Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/ipmr.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* IP multicast routing support for mrouted 3.6/3.8
4
*
5
* (c) 1995 Alan Cox, <[email protected]>
6
* Linux Consultancy and Custom Driver Development
7
*
8
* Fixes:
9
* Michael Chastain : Incorrect size of copying.
10
* Alan Cox : Added the cache manager code
11
* Alan Cox : Fixed the clone/copy bug and device race.
12
* Mike McLagan : Routing by source
13
* Malcolm Beattie : Buffer handling fixes.
14
* Alexey Kuznetsov : Double buffer free and other fixes.
15
* SVR Anand : Fixed several multicast bugs and problems.
16
* Alexey Kuznetsov : Status, optimisations and more.
17
* Brad Parker : Better behaviour on mrouted upcall
18
* overflow.
19
* Carlos Picoto : PIMv1 Support
20
* Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21
* Relax this requirement to work with older peers.
22
*/
23
24
#include <linux/uaccess.h>
25
#include <linux/types.h>
26
#include <linux/cache.h>
27
#include <linux/capability.h>
28
#include <linux/errno.h>
29
#include <linux/mm.h>
30
#include <linux/kernel.h>
31
#include <linux/fcntl.h>
32
#include <linux/stat.h>
33
#include <linux/socket.h>
34
#include <linux/in.h>
35
#include <linux/inet.h>
36
#include <linux/netdevice.h>
37
#include <linux/inetdevice.h>
38
#include <linux/igmp.h>
39
#include <linux/proc_fs.h>
40
#include <linux/seq_file.h>
41
#include <linux/mroute.h>
42
#include <linux/init.h>
43
#include <linux/if_ether.h>
44
#include <linux/slab.h>
45
#include <net/flow.h>
46
#include <net/net_namespace.h>
47
#include <net/ip.h>
48
#include <net/protocol.h>
49
#include <linux/skbuff.h>
50
#include <net/route.h>
51
#include <net/icmp.h>
52
#include <net/udp.h>
53
#include <net/raw.h>
54
#include <linux/notifier.h>
55
#include <linux/if_arp.h>
56
#include <linux/netfilter_ipv4.h>
57
#include <linux/compat.h>
58
#include <linux/export.h>
59
#include <linux/rhashtable.h>
60
#include <net/ip_tunnels.h>
61
#include <net/checksum.h>
62
#include <net/netlink.h>
63
#include <net/fib_rules.h>
64
#include <linux/netconf.h>
65
#include <net/rtnh.h>
66
#include <net/inet_dscp.h>
67
68
#include <linux/nospec.h>
69
70
struct ipmr_rule {
71
struct fib_rule common;
72
};
73
74
struct ipmr_result {
75
struct mr_table *mrt;
76
};
77
78
/* Big lock, protecting vif table, mrt cache and mroute socket state.
79
* Note that the changes are semaphored via rtnl_lock.
80
*/
81
82
static DEFINE_SPINLOCK(mrt_lock);
83
84
static struct net_device *vif_dev_read(const struct vif_device *vif)
85
{
86
return rcu_dereference(vif->dev);
87
}
88
89
/* Multicast router control variables */
90
91
/* Special spinlock for queue of unresolved entries */
92
static DEFINE_SPINLOCK(mfc_unres_lock);
93
94
/* We return to original Alan's scheme. Hash table of resolved
95
* entries is changed only in process context and protected
96
* with weak lock mrt_lock. Queue of unresolved entries is protected
97
* with strong spinlock mfc_unres_lock.
98
*
99
* In this case data path is free of exclusive locks at all.
100
*/
101
102
static struct kmem_cache *mrt_cachep __ro_after_init;
103
104
static struct mr_table *ipmr_new_table(struct net *net, u32 id);
105
static void ipmr_free_table(struct mr_table *mrt);
106
107
static void ip_mr_forward(struct net *net, struct mr_table *mrt,
108
struct net_device *dev, struct sk_buff *skb,
109
struct mfc_cache *cache, int local);
110
static int ipmr_cache_report(const struct mr_table *mrt,
111
struct sk_buff *pkt, vifi_t vifi, int assert);
112
static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
113
int cmd);
114
static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
115
static void mroute_clean_tables(struct mr_table *mrt, int flags);
116
static void ipmr_expire_process(struct timer_list *t);
117
118
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
119
#define ipmr_for_each_table(mrt, net) \
120
list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
121
lockdep_rtnl_is_held() || \
122
list_empty(&net->ipv4.mr_tables))
123
124
static struct mr_table *ipmr_mr_table_iter(struct net *net,
125
struct mr_table *mrt)
126
{
127
struct mr_table *ret;
128
129
if (!mrt)
130
ret = list_entry_rcu(net->ipv4.mr_tables.next,
131
struct mr_table, list);
132
else
133
ret = list_entry_rcu(mrt->list.next,
134
struct mr_table, list);
135
136
if (&ret->list == &net->ipv4.mr_tables)
137
return NULL;
138
return ret;
139
}
140
141
static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
142
{
143
struct mr_table *mrt;
144
145
ipmr_for_each_table(mrt, net) {
146
if (mrt->id == id)
147
return mrt;
148
}
149
return NULL;
150
}
151
152
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
153
{
154
struct mr_table *mrt;
155
156
rcu_read_lock();
157
mrt = __ipmr_get_table(net, id);
158
rcu_read_unlock();
159
return mrt;
160
}
161
162
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
163
struct mr_table **mrt)
164
{
165
int err;
166
struct ipmr_result res;
167
struct fib_lookup_arg arg = {
168
.result = &res,
169
.flags = FIB_LOOKUP_NOREF,
170
};
171
172
/* update flow if oif or iif point to device enslaved to l3mdev */
173
l3mdev_update_flow(net, flowi4_to_flowi(flp4));
174
175
err = fib_rules_lookup(net->ipv4.mr_rules_ops,
176
flowi4_to_flowi(flp4), 0, &arg);
177
if (err < 0)
178
return err;
179
*mrt = res.mrt;
180
return 0;
181
}
182
183
static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
184
int flags, struct fib_lookup_arg *arg)
185
{
186
struct ipmr_result *res = arg->result;
187
struct mr_table *mrt;
