Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/ip_output.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* The Internet Protocol (IP) output module.
8
*
9
* Authors: Ross Biro
10
* Fred N. van Kempen, <[email protected]>
11
* Donald Becker, <[email protected]>
12
* Alan Cox, <[email protected]>
13
* Richard Underwood
14
* Stefan Becker, <[email protected]>
15
* Jorge Cwik, <[email protected]>
16
* Arnt Gulbrandsen, <[email protected]>
17
* Hirokazu Takahashi, <[email protected]>
18
*
19
* See ip_input.c for original log
20
*
21
* Fixes:
22
* Alan Cox : Missing nonblock feature in ip_build_xmit.
23
* Mike Kilburn : htons() missing in ip_build_xmit.
24
* Bradford Johnson: Fix faulty handling of some frames when
25
* no route is found.
26
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27
* (in case if packet not accepted by
28
* output firewall rules)
29
* Mike McLagan : Routing by source
30
* Alexey Kuznetsov: use new route cache
31
* Andi Kleen: Fix broken PMTU recovery and remove
32
* some redundant tests.
33
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
34
* Andi Kleen : Replace ip_reply with ip_send_reply.
35
* Andi Kleen : Split fast and slow ip_build_xmit path
36
* for decreased register pressure on x86
37
* and more readability.
38
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
39
* silently drop skb instead of failing with -EPERM.
40
* Detlev Wengorz : Copy protocol for fragments.
41
* Hirokazu Takahashi: HW checksumming for outgoing UDP
42
* datagrams.
43
* Hirokazu Takahashi: sendfile() on UDP works now.
44
*/
45
46
#include <linux/uaccess.h>
47
#include <linux/module.h>
48
#include <linux/types.h>
49
#include <linux/kernel.h>
50
#include <linux/mm.h>
51
#include <linux/string.h>
52
#include <linux/errno.h>
53
#include <linux/highmem.h>
54
#include <linux/slab.h>
55
56
#include <linux/socket.h>
57
#include <linux/sockios.h>
58
#include <linux/in.h>
59
#include <linux/inet.h>
60
#include <linux/netdevice.h>
61
#include <linux/etherdevice.h>
62
#include <linux/proc_fs.h>
63
#include <linux/stat.h>
64
#include <linux/init.h>
65
66
#include <net/flow.h>
67
#include <net/snmp.h>
68
#include <net/ip.h>
69
#include <net/protocol.h>
70
#include <net/route.h>
71
#include <net/xfrm.h>
72
#include <linux/skbuff.h>
73
#include <net/sock.h>
74
#include <net/arp.h>
75
#include <net/icmp.h>
76
#include <net/checksum.h>
77
#include <net/gso.h>
78
#include <net/inetpeer.h>
79
#include <net/lwtunnel.h>
80
#include <net/inet_dscp.h>
81
#include <linux/bpf-cgroup.h>
82
#include <linux/igmp.h>
83
#include <linux/netfilter_ipv4.h>
84
#include <linux/netfilter_bridge.h>
85
#include <linux/netlink.h>
86
#include <linux/tcp.h>
87
#include <net/psp.h>
88
89
static int
90
ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
91
unsigned int mtu,
92
int (*output)(struct net *, struct sock *, struct sk_buff *));
93
94
/* Generate a checksum for an outgoing IP datagram. */
95
void ip_send_check(struct iphdr *iph)
96
{
97
iph->check = 0;
98
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
99
}
100
EXPORT_SYMBOL(ip_send_check);
101
102
int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
103
{
104
struct iphdr *iph = ip_hdr(skb);
105
106
IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
107
108
iph_set_totlen(iph, skb->len);
109
ip_send_check(iph);
110
111
/* if egress device is enslaved to an L3 master device pass the
112
* skb to its handler for processing
113
*/
114
skb = l3mdev_ip_out(sk, skb);
115
if (unlikely(!skb))
116
return 0;
117
118
skb->protocol = htons(ETH_P_IP);
119
120
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
121
net, sk, skb, NULL, skb_dst_dev(skb),
122
dst_output);
123
}
124
125
int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
126
{
127
int err;
128
129
err = __ip_local_out(net, sk, skb);
130
if (likely(err == 1))
131
err = dst_output(net, sk, skb);
132
133
return err;
134
}
135
EXPORT_SYMBOL_GPL(ip_local_out);
136
137
static inline int ip_select_ttl(const struct inet_sock *inet,
138
const struct dst_entry *dst)
139
{
140
int ttl = READ_ONCE(inet->uc_ttl);
141
142
if (ttl < 0)
143
ttl = ip4_dst_hoplimit(dst);
144
return ttl;
145
}
146
147
/*
148
* Add an ip header to a skbuff and send it out.
149
*
150
*/
151
int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
152
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
153
u8 tos)
154
{
155
const struct inet_sock *inet = inet_sk(sk);
156
struct rtable *rt = skb_rtable(skb);
157
struct net *net = sock_net(sk);
158
struct iphdr *iph;
159
160
/* Build the IP header. */
161
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
162
skb_reset_network_header(skb);
163
iph = ip_hdr(skb);
164
iph->version = 4;
165
iph->ihl = 5;
166
iph->tos = tos;
167
iph->ttl = ip_select_ttl(inet, &rt->dst);
168
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
169
iph->saddr = saddr;
170
iph->protocol = sk->sk_protocol;
171
/* Do not bother generating IPID for small packets (eg SYNACK) */
172
if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
173
iph->frag_off = htons(IP_DF);
174
iph->id = 0;
175
} else {
176
iph->frag_off = 0;
177
/* TCP packets here are SYNACK with fat IPv4/TCP options.
178
* Avoid using the hashed IP ident generator.
