCAL) {
363
/* saddr should be known to target */
364
if (inet_addr_onlink(in_dev, target, saddr))
365
break;
366
}
367
saddr = 0;
368
break;
369
case 2: /* Avoid secondary IPs, get a primary/preferred one */
370
break;
371
}
372
rcu_read_unlock();
373
374
if (!saddr)
375
saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
376
377
probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
378
if (probes < 0) {
379
if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
380
pr_debug("trying to ucast probe in NUD_INVALID\n");
381
neigh_ha_snapshot(dst_ha, neigh, dev);
382
dst_hw = dst_ha;
383
} else {
384
probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
385
if (probes < 0) {
386
neigh_app_ns(neigh);
387
return;
388
}
389
}
390
391
if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
392
dst = skb_dst(skb);
393
arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
394
dst_hw, dev->dev_addr, NULL, dst);
395
}
396
397
static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
398
{
399
struct net *net = dev_net(in_dev->dev);
400
int scope;
401
402
switch (IN_DEV_ARP_IGNORE(in_dev)) {
403
case 0: /* Reply, the tip is already validated */
404
return 0;
405
case 1: /* Reply only if tip is configured on the incoming interface */
406
sip = 0;
407
scope = RT_SCOPE_HOST;
408
break;
409
case 2: /*
410
* Reply only if tip is configured on the incoming interface
411
* and is in same subnet as sip
412
*/
413
scope = RT_SCOPE_HOST;
414
break;
415
case 3: /* Do not reply for scope host addresses */
416
sip = 0;
417
scope = RT_SCOPE_LINK;
418
in_dev = NULL;
419
break;
420
case 4: /* Reserved */
421
case 5:
422
case 6:
423
case 7:
424
return 0;
425
case 8: /* Do not reply */
426
return 1;
427
default:
428
return 0;
429
}
430
return !inet_confirm_addr(net, in_dev, sip, tip, scope);
431
}
432
433
static int arp_accept(struct in_device *in_dev, __be32 sip)
434
{
435
struct net *net = dev_net(in_dev->dev);
436
int scope = RT_SCOPE_LINK;
437
438
switch (IN_DEV_ARP_ACCEPT(in_dev)) {
439
case 0: /* Don't create new entries from garp */
440
return 0;
441
case 1: /* Create new entries from garp */
442
return 1;
443
case 2: /* Create a neighbor in the arp table only if sip
444
* is in the same subnet as an address configured
445
* on the interface that received the garp message
446
*/
447
return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
448
default:
449
return 0;
450
}
451
}
452
453
static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
454
{
455
struct rtable *rt;
456
int flag = 0;
457
/*unsigned long now; */
458
struct net *net = dev_net(dev);
459
460
rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev),
461
RT_SCOPE_UNIVERSE);
462
if (IS_ERR(rt))
463
return 1;
464
if (rt->dst.dev != dev) {
465
__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
466
flag = 1;
467
}
468
ip_rt_put(rt);
469
return flag;
470
}
471
472
/*
473
* Check if we can use proxy ARP for this path
474
*/
475
static inline int arp_fwd_proxy(struct in_device *in_dev,
476
struct net_device *dev, struct rtable *rt)
477
{
478
struct in_device *out_dev;
479
int imi, omi = -1;
480
481
if (rt->dst.dev == dev)
482
return 0;
483
484
if (!IN_DEV_PROXY_ARP(in_dev))
485
return 0;
486
imi = IN_DEV_MEDIUM_ID(in_dev);
487
if (imi == 0)
488
return 1;
489
if (imi == -1)
490
return 0;
491
492
/* place to check for proxy_arp for routes */
493
494
out_dev = __in_dev_get_rcu(rt->dst.dev);
495
if (out_dev)
496
omi = IN_DEV_MEDIUM_ID(out_dev);
497
498
return omi != imi && omi != -1;
499
}
500
501
/*
502
* Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
503
*
504
* RFC3069 supports proxy arp replies back to the same interface. This
505
* is done to support (ethernet) switch features, like RFC 3069, where
506
* the individual ports are not allowed to communicate with each
507
* other, BUT they are allowed to talk to the upstream router. As
508
* described in RFC 3069, it is possible to allow these hosts to
509
* communicate through the upstream router, by proxy_arp'ing.
510
*
511
* RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
512
*
513
* This technology is known by different names:
514
* In RFC 3069 it is called VLAN Aggregation.
515
* Cisco and Allied Telesyn call it Private VLAN.
