Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/inet_connection_sock.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* Support for INET connection oriented protocols.
8
*
9
* Authors: See the TCP sources
10
*/
11
12
#include <linux/module.h>
13
#include <linux/jhash.h>
14
15
#include <net/inet_connection_sock.h>
16
#include <net/inet_hashtables.h>
17
#include <net/inet_timewait_sock.h>
18
#include <net/ip.h>
19
#include <net/route.h>
20
#include <net/tcp_states.h>
21
#include <net/xfrm.h>
22
#include <net/tcp.h>
23
#include <net/sock_reuseport.h>
24
#include <net/addrconf.h>
25
26
#if IS_ENABLED(CONFIG_IPV6)
27
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28
* if IPv6 only, and any IPv4 addresses
29
* if not IPv6 only
30
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32
* and 0.0.0.0 equals to 0.0.0.0 only
33
*/
34
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35
const struct in6_addr *sk2_rcv_saddr6,
36
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37
bool sk1_ipv6only, bool sk2_ipv6only,
38
bool match_sk1_wildcard,
39
bool match_sk2_wildcard)
40
{
41
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44
/* if both are mapped, treat as IPv4 */
45
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46
if (!sk2_ipv6only) {
47
if (sk1_rcv_saddr == sk2_rcv_saddr)
48
return true;
49
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50
(match_sk2_wildcard && !sk2_rcv_saddr);
51
}
52
return false;
53
}
54
55
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56
return true;
57
58
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60
return true;
61
62
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64
return true;
65
66
if (sk2_rcv_saddr6 &&
67
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68
return true;
69
70
return false;
71
}
72
#endif
73
74
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76
* 0.0.0.0 only equals to 0.0.0.0
77
*/
78
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79
bool sk2_ipv6only, bool match_sk1_wildcard,
80
bool match_sk2_wildcard)
81
{
82
if (!sk2_ipv6only) {
83
if (sk1_rcv_saddr == sk2_rcv_saddr)
84
return true;
85
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86
(match_sk2_wildcard && !sk2_rcv_saddr);
87
}
88
return false;
89
}
90
91
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92
bool match_wildcard)
93
{
94
#if IS_ENABLED(CONFIG_IPV6)
95
if (sk->sk_family == AF_INET6)
96
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97
inet6_rcv_saddr(sk2),
98
sk->sk_rcv_saddr,
99
sk2->sk_rcv_saddr,
100
ipv6_only_sock(sk),
101
ipv6_only_sock(sk2),
102
match_wildcard,
103
match_wildcard);
104
#endif
105
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106
ipv6_only_sock(sk2), match_wildcard,
107
match_wildcard);
108
}
109
EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111
bool inet_rcv_saddr_any(const struct sock *sk)
112
{
113
#if IS_ENABLED(CONFIG_IPV6)
114
if (sk->sk_family == AF_INET6)
115
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116
#endif
117
return !sk->sk_rcv_saddr;
118
}
119
120
/**
121
* inet_sk_get_local_port_range - fetch ephemeral ports range
122
* @sk: socket
123
* @low: pointer to low port
124
* @high: pointer to high port
125
*
126
* Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127
* Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128
* Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129
*/
130
bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131
{
132
int lo, hi, sk_lo, sk_hi;
133
bool local_range = false;
134
u32 sk_range;
135
136
inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138
sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139
if (unlikely(sk_range)) {
140
sk_lo = sk_range & 0xffff;
141
sk_hi = sk_range >> 16;
142
143
if (lo <= sk_lo && sk_lo <= hi)
144
lo = sk_lo;
145
if (lo <= sk_hi && sk_hi <= hi)
146
hi = sk_hi;
147
local_range = true;
148
}
149
150
*low = lo;
151
*high = hi;
152
return local_range;
153
}
154
EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156
static bool inet_use_bhash2_on_bind(const struct sock *sk)
157
{
158
#if IS_ENABLED(CONFIG_IPV6)
159
if (sk->sk_family == AF_INET6) {
160
if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161
return false;
162
163
if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164
return true;
165
}
166
#endif
167
return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168
}
169
170
static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171
kuid_t uid, bool relax,
172
bool reuseport_cb_ok, bool reuseport_ok)
173
{
174
int bound_dev_if2;
175
176
if (sk == sk2)
177
return false;
178
179
bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181
if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182
sk->sk_bound_dev_if == bound_dev_if2) {
183
if (sk->sk_reuse && sk2->sk_reuse &&
184
sk2->sk_state != TCP_LISTEN) {
185
if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186
sk2->sk_reuseport && reuseport_cb_ok &&
187
(sk2->sk_state == TCP_TIME_WAIT ||
188
uid_eq(uid, sk_uid(sk2)))))
189
return true;
190
} else if (!reuseport_ok || !sk->sk_reuseport ||
191
!sk2->sk_reuseport || !reuseport_cb_ok ||
192
(sk2->sk_state != TCP_TIME_WAIT &&
193
!uid_eq(uid, sk_uid(sk2)))) {
194
return true;
195
}
196
}
197
return false;
198
}
199
200
static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201
kuid_t uid, bool relax,
202
bool reuseport_cb_ok, bool reuseport_ok)
203
{
204
if (ipv6_only_sock(sk2)) {
205
if (sk->sk_family == AF_INET)
206
return false;
207
208
#if IS_ENABLED(CONFIG_IPV6)
209
if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210
return false;
211
#endif
212
}
213
214
return inet_bind_conflict(sk, sk2, uid, relax,
215
reuseport_cb_ok, reuseport_ok);
216
}
217
218
static bool inet_bhash2_conflict(const struct sock *sk,
219
const struct inet_bind2_bucket *tb2,
220
kuid_t uid,
221
bool relax, bool reuseport_cb_ok,
222
bool reuseport_ok)
223
{
224
struct sock *sk2;
225
226
sk_for_each_bound(sk2, &tb2->owners) {
227
if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228
reuseport_cb_ok, reuseport_ok))
229
return true;
230
}
231
232
return false;
233
}
234
235
#define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236
hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237
sk_for_each_bound((__sk), &(__tb2)->owners)
238
239
/* This should be called only when the tb and tb2 hashbuckets' locks are held */
240
static int inet_csk_bind_conflict(const struct sock *sk,
241
const struct inet_bind_bucket *tb,
242
const struct inet_bind2_bucket *tb2, /* may be null */
243
bool relax, bool reuseport_ok)
244
{
245
struct sock_reuseport *reuseport_cb;
246
kuid_t uid = sk_uid(sk);
247
bool reuseport_cb_ok;
248
struct sock *sk2;
249
250
rcu_read_lock();
251
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254
rcu_read_unlock();
255
256
/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257
* ipv4) should have been checked already. We need to do these two
258
* checks separately because their spinlocks have to be acquired/released
259
* independently of each other, to prevent possible deadlocks
260
*/
261
if (inet_use_bhash2_on_bind(sk))
262
return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263
reuseport_cb_ok, reuseport_ok);
264
265
/* Unlike other sk lookup places we do not check
266
* for sk_net here, since _all_ the socks listed
267
* in tb->owners and tb2->owners list belong
268
* to the same net - the one this bucket belongs to.