179
*/
180
if (sk->sk_protocol == IPPROTO_TCP)
181
iph->id = (__force __be16)get_random_u16();
182
else
183
__ip_select_ident(net, iph, 1);
184
}
185
186
if (opt && opt->opt.optlen) {
187
iph->ihl += opt->opt.optlen>>2;
188
ip_options_build(skb, &opt->opt, daddr, rt);
189
}
190
191
skb->priority = READ_ONCE(sk->sk_priority);
192
if (!skb->mark)
193
skb->mark = READ_ONCE(sk->sk_mark);
194
195
/* Send it out. */
196
return ip_local_out(net, skb->sk, skb);
197
}
198
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
199
200
static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
201
{
202
struct dst_entry *dst = skb_dst(skb);
203
struct rtable *rt = dst_rtable(dst);
204
struct net_device *dev = dst_dev(dst);
205
unsigned int hh_len = LL_RESERVED_SPACE(dev);
206
struct neighbour *neigh;
207
bool is_v6gw = false;
208
209
if (rt->rt_type == RTN_MULTICAST) {
210
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
211
} else if (rt->rt_type == RTN_BROADCAST)
212
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
213
214
/* OUTOCTETS should be counted after fragment */
215
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
216
217
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
218
skb = skb_expand_head(skb, hh_len);
219
if (!skb)
220
return -ENOMEM;
221
}
222
223
if (lwtunnel_xmit_redirect(dst->lwtstate)) {
224
int res = lwtunnel_xmit(skb);
225
226
if (res != LWTUNNEL_XMIT_CONTINUE)
227
return res;
228
}
229
230
rcu_read_lock();
231
neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
232
if (!IS_ERR(neigh)) {
233
int res;
234
235
sock_confirm_neigh(skb, neigh);
236
/* if crossing protocols, can not use the cached header */
237
res = neigh_output(neigh, skb, is_v6gw);
238
rcu_read_unlock();
239
return res;
240
}
241
rcu_read_unlock();
242
243
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
244
__func__);
245
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
246
return PTR_ERR(neigh);
247
}
248
249
static int ip_finish_output_gso(struct net *net, struct sock *sk,
250
struct sk_buff *skb, unsigned int mtu)
251
{
252
struct sk_buff *segs, *nskb;
253
netdev_features_t features;
254
int ret = 0;
255
256
/* common case: seglen is <= mtu
257
*/
258
if (skb_gso_validate_network_len(skb, mtu))
259
return ip_finish_output2(net, sk, skb);
260
261
/* Slowpath - GSO segment length exceeds the egress MTU.
262
*
263
* This can happen in several cases:
264
* - Forwarding of a TCP GRO skb, when DF flag is not set.
265
* - Forwarding of an skb that arrived on a virtualization interface
266
* (virtio-net/vhost/tap) with TSO/GSO size set by other network
267
* stack.
268
* - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
269
* interface with a smaller MTU.
270
* - Arriving GRO skb (or GSO skb in a virtualized environment) that is
271
* bridged to a NETIF_F_TSO tunnel stacked over an interface with an
272
* insufficient MTU.
273
*/
274
features = netif_skb_features(skb);
275
BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
276
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
277
if (IS_ERR_OR_NULL(segs)) {
278
kfree_skb(skb);
279
return -ENOMEM;
280
}
281
282
consume_skb(skb);
283
284
skb_list_walk_safe(segs, segs, nskb) {
285
int err;
286
287
skb_mark_not_on_list(segs);
288
err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
289
290
if (err && ret == 0)
291
ret = err;
292
}
293
294
return ret;
295
}
296
297
static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
298
{
299
unsigned int mtu;
300
301
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302
/* Policy lookup after SNAT yielded a new policy */
303
if (skb_dst(skb)->xfrm) {
304
IPCB(skb)->flags |= IPSKB_REROUTED;
305
return dst_output(net, sk, skb);
306
}
307
#endif
308
mtu = ip_skb_dst_mtu(sk, skb);
309
if (skb_is_gso(skb))
310
return ip_finish_output_gso(net, sk, skb, mtu);
311
312
if (skb->len > mtu || IPCB(skb)->frag_max_size)
313
return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
314
315
return ip_finish_output2(net, sk, skb);
316
}
317
318
static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
319
{
320
int ret;
321
322
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
323
switch (ret) {
324
case NET_XMIT_SUCCESS:
325
return __ip_finish_output(net, sk, skb);
326
case NET_XMIT_CN:
327
return __ip_finish_output(net, sk, skb) ? : ret;
328
default:
329
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
330
return ret;
331
}
332
}
333
334
static int ip_mc_finish_output(struct net *net, struct sock *sk,
335
struct sk_buff *skb)
336
{
337
struct rtable *new_rt;
338
bool do_cn = false;
339
int ret, err;
340
341
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
342
switch (ret) {
343
case NET_XMIT_CN:
344
do_cn = true;
345
fallthrough;
346
case NET_XMIT_SUCCESS:
347
break;
348
default:
349
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
350
return ret;
351
}
352
353
/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
354
* this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
355
* see ipv4_pktinfo_prepare().
356
*/
357
new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
358
if (new_rt) {
359
new_rt->rt_iif = 0;
360
skb_dst_drop(skb);
361
skb_dst_set(skb, &new_rt->dst);
362
}
363
364
err = dev_loopback_xmit(net, sk, skb);
365
return (do_cn && err) ? ret : err;
366
}
367
368
int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
369
{
370
struct rtable *rt = skb_rtable(skb);
371
struct net_device *dev = rt->dst.dev;
372
373
/*
374
* If the indicated interface is up and running, send the packet.
375
*/
376
skb->dev = dev;
377
skb->protocol = htons(ETH_P_IP);
378
379
/*
380
* Multicasts are looped back for other local users
381
*/
382
383
if (rt->rt_flags&RTCF_MULTICAST) {
384
if (sk_mc_loop(sk)
385
#ifdef CONFIG_IP_MROUTE
386
/* Small optimization: do not loopback not local frames,
387
which returned after forwarding; they will be dropped
388
by ip_mr_input in any case.
389
Note, that local frames are looped back to be delivered
390
to local recipients.
391
392
This check is duplicated in ip_mr_input at the moment.
393
*/
394
&&
395
((rt->rt_flags & RTCF_LOCAL) ||
396
!(IPCB(skb)->flags & IPSKB_FORWARDED))
397
#endif
398
) {
399
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
400
if (newskb)
401
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
402
net, sk, newskb, NULL, newskb->dev,
403
ip_mc_finish_output);
404
}
405
406
/* Multicasts with ttl 0 must not go beyond the host */
407
408
if (ip_hdr(skb)->ttl == 0) {
409
kfree_skb(skb);
410
return 0;
411
}
412
}
413
414
if (rt->rt_flags&RTCF_BROADCAST) {
415
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
416
if (newskb)
417
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418
net, sk, newskb, NULL, newskb->dev,
419
ip_mc_finish_output);
420
}
421
422
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
423
net, sk, skb, NULL, skb->dev,
424
ip_finish_output,
425
!(IPCB(skb)->flags & IPSKB_REROUTED));
426
}
427
428
int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
429
{
430
struct net_device *dev, *indev = skb->dev;
431
int ret_val;
432
433
rcu_read_lock();
434
dev = skb_dst_dev_rcu(skb);
435
skb->dev = dev;
436
skb->protocol = htons(ETH_P_IP);
437
438
ret_val = NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
439
net, sk, skb, indev, dev,
440
ip_finish_output,
441
!(IPCB(skb)->flags & IPSKB_REROUTED));
442
rcu_read_unlock();
443
return ret_val;
444
}
445
EXPORT_SYMBOL(ip_output);
446
447
/*
448
* copy saddr and daddr, possibly using 64bit load/stores
449
* Equivalent to :
450
* iph->saddr = fl4->saddr;
451
* iph->daddr = fl4->daddr;
452
*/
453
static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
454
{
455
BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
456
offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
457
458
iph->saddr = fl4->saddr;
459
iph->daddr = fl4->daddr;
460
}
461
462
/* Note: skb->sk can be different from sk, in case of tunnels */
463
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
464
__u8 tos)
465
{
466
struct inet_sock *inet = inet_sk(sk);
467
struct net *net = sock_net(sk);
468
struct ip_options_rcu *inet_opt;
469
struct flowi4 *fl4;
470
struct rtable *rt;
471
struct iphdr *iph;
472
int res;
473
474
/* Skip all of this if the packet is already routed,
475
* f.e. by something like SCTP.