516
* Hewlett-Packard call it Source-Port filtering or port-isolation.
517
* Ericsson call it MAC-Forced Forwarding (RFC Draft).
518
*
519
*/
520
static inline int arp_fwd_pvlan(struct in_device *in_dev,
521
struct net_device *dev, struct rtable *rt,
522
__be32 sip, __be32 tip)
523
{
524
/* Private VLAN is only concerned about the same ethernet segment */
525
if (rt->dst.dev != dev)
526
return 0;
527
528
/* Don't reply on self probes (often done by windowz boxes)*/
529
if (sip == tip)
530
return 0;
531
532
if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
533
return 1;
534
else
535
return 0;
536
}
537
538
/*
539
* Interface to link layer: send routine and receive handler.
540
*/
541
542
/*
543
* Create an arp packet. If dest_hw is not set, we create a broadcast
544
* message.
545
*/
546
struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
547
struct net_device *dev, __be32 src_ip,
548
const unsigned char *dest_hw,
549
const unsigned char *src_hw,
550
const unsigned char *target_hw)
551
{
552
struct sk_buff *skb;
553
struct arphdr *arp;
554
unsigned char *arp_ptr;
555
int hlen = LL_RESERVED_SPACE(dev);
556
int tlen = dev->needed_tailroom;
557
558
/*
559
* Allocate a buffer
560
*/
561
562
skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
563
if (!skb)
564
return NULL;
565
566
skb_reserve(skb, hlen);
567
skb_reset_network_header(skb);
568
skb_put(skb, arp_hdr_len(dev));
569
skb->dev = dev;
570
skb->protocol = htons(ETH_P_ARP);
571
if (!src_hw)
572
src_hw = dev->dev_addr;
573
if (!dest_hw)
574
dest_hw = dev->broadcast;
575
576
/* Fill the device header for the ARP frame.
577
* Note: skb->head can be changed.
578
*/
579
if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
580
goto out;
581
582
arp = arp_hdr(skb);
583
/*
584
* Fill out the arp protocol part.
585
*
586
* The arp hardware type should match the device type, except for FDDI,
587
* which (according to RFC 1390) should always equal 1 (Ethernet).
588
*/
589
/*
590
* Exceptions everywhere. AX.25 uses the AX.25 PID value not the
591
* DIX code for the protocol. Make these device structure fields.
592
*/
593
switch (dev->type) {
594
default:
595
arp->ar_hrd = htons(dev->type);
596
arp->ar_pro = htons(ETH_P_IP);
597
break;
598
599
#if IS_ENABLED(CONFIG_AX25)
600
case ARPHRD_AX25:
601
arp->ar_hrd = htons(ARPHRD_AX25);
602
arp->ar_pro = htons(AX25_P_IP);
603
break;
604
605
#if IS_ENABLED(CONFIG_NETROM)
606
case ARPHRD_NETROM:
607
arp->ar_hrd = htons(ARPHRD_NETROM);
608
arp->ar_pro = htons(AX25_P_IP);
609
break;
610
#endif
611
#endif
612
613
#if IS_ENABLED(CONFIG_FDDI)
614
case ARPHRD_FDDI:
615
arp->ar_hrd = htons(ARPHRD_ETHER);
616
arp->ar_pro = htons(ETH_P_IP);
617
break;
618
#endif
619
}
620
621
arp->ar_hln = dev->addr_len;
622
arp->ar_pln = 4;
623
arp->ar_op = htons(type);
624
625
arp_ptr = (unsigned char *)(arp + 1);
626
627
memcpy(arp_ptr, src_hw, dev->addr_len);
628
arp_ptr += dev->addr_len;
629
memcpy(arp_ptr, &src_ip, 4);
630
arp_ptr += 4;
631
632
switch (dev->type) {
633
#if IS_ENABLED(CONFIG_FIREWIRE_NET)
634
case ARPHRD_IEEE1394:
635
break;
636
#endif
637
default:
638
if (target_hw)
639
memcpy(arp_ptr, target_hw, dev->addr_len);
640
else
641
memset(arp_ptr, 0, dev->addr_len);
642
arp_ptr += dev->addr_len;
643
}
644
memcpy(arp_ptr, &dest_ip, 4);
645
646
return skb;
647
648
out:
649
kfree_skb(skb);
650
return NULL;
651
}
652
EXPORT_SYMBOL(arp_create);
653
654
static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
655
{
656
return dev_queue_xmit(skb);
657
}
658
659
/*
660
* Send an arp packet.