269
*/
270
sk_for_each_bound_bhash(sk2, tb2, tb) {
271
if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272
continue;
273
274
if (inet_rcv_saddr_equal(sk, sk2, true))
275
return true;
276
}
277
278
return false;
279
}
280
281
/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282
* INADDR_ANY (if ipv4) socket.
283
*
284
* Caller must hold bhash hashbucket lock with local bh disabled, to protect
285
* against concurrent binds on the port for addr any
286
*/
287
static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288
bool relax, bool reuseport_ok)
289
{
290
const struct net *net = sock_net(sk);
291
struct sock_reuseport *reuseport_cb;
292
struct inet_bind_hashbucket *head2;
293
struct inet_bind2_bucket *tb2;
294
kuid_t uid = sk_uid(sk);
295
bool conflict = false;
296
bool reuseport_cb_ok;
297
298
rcu_read_lock();
299
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302
rcu_read_unlock();
303
304
head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306
spin_lock(&head2->lock);
307
308
inet_bind_bucket_for_each(tb2, &head2->chain) {
309
if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310
continue;
311
312
if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313
continue;
314
315
conflict = true;
316
break;
317
}
318
319
spin_unlock(&head2->lock);
320
321
return conflict;
322
}
323
324
/*
325
* Find an open port number for the socket. Returns with the
326
* inet_bind_hashbucket locks held if successful.
327
*/
328
static struct inet_bind_hashbucket *
329
inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330
struct inet_bind2_bucket **tb2_ret,
331
struct inet_bind_hashbucket **head2_ret, int *port_ret)
332
{
333
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334
int i, low, high, attempt_half, port, l3mdev;
335
struct inet_bind_hashbucket *head, *head2;
336
struct net *net = sock_net(sk);
337
struct inet_bind2_bucket *tb2;
338
struct inet_bind_bucket *tb;
339
u32 remaining, offset;
340
bool relax = false;
341
342
l3mdev = inet_sk_bound_l3mdev(sk);
343
ports_exhausted:
344
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345
other_half_scan:
346
inet_sk_get_local_port_range(sk, &low, &high);
347
high++; /* [32768, 60999] -> [32768, 61000[ */
348
if (high - low < 4)
349
attempt_half = 0;
350
if (attempt_half) {
351
int half = low + (((high - low) >> 2) << 1);
352
353
if (attempt_half == 1)
354
high = half;
355
else
356
low = half;
357
}
358
remaining = high - low;
359
if (likely(remaining > 1))
360
remaining &= ~1U;
361
362
offset = get_random_u32_below(remaining);
363
/* __inet_hash_connect() favors ports having @low parity
364
* We do the opposite to not pollute connect() users.
365
*/
366
offset |= 1U;
367
368
other_parity_scan:
369
port = low + offset;
370
for (i = 0; i < remaining; i += 2, port += 2) {
371
if (unlikely(port >= high))
372
port -= remaining;
373
if (inet_is_local_reserved_port(net, port))
374
continue;
375
head = &hinfo->bhash[inet_bhashfn(net, port,
376
hinfo->bhash_size)];
377
spin_lock_bh(&head->lock);
378
if (inet_use_bhash2_on_bind(sk)) {
379
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380
goto next_port;
381
}
382
383
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384
spin_lock(&head2->lock);
385
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386
inet_bind_bucket_for_each(tb, &head->chain)
387
if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388
if (!inet_csk_bind_conflict(sk, tb, tb2,
389
relax, false))
390
goto success;
391
spin_unlock(&head2->lock);
392
goto next_port;
393
}
394
tb = NULL;
395
goto success;
396
next_port:
397
spin_unlock_bh(&head->lock);
398
cond_resched();
399
}
400
401
offset--;
402
if (!(offset & 1))
403
goto other_parity_scan;
404
405
if (attempt_half == 1) {
406
/* OK we now try the upper half of the range */
407
attempt_half = 2;
408
goto other_half_scan;
409
}
410
411
if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412
/* We still have a chance to connect to different destinations */
413
relax = true;
414
goto ports_exhausted;
415
}
416
return NULL;
417
success:
418
*port_ret = port;
419
*tb_ret = tb;
420
*tb2_ret = tb2;
421
*head2_ret = head2;
422
return head;
423
}
424
425
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426
const struct sock *sk)
427
{
428
if (tb->fastreuseport <= 0)
429
return 0;
430
if (!sk->sk_reuseport)
431
return 0;
432
if (rcu_access_pointer(sk->sk_reuseport_cb))
433
return 0;
434
if (!uid_eq(tb->fastuid, sk_uid(sk)))
435
return 0;
436
/* We only need to check the rcv_saddr if this tb was once marked
437
* without fastreuseport and then was reset, as we can only know that
438
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439
* owners list.