476
*/
477
rcu_read_lock();
478
inet_opt = rcu_dereference(inet->inet_opt);
479
fl4 = &fl->u.ip4;
480
rt = skb_rtable(skb);
481
if (rt)
482
goto packet_routed;
483
484
/* Make sure we can route this packet. */
485
rt = dst_rtable(__sk_dst_check(sk, 0));
486
if (!rt) {
487
inet_sk_init_flowi4(inet, fl4);
488
489
/* sctp_v4_xmit() uses its own DSCP value */
490
fl4->flowi4_dscp = inet_dsfield_to_dscp(tos);
491
492
/* If this fails, retransmit mechanism of transport layer will
493
* keep trying until route appears or the connection times
494
* itself out.
495
*/
496
rt = ip_route_output_flow(net, fl4, sk);
497
if (IS_ERR(rt))
498
goto no_route;
499
sk_setup_caps(sk, &rt->dst);
500
}
501
skb_dst_set_noref(skb, &rt->dst);
502
503
packet_routed:
504
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
505
goto no_route;
506
507
/* OK, we know where to send it, allocate and build IP header. */
508
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
509
skb_reset_network_header(skb);
510
iph = ip_hdr(skb);
511
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
512
if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
513
iph->frag_off = htons(IP_DF);
514
else
515
iph->frag_off = 0;
516
iph->ttl = ip_select_ttl(inet, &rt->dst);
517
iph->protocol = sk->sk_protocol;
518
ip_copy_addrs(iph, fl4);
519
520
/* Transport layer set skb->h.foo itself. */
521
522
if (inet_opt && inet_opt->opt.optlen) {
523
iph->ihl += inet_opt->opt.optlen >> 2;
524
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
525
}
526
527
ip_select_ident_segs(net, skb, sk,
528
skb_shinfo(skb)->gso_segs ?: 1);
529
530
/* TODO : should we use skb->sk here instead of sk ? */
531
skb->priority = READ_ONCE(sk->sk_priority);
532
skb->mark = READ_ONCE(sk->sk_mark);
533
534
res = ip_local_out(net, sk, skb);
535
rcu_read_unlock();
536
return res;
537
538
no_route:
539
rcu_read_unlock();
540
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
541
kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
542
return -EHOSTUNREACH;
543
}
544
EXPORT_SYMBOL(__ip_queue_xmit);
545
546
int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
547
{
548
return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
549
}
550
EXPORT_SYMBOL(ip_queue_xmit);
551
552
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
553
{
554
to->pkt_type = from->pkt_type;
555
to->priority = from->priority;
556
to->protocol = from->protocol;
557
to->skb_iif = from->skb_iif;
558
skb_dst_drop(to);
559
skb_dst_copy(to, from);
560
to->dev = from->dev;
561
to->mark = from->mark;
562
563
skb_copy_hash(to, from);
564
565
#ifdef CONFIG_NET_SCHED
566
to->tc_index = from->tc_index;
567
#endif
568
nf_copy(to, from);
569
skb_ext_copy(to, from);
570
#if IS_ENABLED(CONFIG_IP_VS)
571
to->ipvs_property = from->ipvs_property;
572
#endif
573
skb_copy_secmark(to, from);
574
}
575
576
static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
577
unsigned int mtu,
578
int (*output)(struct net *, struct sock *, struct sk_buff *))
579
{
580
struct iphdr *iph = ip_hdr(skb);
581
582
if ((iph->frag_off & htons(IP_DF)) == 0)
583
return ip_do_fragment(net, sk, skb, output);
584
585
if (unlikely(!skb->ignore_df ||
586
(IPCB(skb)->frag_max_size &&
587
IPCB(skb)->frag_max_size > mtu))) {
588
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
589
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
590
htonl(mtu));
591
kfree_skb(skb);
592
return -EMSGSIZE;
593
}
594
595
return ip_do_fragment(net, sk, skb, output);
596
}
597
598
void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
599
unsigned int hlen, struct ip_fraglist_iter *iter)
600
{
601
unsigned int first_len = skb_pagelen(skb);
602
603
iter->frag = skb_shinfo(skb)->frag_list;
604
skb_frag_list_init(skb);
605
606
iter->offset = 0;
607
iter->iph = iph;
608
iter->hlen = hlen;
609
610
skb->data_len = first_len - skb_headlen(skb);
611
skb->len = first_len;
612
iph->tot_len = htons(first_len);
613
iph->frag_off = htons(IP_MF);
614
ip_send_check(iph);
615
}
616
EXPORT_SYMBOL(ip_fraglist_init);
617
618
void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
619
{
620
unsigned int hlen = iter->hlen;
621
struct iphdr *iph = iter->iph;
622
struct sk_buff *frag;
623
624
frag = iter->frag;
625
frag->ip_summed = CHECKSUM_NONE;
626
skb_reset_transport_header(frag);
627
__skb_push(frag, hlen);
628
skb_reset_network_header(frag);
629
memcpy(skb_network_header(frag), iph, hlen);
630
iter->iph = ip_hdr(frag);
631
iph = iter->iph;
632
iph->tot_len = htons(frag->len);
633
ip_copy_metadata(frag, skb);
634
iter->offset += skb->len - hlen;
635
iph->frag_off = htons(iter->offset >> 3);
636
if (frag->next)
637
iph->frag_off |= htons(IP_MF);
638
/* Ready, complete checksum */
639
ip_send_check(iph);
640
}
641
EXPORT_SYMBOL(ip_fraglist_prepare);
642
643
void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
644
unsigned int ll_rs, unsigned int mtu, bool DF,
645
struct ip_frag_state *state)
646
{
647
struct iphdr *iph = ip_hdr(skb);
648
649
state->DF = DF;
650
state->hlen = hlen;
651
state->ll_rs = ll_rs;
652
state->mtu = mtu;
653
654
state->left = skb->len - hlen; /* Space per frame */
655
state->ptr = hlen; /* Where to start from */
656
657
state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
658
state->not_last_frag = iph->frag_off & htons(IP_MF);
659
}
660
EXPORT_SYMBOL(ip_frag_init);
661
662
static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
663
bool first_frag)
664
{
665
/* Copy the flags to each fragment. */
666
IPCB(to)->flags = IPCB(from)->flags;
667
668
/* ANK: dirty, but effective trick. Upgrade options only if
669
* the segment to be fragmented was THE FIRST (otherwise,
670
* options are already fixed) and make it ONCE
671
* on the initial skb, so that all the following fragments
672
* will inherit fixed options.