661
*/
662
void arp_xmit(struct sk_buff *skb)
663
{
664
rcu_read_lock();
665
/* Send it off, maybe filter it using firewalling first. */
666
NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
667
dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
668
arp_xmit_finish);
669
rcu_read_unlock();
670
}
671
EXPORT_SYMBOL(arp_xmit);
672
673
static bool arp_is_garp(struct net *net, struct net_device *dev,
674
int *addr_type, __be16 ar_op,
675
__be32 sip, __be32 tip,
676
unsigned char *sha, unsigned char *tha)
677
{
678
bool is_garp = tip == sip;
679
680
/* Gratuitous ARP _replies_ also require target hwaddr to be
681
* the same as source.
682
*/
683
if (is_garp && ar_op == htons(ARPOP_REPLY))
684
is_garp =
685
/* IPv4 over IEEE 1394 doesn't provide target
686
* hardware address field in its ARP payload.
687
*/
688
tha &&
689
!memcmp(tha, sha, dev->addr_len);
690
691
if (is_garp) {
692
*addr_type = inet_addr_type_dev_table(net, dev, sip);
693
if (*addr_type != RTN_UNICAST)
694
is_garp = false;
695
}
696
return is_garp;
697
}
698
699
/*
700
* Process an arp request.
701
*/
702
703
static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
704
{
705
struct net_device *dev = skb->dev;
706
struct in_device *in_dev = __in_dev_get_rcu(dev);
707
struct arphdr *arp;
708
unsigned char *arp_ptr;
709
struct rtable *rt;
710
unsigned char *sha;
711
unsigned char *tha = NULL;
712
__be32 sip, tip;
713
u16 dev_type = dev->type;
714
int addr_type;
715
struct neighbour *n;
716
struct dst_entry *reply_dst = NULL;
717
bool is_garp = false;
718
719
/* arp_rcv below verifies the ARP header and verifies the device
720
* is ARP'able.
721
*/
722
723
if (!in_dev)
724
goto out_free_skb;
725
726
arp = arp_hdr(skb);
727
728
switch (dev_type) {
729
default:
730
if (arp->ar_pro != htons(ETH_P_IP) ||
731
htons(dev_type) != arp->ar_hrd)
732
goto out_free_skb;
733
break;
734
case ARPHRD_ETHER:
735
case ARPHRD_FDDI:
736
case ARPHRD_IEEE802:
737
/*
738
* ETHERNET, and Fibre Channel (which are IEEE 802
739
* devices, according to RFC 2625) devices will accept ARP
740
* hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
741
* This is the case also of FDDI, where the RFC 1390 says that
742
* FDDI devices should accept ARP hardware of (1) Ethernet,
743
* however, to be more robust, we'll accept both 1 (Ethernet)
744
* or 6 (IEEE 802.2)
745
*/
746
if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
747
arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
748
arp->ar_pro != htons(ETH_P_IP))
749
goto out_free_skb;
750
break;
751
case ARPHRD_AX25:
752
if (arp->ar_pro != htons(AX25_P_IP) ||
753
arp->ar_hrd != htons(ARPHRD_AX25))
754
goto out_free_skb;
755
break;
756
case ARPHRD_NETROM:
757
if (arp->ar_pro != htons(AX25_P_IP) ||
758
arp->ar_hrd != htons(ARPHRD_NETROM))
759
goto out_free_skb;
760
break;
761
}
762
763
/* Understand only these message types */
764
765
if (arp->ar_op != htons(ARPOP_REPLY) &&
766
arp->ar_op != htons(ARPOP_REQUEST))
767
goto out_free_skb;
768
769
/*
770
* Extract fields
771
*/
772
arp_ptr = (unsigned char *)(arp + 1);
773
sha = arp_ptr;
774
arp_ptr += dev->addr_len;
775
memcpy(&sip, arp_ptr, 4);
776
arp_ptr += 4;
777
switch (dev_type) {
778
#if IS_ENABLED(CONFIG_FIREWIRE_NET)
779
case ARPHRD_IEEE1394:
780
break;
781
#endif
782
default:
783
tha = arp_ptr;
784
arp_ptr += dev->addr_len;
785
}
786
memcpy(&tip, arp_ptr, 4);
787
/*
788
* Check for bad requests for 127.x.x.x and requests for multicast
789
* addresses. If this is one such, delete it.
790
*/
791
if (ipv4_is_multicast(tip) ||
792
(!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
793
goto out_free_skb;
794
795
/*
796
* For some 802.11 wireless deployments (and possibly other networks),
797
* there will be an ARP proxy and gratuitous ARP frames are attacks
798
* and thus should not be accepted.