188
189
switch (rule->action) {
190
case FR_ACT_TO_TBL:
191
break;
192
case FR_ACT_UNREACHABLE:
193
return -ENETUNREACH;
194
case FR_ACT_PROHIBIT:
195
return -EACCES;
196
case FR_ACT_BLACKHOLE:
197
default:
198
return -EINVAL;
199
}
200
201
arg->table = fib_rule_get_table(rule, arg);
202
203
mrt = __ipmr_get_table(rule->fr_net, arg->table);
204
if (!mrt)
205
return -EAGAIN;
206
res->mrt = mrt;
207
return 0;
208
}
209
210
static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
211
{
212
return 1;
213
}
214
215
static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
216
struct fib_rule_hdr *frh, struct nlattr **tb,
217
struct netlink_ext_ack *extack)
218
{
219
return 0;
220
}
221
222
static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
223
struct nlattr **tb)
224
{
225
return 1;
226
}
227
228
static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
229
struct fib_rule_hdr *frh)
230
{
231
frh->dst_len = 0;
232
frh->src_len = 0;
233
frh->tos = 0;
234
return 0;
235
}
236
237
static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
238
.family = RTNL_FAMILY_IPMR,
239
.rule_size = sizeof(struct ipmr_rule),
240
.addr_size = sizeof(u32),
241
.action = ipmr_rule_action,
242
.match = ipmr_rule_match,
243
.configure = ipmr_rule_configure,
244
.compare = ipmr_rule_compare,
245
.fill = ipmr_rule_fill,
246
.nlgroup = RTNLGRP_IPV4_RULE,
247
.owner = THIS_MODULE,
248
};
249
250
static int __net_init ipmr_rules_init(struct net *net)
251
{
252
struct fib_rules_ops *ops;
253
struct mr_table *mrt;
254
int err;
255
256
ops = fib_rules_register(&ipmr_rules_ops_template, net);
257
if (IS_ERR(ops))
258
return PTR_ERR(ops);
259
260
INIT_LIST_HEAD(&net->ipv4.mr_tables);
261
262
mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
263
if (IS_ERR(mrt)) {
264
err = PTR_ERR(mrt);
265
goto err1;
266
}
267
268
err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
269
if (err < 0)
270
goto err2;
271
272
net->ipv4.mr_rules_ops = ops;
273
return 0;
274
275
err2:
276
rtnl_lock();
277
ipmr_free_table(mrt);
278
rtnl_unlock();
279
err1:
280
fib_rules_unregister(ops);
281
return err;
282
}
283
284
static void __net_exit ipmr_rules_exit(struct net *net)
285
{
286
struct mr_table *mrt, *next;
287
288
ASSERT_RTNL();
289
list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
290
list_del(&mrt->list);
291
ipmr_free_table(mrt);
292
}
293
fib_rules_unregister(net->ipv4.mr_rules_ops);
294
}
295
296
static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
297
struct netlink_ext_ack *extack)
298
{
299
return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
300
}
301
302
static unsigned int ipmr_rules_seq_read(const struct net *net)
303
{
304
return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
305
}
306
307
bool ipmr_rule_default(const struct fib_rule *rule)
308
{
309
return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
310
}
311
EXPORT_SYMBOL(ipmr_rule_default);
312
#else
313
#define ipmr_for_each_table(mrt, net) \
314
for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
315
316
static struct mr_table *ipmr_mr_table_iter(struct net *net,
317
struct mr_table *mrt)
318
{
319
if (!mrt)
320
return net->ipv4.mrt;
321
return NULL;
322
}
323
324
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
325
{
326
return net->ipv4.mrt;
327
}
328
329
#define __ipmr_get_table ipmr_get_table
330
331
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
332
struct mr_table **mrt)
333
{
334
*mrt = net->ipv4.mrt;
335
return 0;
336
}
337
338
static int __net_init ipmr_rules_init(struct net *net)
339
{
340
struct mr_table *mrt;
341
342
mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
343
if (IS_ERR(mrt))
344
return PTR_ERR(mrt);
345
net->ipv4.mrt = mrt;
346
return 0;
347
}
348
349
static void __net_exit ipmr_rules_exit(struct net *net)
350
{
351
ASSERT_RTNL();
352
ipmr_free_table(net->ipv4.mrt);
353
net->ipv4.mrt = NULL;
354
}
355
356
static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
357
struct netlink_ext_ack *extack)
358
{
359
return 0;
360
}
361
362
static unsigned int ipmr_rules_seq_read(const struct net *net)
363
{
364
return 0;
365
}
366
367
bool ipmr_rule_default(const struct fib_rule *rule)
368
{
369
return true;
370
}
371
EXPORT_SYMBOL(ipmr_rule_default);
372
#endif
373
374
static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
375
const void *ptr)
376
{
377
const struct mfc_cache_cmp_arg *cmparg = arg->key;
378
const struct mfc_cache *c = ptr;
379
380
return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
381
cmparg->mfc_origin != c->mfc_origin;
382
}
383
384
static const struct rhashtable_params ipmr_rht_params = {
385
.head_offset = offsetof(struct mr_mfc, mnode),
386
.key_offset = offsetof(struct mfc_cache, cmparg),
387
.key_len = sizeof(struct mfc_cache_cmp_arg),
388
.nelem_hint = 3,
389
.obj_cmpfn = ipmr_hash_cmp,
390
.automatic_shrinking = true,
391
};
392
393
static void ipmr_new_table_set(struct mr_table *mrt,
394
struct net *net)
395
{
396
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
397
list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
398
#endif
399
}
400
401
static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
402
.mfc_mcastgrp = htonl(INADDR_ANY),
403
.mfc_origin = htonl(INADDR_ANY),
404
};
405
406
static struct mr_table_ops ipmr_mr_table_ops = {
407
.rht_params = &ipmr_rht_params,
408
.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
409
};
410
411
static struct mr_table *ipmr_new_table(struct net *net, u32 id)
412
{
413
struct mr_table *mrt;
414
415