673
*/
674
if (first_frag)
675
ip_options_fragment(from);
676
}
677
678
struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
679
{
680
unsigned int len = state->left;
681
struct sk_buff *skb2;
682
struct iphdr *iph;
683
684
/* IF: it doesn't fit, use 'mtu' - the data space left */
685
if (len > state->mtu)
686
len = state->mtu;
687
/* IF: we are not sending up to and including the packet end
688
then align the next start on an eight byte boundary */
689
if (len < state->left) {
690
len &= ~7;
691
}
692
693
/* Allocate buffer */
694
skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
695
if (!skb2)
696
return ERR_PTR(-ENOMEM);
697
698
/*
699
* Set up data on packet
700
*/
701
702
ip_copy_metadata(skb2, skb);
703
skb_reserve(skb2, state->ll_rs);
704
skb_put(skb2, len + state->hlen);
705
skb_reset_network_header(skb2);
706
skb2->transport_header = skb2->network_header + state->hlen;
707
708
/*
709
* Charge the memory for the fragment to any owner
710
* it might possess
711
*/
712
713
if (skb->sk)
714
skb_set_owner_w(skb2, skb->sk);
715
716
/*
717
* Copy the packet header into the new buffer.
718
*/
719
720
skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
721
722
/*
723
* Copy a block of the IP datagram.
724
*/
725
if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
726
BUG();
727
state->left -= len;
728
729
/*
730
* Fill in the new header fields.
731
*/
732
iph = ip_hdr(skb2);
733
iph->frag_off = htons((state->offset >> 3));
734
if (state->DF)
735
iph->frag_off |= htons(IP_DF);
736
737
/*
738
* Added AC : If we are fragmenting a fragment that's not the
739
* last fragment then keep MF on each bit
740
*/
741
if (state->left > 0 || state->not_last_frag)
742
iph->frag_off |= htons(IP_MF);
743
state->ptr += len;
744
state->offset += len;
745
746
iph->tot_len = htons(len + state->hlen);
747
748
ip_send_check(iph);
749
750
return skb2;
751
}
752
EXPORT_SYMBOL(ip_frag_next);
753
754
/*
755
* This IP datagram is too large to be sent in one piece. Break it up into
756
* smaller pieces (each of size equal to IP header plus
757
* a block of the data of the original IP data part) that will yet fit in a
758
* single device frame, and queue such a frame for sending.
759
*/
760
761
int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
762
int (*output)(struct net *, struct sock *, struct sk_buff *))
763
{
764
struct iphdr *iph;
765
struct sk_buff *skb2;
766
u8 tstamp_type = skb->tstamp_type;
767
struct rtable *rt = skb_rtable(skb);
768
unsigned int mtu, hlen, ll_rs;
769
struct ip_fraglist_iter iter;
770
ktime_t tstamp = skb->tstamp;
771
struct ip_frag_state state;
772
int err = 0;
773
774
/* for offloaded checksums cleanup checksum before fragmentation */
775
if (skb->ip_summed == CHECKSUM_PARTIAL &&
776
(err = skb_checksum_help(skb)))
777
goto fail;
778
779
/*
780
* Point into the IP datagram header.
781
*/
782
783
iph = ip_hdr(skb);
784
785
mtu = ip_skb_dst_mtu(sk, skb);
786
if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
787
mtu = IPCB(skb)->frag_max_size;
788
789
/*
790
* Setup starting values.
791
*/
792
793
hlen = iph->ihl * 4;
794
mtu = mtu - hlen; /* Size of data space */
795
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
796
ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
797
798
/* When frag_list is given, use it. First, check its validity:
799
* some transformers could create wrong frag_list or break existing
800
* one, it is not prohibited. In this case fall back to copying.
801
*
802
* LATER: this step can be merged to real generation of fragments,
803
* we can switch to copy when see the first bad fragment.
804
*/
805
if (skb_has_frag_list(skb)) {
806
struct sk_buff *frag, *frag2;
807
unsigned int first_len = skb_pagelen(skb);
808
809
if (first_len - hlen > mtu ||
810
((first_len - hlen) & 7) ||
811
ip_is_fragment(iph) ||
812
skb_cloned(skb) ||
813
skb_headroom(skb) < ll_rs)
814
goto slow_path;
815
816
skb_walk_frags(skb, frag) {
817
/* Correct geometry. */
818
if (frag->len > mtu ||
819
((frag->len & 7) && frag->next) ||
820
skb_headroom(frag) < hlen + ll_rs)
821
goto slow_path_clean;
822
823
/* Partially cloned skb? */
824
if (skb_shared(frag))
825
goto slow_path_clean;
826
827
BUG_ON(frag->sk);
828
if (skb->sk) {
829
frag->sk = skb->sk;
830
frag->destructor = sock_wfree;
831
}
832
skb->truesize -= frag->truesize;
833
}
834
835
/* Everything is OK. Generate! */
836
ip_fraglist_init(skb, iph, hlen, &iter);
837
838
for (;;) {
839
/* Prepare header of the next frame,
840
* before previous one went down. */
841
if (iter.frag) {
842
bool first_frag = (iter.offset == 0);
843
844
IPCB(iter.frag)->flags = IPCB(skb)->flags;
845
ip_fraglist_prepare(skb, &iter);
846
if (first_frag && IPCB(skb)->opt.optlen) {
847
/* ipcb->opt is not populated for frags
848
* coming from __ip_make_skb(),
849
* ip_options_fragment() needs optlen
850
*/
851
IPCB(iter.frag)->opt.optlen =
852
IPCB(skb)->opt.optlen;
853
ip_options_fragment(iter.frag);
854
ip_send_check(iter.iph);
855
}
856
}
857
858
skb_set_delivery_time(skb, tstamp, tstamp_type);
859
err = output(net, sk, skb);
860
861
if (!err)
862
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
863
if (err || !iter.frag)
864
break;
865
866
skb = ip_fraglist_next(&iter);
867
}
868
869
if (err == 0) {
870
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
871
return 0;
872
}
873
874
kfree_skb_list(iter.frag);
875
876
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
877
return err;
878
879
slow_path_clean:
880
skb_walk_frags(skb, frag2) {
881
if (frag2 == frag)
882
break;
883
frag2->sk = NULL;
884
frag2->destructor = NULL;
885
skb->truesize += frag2->truesize;
886
}
887
}
888
889
slow_path:
890
/*
891
* Fragment the datagram.