799
*/
800
if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
801
goto out_free_skb;
802
803
/*
804
* Special case: We must set Frame Relay source Q.922 address
805
*/
806
if (dev_type == ARPHRD_DLCI)
807
sha = dev->broadcast;
808
809
/*
810
* Process entry. The idea here is we want to send a reply if it is a
811
* request for us or if it is a request for someone else that we hold
812
* a proxy for. We want to add an entry to our cache if it is a reply
813
* to us or if it is a request for our address.
814
* (The assumption for this last is that if someone is requesting our
815
* address, they are probably intending to talk to us, so it saves time
816
* if we cache their address. Their address is also probably not in
817
* our cache, since ours is not in their cache.)
818
*
819
* Putting this another way, we only care about replies if they are to
820
* us, in which case we add them to the cache. For requests, we care
821
* about those for us and those for our proxies. We reply to both,
822
* and in the case of requests for us we add the requester to the arp
823
* cache.
824
*/
825
826
if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
827
reply_dst = (struct dst_entry *)
828
iptunnel_metadata_reply(skb_metadata_dst(skb),
829
GFP_ATOMIC);
830
831
/* Special case: IPv4 duplicate address detection packet (RFC2131) */
832
if (sip == 0) {
833
if (arp->ar_op == htons(ARPOP_REQUEST) &&
834
inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
835
!arp_ignore(in_dev, sip, tip))
836
arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
837
sha, dev->dev_addr, sha, reply_dst);
838
goto out_consume_skb;
839
}
840
841
if (arp->ar_op == htons(ARPOP_REQUEST) &&
842
ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
843
844
rt = skb_rtable(skb);
845
addr_type = rt->rt_type;
846
847
if (addr_type == RTN_LOCAL) {
848
int dont_send;
849
850
dont_send = arp_ignore(in_dev, sip, tip);
851
if (!dont_send && IN_DEV_ARPFILTER(in_dev))
852
dont_send = arp_filter(sip, tip, dev);
853
if (!dont_send) {
854
n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
855
if (n) {
856
arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
857
sip, dev, tip, sha,
858
dev->dev_addr, sha,
859
reply_dst);
860
neigh_release(n);
861
}
862
}
863
goto out_consume_skb;
864
} else if (IN_DEV_FORWARD(in_dev)) {
865
if (addr_type == RTN_UNICAST &&
866
(arp_fwd_proxy(in_dev, dev, rt) ||
867
arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
868
(rt->dst.dev != dev &&
869
pneigh_lookup(&arp_tbl, net, &tip, dev)))) {
870
n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
871
if (n)
872
neigh_release(n);
873
874
if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
875
skb->pkt_type == PACKET_HOST ||
876
NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
877
arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
878
sip, dev, tip, sha,
879
dev->dev_addr, sha,
880
reply_dst);
881
} else {
882
pneigh_enqueue(&arp_tbl,
883
in_dev->arp_parms, skb);
884
goto out_free_dst;
885
}
886
goto out_consume_skb;
887
}
888
}
889
}
890
891
/* Update our ARP tables */
892
893
n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
894
895
addr_type = -1;
896
if (n || arp_accept(in_dev, sip)) {
897
is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
898
sip, tip, sha, tha);
899
}
900
901
if (arp_accept(in_dev, sip)) {
902
/* Unsolicited ARP is not accepted by default.
903
It is possible, that this option should be enabled for some
904
devices (strip is candidate)
905
*/
906
if (!n &&
907
(is_garp ||
908
(arp->ar_op == htons(ARPOP_REPLY) &&
909
(addr_type == RTN_UNICAST ||
910
(addr_type < 0 &&
911
/* postpone calculation to as late as possible */
912
inet_addr_type_dev_table(net, dev, sip) ==
913
RTN_UNICAST)))))
914
n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
915
}
916
917
if (n) {
918
int state = NUD_REACHABLE;
919
int override;
920
921
/* If several different ARP replies follows back-to-back,
922
use the FIRST one. It is possible, if several proxy
923
agents are active. Taking the first reply prevents
924
arp trashing and chooses the fastest router.
925
*/
926
override = time_after(jiffies,
927
n->updated +
928
NEIGH_VAR(n->parms, LOCKTIME)) ||
929
is_garp;
930
931
/* Broadcast replies and request packets
932
do not assert neighbour reachability.