440
*/
441
if (tb->fastreuseport == FASTREUSEPORT_ANY)
442
return 1;
443
#if IS_ENABLED(CONFIG_IPV6)
444
if (tb->fast_sk_family == AF_INET6)
445
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446
inet6_rcv_saddr(sk),
447
tb->fast_rcv_saddr,
448
sk->sk_rcv_saddr,
449
tb->fast_ipv6_only,
450
ipv6_only_sock(sk), true, false);
451
#endif
452
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453
ipv6_only_sock(sk), true, false);
454
}
455
456
void inet_csk_update_fastreuse(const struct sock *sk,
457
struct inet_bind_bucket *tb,
458
struct inet_bind2_bucket *tb2)
459
{
460
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
461
462
if (hlist_empty(&tb->bhash2)) {
463
tb->fastreuse = reuse;
464
if (sk->sk_reuseport) {
465
tb->fastreuseport = FASTREUSEPORT_ANY;
466
tb->fastuid = sk_uid(sk);
467
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
468
tb->fast_ipv6_only = ipv6_only_sock(sk);
469
tb->fast_sk_family = sk->sk_family;
470
#if IS_ENABLED(CONFIG_IPV6)
471
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
472
#endif
473
} else {
474
tb->fastreuseport = 0;
475
}
476
} else {
477
if (!reuse)
478
tb->fastreuse = 0;
479
if (sk->sk_reuseport) {
480
/* We didn't match or we don't have fastreuseport set on
481
* the tb, but we have sk_reuseport set on this socket
482
* and we know that there are no bind conflicts with
483
* this socket in this tb, so reset our tb's reuseport
484
* settings so that any subsequent sockets that match
485
* our current socket will be put on the fast path.
486
*
487
* If we reset we need to set FASTREUSEPORT_STRICT so we
488
* do extra checking for all subsequent sk_reuseport
489
* socks.
490
*/
491
if (!sk_reuseport_match(tb, sk)) {
492
tb->fastreuseport = FASTREUSEPORT_STRICT;
493
tb->fastuid = sk_uid(sk);
494
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
495
tb->fast_ipv6_only = ipv6_only_sock(sk);
496
tb->fast_sk_family = sk->sk_family;
497
#if IS_ENABLED(CONFIG_IPV6)
498
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
499
#endif
500
}
501
} else {
502
tb->fastreuseport = 0;
503
}
504
}
505
506
tb2->fastreuse = tb->fastreuse;
507
tb2->fastreuseport = tb->fastreuseport;
508
}
509
510
/* Obtain a reference to a local port for the given sock,
511
* if snum is zero it means select any available local port.
512
* We try to allocate an odd port (and leave even ports for connect())
513
*/
514
int inet_csk_get_port(struct sock *sk, unsigned short snum)
515
{
516
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
517
bool found_port = false, check_bind_conflict = true;
518
bool bhash_created = false, bhash2_created = false;
519
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
520
int ret = -EADDRINUSE, port = snum, l3mdev;
521
struct inet_bind_hashbucket *head, *head2;
522
struct inet_bind2_bucket *tb2 = NULL;
523
struct inet_bind_bucket *tb = NULL;
524
bool head2_lock_acquired = false;
525
struct net *net = sock_net(sk);
526
527
l3mdev = inet_sk_bound_l3mdev(sk);
528
529
if (!port) {
530
head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
531
if (!head)
532
return ret;
533
534
head2_lock_acquired = true;
535
536
if (tb && tb2)
537
goto success;
538
found_port = true;
539
} else {
540
head = &hinfo->bhash[inet_bhashfn(net, port,
541
hinfo->bhash_size)];
542
spin_lock_bh(&head->lock);
543
inet_bind_bucket_for_each(tb, &head->chain)
544
if (inet_bind_bucket_match(tb, net, port, l3mdev))
545
break;
546
}
547
548
if (!tb) {
549
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
550
head, port, l3mdev);
551
if (!tb)
552
goto fail_unlock;
553
bhash_created = true;
554
}
555
556
if (!found_port) {
557
if (!hlist_empty(&tb->bhash2)) {
558
if (sk->sk_reuse == SK_FORCE_REUSE ||
559
(tb->fastreuse > 0 && reuse) ||
560
sk_reuseport_match(tb, sk))
561
check_bind_conflict = false;
562
}
563
564
if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
565
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
566
goto fail_unlock;
567
}
568
569
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
570
spin_lock(&head2->lock);
571
head2_lock_acquired = true;
572
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
573
}
574
575
if (!tb2) {
576
tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
577
net, head2, tb, sk);
578
if (!tb2)
579
goto fail_unlock;
580
bhash2_created = true;
581
}
582
583
if (!found_port && check_bind_conflict) {
584
if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
585
goto fail_unlock;
586
}
587
588
success:
589
inet_csk_update_fastreuse(sk, tb, tb2);
590
591
if (!inet_csk(sk)->icsk_bind_hash)
592
inet_bind_hash(sk, tb, tb2, port);
593
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
594
WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
595
ret = 0;
596
597
fail_unlock:
598
if (ret) {
599
if (bhash2_created)
600
inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
601
if (bhash_created)
602
inet_bind_bucket_destroy(tb);
603
}
604
if (head2_lock_acquired)
605
spin_unlock(&head2->lock);
606
spin_unlock_bh(&head->lock);
607
return ret;
608
}
609
EXPORT_SYMBOL_GPL(inet_csk_get_port);
610
611
/*
612
* Wait for an incoming connection, avoid race conditions. This must be called
613
* with the socket locked.
614
*/
615
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
616
{
617
struct inet_connection_sock *icsk = inet_csk(sk);
618
DEFINE_WAIT(wait);
619
int err;
620
621
/*
622
* True wake-one mechanism for incoming connections: only
623
* one process gets woken up, not the 'whole herd'.
624
* Since we do not 'race & poll' for established sockets
625
* anymore, the common case will execute the loop only once.