/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
416
if (id != RT_TABLE_DEFAULT && id >= 1000000000)
417
return ERR_PTR(-EINVAL);
418
419
mrt = __ipmr_get_table(net, id);
420
if (mrt)
421
return mrt;
422
423
return mr_table_alloc(net, id, &ipmr_mr_table_ops,
424
ipmr_expire_process, ipmr_new_table_set);
425
}
426
427
static void ipmr_free_table(struct mr_table *mrt)
428
{
429
struct net *net = read_pnet(&mrt->net);
430
431
WARN_ON_ONCE(!mr_can_free_table(net));
432
433
timer_shutdown_sync(&mrt->ipmr_expire_timer);
434
mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
435
MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
436
rhltable_destroy(&mrt->mfc_hash);
437
kfree(mrt);
438
}
439
440
/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
441
442
/* Initialize ipmr pimreg/tunnel in_device */
443
static bool ipmr_init_vif_indev(const struct net_device *dev)
444
{
445
struct in_device *in_dev;
446
447
ASSERT_RTNL();
448
449
in_dev = __in_dev_get_rtnl(dev);
450
if (!in_dev)
451
return false;
452
ipv4_devconf_setall(in_dev);
453
neigh_parms_data_state_setall(in_dev->arp_parms);
454
IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
455
456
return true;
457
}
458
459
static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
460
{
461
struct net_device *tunnel_dev, *new_dev;
462
struct ip_tunnel_parm_kern p = { };
463
int err;
464
465
tunnel_dev = __dev_get_by_name(net, "tunl0");
466
if (!tunnel_dev)
467
goto out;
468
469
p.iph.daddr = v->vifc_rmt_addr.s_addr;
470
p.iph.saddr = v->vifc_lcl_addr.s_addr;
471
p.iph.version = 4;
472
p.iph.ihl = 5;
473
p.iph.protocol = IPPROTO_IPIP;
474
sprintf(p.name, "dvmrp%d", v->vifc_vifi);
475
476
if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
477
goto out;
478
err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479
SIOCADDTUNNEL);
480
if (err)
481
goto out;
482
483
new_dev = __dev_get_by_name(net, p.name);
484
if (!new_dev)
485
goto out;
486
487
new_dev->flags |= IFF_MULTICAST;
488
if (!ipmr_init_vif_indev(new_dev))
489
goto out_unregister;
490
if (dev_open(new_dev, NULL))
491
goto out_unregister;
492
dev_hold(new_dev);
493
err = dev_set_allmulti(new_dev, 1);
494
if (err) {
495
dev_close(new_dev);
496
tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
497
SIOCDELTUNNEL);
498
dev_put(new_dev);
499
new_dev = ERR_PTR(err);
500
}
501
return new_dev;
502
503
out_unregister:
504
unregister_netdevice(new_dev);
505
out:
506
return ERR_PTR(-ENOBUFS);
507
}
508
509
#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
510
static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
511
{
512
struct net *net = dev_net(dev);
513
struct mr_table *mrt;
514
struct flowi4 fl4 = {
515
.flowi4_oif = dev->ifindex,
516
.flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
517
.flowi4_mark = skb->mark,
518
};
519
int err;
520
521
err = ipmr_fib_lookup(net, &fl4, &mrt);
522
if (err < 0) {
523
kfree_skb(skb);
524
return err;
525
}
526
527
DEV_STATS_ADD(dev, tx_bytes, skb->len);
528
DEV_STATS_INC(dev, tx_packets);
529
rcu_read_lock();
530
531
/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
532
ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
533
IGMPMSG_WHOLEPKT);
534
535
rcu_read_unlock();
536
kfree_skb(skb);
537
return NETDEV_TX_OK;
538
}
539
540
static int reg_vif_get_iflink(const struct net_device *dev)
541
{
542
return 0;
543
}
544
545
static const struct net_device_ops reg_vif_netdev_ops = {
546
.ndo_start_xmit = reg_vif_xmit,
547
.ndo_get_iflink = reg_vif_get_iflink,
548
};
549
550
static void reg_vif_setup(struct net_device *dev)
551
{
552
dev->type = ARPHRD_PIMREG;
553
dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
554
dev->flags = IFF_NOARP;
555
dev->netdev_ops = &reg_vif_netdev_ops;
556
dev->needs_free_netdev = true;
557
dev->netns_immutable = true;
558
}
559
560
static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561
{
562
struct net_device *dev;
563
char name[IFNAMSIZ];
564
565
if (mrt->id == RT_TABLE_DEFAULT)
566
sprintf(name, "pimreg");
567
else
568
sprintf(name, "pimreg%u", mrt->id);
569
570
dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
571
572
if (!dev)
573
return NULL;
574
575
dev_net_set(dev, net);
576
577
if (register_netdevice(dev)) {
578
free_netdev(dev);
579
return NULL;
580
}
581
582
if (!ipmr_init_vif_indev(dev))
583
goto failure;
584
if (dev_open(dev, NULL))
585
goto failure;
586
587
dev_hold(dev);
588
589
return dev;
590
591
failure:
592
unregister_netdevice(dev);
593
return NULL;
594
}
595
596
/* called with rcu_read_lock() */
597
static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
598
unsigned int pimlen)
599
{
600
struct net_device *reg_dev = NULL;
601
struct iphdr *encap;
602
int vif_num;
603
604
encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
605
/* Check that:
606
* a. packet is really sent to a multicast group
607
* b. packet is not a NULL-REGISTER
608
* c. packet is not truncated
609
*/
610
if (!ipv4_is_multicast(encap->daddr) ||
611
encap->tot_len == 0 ||
612
ntohs(encap->tot_len) + pimlen > skb->len)
613
return 1;
614
615
/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
616
vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
617
if (vif_num >= 0)
618
reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
619
if (!reg_dev)
620
return 1;
621
622
skb->mac_header = skb->network_header;
623
skb_pull(skb, (u8 *)encap - skb->data);
624
skb_reset_network_header(skb);
625
skb->protocol = htons(ETH_P_IP);
626
skb->ip_summed = CHECKSUM_NONE;
627
628
skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
629
630
netif_rx(skb);