933
*/
934
if (arp->ar_op != htons(ARPOP_REPLY) ||
935
skb->pkt_type != PACKET_HOST)
936
state = NUD_STALE;
937
neigh_update(n, sha, state,
938
override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
939
neigh_release(n);
940
}
941
942
out_consume_skb:
943
consume_skb(skb);
944
945
out_free_dst:
946
dst_release(reply_dst);
947
return NET_RX_SUCCESS;
948
949
out_free_skb:
950
kfree_skb(skb);
951
return NET_RX_DROP;
952
}
953
954
static void parp_redo(struct sk_buff *skb)
955
{
956
arp_process(dev_net(skb->dev), NULL, skb);
957
}
958
959
static int arp_is_multicast(const void *pkey)
960
{
961
return ipv4_is_multicast(*((__be32 *)pkey));
962
}
963
964
/*
965
* Receive an arp request from the device layer.
966
*/
967
968
static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
969
struct packet_type *pt, struct net_device *orig_dev)
970
{
971
enum skb_drop_reason drop_reason;
972
const struct arphdr *arp;
973
974
/* do not tweak dropwatch on an ARP we will ignore */
975
if (dev->flags & IFF_NOARP ||
976
skb->pkt_type == PACKET_OTHERHOST ||
977
skb->pkt_type == PACKET_LOOPBACK)
978
goto consumeskb;
979
980
skb = skb_share_check(skb, GFP_ATOMIC);
981
if (!skb)
982
goto out_of_mem;
983
984
/* ARP header, plus 2 device addresses, plus 2 IP addresses. */
985
drop_reason = pskb_may_pull_reason(skb, arp_hdr_len(dev));
986
if (drop_reason != SKB_NOT_DROPPED_YET)
987
goto freeskb;
988
989
arp = arp_hdr(skb);
990
if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4) {
991
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
992
goto freeskb;
993
}
994
995
memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
996
997
return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
998
dev_net(dev), NULL, skb, dev, NULL,
999
arp_process);
1000
1001
consumeskb:
1002
consume_skb(skb);
1003
return NET_RX_SUCCESS;
1004
freeskb:
1005
kfree_skb_reason(skb, drop_reason);
1006
out_of_mem:
1007
return NET_RX_DROP;
1008
}
1009
1010
/*
1011
* User level interface (ioctl)
1012
*/
1013
1014
static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r,
1015
bool getarp)
1016
{
1017
struct net_device *dev;
1018
1019
if (getarp)
1020
dev = dev_get_by_name_rcu(net, r->arp_dev);
1021
else
1022
dev = __dev_get_by_name(net, r->arp_dev);
1023
if (!dev)
1024
return ERR_PTR(-ENODEV);
1025
1026
/* Mmmm... It is wrong... ARPHRD_NETROM == 0 */
1027
if (!r->arp_ha.sa_family)
1028
r->arp_ha.sa_family = dev->type;
1029
1030
if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type)
1031
return ERR_PTR(-EINVAL);
1032
1033
return dev;
1034
}
1035
1036
static struct net_device *arp_req_dev(struct net *net, struct arpreq *r)
1037
{
1038
struct net_device *dev;
1039
struct rtable *rt;
1040
__be32 ip;
1041
1042
if (r->arp_dev[0])
1043
return arp_req_dev_by_name(net, r, false);
1044
1045
if (r->arp_flags & ATF_PUBL)
1046
return NULL;
1047
1048
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1049
1050
rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK);
1051
if (IS_ERR(rt))
1052
return ERR_CAST(rt);
1053
1054
dev = rt->dst.dev;
1055
ip_rt_put(rt);
1056
1057
if (!dev)
1058
return ERR_PTR(-EINVAL);
1059
1060
return dev;
1061
}
1062
1063
/*
1064
* Set (create) an ARP cache entry.