626
*
627
* Subtle issue: "add_wait_queue_exclusive()" will be added
628
* after any current non-exclusive waiters, and we know that
629
* it will always _stay_ after any new non-exclusive waiters
630
* because all non-exclusive waiters are added at the
631
* beginning of the wait-queue. As such, it's ok to "drop"
632
* our exclusiveness temporarily when we get woken up without
633
* having to remove and re-insert us on the wait queue.
634
*/
635
for (;;) {
636
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
637
TASK_INTERRUPTIBLE);
638
release_sock(sk);
639
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
640
timeo = schedule_timeout(timeo);
641
sched_annotate_sleep();
642
lock_sock(sk);
643
err = 0;
644
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
645
break;
646
err = -EINVAL;
647
if (sk->sk_state != TCP_LISTEN)
648
break;
649
err = sock_intr_errno(timeo);
650
if (signal_pending(current))
651
break;
652
err = -EAGAIN;
653
if (!timeo)
654
break;
655
}
656
finish_wait(sk_sleep(sk), &wait);
657
return err;
658
}
659
660
/*
661
* This will accept the next outstanding connection.
662
*/
663
struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
664
{
665
struct inet_connection_sock *icsk = inet_csk(sk);
666
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
667
struct request_sock *req;
668
struct sock *newsk;
669
int error;
670
671
lock_sock(sk);
672
673
/* We need to make sure that this socket is listening,
674
* and that it has something pending.
675
*/
676
error = -EINVAL;
677
if (sk->sk_state != TCP_LISTEN)
678
goto out_err;
679
680
/* Find already established connection */
681
if (reqsk_queue_empty(queue)) {
682
long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
683
684
/* If this is a non blocking socket don't sleep */
685
error = -EAGAIN;
686
if (!timeo)
687
goto out_err;
688
689
error = inet_csk_wait_for_connect(sk, timeo);
690
if (error)
691
goto out_err;
692
}
693
req = reqsk_queue_remove(queue, sk);
694
arg->is_empty = reqsk_queue_empty(queue);
695
newsk = req->sk;
696
697
if (sk->sk_protocol == IPPROTO_TCP &&
698
tcp_rsk(req)->tfo_listener) {
699
spin_lock_bh(&queue->fastopenq.lock);
700
if (tcp_rsk(req)->tfo_listener) {
701
/* We are still waiting for the final ACK from 3WHS
702
* so can't free req now. Instead, we set req->sk to
703
* NULL to signify that the child socket is taken
704
* so reqsk_fastopen_remove() will free the req
705
* when 3WHS finishes (or is aborted).
706
*/
707
req->sk = NULL;
708
req = NULL;
709
}
710
spin_unlock_bh(&queue->fastopenq.lock);
711
}
712
713
release_sock(sk);
714
715
if (mem_cgroup_sockets_enabled) {
716
gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
717
int amt = 0;
718
719
/* atomically get the memory usage, set and charge the
720
* newsk->sk_memcg.
721
*/
722
lock_sock(newsk);
723
724
mem_cgroup_sk_alloc(newsk);
725
if (mem_cgroup_from_sk(newsk)) {
726
/* The socket has not been accepted yet, no need
727
* to look at newsk->sk_wmem_queued.
728
*/
729
amt = sk_mem_pages(newsk->sk_forward_alloc +
730
atomic_read(&newsk->sk_rmem_alloc));
731
}
732
733
if (amt)
734
mem_cgroup_sk_charge(newsk, amt, gfp);
735
kmem_cache_charge(newsk, gfp);
736
737
release_sock(newsk);
738
}
739
740
if (req)
741
reqsk_put(req);
742
743
inet_init_csk_locks(newsk);
744
return newsk;
745
746
out_err:
747
release_sock(sk);
748
arg->err = error;
749
return NULL;
750
}
751
EXPORT_SYMBOL(inet_csk_accept);
752
753
/*
754
* Using different timers for retransmit, delayed acks and probes
755
* We may wish use just one timer maintaining a list of expire jiffies
756
* to optimize.
757
*/
758
void inet_csk_init_xmit_timers(struct sock *sk,
759
void (*retransmit_handler)(struct timer_list *t),
760
void (*delack_handler)(struct timer_list *t),
761
void (*keepalive_handler)(struct timer_list *t))
762
{
763
struct inet_connection_sock *icsk = inet_csk(sk);
764
765
timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767
timer_setup(&sk->sk_timer, keepalive_handler, 0);
768
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769
}
770
771
void inet_csk_clear_xmit_timers(struct sock *sk)
772
{
773
struct inet_connection_sock *icsk = inet_csk(sk);
774
775
smp_store_release(&icsk->icsk_pending, 0);
776
smp_store_release(&icsk->icsk_ack.pending, 0);
777
778
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779
sk_stop_timer(sk, &icsk->icsk_delack_timer);
780
sk_stop_timer(sk, &sk->sk_timer);
781
}
782
783
void inet_csk_clear_xmit_timers_sync(struct sock *sk)
784
{
785
struct inet_connection_sock *icsk = inet_csk(sk);
786
787
/* ongoing timer handlers need to acquire socket lock. */
788
sock_not_owned_by_me(sk);
789
790
smp_store_release(&icsk->icsk_pending, 0);
791
smp_store_release(&icsk->icsk_ack.pending, 0);
792
793
sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794
sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795
sk_stop_timer_sync(sk, &sk->sk_timer);
796
}
797
798
struct dst_entry *inet_csk_route_req(const struct sock *sk,
799
struct flowi4 *fl4,
800
const struct request_sock *req)
801
{
802
const struct inet_request_sock *ireq = inet_rsk(req);
803
struct net *net = read_pnet(&ireq->ireq_net);
804
struct ip_options_rcu *opt;
805
struct rtable *rt;
806
807
rcu_read_lock();
808
opt = rcu_dereference(ireq->ireq_opt);
809
810
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