892
*/
893
894
ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
895
&state);
896
897
/*
898
* Keep copying data until we run out.
899
*/
900
901
while (state.left > 0) {
902
bool first_frag = (state.offset == 0);
903
904
skb2 = ip_frag_next(skb, &state);
905
if (IS_ERR(skb2)) {
906
err = PTR_ERR(skb2);
907
goto fail;
908
}
909
ip_frag_ipcb(skb, skb2, first_frag);
910
911
/*
912
* Put this fragment into the sending queue.
913
*/
914
skb_set_delivery_time(skb2, tstamp, tstamp_type);
915
err = output(net, sk, skb2);
916
if (err)
917
goto fail;
918
919
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
920
}
921
consume_skb(skb);
922
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
923
return err;
924
925
fail:
926
kfree_skb(skb);
927
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
928
return err;
929
}
930
EXPORT_SYMBOL(ip_do_fragment);
931
932
int
933
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
934
{
935
struct msghdr *msg = from;
936
937
if (skb->ip_summed == CHECKSUM_PARTIAL) {
938
if (!copy_from_iter_full(to, len, &msg->msg_iter))
939
return -EFAULT;
940
} else {
941
__wsum csum = 0;
942
if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
943
return -EFAULT;
944
skb->csum = csum_block_add(skb->csum, csum, odd);
945
}
946
return 0;
947
}
948
EXPORT_SYMBOL(ip_generic_getfrag);
949
950
static int __ip_append_data(struct sock *sk,
951
struct flowi4 *fl4,
952
struct sk_buff_head *queue,
953
struct inet_cork *cork,
954
struct page_frag *pfrag,
955
int getfrag(void *from, char *to, int offset,
956
int len, int odd, struct sk_buff *skb),
957
void *from, int length, int transhdrlen,
958
unsigned int flags)
959
{
960
struct inet_sock *inet = inet_sk(sk);
961
struct ubuf_info *uarg = NULL;
962
struct sk_buff *skb;
963
struct ip_options *opt = cork->opt;
964
int hh_len;
965
int exthdrlen;
966
int mtu;
967
int copy;
968
int err;
969
int offset = 0;
970
bool zc = false;
971
unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
972
int csummode = CHECKSUM_NONE;
973
struct rtable *rt = dst_rtable(cork->dst);
974
bool paged, hold_tskey = false, extra_uref = false;
975
unsigned int wmem_alloc_delta = 0;
976
u32 tskey = 0;
977
978
skb = skb_peek_tail(queue);
979
980
exthdrlen = !skb ? rt->dst.header_len : 0;
981
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
982
paged = !!cork->gso_size;
983
984
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
985
986
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
987
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
988
maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
989
990
if (cork->length + length > maxnonfragsize - fragheaderlen) {
991
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
992
mtu - (opt ? opt->optlen : 0));
993
return -EMSGSIZE;
994
}
995
996
/*
997
* transhdrlen > 0 means that this is the first fragment and we wish
998
* it won't be fragmented in the future.
999
*/
1000
if (transhdrlen &&
1001
length + fragheaderlen <= mtu &&
1002
rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1003
(!(flags & MSG_MORE) || cork->gso_size) &&
1004
(!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1005
csummode = CHECKSUM_PARTIAL;
1006
1007
if ((flags & MSG_ZEROCOPY) && length) {
1008
struct msghdr *msg = from;
1009
1010
if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1011
if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1012
return -EINVAL;
1013
1014
/* Leave uarg NULL if can't zerocopy, callers should
1015
* be able to handle it.
1016
*/
1017
if ((rt->dst.dev->features & NETIF_F_SG) &&
1018
csummode == CHECKSUM_PARTIAL) {
1019
paged = true;
1020
zc = true;
1021
uarg = msg->msg_ubuf;
1022
}
1023
} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1024
uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb),
1025
false);
1026
if (!uarg)
1027
return -ENOBUFS;
1028
extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1029
if (rt->dst.dev->features & NETIF_F_SG &&
1030
csummode == CHECKSUM_PARTIAL) {
1031
paged = true;
1032
zc = true;
1033
} else {
1034
uarg_to_msgzc(uarg)->zerocopy = 0;
1035
skb_zcopy_set(skb, uarg, &extra_uref);
1036
}
1037
}
1038
} else if ((flags & MSG_SPLICE_PAGES) && length) {
1039
if (inet_test_bit(HDRINCL, sk))
1040
return -EPERM;
1041
if (rt->dst.dev->features & NETIF_F_SG &&
1042
getfrag == ip_generic_getfrag)
1043
/* We need an empty buffer to attach stuff to */
1044
paged = true;
1045
else
1046
flags &= ~MSG_SPLICE_PAGES;
1047
}
1048
1049
cork->length += length;
1050
1051
if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1052
READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1053
if (cork->flags & IPCORK_TS_OPT_ID) {
1054
tskey = cork->ts_opt_id;
1055
} else {
1056
tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1057
hold_tskey = true;
1058
}
1059
}
1060
1061
/* So, what's going on in the loop below?
1062
*
1063
* We use calculated fragment length to generate chained skb,
1064
* each of segments is IP fragment ready for sending to network after
1065
* adding appropriate IP header.
1066
*/
1067
1068
if (!skb)
1069
goto alloc_new_skb;
1070
1071
while (length > 0) {
1072
/* Check if the remaining data fits into current packet. */
1073
copy = mtu - skb->len;
1074
if (copy < length)
1075
copy = maxfraglen - skb->len;
1076
if (copy <= 0) {
1077
char *data;
1078
unsigned int datalen;
1079
unsigned int fraglen;
1080
unsigned int fraggap;
1081
unsigned int alloclen, alloc_extra;
1082
unsigned int pagedlen;
1083
struct sk_buff *skb_prev;
1084
alloc_new_skb:
1085
skb_prev = skb;
1086
if (skb_prev)
1087
fraggap = skb_prev->len - maxfraglen;
1088
else
1089
fraggap = 0;
1090
1091
/*
1092
* If remaining data exceeds the mtu,
1093
* we know we need more fragment(s).