1065
*/
1066
1067
static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1068
{
1069
if (!dev) {
1070
IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1071
return 0;
1072
}
1073
if (__in_dev_get_rtnl_net(dev)) {
1074
IN_DEV_CONF_SET(__in_dev_get_rtnl_net(dev), PROXY_ARP, on);
1075
return 0;
1076
}
1077
return -ENXIO;
1078
}
1079
1080
static int arp_req_set_public(struct net *net, struct arpreq *r,
1081
struct net_device *dev)
1082
{
1083
__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1084
1085
if (!dev && (r->arp_flags & ATF_COM)) {
1086
dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1087
r->arp_ha.sa_data);
1088
if (!dev)
1089
return -ENODEV;
1090
}
1091
if (mask) {
1092
__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1093
1094
return pneigh_create(&arp_tbl, net, &ip, dev, 0, 0, false);
1095
}
1096
1097
return arp_req_set_proxy(net, dev, 1);
1098
}
1099
1100
static int arp_req_set(struct net *net, struct arpreq *r)
1101
{
1102
struct neighbour *neigh;
1103
struct net_device *dev;
1104
__be32 ip;
1105
int err;
1106
1107
dev = arp_req_dev(net, r);
1108
if (IS_ERR(dev))
1109
return PTR_ERR(dev);
1110
1111
if (r->arp_flags & ATF_PUBL)
1112
return arp_req_set_public(net, r, dev);
1113
1114
switch (dev->type) {
1115
#if IS_ENABLED(CONFIG_FDDI)
1116
case ARPHRD_FDDI:
1117
/*
1118
* According to RFC 1390, FDDI devices should accept ARP
1119
* hardware types of 1 (Ethernet). However, to be more
1120
* robust, we'll accept hardware types of either 1 (Ethernet)
1121
* or 6 (IEEE 802.2).
1122
*/
1123
if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1124
r->arp_ha.sa_family != ARPHRD_ETHER &&
1125
r->arp_ha.sa_family != ARPHRD_IEEE802)
1126
return -EINVAL;
1127
break;
1128
#endif
1129
default:
1130
if (r->arp_ha.sa_family != dev->type)
1131
return -EINVAL;
1132
break;
1133
}
1134
1135
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1136
1137
neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1138
err = PTR_ERR(neigh);
1139
if (!IS_ERR(neigh)) {
1140
unsigned int state = NUD_STALE;
1141
1142
if (r->arp_flags & ATF_PERM) {
1143
r->arp_flags |= ATF_COM;
1144
state = NUD_PERMANENT;
1145
}
1146
1147
err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1148
r->arp_ha.sa_data : NULL, state,
1149
NEIGH_UPDATE_F_OVERRIDE |
1150
NEIGH_UPDATE_F_ADMIN, 0);
1151
neigh_release(neigh);
1152
}
1153
return err;
1154
}
1155
1156
static unsigned int arp_state_to_flags(struct neighbour *neigh)
1157
{
1158
if (neigh->nud_state&NUD_PERMANENT)
1159
return ATF_PERM | ATF_COM;
1160
else if (neigh->nud_state&NUD_VALID)
1161
return ATF_COM;
1162
else
1163
return 0;
1164
}
1165
1166
/*
1167
* Get an ARP cache entry.
1168
*/
1169
1170
static int arp_req_get(struct net *net, struct arpreq *r)
1171
{
1172
__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1173
struct neighbour *neigh;
1174
struct net_device *dev;
1175
1176
if (!r->arp_dev[0])
1177
return -ENODEV;
1178
1179
dev = arp_req_dev_by_name(net, r, true);
1180
if (IS_ERR(dev))
1181
return PTR_ERR(dev);
1182
1183
neigh = neigh_lookup(&arp_tbl, &ip, dev);
1184
if (!neigh)
1185
return -ENXIO;
1186
1187
if (READ_ONCE(neigh->nud_state) & NUD_NOARP) {
1188
neigh_release(neigh);
1189
return -ENXIO;
1190
}
1191
1192
read_lock_bh(&neigh->lock);
1193
memcpy(r->arp_ha.sa_data, neigh->ha,
1194
min(dev->addr_len, sizeof(r->arp_ha.sa_data)));
1195
r->arp_flags = arp_state_to_flags(neigh);
1196
read_unlock_bh(&neigh->lock);
1197
1198
neigh_release(neigh);
1199
1200
r->arp_ha.sa_family = dev->type;
1201
netdev_copy_name(dev, r->arp_dev);
1202
1203
return 0;
1204
}
1205
1206
int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1207
{
1208
struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1209
int err = -ENXIO;
1210
struct neigh_table *tbl = &arp_tbl;
1211
1212
if (neigh) {
1213
if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1214
neigh_release(neigh);
1215
return 0;
1216
}
1217
1218
if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1219
err = neigh_update(neigh, NULL, NUD_FAILED,
1220
NEIGH_UPDATE_F_OVERRIDE|
1221
NEIGH_UPDATE_F_ADMIN, 0);
1222
spin_lock_bh(&tbl->lock);
1223
neigh_release(neigh);
1224
neigh_remove_one(neigh);
1225
spin_unlock_bh(&tbl->lock);
1226
}
1227
1228
return err;
1229
}
1230
1231
static int arp_req_delete_public(struct net *net, struct arpreq *r,
1232
struct net_device *dev)
1233
{
1234
__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1235
1236
if (mask) {
1237
__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1238
1239
return pneigh_delete(&arp_tbl, net, &ip, dev);
1240
}
1241
1242
return arp_req_set_proxy(net, dev, 0);
1243
}
1244
1245
static int arp_req_delete(struct net *net, struct arpreq *r)
1246
{
1247
struct net_device *dev;
1248
__be32 ip;
1249
1250
dev = arp_req_dev(net, r);
1251
if (IS_ERR(dev))
1252
return PTR_ERR(dev);
1253
1254
if (r->arp_flags & ATF_PUBL)
1255
return arp_req_delete_public(net, r, dev);
1256
1257
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1258
1259
return arp_invalidate(dev, ip, true);
1260
}
1261
1262
/*
1263
* Handle an ARP layer I/O control request.