811
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
812
sk->sk_protocol, inet_sk_flowi_flags(sk),
813
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
814
ireq->ir_loc_addr, ireq->ir_rmt_port,
815
htons(ireq->ir_num), sk_uid(sk));
816
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
817
rt = ip_route_output_flow(net, fl4, sk);
818
if (IS_ERR(rt))
819
goto no_route;
820
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
821
goto route_err;
822
rcu_read_unlock();
823
return &rt->dst;
824
825
route_err:
826
ip_rt_put(rt);
827
no_route:
828
rcu_read_unlock();
829
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
830
return NULL;
831
}
832
833
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
834
struct sock *newsk,
835
const struct request_sock *req)
836
{
837
const struct inet_request_sock *ireq = inet_rsk(req);
838
struct net *net = read_pnet(&ireq->ireq_net);
839
struct inet_sock *newinet = inet_sk(newsk);
840
struct ip_options_rcu *opt;
841
struct flowi4 *fl4;
842
struct rtable *rt;
843
844
opt = rcu_dereference(ireq->ireq_opt);
845
fl4 = &newinet->cork.fl.u.ip4;
846
847
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
848
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
849
sk->sk_protocol, inet_sk_flowi_flags(sk),
850
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
851
ireq->ir_loc_addr, ireq->ir_rmt_port,
852
htons(ireq->ir_num), sk_uid(sk));
853
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
854
rt = ip_route_output_flow(net, fl4, sk);
855
if (IS_ERR(rt))
856
goto no_route;
857
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
858
goto route_err;
859
return &rt->dst;
860
861
route_err:
862
ip_rt_put(rt);
863
no_route:
864
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
865
return NULL;
866
}
867
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
868
869
/* Decide when to expire the request and when to resend SYN-ACK */
870
static void syn_ack_recalc(struct request_sock *req,
871
const int max_syn_ack_retries,
872
const u8 rskq_defer_accept,
873
int *expire, int *resend)
874
{
875
if (!rskq_defer_accept) {
876
*expire = req->num_timeout >= max_syn_ack_retries;
877
*resend = 1;
878
return;
879
}
880
*expire = req->num_timeout >= max_syn_ack_retries &&
881
(!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
882
/* Do not resend while waiting for data after ACK,
883
* start to resend on end of deferring period to give
884
* last chance for data or ACK to create established socket.
885
*/
886
*resend = !inet_rsk(req)->acked ||
887
req->num_timeout >= rskq_defer_accept - 1;
888
}
889
890
static struct request_sock *
891
reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
892
bool attach_listener)
893
{
894
struct request_sock *req;
895
896
req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
897
if (!req)
898
return NULL;
899
req->rsk_listener = NULL;
900
if (attach_listener) {
901
if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
902
kmem_cache_free(ops->slab, req);
903
return NULL;
904
}
905
req->rsk_listener = sk_listener;
906
}
907
req->rsk_ops = ops;
908
req_to_sk(req)->sk_prot = sk_listener->sk_prot;
909
sk_node_init(&req_to_sk(req)->sk_node);
910
sk_tx_queue_clear(req_to_sk(req));
911
req->saved_syn = NULL;
912
req->syncookie = 0;
913
req->timeout = 0;
914
req->num_timeout = 0;
915
req->num_retrans = 0;
916
req->sk = NULL;
917
refcount_set(&req->rsk_refcnt, 0);
918
919
return req;
920
}
921
#define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
922
923
struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
924
struct sock *sk_listener,
925
bool attach_listener)
926
{
927
struct request_sock *req = reqsk_alloc(ops, sk_listener,
928
attach_listener);
929
930
if (req) {
931
struct inet_request_sock *ireq = inet_rsk(req);
932
933
ireq->ireq_opt = NULL;
934
#if IS_ENABLED(CONFIG_IPV6)
935
ireq->pktopts = NULL;
936
#endif
937
atomic64_set(&ireq->ir_cookie, 0);
938
ireq->ireq_state = TCP_NEW_SYN_RECV;
939
write_pnet(&ireq->ireq_net, sock_net(sk_listener));
940
ireq->ireq_family = sk_listener->sk_family;
941
req->timeout = TCP_TIMEOUT_INIT;
942
}
943
944
return req;
945
}
946
EXPORT_SYMBOL(inet_reqsk_alloc);
947
948
static struct request_sock *inet_reqsk_clone(struct request_sock *req,
949
struct sock *sk)
950
{
951
struct sock *req_sk, *nreq_sk;
952
struct request_sock *nreq;
953
954
nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
955
if (!nreq) {
956
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
957
958
/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
959
sock_put(sk);
960
return NULL;
961
}
962
963
req_sk = req_to_sk(req);
964
nreq_sk = req_to_sk(nreq);
965
966
memcpy(nreq_sk, req_sk,
967
offsetof(struct sock, sk_dontcopy_begin));
968
unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
969
req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
970
/* alloc is larger than struct, see above */);
971
972
sk_node_init(&nreq_sk->sk_node);
973
nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
974
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
975
nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
976
#endif
977
nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
978
979
nreq->rsk_listener = sk;
980
981
/* We need not acquire fastopenq->lock
982
* because the child socket is locked in inet_csk_listen_stop().