1094
*/
1095
datalen = length + fraggap;
1096
if (datalen > mtu - fragheaderlen)
1097
datalen = maxfraglen - fragheaderlen;
1098
fraglen = datalen + fragheaderlen;
1099
pagedlen = 0;
1100
1101
alloc_extra = hh_len + 15;
1102
alloc_extra += exthdrlen;
1103
1104
/* The last fragment gets additional space at tail.
1105
* Note, with MSG_MORE we overallocate on fragments,
1106
* because we have no idea what fragment will be
1107
* the last.
1108
*/
1109
if (datalen == length + fraggap)
1110
alloc_extra += rt->dst.trailer_len;
1111
1112
if ((flags & MSG_MORE) &&
1113
!(rt->dst.dev->features&NETIF_F_SG))
1114
alloclen = mtu;
1115
else if (!paged &&
1116
(fraglen + alloc_extra < SKB_MAX_ALLOC ||
1117
!(rt->dst.dev->features & NETIF_F_SG)))
1118
alloclen = fraglen;
1119
else {
1120
alloclen = fragheaderlen + transhdrlen;
1121
pagedlen = datalen - transhdrlen;
1122
}
1123
1124
alloclen += alloc_extra;
1125
1126
if (transhdrlen) {
1127
skb = sock_alloc_send_skb(sk, alloclen,
1128
(flags & MSG_DONTWAIT), &err);
1129
} else {
1130
skb = NULL;
1131
if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1132
2 * sk->sk_sndbuf)
1133
skb = alloc_skb(alloclen,
1134
sk->sk_allocation);
1135
if (unlikely(!skb))
1136
err = -ENOBUFS;
1137
}
1138
if (!skb)
1139
goto error;
1140
1141
/*
1142
* Fill in the control structures
1143
*/
1144
skb->ip_summed = csummode;
1145
skb->csum = 0;
1146
skb_reserve(skb, hh_len);
1147
1148
/*
1149
* Find where to start putting bytes.
1150
*/
1151
data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1152
skb_set_network_header(skb, exthdrlen);
1153
skb->transport_header = (skb->network_header +
1154
fragheaderlen);
1155
data += fragheaderlen + exthdrlen;
1156
1157
if (fraggap) {
1158
skb->csum = skb_copy_and_csum_bits(
1159
skb_prev, maxfraglen,
1160
data + transhdrlen, fraggap);
1161
skb_prev->csum = csum_sub(skb_prev->csum,
1162
skb->csum);
1163
data += fraggap;
1164
pskb_trim_unique(skb_prev, maxfraglen);
1165
}
1166
1167
copy = datalen - transhdrlen - fraggap - pagedlen;
1168
/* [!] NOTE: copy will be negative if pagedlen>0
1169
* because then the equation reduces to -fraggap.
1170
*/
1171
if (copy > 0 &&
1172
INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1173
from, data + transhdrlen, offset,
1174
copy, fraggap, skb) < 0) {
1175
err = -EFAULT;
1176
kfree_skb(skb);
1177
goto error;
1178
} else if (flags & MSG_SPLICE_PAGES) {
1179
copy = 0;
1180
}
1181
1182
offset += copy;
1183
length -= copy + transhdrlen;
1184
transhdrlen = 0;
1185
exthdrlen = 0;
1186
csummode = CHECKSUM_NONE;
1187
1188
/* only the initial fragment is time stamped */
1189
skb_shinfo(skb)->tx_flags = cork->tx_flags;
1190
cork->tx_flags = 0;
1191
skb_shinfo(skb)->tskey = tskey;
1192
tskey = 0;
1193
skb_zcopy_set(skb, uarg, &extra_uref);
1194
1195
if ((flags & MSG_CONFIRM) && !skb_prev)
1196
skb_set_dst_pending_confirm(skb, 1);
1197
1198
/*
1199
* Put the packet on the pending queue.
1200
*/
1201
if (!skb->destructor) {
1202
skb->destructor = sock_wfree;
1203
skb->sk = sk;
1204
wmem_alloc_delta += skb->truesize;
1205
}
1206
__skb_queue_tail(queue, skb);
1207
continue;
1208
}
1209
1210
if (copy > length)
1211
copy = length;
1212
1213
if (!(rt->dst.dev->features&NETIF_F_SG) &&
1214
skb_tailroom(skb) >= copy) {
1215
unsigned int off;
1216
1217
off = skb->len;
1218
if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1219
from, skb_put(skb, copy),
1220
offset, copy, off, skb) < 0) {
1221
__skb_trim(skb, off);
1222
err = -EFAULT;
1223
goto error;
1224
}
1225
} else if (flags & MSG_SPLICE_PAGES) {
1226
struct msghdr *msg = from;
1227
1228
err = -EIO;
1229
if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1230
goto error;
1231
1232
err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1233
if (err < 0)
1234
goto error;
1235
copy = err;
1236
wmem_alloc_delta += copy;
1237
} else if (!zc) {
1238
int i = skb_shinfo(skb)->nr_frags;
1239
1240
err = -ENOMEM;
1241
if (!sk_page_frag_refill(sk, pfrag))
1242
goto error;
1243
1244
skb_zcopy_downgrade_managed(skb);
1245
if (!skb_can_coalesce(skb, i, pfrag->page,
1246
pfrag->offset)) {
1247
err = -EMSGSIZE;
1248
if (i == MAX_SKB_FRAGS)
1249
goto error;
1250
1251
__skb_fill_page_desc(skb, i, pfrag->page,
1252
pfrag->offset, 0);
1253
skb_shinfo(skb)->nr_frags = ++i;
1254
get_page(pfrag->page);
1255
}
1256
copy = min_t(int, copy, pfrag->size - pfrag->offset);
1257
if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1258
from,
1259
page_address(pfrag->page) + pfrag->offset,
1260
offset, copy, skb->len, skb) < 0)
1261
goto error_efault;
1262
1263
pfrag->offset += copy;
1264
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1265
skb_len_add(skb, copy);
1266
wmem_alloc_delta += copy;
1267
} else {
1268
err = skb_zerocopy_iter_dgram(skb, from, copy);
1269
if (err < 0)
1270
goto error;
1271
}
1272
offset += copy;
1273
length -= copy;
1274
}
1275
1276
if (wmem_alloc_delta)
1277
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1278
return 0;
1279
1280
error_efault:
1281
err = -EFAULT;
1282
error:
1283
net_zcopy_put_abort(uarg, extra_uref);
1284
cork->length -= length;
1285
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1286
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1287
if (hold_tskey)
1288
atomic_dec(&sk->sk_tskey);
1289
return err;
1290
}
1291
1292
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1293
struct ipcm_cookie *ipc, struct rtable **rtp)
1294
{
1295
struct ip_options_rcu *opt;
1296
struct rtable *rt;
1297
1298
rt = *rtp;
1299
if (unlikely(!rt))
1300
return -EFAULT;
1301
1302
cork->fragsize = ip_sk_use_pmtu(sk) ?