631
632
return NET_RX_SUCCESS;
633
}
634
#else
635
static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
636
{
637
return NULL;
638
}
639
#endif
640
641
static int call_ipmr_vif_entry_notifiers(struct net *net,
642
enum fib_event_type event_type,
643
struct vif_device *vif,
644
struct net_device *vif_dev,
645
vifi_t vif_index, u32 tb_id)
646
{
647
return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
648
vif, vif_dev, vif_index, tb_id,
649
&net->ipv4.ipmr_seq);
650
}
651
652
static int call_ipmr_mfc_entry_notifiers(struct net *net,
653
enum fib_event_type event_type,
654
struct mfc_cache *mfc, u32 tb_id)
655
{
656
return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657
&mfc->_c, tb_id, &net->ipv4.ipmr_seq);
658
}
659
660
/**
661
* vif_delete - Delete a VIF entry
662
* @mrt: Table to delete from
663
* @vifi: VIF identifier to delete
664
* @notify: Set to 1, if the caller is a notifier_call
665
* @head: if unregistering the VIF, place it on this queue
666
*/
667
static int vif_delete(struct mr_table *mrt, int vifi, int notify,
668
struct list_head *head)
669
{
670
struct net *net = read_pnet(&mrt->net);
671
struct vif_device *v;
672
struct net_device *dev;
673
struct in_device *in_dev;
674
675
if (vifi < 0 || vifi >= mrt->maxvif)
676
return -EADDRNOTAVAIL;
677
678
v = &mrt->vif_table[vifi];
679
680
dev = rtnl_dereference(v->dev);
681
if (!dev)
682
return -EADDRNOTAVAIL;
683
684
spin_lock(&mrt_lock);
685
call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
686
vifi, mrt->id);
687
RCU_INIT_POINTER(v->dev, NULL);
688
689
if (vifi == mrt->mroute_reg_vif_num) {
690
/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
691
WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
692
}
693
if (vifi + 1 == mrt->maxvif) {
694
int tmp;
695
696
for (tmp = vifi - 1; tmp >= 0; tmp--) {
697
if (VIF_EXISTS(mrt, tmp))
698
break;
699
}
700
WRITE_ONCE(mrt->maxvif, tmp + 1);
701
}
702
703
spin_unlock(&mrt_lock);
704
705
dev_set_allmulti(dev, -1);
706
707
in_dev = __in_dev_get_rtnl(dev);
708
if (in_dev) {
709
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
710
inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
711
NETCONFA_MC_FORWARDING,
712
dev->ifindex, &in_dev->cnf);
713
ip_rt_multicast_event(in_dev);
714
}
715
716
if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
717
unregister_netdevice_queue(dev, head);
718
719
netdev_put(dev, &v->dev_tracker);
720
return 0;
721
}
722
723
static void ipmr_cache_free_rcu(struct rcu_head *head)
724
{
725
struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
726
727
kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
728
}
729
730
static void ipmr_cache_free(struct mfc_cache *c)
731
{
732
call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
733
}
734
735
/* Destroy an unresolved cache entry, killing queued skbs
736
* and reporting error to netlink readers.
737
*/
738
static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
739
{
740
struct net *net = read_pnet(&mrt->net);
741
struct sk_buff *skb;
742
struct nlmsgerr *e;
743
744
atomic_dec(&mrt->cache_resolve_queue_len);
745
746
while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
747
if (ip_hdr(skb)->version == 0) {
748
struct nlmsghdr *nlh = skb_pull(skb,
749
sizeof(struct iphdr));
750
nlh->nlmsg_type = NLMSG_ERROR;
751
nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
752
skb_trim(skb, nlh->nlmsg_len);
753
e = nlmsg_data(nlh);
754
e->error = -ETIMEDOUT;
755
memset(&e->msg, 0, sizeof(e->msg));
756
757
rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
758
} else {
759
kfree_skb(skb);
760
}
761
}
762
763
ipmr_cache_free(c);
764
}
765
766
/* Timer process for the unresolved queue. */
767
static void ipmr_expire_process(struct timer_list *t)
768
{
769
struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
770
struct mr_mfc *c, *next;
771
unsigned long expires;
772
unsigned long now;
773
774
if (!spin_trylock(&mfc_unres_lock)) {
775
mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
776
return;
777
}
778
779
if (list_empty(&mrt->mfc_unres_queue))
780
goto out;
781
782
now = jiffies;
783
expires = 10*HZ;
784
785
list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
786
if (time_after(c->mfc_un.unres.expires, now)) {
787
unsigned long interval = c->mfc_un.unres.expires - now;
788
if (interval < expires)
789
expires = interval;
790
continue;
791
}
792
793
list_del(&c->list);
794
mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
795
ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
796
}
797
798
if (!list_empty(&mrt->mfc_unres_queue))
799
mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
800
801
out:
802
spin_unlock(&mfc_unres_lock);
803
}
804
805
/* Fill oifs list. It is called under locked mrt_lock. */
806
static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
807
unsigned char *ttls)
808
{
809
int vifi;
810
811
cache->mfc_un.res.minvif = MAXVIFS;
812
cache->mfc_un.res.maxvif = 0;
813
memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
814
815
for (vifi = 0; vifi < mrt->maxvif; vifi++) {
816
if (VIF_EXISTS(mrt, vifi) &&
817
ttls[vifi] && ttls[vifi] < 255) {
818
cache->mfc_un.res.ttls[vifi] = ttls[vifi];
819
if (cache->mfc_un.res.minvif > vifi)
820
cache->mfc_un.res.minvif = vifi;
821
if (cache->mfc_un.res.maxvif <= vifi)
822
cache->mfc_un.res.maxvif = vifi + 1;
823
}
824
}
825
WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
826
}
827
828
static int vif_add(struct net *net, struct mr_table *mrt,
829
struct vifctl *vifc, int mrtsock)
830
{
831
struct netdev_phys_item_id ppid = { };