983
*/
984
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
985
rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
986
987
return nreq;
988
}
989
990
static void reqsk_queue_migrated(struct request_sock_queue *queue,
991
const struct request_sock *req)
992
{
993
if (req->num_timeout == 0)
994
atomic_inc(&queue->young);
995
atomic_inc(&queue->qlen);
996
}
997
998
static void reqsk_migrate_reset(struct request_sock *req)
999
{
1000
req->saved_syn = NULL;
1001
#if IS_ENABLED(CONFIG_IPV6)
1002
inet_rsk(req)->ipv6_opt = NULL;
1003
inet_rsk(req)->pktopts = NULL;
1004
#else
1005
inet_rsk(req)->ireq_opt = NULL;
1006
#endif
1007
}
1008
1009
/* return true if req was found in the ehash table */
1010
static bool reqsk_queue_unlink(struct request_sock *req)
1011
{
1012
struct sock *sk = req_to_sk(req);
1013
bool found = false;
1014
1015
if (sk_hashed(sk)) {
1016
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1017
spinlock_t *lock;
1018
1019
lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1020
spin_lock(lock);
1021
found = __sk_nulls_del_node_init_rcu(sk);
1022
spin_unlock(lock);
1023
}
1024
1025
return found;
1026
}
1027
1028
static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1029
struct request_sock *req,
1030
bool from_timer)
1031
{
1032
bool unlinked = reqsk_queue_unlink(req);
1033
1034
if (!from_timer && timer_delete_sync(&req->rsk_timer))
1035
reqsk_put(req);
1036
1037
if (unlinked) {
1038
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1039
reqsk_put(req);
1040
}
1041
1042
return unlinked;
1043
}
1044
1045
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1046
{
1047
return __inet_csk_reqsk_queue_drop(sk, req, false);
1048
}
1049
1050
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1051
{
1052
inet_csk_reqsk_queue_drop(sk, req);
1053
reqsk_put(req);
1054
}
1055
EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1056
1057
static void reqsk_timer_handler(struct timer_list *t)
1058
{
1059
struct request_sock *req = timer_container_of(req, t, rsk_timer);
1060
struct request_sock *nreq = NULL, *oreq = req;
1061
struct sock *sk_listener = req->rsk_listener;
1062
struct inet_connection_sock *icsk;
1063
struct request_sock_queue *queue;
1064
struct net *net;
1065
int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1066
1067
if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1068
struct sock *nsk;
1069
1070
nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1071
if (!nsk)
1072
goto drop;
1073
1074
nreq = inet_reqsk_clone(req, nsk);
1075
if (!nreq)
1076
goto drop;
1077
1078
/* The new timer for the cloned req can decrease the 2
1079
* by calling inet_csk_reqsk_queue_drop_and_put(), so
1080
* hold another count to prevent use-after-free and
1081
* call reqsk_put() just before return.
1082
*/
1083
refcount_set(&nreq->rsk_refcnt, 2 + 1);
1084
timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1085
reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1086
1087
req = nreq;
1088
sk_listener = nsk;
1089
}
1090
1091
icsk = inet_csk(sk_listener);
1092
net = sock_net(sk_listener);
1093
max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1094
READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1095
/* Normally all the openreqs are young and become mature
1096
* (i.e. converted to established socket) for first timeout.
1097
* If synack was not acknowledged for 1 second, it means
1098
* one of the following things: synack was lost, ack was lost,
1099
* rtt is high or nobody planned to ack (i.e. synflood).
1100
* When server is a bit loaded, queue is populated with old
1101
* open requests, reducing effective size of queue.
1102
* When server is well loaded, queue size reduces to zero
1103
* after several minutes of work. It is not synflood,
1104
* it is normal operation. The solution is pruning
1105
* too old entries overriding normal timeout, when
1106
* situation becomes dangerous.
1107
*
1108
* Essentially, we reserve half of room for young
1109
* embrions; and abort old ones without pity, if old
1110
* ones are about to clog our table.
1111
*/
1112
queue = &icsk->icsk_accept_queue;
1113
qlen = reqsk_queue_len(queue);
1114
if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1115
int young = reqsk_queue_len_young(queue) << 1;
1116
1117
while (max_syn_ack_retries > 2) {
1118
if (qlen < young)
1119
break;
1120
max_syn_ack_retries--;
1121
young <<= 1;
1122
}
1123
}
1124
syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1125
&expire, &resend);
1126
req->rsk_ops->syn_ack_timeout(req);
1127
if (!expire &&
1128
(!resend ||
1129
!tcp_rtx_synack(sk_listener, req) ||
1130
inet_rsk(req)->acked)) {
1131
if (req->num_timeout++ == 0)
1132
atomic_dec(&queue->young);
1133
mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1134
1135
if (!nreq)
1136
return;
1137
1138
if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1139
/* delete timer */
1140
__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1141
goto no_ownership;
1142
}
1143
1144
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1145
reqsk_migrate_reset(oreq);
1146
reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1147
reqsk_put(oreq);
1148
1149
reqsk_put(nreq);
1150
return;
1151
}
1152
1153
/* Even if we can clone the req, we may need not retransmit any more
1154
* SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1155
* CPU may win the "own_req" race so that inet_ehash_insert() fails.
1156
*/
1157
if (nreq) {
1158
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1159
no_ownership:
1160
reqsk_migrate_reset(nreq);
1161
reqsk_queue_removed(queue, nreq);
1162
__reqsk_free(nreq);
1163
}
1164
1165
drop:
1166
__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1167
reqsk_put(oreq);
1168
}
1169
1170
static bool reqsk_queue_hash_req(struct request_sock *req,
1171
unsigned long timeout)
1172
{
1173
bool found_dup_sk = false;
1174
1175
if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1176
return false;
1177
1178
/* The timer needs to be setup after a successful insertion. */
1179
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1180
mod_timer(&req->rsk_timer, jiffies + timeout);
1181
1182
/* before letting lookups find us, make sure all req fields
1183
* are committed to memory and refcnt initialized.