1303
dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1304
1305
if (!inetdev_valid_mtu(cork->fragsize))
1306
return -ENETUNREACH;
1307
1308
/*
1309
* setup for corking.
1310
*/
1311
opt = ipc->opt;
1312
if (opt) {
1313
if (!cork->opt) {
1314
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1315
sk->sk_allocation);
1316
if (unlikely(!cork->opt))
1317
return -ENOBUFS;
1318
}
1319
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1320
cork->flags |= IPCORK_OPT;
1321
cork->addr = ipc->addr;
1322
}
1323
1324
cork->gso_size = ipc->gso_size;
1325
1326
cork->dst = &rt->dst;
1327
/* We stole this route, caller should not release it. */
1328
*rtp = NULL;
1329
1330
cork->length = 0;
1331
cork->ttl = ipc->ttl;
1332
cork->tos = ipc->tos;
1333
cork->mark = ipc->sockc.mark;
1334
cork->priority = ipc->sockc.priority;
1335
cork->transmit_time = ipc->sockc.transmit_time;
1336
cork->tx_flags = 0;
1337
sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1338
if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1339
cork->flags |= IPCORK_TS_OPT_ID;
1340
cork->ts_opt_id = ipc->sockc.ts_opt_id;
1341
}
1342
1343
return 0;
1344
}
1345
1346
/*
1347
* ip_append_data() can make one large IP datagram from many pieces of
1348
* data. Each piece will be held on the socket until
1349
* ip_push_pending_frames() is called. Each piece can be a page or
1350
* non-page data.
1351
*
1352
* Not only UDP, other transport protocols - e.g. raw sockets - can use
1353
* this interface potentially.
1354
*
1355
* LATER: length must be adjusted by pad at tail, when it is required.
1356
*/
1357
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1358
int getfrag(void *from, char *to, int offset, int len,
1359
int odd, struct sk_buff *skb),
1360
void *from, int length, int transhdrlen,
1361
struct ipcm_cookie *ipc, struct rtable **rtp,
1362
unsigned int flags)
1363
{
1364
struct inet_sock *inet = inet_sk(sk);
1365
int err;
1366
1367
if (flags&MSG_PROBE)
1368
return 0;
1369
1370
if (skb_queue_empty(&sk->sk_write_queue)) {
1371
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1372
if (err)
1373
return err;
1374
} else {
1375
transhdrlen = 0;
1376
}
1377
1378
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1379
sk_page_frag(sk), getfrag,
1380
from, length, transhdrlen, flags);
1381
}
1382
1383
static void ip_cork_release(struct inet_cork *cork)
1384
{
1385
cork->flags &= ~IPCORK_OPT;
1386
kfree(cork->opt);
1387
cork->opt = NULL;
1388
dst_release(cork->dst);
1389
cork->dst = NULL;
1390
}
1391
1392
/*
1393
* Combined all pending IP fragments on the socket as one IP datagram
1394
* and push them out.
1395
*/
1396
struct sk_buff *__ip_make_skb(struct sock *sk,
1397
struct flowi4 *fl4,
1398
struct sk_buff_head *queue,
1399
struct inet_cork *cork)
1400
{
1401
struct sk_buff *skb, *tmp_skb;
1402
struct sk_buff **tail_skb;
1403
struct inet_sock *inet = inet_sk(sk);
1404
struct net *net = sock_net(sk);
1405
struct ip_options *opt = NULL;
1406
struct rtable *rt = dst_rtable(cork->dst);
1407
struct iphdr *iph;
1408
u8 pmtudisc, ttl;
1409
__be16 df = 0;
1410
1411
skb = __skb_dequeue(queue);
1412
if (!skb)
1413
goto out;
1414
tail_skb = &(skb_shinfo(skb)->frag_list);
1415
1416
/* move skb->data to ip header from ext header */
1417
if (skb->data < skb_network_header(skb))
1418
__skb_pull(skb, skb_network_offset(skb));
1419
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1420
__skb_pull(tmp_skb, skb_network_header_len(skb));
1421
*tail_skb = tmp_skb;
1422
tail_skb = &(tmp_skb->next);
1423
skb->len += tmp_skb->len;
1424
skb->data_len += tmp_skb->len;
1425
skb->truesize += tmp_skb->truesize;
1426
tmp_skb->destructor = NULL;
1427
tmp_skb->sk = NULL;
1428
}
1429
1430
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1431
* to fragment the frame generated here. No matter, what transforms
1432
* how transforms change size of the packet, it will come out.
1433
*/
1434
skb->ignore_df = ip_sk_ignore_df(sk);
1435
1436
/* DF bit is set when we want to see DF on outgoing frames.
1437
* If ignore_df is set too, we still allow to fragment this frame
1438
* locally. */
1439
pmtudisc = READ_ONCE(inet->pmtudisc);
1440
if (pmtudisc == IP_PMTUDISC_DO ||
1441
pmtudisc == IP_PMTUDISC_PROBE ||
1442
(skb->len <= dst_mtu(&rt->dst) &&
1443
ip_dont_fragment(sk, &rt->dst)))
1444
df = htons(IP_DF);
1445
1446
if (cork->flags & IPCORK_OPT)
1447
opt = cork->opt;
1448
1449
if (cork->ttl != 0)
1450
ttl = cork->ttl;
1451
else if (rt->rt_type == RTN_MULTICAST)
1452
ttl = READ_ONCE(inet->mc_ttl);
1453
else
1454
ttl = ip_select_ttl(inet, &rt->dst);
1455
1456
iph = ip_hdr(skb);
1457
iph->version = 4;
1458
iph->ihl = 5;
1459
iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1460
iph->frag_off = df;
1461
iph->ttl = ttl;
1462
iph->protocol = sk->sk_protocol;
1463
ip_copy_addrs(iph, fl4);
1464
ip_select_ident(net, skb, sk);
1465
1466
if (opt) {
1467
iph->ihl += opt->optlen >> 2;
1468
ip_options_build(skb, opt, cork->addr, rt);
1469
}
1470
1471
skb->priority = cork->priority;
1472
skb->mark = cork->mark;
1473
if (sk_is_tcp(sk))
1474
skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1475
else
1476
skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1477
/*
1478
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1479
* on dst refcount
1480
*/
1481
cork->dst = NULL;
1482
skb_dst_set(skb, &rt->dst);
1483
1484
if (iph->protocol == IPPROTO_ICMP) {
1485
u8 icmp_type;
1486
1487
/* For such sockets, transhdrlen is zero when do ip_append_data(),
1488
* so icmphdr does not in skb linear region and can not get icmp_type
1489
* by icmp_hdr(skb)->type.