832
int vifi = vifc->vifc_vifi;
833
struct vif_device *v = &mrt->vif_table[vifi];
834
struct net_device *dev;
835
struct in_device *in_dev;
836
int err;
837
838
/* Is vif busy ? */
839
if (VIF_EXISTS(mrt, vifi))
840
return -EADDRINUSE;
841
842
switch (vifc->vifc_flags) {
843
case VIFF_REGISTER:
844
if (!ipmr_pimsm_enabled())
845
return -EINVAL;
846
/* Special Purpose VIF in PIM
847
* All the packets will be sent to the daemon
848
*/
849
if (mrt->mroute_reg_vif_num >= 0)
850
return -EADDRINUSE;
851
dev = ipmr_reg_vif(net, mrt);
852
if (!dev)
853
return -ENOBUFS;
854
err = dev_set_allmulti(dev, 1);
855
if (err) {
856
unregister_netdevice(dev);
857
dev_put(dev);
858
return err;
859
}
860
break;
861
case VIFF_TUNNEL:
862
dev = ipmr_new_tunnel(net, vifc);
863
if (IS_ERR(dev))
864
return PTR_ERR(dev);
865
break;
866
case VIFF_USE_IFINDEX:
867
case 0:
868
if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
869
dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
870
if (dev && !__in_dev_get_rtnl(dev)) {
871
dev_put(dev);
872
return -EADDRNOTAVAIL;
873
}
874
} else {
875
dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
876
}
877
if (!dev)
878
return -EADDRNOTAVAIL;
879
err = dev_set_allmulti(dev, 1);
880
if (err) {
881
dev_put(dev);
882
return err;
883
}
884
break;
885
default:
886
return -EINVAL;
887
}
888
889
in_dev = __in_dev_get_rtnl(dev);
890
if (!in_dev) {
891
dev_put(dev);
892
return -EADDRNOTAVAIL;
893
}
894
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
895
inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
896
dev->ifindex, &in_dev->cnf);
897
ip_rt_multicast_event(in_dev);
898
899
/* Fill in the VIF structures */
900
vif_device_init(v, dev, vifc->vifc_rate_limit,
901
vifc->vifc_threshold,
902
vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
903
(VIFF_TUNNEL | VIFF_REGISTER));
904
905
err = netif_get_port_parent_id(dev, &ppid, true);
906
if (err == 0) {
907
memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
908
v->dev_parent_id.id_len = ppid.id_len;
909
} else {
910
v->dev_parent_id.id_len = 0;
911
}
912
913
v->local = vifc->vifc_lcl_addr.s_addr;
914
v->remote = vifc->vifc_rmt_addr.s_addr;
915
916
/* And finish update writing critical data */
917
spin_lock(&mrt_lock);
918
rcu_assign_pointer(v->dev, dev);
919
netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
920
if (v->flags & VIFF_REGISTER) {
921
/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
922
WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
923
}
924
if (vifi+1 > mrt->maxvif)
925
WRITE_ONCE(mrt->maxvif, vifi + 1);
926
spin_unlock(&mrt_lock);
927
call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
928
vifi, mrt->id);
929
return 0;
930
}
931
932
/* called with rcu_read_lock() */
933
static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
934
__be32 origin,
935
__be32 mcastgrp)
936
{
937
struct mfc_cache_cmp_arg arg = {
938
.mfc_mcastgrp = mcastgrp,
939
.mfc_origin = origin
940
};
941
942
return mr_mfc_find(mrt, &arg);
943
}
944
945
/* Look for a (*,G) entry */
946
static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
947
__be32 mcastgrp, int vifi)
948
{
949
struct mfc_cache_cmp_arg arg = {
950
.mfc_mcastgrp = mcastgrp,
951
.mfc_origin = htonl(INADDR_ANY)
952
};
953
954
if (mcastgrp == htonl(INADDR_ANY))
955
return mr_mfc_find_any_parent(mrt, vifi);
956
return mr_mfc_find_any(mrt, vifi, &arg);
957
}
958
959
/* Look for a (S,G,iif) entry if parent != -1 */
960
static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
961
__be32 origin, __be32 mcastgrp,
962
int parent)
963
{
964
struct mfc_cache_cmp_arg arg = {
965
.mfc_mcastgrp = mcastgrp,
966
.mfc_origin = origin,
967
};
968
969
return mr_mfc_find_parent(mrt, &arg, parent);
970
}
971
972
/* Allocate a multicast cache entry */
973
static struct mfc_cache *ipmr_cache_alloc(void)
974
{
975
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
976
977
if (c) {
978
c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
979
c->_c.mfc_un.res.minvif = MAXVIFS;
980
c->_c.free = ipmr_cache_free_rcu;
981
refcount_set(&c->_c.mfc_un.res.refcount, 1);
982
}
983
return c;
984
}
985
986
static struct mfc_cache *ipmr_cache_alloc_unres(void)
987
{
988
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
989
990
if (c) {
991
skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
992
c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
993
}
994
return c;
995
}
996
997
/* A cache entry has gone into a resolved state from queued */
998
static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
999
struct mfc_cache *uc, struct mfc_cache *c)
1000
{
1001
struct sk_buff *skb;
1002
struct nlmsgerr *e;
1003
1004
/* Play the pending entries through our router */
1005
while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1006
if (ip_hdr(skb)->version == 0) {
1007
struct nlmsghdr *nlh = skb_pull(skb,
1008
sizeof(struct iphdr));
1009
1010
if (mr_fill_mroute(mrt, skb, &c->_c,
1011
nlmsg_data(nlh)) > 0) {
1012
nlh->nlmsg_len = skb_tail_pointer(skb) -
1013
(u8 *)nlh;
1014
} else {
1015
nlh->nlmsg_type = NLMSG_ERROR;
1016
nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1017
skb_trim(skb, nlh->nlmsg_len);
1018
e = nlmsg_data(nlh);
1019
e->error = -EMSGSIZE;
1020
memset(&e->msg, 0, sizeof(e->msg));
1021
}
1022
1023
rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1024
} else {
1025
rcu_read_lock();
1026
ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1027
rcu_read_unlock();
1028
}
1029
}
1030
}
1031
1032
/* Bounce a cache query up to mrouted and netlink.