1264
*/
1265
1266
int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1267
{
1268
struct arpreq r;
1269
__be32 *netmask;
1270
int err;
1271
1272
switch (cmd) {
1273
case SIOCDARP:
1274
case SIOCSARP:
1275
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1276
return -EPERM;
1277
fallthrough;
1278
case SIOCGARP:
1279
err = copy_from_user(&r, arg, sizeof(struct arpreq));
1280
if (err)
1281
return -EFAULT;
1282
break;
1283
default:
1284
return -EINVAL;
1285
}
1286
1287
if (r.arp_pa.sa_family != AF_INET)
1288
return -EPFNOSUPPORT;
1289
1290
if (!(r.arp_flags & ATF_PUBL) &&
1291
(r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1292
return -EINVAL;
1293
1294
netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr;
1295
if (!(r.arp_flags & ATF_NETMASK))
1296
*netmask = htonl(0xFFFFFFFFUL);
1297
else if (*netmask && *netmask != htonl(0xFFFFFFFFUL))
1298
return -EINVAL;
1299
1300
switch (cmd) {
1301
case SIOCDARP:
1302
rtnl_net_lock(net);
1303
err = arp_req_delete(net, &r);
1304
rtnl_net_unlock(net);
1305
break;
1306
case SIOCSARP:
1307
rtnl_net_lock(net);
1308
err = arp_req_set(net, &r);
1309
rtnl_net_unlock(net);
1310
break;
1311
case SIOCGARP:
1312
rcu_read_lock();
1313
err = arp_req_get(net, &r);
1314
rcu_read_unlock();
1315
1316
if (!err && copy_to_user(arg, &r, sizeof(r)))
1317
err = -EFAULT;
1318
break;
1319
}
1320
1321
return err;
1322
}
1323
1324
static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1325
void *ptr)
1326
{
1327
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1328
struct netdev_notifier_change_info *change_info;
1329
struct in_device *in_dev;
1330
bool evict_nocarrier;
1331
1332
switch (event) {
1333
case NETDEV_CHANGEADDR:
1334
neigh_changeaddr(&arp_tbl, dev);
1335
rt_cache_flush(dev_net(dev));
1336
break;
1337
case NETDEV_CHANGE:
1338
change_info = ptr;
1339
if (change_info->flags_changed & IFF_NOARP)
1340
neigh_changeaddr(&arp_tbl, dev);
1341
1342
in_dev = __in_dev_get_rtnl(dev);
1343
if (!in_dev)
1344
evict_nocarrier = true;
1345
else
1346
evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1347
1348
if (evict_nocarrier && !netif_carrier_ok(dev))
1349
neigh_carrier_down(&arp_tbl, dev);
1350
break;
1351
default:
1352
break;
1353
}
1354
1355
return NOTIFY_DONE;
1356
}
1357
1358
static struct notifier_block arp_netdev_notifier = {
1359
.notifier_call = arp_netdev_event,
1360
};
1361
1362
/* Note, that it is not on notifier chain.
1363
It is necessary, that this routine was called after route cache will be
1364
flushed.
1365
*/
1366
void arp_ifdown(struct net_device *dev)
1367
{
1368
neigh_ifdown(&arp_tbl, dev);
1369
}
1370
1371
1372
/*
1373
* Called once on startup.