1184
*/
1185
smp_wmb();
1186
refcount_set(&req->rsk_refcnt, 2 + 1);
1187
return true;
1188
}
1189
1190
bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1191
unsigned long timeout)
1192
{
1193
if (!reqsk_queue_hash_req(req, timeout))
1194
return false;
1195
1196
inet_csk_reqsk_queue_added(sk);
1197
return true;
1198
}
1199
1200
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1201
const gfp_t priority)
1202
{
1203
struct inet_connection_sock *icsk = inet_csk(newsk);
1204
1205
if (!icsk->icsk_ulp_ops)
1206
return;
1207
1208
icsk->icsk_ulp_ops->clone(req, newsk, priority);
1209
}
1210
1211
/**
1212
* inet_csk_clone_lock - clone an inet socket, and lock its clone
1213
* @sk: the socket to clone
1214
* @req: request_sock
1215
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1216
*
1217
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1218
*/
1219
struct sock *inet_csk_clone_lock(const struct sock *sk,
1220
const struct request_sock *req,
1221
const gfp_t priority)
1222
{
1223
struct sock *newsk = sk_clone_lock(sk, priority);
1224
struct inet_connection_sock *newicsk;
1225
struct inet_request_sock *ireq;
1226
struct inet_sock *newinet;
1227
1228
if (!newsk)
1229
return NULL;
1230
1231
newicsk = inet_csk(newsk);
1232
newinet = inet_sk(newsk);
1233
ireq = inet_rsk(req);
1234
1235
newicsk->icsk_bind_hash = NULL;
1236
newicsk->icsk_bind2_hash = NULL;
1237
1238
newinet->inet_dport = ireq->ir_rmt_port;
1239
newinet->inet_num = ireq->ir_num;
1240
newinet->inet_sport = htons(ireq->ir_num);
1241
1242
newsk->sk_bound_dev_if = ireq->ir_iif;
1243
1244
newsk->sk_daddr = ireq->ir_rmt_addr;
1245
newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1246
newinet->inet_saddr = ireq->ir_loc_addr;
1247
1248
#if IS_ENABLED(CONFIG_IPV6)
1249
newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1250
newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1251
#endif
1252
1253
/* listeners have SOCK_RCU_FREE, not the children */
1254
sock_reset_flag(newsk, SOCK_RCU_FREE);
1255
1256
inet_sk(newsk)->mc_list = NULL;
1257
1258
newsk->sk_mark = inet_rsk(req)->ir_mark;
1259
atomic64_set(&newsk->sk_cookie,
1260
atomic64_read(&inet_rsk(req)->ir_cookie));
1261
1262
newicsk->icsk_retransmits = 0;
1263
newicsk->icsk_backoff = 0;
1264
newicsk->icsk_probes_out = 0;
1265
newicsk->icsk_probes_tstamp = 0;
1266
1267
/* Deinitialize accept_queue to trap illegal accesses. */
1268
memset(&newicsk->icsk_accept_queue, 0,
1269
sizeof(newicsk->icsk_accept_queue));
1270
1271
inet_sk_set_state(newsk, TCP_SYN_RECV);
1272
1273
inet_clone_ulp(req, newsk, priority);
1274
1275
security_inet_csk_clone(newsk, req);
1276
1277
return newsk;
1278
}
1279
1280
/*
1281
* At this point, there should be no process reference to this
1282
* socket, and thus no user references at all. Therefore we
1283
* can assume the socket waitqueue is inactive and nobody will
1284
* try to jump onto it.
1285
*/
1286
void inet_csk_destroy_sock(struct sock *sk)
1287
{
1288
WARN_ON(sk->sk_state != TCP_CLOSE);
1289
WARN_ON(!sock_flag(sk, SOCK_DEAD));
1290
1291
/* It cannot be in hash table! */
1292
WARN_ON(!sk_unhashed(sk));
1293
1294
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1295
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1296
1297
sk->sk_prot->destroy(sk);
1298
1299
sk_stream_kill_queues(sk);
1300
1301
xfrm_sk_free_policy(sk);
1302
1303
tcp_orphan_count_dec();
1304
1305
sock_put(sk);
1306
}
1307
EXPORT_SYMBOL(inet_csk_destroy_sock);
1308
1309
void inet_csk_prepare_for_destroy_sock(struct sock *sk)
1310
{
1311
/* The below has to be done to allow calling inet_csk_destroy_sock */
1312
sock_set_flag(sk, SOCK_DEAD);
1313
tcp_orphan_count_inc();
1314
}
1315
1316
/* This function allows to force a closure of a socket after the call to
1317
* tcp_create_openreq_child().
1318
*/
1319
void inet_csk_prepare_forced_close(struct sock *sk)
1320
__releases(&sk->sk_lock.slock)
1321
{
1322
/* sk_clone_lock locked the socket and set refcnt to 2 */
1323
bh_unlock_sock(sk);
1324
sock_put(sk);
1325
inet_csk_prepare_for_destroy_sock(sk);
1326
inet_sk(sk)->inet_num = 0;
1327
}
1328
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1329
1330
static int inet_ulp_can_listen(const struct sock *sk)
1331
{
1332
const struct inet_connection_sock *icsk = inet_csk(sk);
1333
1334
if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1335
return -EINVAL;
1336
1337
return 0;
1338
}
1339
1340
int inet_csk_listen_start(struct sock *sk)
1341
{
1342
struct inet_connection_sock *icsk = inet_csk(sk);
1343
struct inet_sock *inet = inet_sk(sk);
1344
int err;
1345
1346
err = inet_ulp_can_listen(sk);
1347
if (unlikely(err))
1348
return err;
1349
1350
reqsk_queue_alloc(&icsk->icsk_accept_queue);
1351
1352
sk->sk_ack_backlog = 0;
1353
inet_csk_delack_init(sk);
1354
1355
/* There is race window here: we announce ourselves listening,
1356
* but this transition is still not validated by get_port().
1357
* It is OK, because this socket enters to hash table only
1358
* after validation is complete.
1359
*/
1360
inet_sk_state_store(sk, TCP_LISTEN);
1361
err = sk->sk_prot->get_port(sk, inet->inet_num);
1362
if (!err) {
1363
inet->inet_sport = htons(inet->inet_num);
1364
1365
sk_dst_reset(sk);
1366
err = sk->sk_prot->hash(sk);
1367
1368
if (likely(!err))
1369
return 0;
1370
}
1371
1372
inet_sk_set_state(sk, TCP_CLOSE);
1373
return err;
1374
}
1375
1376
static void inet_child_forget(struct sock *sk, struct request_sock *req,
1377
struct sock *child)
1378
{
1379
sk->sk_prot->disconnect(child, O_NONBLOCK);
1380
1381
sock_orphan(child);
1382
1383
tcp_orphan_count_inc();
1384
1385
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1386
BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1387
BUG_ON(sk != req->rsk_listener);
1388
1389
/* Paranoid, to prevent race condition if
1390
* an inbound pkt destined for child is
1391
* blocked by sock lock in tcp_v4_rcv().