1033
*
1034
* Called under rcu_read_lock().
1035
*/
1036
static int ipmr_cache_report(const struct mr_table *mrt,
1037
struct sk_buff *pkt, vifi_t vifi, int assert)
1038
{
1039
const int ihl = ip_hdrlen(pkt);
1040
struct sock *mroute_sk;
1041
struct igmphdr *igmp;
1042
struct igmpmsg *msg;
1043
struct sk_buff *skb;
1044
int ret;
1045
1046
mroute_sk = rcu_dereference(mrt->mroute_sk);
1047
if (!mroute_sk)
1048
return -EINVAL;
1049
1050
if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1051
skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1052
else
1053
skb = alloc_skb(128, GFP_ATOMIC);
1054
1055
if (!skb)
1056
return -ENOBUFS;
1057
1058
if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1059
/* Ugly, but we have no choice with this interface.
1060
* Duplicate old header, fix ihl, length etc.
1061
* And all this only to mangle msg->im_msgtype and
1062
* to set msg->im_mbz to "mbz" :-)
1063
*/
1064
skb_push(skb, sizeof(struct iphdr));
1065
skb_reset_network_header(skb);
1066
skb_reset_transport_header(skb);
1067
msg = (struct igmpmsg *)skb_network_header(skb);
1068
memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1069
msg->im_msgtype = assert;
1070
msg->im_mbz = 0;
1071
if (assert == IGMPMSG_WRVIFWHOLE) {
1072
msg->im_vif = vifi;
1073
msg->im_vif_hi = vifi >> 8;
1074
} else {
1075
/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1076
int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1077
1078
msg->im_vif = vif_num;
1079
msg->im_vif_hi = vif_num >> 8;
1080
}
1081
ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1082
ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1083
sizeof(struct iphdr));
1084
} else {
1085
/* Copy the IP header */
1086
skb_set_network_header(skb, skb->len);
1087
skb_put(skb, ihl);
1088
skb_copy_to_linear_data(skb, pkt->data, ihl);
1089
/* Flag to the kernel this is a route add */
1090
ip_hdr(skb)->protocol = 0;
1091
msg = (struct igmpmsg *)skb_network_header(skb);
1092
msg->im_vif = vifi;
1093
msg->im_vif_hi = vifi >> 8;
1094
ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1095
memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1096
/* Add our header */
1097
igmp = skb_put(skb, sizeof(struct igmphdr));
1098
igmp->type = assert;
1099
msg->im_msgtype = assert;
1100
igmp->code = 0;
1101
ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1102
skb->transport_header = skb->network_header;
1103
}
1104
1105
igmpmsg_netlink_event(mrt, skb);
1106
1107
/* Deliver to mrouted */
1108
ret = sock_queue_rcv_skb(mroute_sk, skb);
1109
1110
if (ret < 0) {
1111
net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1112
kfree_skb(skb);
1113
}
1114
1115
return ret;
1116
}
1117
1118
/* Queue a packet for resolution. It gets locked cache entry! */
1119
/* Called under rcu_read_lock() */
1120
static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121
struct sk_buff *skb, struct net_device *dev)
1122
{
1123
const struct iphdr *iph = ip_hdr(skb);
1124
struct mfc_cache *c;
1125
bool found = false;
1126
int err;
1127
1128
spin_lock_bh(&mfc_unres_lock);
1129
list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130
if (c->mfc_mcastgrp == iph->daddr &&
1131
c->mfc_origin == iph->saddr) {
1132
found = true;
1133
break;
1134
}
1135
}
1136
1137
if (!found) {
1138
/* Create a new entry if allowable */
1139
c = ipmr_cache_alloc_unres();
1140
if (!c) {
1141
spin_unlock_bh(&mfc_unres_lock);
1142
1143
kfree_skb(skb);
1144
return -ENOBUFS;
1145
}
1146
1147
/* Fill in the new cache entry */
1148
c->_c.mfc_parent = -1;
1149
c->mfc_origin = iph->saddr;
1150
c->mfc_mcastgrp = iph->daddr;
1151
1152
/* Reflect first query at mrouted. */
1153
err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1154
1155
if (err < 0) {
1156
/* If the report failed throw the cache entry
1157
out - Brad Parker
1158
*/
1159
spin_unlock_bh(&mfc_unres_lock);
1160
1161
ipmr_cache_free(c);
1162
kfree_skb(skb);
1163
return err;
1164
}
1165
1166
atomic_inc(&mrt->cache_resolve_queue_len);
1167
list_add(&c->_c.list, &mrt->mfc_unres_queue);
1168
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1169
1170
if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1171
mod_timer(&mrt->ipmr_expire_timer,
1172
c->_c.mfc_un.unres.expires);
1173
}
1174
1175
/* See if we can append the packet */
1176
if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177
kfree_skb(skb);
1178
err = -ENOBUFS;
1179
} else {
1180
if (dev) {
1181
skb->dev = dev;
1182
skb->skb_iif = dev->ifindex;
1183
}
1184
skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1185
err = 0;
1186
}
1187
1188
spin_unlock_bh(&mfc_unres_lock);
1189
return err;
1190
}
1191
1192
/* MFC cache manipulation by user space mroute daemon */
1193
1194
static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1195
{
1196
struct net *net = read_pnet(&mrt->net);
1197
struct mfc_cache *c;
1198
1199
/* The entries are added/deleted only under RTNL */
1200
rcu_read_lock();
1201
c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202
mfc->mfcc_mcastgrp.s_addr, parent);
1203
rcu_read_unlock();
1204
if (!c)
1205
return -ENOENT;
1206
rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1207
list_del_rcu(&c->_c.list);
1208
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1209