1374
*/
1375
1376
static struct packet_type arp_packet_type __read_mostly = {
1377
.type = cpu_to_be16(ETH_P_ARP),
1378
.func = arp_rcv,
1379
};
1380
1381
#ifdef CONFIG_PROC_FS
1382
#if IS_ENABLED(CONFIG_AX25)
1383
1384
/*
1385
* ax25 -> ASCII conversion
1386
*/
1387
static void ax2asc2(ax25_address *a, char *buf)
1388
{
1389
char c, *s;
1390
int n;
1391
1392
for (n = 0, s = buf; n < 6; n++) {
1393
c = (a->ax25_call[n] >> 1) & 0x7F;
1394
1395
if (c != ' ')
1396
*s++ = c;
1397
}
1398
1399
*s++ = '-';
1400
n = (a->ax25_call[6] >> 1) & 0x0F;
1401
if (n > 9) {
1402
*s++ = '1';
1403
n -= 10;
1404
}
1405
1406
*s++ = n + '0';
1407
*s++ = '\0';
1408
1409
if (*buf == '\0' || *buf == '-') {
1410
buf[0] = '*';
1411
buf[1] = '\0';
1412
}
1413
}
1414
#endif /* CONFIG_AX25 */
1415
1416
#define HBUFFERLEN 30
1417
1418
static void arp_format_neigh_entry(struct seq_file *seq,
1419
struct neighbour *n)
1420
{
1421
char hbuffer[HBUFFERLEN];
1422
int k, j;
1423
char tbuf[16];
1424
struct net_device *dev = n->dev;
1425
int hatype = dev->type;
1426
1427
read_lock(&n->lock);
1428
/* Convert hardware address to XX:XX:XX:XX ... form. */
1429
#if IS_ENABLED(CONFIG_AX25)
1430
if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1431
ax2asc2((ax25_address *)n->ha, hbuffer);
1432
else {
1433
#endif
1434
for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1435
hbuffer[k++] = hex_asc_hi(n->ha[j]);
1436
hbuffer[k++] = hex_asc_lo(n->ha[j]);
1437
hbuffer[k++] = ':';
1438
}
1439
if (k != 0)
1440
--k;
1441
hbuffer[k] = 0;
1442
#if IS_ENABLED(CONFIG_AX25)
1443
}
1444
#endif
1445
sprintf(tbuf, "%pI4", n->primary_key);
1446
seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1447
tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1448
read_unlock(&n->lock);
1449
}
1450
1451
static void arp_format_pneigh_entry(struct seq_file *seq,
1452
struct pneigh_entry *n)
1453
{
1454
struct net_device *dev = n->dev;
1455
int hatype = dev ? dev->type : 0;
1456
char tbuf[16];
1457
1458
sprintf(tbuf, "%pI4", n->key);
1459
seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1460
tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1461
dev ? dev->name : "*");
1462
}
1463
1464
static int arp_seq_show(struct seq_file *seq, void *v)
1465
{
1466
if (v == SEQ_START_TOKEN) {
1467
seq_puts(seq, "IP address HW type Flags "
1468
"HW address Mask Device\n");
1469
} else {
1470
struct neigh_seq_state *state = seq->private;
1471
1472
if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1473
arp_format_pneigh_entry(seq, v);
1474
else
1475
arp_format_neigh_entry(seq, v);
1476
}
1477
1478
return 0;
1479
}
1480
1481
static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1482
{
1483
/* Don't want to confuse "arp -a" w/ magic entries,
1484
* so we tell the generic iterator to skip NUD_NOARP.
1485
*/
1486
return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1487
}
1488
1489
static const struct seq_operations arp_seq_ops = {
1490
.start = arp_seq_start,
1491
.next = neigh_seq_next,
1492
.stop = neigh_seq_stop,
1493
.show = arp_seq_show,
1494
};
1495
#endif /* CONFIG_PROC_FS */
1496
1497
static int __net_init arp_net_init(struct net *net)
1498
{
1499
if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1500
sizeof(struct neigh_seq_state)))
1501
return -ENOMEM;
1502
return 0;
1503
}
1504
1505
static void __net_exit arp_net_exit(struct net *net)
1506
{
1507
remove_proc_entry("arp", net->proc_net);
1508
}
1509
1510
static struct pernet_operations arp_net_ops = {
1511
.init = arp_net_init,
1512
.exit = arp_net_exit,
1513
};
1514
1515
void __init arp_init(void)
1516
{
1517
neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1518
1519
dev_add_pack(&arp_packet_type);
1520
register_pernet_subsys(&arp_net_ops);
1521
#ifdef CONFIG_SYSCTL
1522
neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1523
#endif
1524
register_netdevice_notifier(&arp_netdev_notifier);
1525
}
1526
1527