1392
* Also to satisfy an assertion in
1393
* tcp_v4_destroy_sock().
1394
*/
1395
RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1396
}
1397
inet_csk_destroy_sock(child);
1398
}
1399
1400
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1401
struct request_sock *req,
1402
struct sock *child)
1403
{
1404
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1405
1406
spin_lock(&queue->rskq_lock);
1407
if (unlikely(sk->sk_state != TCP_LISTEN)) {
1408
inet_child_forget(sk, req, child);
1409
child = NULL;
1410
} else {
1411
req->sk = child;
1412
req->dl_next = NULL;
1413
if (queue->rskq_accept_head == NULL)
1414
WRITE_ONCE(queue->rskq_accept_head, req);
1415
else
1416
queue->rskq_accept_tail->dl_next = req;
1417
queue->rskq_accept_tail = req;
1418
sk_acceptq_added(sk);
1419
}
1420
spin_unlock(&queue->rskq_lock);
1421
return child;
1422
}
1423
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1424
1425
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1426
struct request_sock *req, bool own_req)
1427
{
1428
if (own_req) {
1429
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1430
reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1431
1432
if (sk != req->rsk_listener) {
1433
/* another listening sk has been selected,
1434
* migrate the req to it.
1435
*/
1436
struct request_sock *nreq;
1437
1438
/* hold a refcnt for the nreq->rsk_listener
1439
* which is assigned in inet_reqsk_clone()
1440
*/
1441
sock_hold(sk);
1442
nreq = inet_reqsk_clone(req, sk);
1443
if (!nreq) {
1444
inet_child_forget(sk, req, child);
1445
goto child_put;
1446
}
1447
1448
refcount_set(&nreq->rsk_refcnt, 1);
1449
if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1450
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1451
reqsk_migrate_reset(req);
1452
reqsk_put(req);
1453
return child;
1454
}
1455
1456
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1457
reqsk_migrate_reset(nreq);
1458
__reqsk_free(nreq);
1459
} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1460
return child;
1461
}
1462
}
1463
/* Too bad, another child took ownership of the request, undo. */
1464
child_put:
1465
bh_unlock_sock(child);
1466
sock_put(child);
1467
return NULL;
1468
}
1469
1470
/*
1471
* This routine closes sockets which have been at least partially
1472
* opened, but not yet accepted.
1473
*/
1474
void inet_csk_listen_stop(struct sock *sk)
1475
{
1476
struct inet_connection_sock *icsk = inet_csk(sk);
1477
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1478
struct request_sock *next, *req;
1479
1480
/* Following specs, it would be better either to send FIN
1481
* (and enter FIN-WAIT-1, it is normal close)
1482
* or to send active reset (abort).
1483
* Certainly, it is pretty dangerous while synflood, but it is
1484
* bad justification for our negligence 8)
1485
* To be honest, we are not able to make either
1486
* of the variants now. --ANK
1487
*/
1488
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1489
struct sock *child = req->sk, *nsk;
1490
struct request_sock *nreq;
1491
1492
local_bh_disable();
1493
bh_lock_sock(child);
1494
WARN_ON(sock_owned_by_user(child));
1495
sock_hold(child);
1496
1497
nsk = reuseport_migrate_sock(sk, child, NULL);
1498
if (nsk) {
1499
nreq = inet_reqsk_clone(req, nsk);
1500
if (nreq) {
1501
refcount_set(&nreq->rsk_refcnt, 1);
1502
1503
if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1504
__NET_INC_STATS(sock_net(nsk),
1505
LINUX_MIB_TCPMIGRATEREQSUCCESS);
1506
reqsk_migrate_reset(req);
1507
} else {
1508
__NET_INC_STATS(sock_net(nsk),
1509
LINUX_MIB_TCPMIGRATEREQFAILURE);
1510
reqsk_migrate_reset(nreq);
1511
__reqsk_free(nreq);
1512
}
1513
1514
/* inet_csk_reqsk_queue_add() has already
1515
* called inet_child_forget() on failure case.
1516
*/
1517
goto skip_child_forget;
1518
}
1519
}
1520
1521
inet_child_forget(sk, req, child);
1522
skip_child_forget:
1523
reqsk_put(req);
1524
bh_unlock_sock(child);
1525
local_bh_enable();
1526
sock_put(child);
1527
1528
cond_resched();
1529
}
1530
if (queue->fastopenq.rskq_rst_head) {
1531
/* Free all the reqs queued in rskq_rst_head. */
1532
spin_lock_bh(&queue->fastopenq.lock);
1533
req = queue->fastopenq.rskq_rst_head;
1534
queue->fastopenq.rskq_rst_head = NULL;
1535
spin_unlock_bh(&queue->fastopenq.lock);
1536
while (req != NULL) {
1537
next = req->dl_next;
1538
reqsk_put(req);
1539
req = next;
1540
}
1541
}
1542
WARN_ON_ONCE(sk->sk_ack_backlog);
1543
}
1544
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1545
1546
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1547
{
1548
const struct inet_sock *inet = inet_sk(sk);
1549
struct flowi4 *fl4;
1550
struct rtable *rt;
1551
1552
rcu_read_lock();
1553
fl4 = &fl->u.ip4;
1554
inet_sk_init_flowi4(inet, fl4);
1555
rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1556
if (IS_ERR(rt))
1557
rt = NULL;
1558
if (rt)
1559
sk_setup_caps(sk, &rt->dst);
1560
rcu_read_unlock();
1561
1562
return &rt->dst;
1563
}
1564
1565
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1566
{
1567
struct dst_entry *dst = __sk_dst_check(sk, 0);
1568
struct inet_sock *inet = inet_sk(sk);
1569
1570
if (!dst) {
1571
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1572
if (!dst)
1573
goto out;
1574
}
1575
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1576
1577
dst = __sk_dst_check(sk, 0);
1578
if (!dst)
1579
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1580
out:
1581
return dst;
1582
}
1583
1584