mroute_netlink_event(mrt, c, RTM_DELROUTE);
1210
mr_cache_put(&c->_c);
1211
1212
return 0;
1213
}
1214
1215
static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216
struct mfcctl *mfc, int mrtsock, int parent)
1217
{
1218
struct mfc_cache *uc, *c;
1219
struct mr_mfc *_uc;
1220
bool found;
1221
int ret;
1222
1223
if (mfc->mfcc_parent >= MAXVIFS)
1224
return -ENFILE;
1225
1226
/* The entries are added/deleted only under RTNL */
1227
rcu_read_lock();
1228
c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1229
mfc->mfcc_mcastgrp.s_addr, parent);
1230
rcu_read_unlock();
1231
if (c) {
1232
spin_lock(&mrt_lock);
1233
c->_c.mfc_parent = mfc->mfcc_parent;
1234
ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1235
if (!mrtsock)
1236
c->_c.mfc_flags |= MFC_STATIC;
1237
spin_unlock(&mrt_lock);
1238
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1239
mrt->id);
1240
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1241
return 0;
1242
}
1243
1244
if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245
!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1246
return -EINVAL;
1247
1248
c = ipmr_cache_alloc();
1249
if (!c)
1250
return -ENOMEM;
1251
1252
c->mfc_origin = mfc->mfcc_origin.s_addr;
1253
c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254
c->_c.mfc_parent = mfc->mfcc_parent;
1255
ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1256
if (!mrtsock)
1257
c->_c.mfc_flags |= MFC_STATIC;
1258
1259
ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1260
ipmr_rht_params);
1261
if (ret) {
1262
pr_err("ipmr: rhtable insert error %d\n", ret);
1263
ipmr_cache_free(c);
1264
return ret;
1265
}
1266
list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1267
/* Check to see if we resolved a queued list. If so we
1268
* need to send on the frames and tidy up.
1269
*/
1270
found = false;
1271
spin_lock_bh(&mfc_unres_lock);
1272
list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273
uc = (struct mfc_cache *)_uc;
1274
if (uc->mfc_origin == c->mfc_origin &&
1275
uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276
list_del(&_uc->list);
1277
atomic_dec(&mrt->cache_resolve_queue_len);
1278
found = true;
1279
break;
1280
}
1281
}
1282
if (list_empty(&mrt->mfc_unres_queue))
1283
timer_delete(&mrt->ipmr_expire_timer);
1284
spin_unlock_bh(&mfc_unres_lock);
1285
1286
if (found) {
1287
ipmr_cache_resolve(net, mrt, uc, c);
1288
ipmr_cache_free(uc);
1289
}
1290
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1291
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1292
return 0;
1293
}
1294
1295
/* Close the multicast socket, and clear the vif tables etc */
1296
static void mroute_clean_tables(struct mr_table *mrt, int flags)
1297
{
1298
struct net *net = read_pnet(&mrt->net);
1299
struct mr_mfc *c, *tmp;
1300
struct mfc_cache *cache;
1301
LIST_HEAD(list);
1302
int i;
1303
1304
/* Shut down all active vif entries */
1305
if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1306
for (i = 0; i < mrt->maxvif; i++) {
1307
if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1308
!(flags & MRT_FLUSH_VIFS_STATIC)) ||
1309
(!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1310
continue;
1311
vif_delete(mrt, i, 0, &list);
1312
}
1313
unregister_netdevice_many(&list);
1314
}
1315
1316
/* Wipe the cache */
1317
if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1318
list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1319
if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1320
(!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1321
continue;
1322
rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1323
list_del_rcu(&c->list);
1324
cache = (struct mfc_cache *)c;
1325
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1326
mrt->id);
1327
mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1328
mr_cache_put(c);
1329
}
1330
}
1331
1332
if (flags & MRT_FLUSH_MFC) {
1333
if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1334
spin_lock_bh(&mfc_unres_lock);
1335
list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1336
list_del(&c->list);
1337
cache = (struct mfc_cache *)c;
1338
mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1339
ipmr_destroy_unres(mrt, cache);
1340
}
1341
spin_unlock_bh(&mfc_unres_lock);
1342
}
1343
}
1344
}
1345
1346
/* called from ip_ra_control(), before an RCU grace period,
1347
* we don't need to call synchronize_rcu() here
1348
*/
1349
static void mrtsock_destruct(struct sock *sk)
1350
{
1351
struct net *net = sock_net(sk);
1352
struct mr_table *mrt;
1353
1354
rtnl_lock();
1355
ipmr_for_each_table(mrt, net) {
1356
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1357
IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1358
inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1359
NETCONFA_MC_FORWARDING,
1360
NETCONFA_IFINDEX_ALL,
1361
net->ipv4.devconf_all);
1362
RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1363
mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1364
}
1365
}
1366
rtnl_unlock();
1367
}
1368
1369
/* Socket options and virtual interface manipulation. The whole
1370
* virtual interface system is a complete heap, but unfortunately
1371
* that's how BSD mrouted happens to think. Maybe one day with a proper
1372
* MOSPF/PIM router set up we can clean this up.