1490
*/
1491
if (sk->sk_type == SOCK_RAW &&
1492
!(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1493
icmp_type = fl4->fl4_icmp_type;
1494
else
1495
icmp_type = icmp_hdr(skb)->type;
1496
icmp_out_count(net, icmp_type);
1497
}
1498
1499
ip_cork_release(cork);
1500
out:
1501
return skb;
1502
}
1503
1504
int ip_send_skb(struct net *net, struct sk_buff *skb)
1505
{
1506
int err;
1507
1508
err = ip_local_out(net, skb->sk, skb);
1509
if (err) {
1510
if (err > 0)
1511
err = net_xmit_errno(err);
1512
if (err)
1513
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1514
}
1515
1516
return err;
1517
}
1518
1519
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1520
{
1521
struct sk_buff *skb;
1522
1523
skb = ip_finish_skb(sk, fl4);
1524
if (!skb)
1525
return 0;
1526
1527
/* Netfilter gets whole the not fragmented skb. */
1528
return ip_send_skb(sock_net(sk), skb);
1529
}
1530
1531
/*
1532
* Throw away all pending data on the socket.
1533
*/
1534
static void __ip_flush_pending_frames(struct sock *sk,
1535
struct sk_buff_head *queue,
1536
struct inet_cork *cork)
1537
{
1538
struct sk_buff *skb;
1539
1540
while ((skb = __skb_dequeue_tail(queue)) != NULL)
1541
kfree_skb(skb);
1542
1543
ip_cork_release(cork);
1544
}
1545
1546
void ip_flush_pending_frames(struct sock *sk)
1547
{
1548
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1549
}
1550
1551
struct sk_buff *ip_make_skb(struct sock *sk,
1552
struct flowi4 *fl4,
1553
int getfrag(void *from, char *to, int offset,
1554
int len, int odd, struct sk_buff *skb),
1555
void *from, int length, int transhdrlen,
1556
struct ipcm_cookie *ipc, struct rtable **rtp,
1557
struct inet_cork *cork, unsigned int flags)
1558
{
1559
struct sk_buff_head queue;
1560
int err;
1561
1562
if (flags & MSG_PROBE)
1563
return NULL;
1564
1565
__skb_queue_head_init(&queue);
1566
1567
cork->flags = 0;
1568
cork->addr = 0;
1569
cork->opt = NULL;
1570
err = ip_setup_cork(sk, cork, ipc, rtp);
1571
if (err)
1572
return ERR_PTR(err);
1573
1574
err = __ip_append_data(sk, fl4, &queue, cork,
1575
&current->task_frag, getfrag,
1576
from, length, transhdrlen, flags);
1577
if (err) {
1578
__ip_flush_pending_frames(sk, &queue, cork);
1579
return ERR_PTR(err);
1580
}
1581
1582
return __ip_make_skb(sk, fl4, &queue, cork);
1583
}
1584
1585
/*
1586
* Fetch data from kernel space and fill in checksum if needed.
1587
*/
1588
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1589
int len, int odd, struct sk_buff *skb)
1590
{
1591
__wsum csum;
1592
1593
csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1594
skb->csum = csum_block_add(skb->csum, csum, odd);
1595
return 0;
1596
}
1597
1598
/*
1599
* Generic function to send a packet as reply to another packet.
1600
* Used to send some TCP resets/acks so far.
1601
*/
1602
void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk,
1603
struct sk_buff *skb,
1604
const struct ip_options *sopt,
1605
__be32 daddr, __be32 saddr,
1606
const struct ip_reply_arg *arg,
1607
unsigned int len, u64 transmit_time, u32 txhash)
1608
{
1609
struct ip_options_data replyopts;
1610
struct ipcm_cookie ipc;
1611
struct flowi4 fl4;
1612
struct rtable *rt = skb_rtable(skb);
1613
struct net *net = sock_net(sk);
1614
struct sk_buff *nskb;
1615
int err;
1616
int oif;
1617
1618
if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1619
return;
1620
1621
ipcm_init(&ipc);
1622
ipc.addr = daddr;
1623
ipc.sockc.transmit_time = transmit_time;
1624
1625
if (replyopts.opt.opt.optlen) {
1626
ipc.opt = &replyopts.opt;
1627
1628
if (replyopts.opt.opt.srr)
1629
daddr = replyopts.opt.opt.faddr;
1630
}
1631
1632
oif = arg->bound_dev_if;
1633
if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1634
oif = skb->skb_iif;
1635
1636
flowi4_init_output(&fl4, oif,
1637
IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1638
arg->tos & INET_DSCP_MASK,
1639
RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1640
ip_reply_arg_flowi_flags(arg),
1641
daddr, saddr,
1642
tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1643
arg->uid);
1644
security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1645
rt = ip_route_output_flow(net, &fl4, sk);
1646
if (IS_ERR(rt))
1647
return;
1648
1649
inet_sk(sk)->tos = arg->tos;
1650
1651
sk->sk_protocol = ip_hdr(skb)->protocol;
1652
sk->sk_bound_dev_if = arg->bound_dev_if;
1653
sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1654
ipc.sockc.mark = fl4.flowi4_mark;
1655
err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1656
len, 0, &ipc, &rt, MSG_DONTWAIT);
1657
if (unlikely(err)) {
1658
ip_flush_pending_frames(sk);
1659
goto out;
1660
}
1661
1662
nskb = skb_peek(&sk->sk_write_queue);
1663
if (nskb) {
1664
if (arg->csumoffset >= 0)
1665
*((__sum16 *)skb_transport_header(nskb) +
1666
arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1667
arg->csum));
1668
nskb->ip_summed = CHECKSUM_NONE;
1669
if (orig_sk) {
1670
skb_set_owner_edemux(nskb, (struct sock *)orig_sk);
1671
psp_reply_set_decrypted(nskb);
1672
}
1673
if (transmit_time)
1674
nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1675
if (txhash)
1676
skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1677
ip_push_pending_frames(sk, &fl4);
1678
}
1679
out:
1680
ip_rt_put(rt);
1681
}
1682
1683
void __init ip_init(void)
1684
{
1685
ip_rt_init();
1686
inet_initpeers();
1687
1688
#if defined(CONFIG_IP_MULTICAST)
1689
igmp_mc_init();
1690
#endif
1691
}
1692
1693