1373
*/
1374
1375
int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1376
unsigned int optlen)
1377
{
1378
struct net *net = sock_net(sk);
1379
int val, ret = 0, parent = 0;
1380
struct mr_table *mrt;
1381
struct vifctl vif;
1382
struct mfcctl mfc;
1383
bool do_wrvifwhole;
1384
u32 uval;
1385
1386
/* There's one exception to the lock - MRT_DONE which needs to unlock */
1387
rtnl_lock();
1388
if (sk->sk_type != SOCK_RAW ||
1389
inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1390
ret = -EOPNOTSUPP;
1391
goto out_unlock;
1392
}
1393
1394
mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1395
if (!mrt) {
1396
ret = -ENOENT;
1397
goto out_unlock;
1398
}
1399
if (optname != MRT_INIT) {
1400
if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1401
!ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1402
ret = -EACCES;
1403
goto out_unlock;
1404
}
1405
}
1406
1407
switch (optname) {
1408
case MRT_INIT:
1409
if (optlen != sizeof(int)) {
1410
ret = -EINVAL;
1411
break;
1412
}
1413
if (rtnl_dereference(mrt->mroute_sk)) {
1414
ret = -EADDRINUSE;
1415
break;
1416
}
1417
1418
ret = ip_ra_control(sk, 1, mrtsock_destruct);
1419
if (ret == 0) {
1420
rcu_assign_pointer(mrt->mroute_sk, sk);
1421
IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1422
inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1423
NETCONFA_MC_FORWARDING,
1424
NETCONFA_IFINDEX_ALL,
1425
net->ipv4.devconf_all);
1426
}
1427
break;
1428
case MRT_DONE:
1429
if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1430
ret = -EACCES;
1431
} else {
1432
/* We need to unlock here because mrtsock_destruct takes
1433
* care of rtnl itself and we can't change that due to
1434
* the IP_ROUTER_ALERT setsockopt which runs without it.
1435
*/
1436
rtnl_unlock();
1437
ret = ip_ra_control(sk, 0, NULL);
1438
goto out;
1439
}
1440
break;
1441
case MRT_ADD_VIF:
1442
case MRT_DEL_VIF:
1443
if (optlen != sizeof(vif)) {
1444
ret = -EINVAL;
1445
break;
1446
}
1447
if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1448
ret = -EFAULT;
1449
break;
1450
}
1451
if (vif.vifc_vifi >= MAXVIFS) {
1452
ret = -ENFILE;
1453
break;
1454
}
1455
if (optname == MRT_ADD_VIF) {
1456
ret = vif_add(net, mrt, &vif,
1457
sk == rtnl_dereference(mrt->mroute_sk));
1458
} else {
1459
ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1460
}
1461
break;
1462
/* Manipulate the forwarding caches. These live
1463
* in a sort of kernel/user symbiosis.
1464
*/
1465
case MRT_ADD_MFC:
1466
case MRT_DEL_MFC:
1467
parent = -1;
1468
fallthrough;
1469
case MRT_ADD_MFC_PROXY:
1470
case MRT_DEL_MFC_PROXY:
1471
if (optlen != sizeof(mfc)) {
1472
ret = -EINVAL;
1473
break;
1474
}
1475
if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1476
ret = -EFAULT;
1477
break;
1478
}
1479
if (parent == 0)
1480
parent = mfc.mfcc_parent;
1481
if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1482
ret = ipmr_mfc_delete(mrt, &mfc, parent);
1483
else
1484
ret = ipmr_mfc_add(net, mrt, &mfc,
1485
sk == rtnl_dereference(mrt->mroute_sk),
1486
parent);
1487
break;
1488
case MRT_FLUSH:
1489
if (optlen != sizeof(val)) {
1490
ret = -EINVAL;
1491
break;
1492
}
1493
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1494
ret = -EFAULT;
1495
break;
1496
}
1497
mroute_clean_tables(mrt, val);
1498
break;
1499
/* Control PIM assert. */
1500
case MRT_ASSERT:
1501
if (optlen != sizeof(val)) {
1502
ret = -EINVAL;
1503
break;
1504
}
1505
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1506
ret = -EFAULT;
1507
break;
1508
}
1509
mrt->mroute_do_assert = val;
1510
break;
1511
case MRT_PIM:
1512
if (!ipmr_pimsm_enabled()) {
1513
ret = -ENOPROTOOPT;
1514
break;
1515
}
1516
if (optlen != sizeof(val)) {
1517
ret = -EINVAL;
1518
break;
1519
}
1520
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1521
ret = -EFAULT;
1522
break;
1523
}
1524
1525
do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1526
val = !!val;
1527
if (val != mrt->mroute_do_pim) {
1528
mrt->mroute_do_pim = val;
1529
mrt->mroute_do_assert = val;
1530
mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1531
}
1532
break;
1533
case MRT_TABLE:
1534
if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1535
ret = -ENOPROTOOPT;
1536
break;
1537
}
1538
if (optlen != sizeof(uval)) {
1539
ret = -EINVAL;
1540
break;
1541
}
1542
if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1543
ret = -EFAULT;
1544
break;
1545
}
1546
1547
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1548
ret = -EBUSY;
1549
} else {
1550
mrt = ipmr_new_table(net, uval);
1551
if (IS_ERR(mrt))
1552
ret = PTR_ERR(mrt);
1553
else
1554
raw_sk(sk)->ipmr_table = uval;
1555
}
1556
break;
1557
/* Spurious command, or MRT_VERSION which you cannot set. */
1558
default:
1559
ret = -ENOPROTOOPT;
1560
}
1561
out_unlock:
1562
rtnl_unlock();
1563
out:
1564
return ret;
1565
}
1566
1567
/* Execute if this ioctl is a special mroute ioctl */
1568
int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1569
{
1570
switch (cmd) {
1571
/* These userspace buffers will be consumed by ipmr_ioctl() */
1572
case SIOCGETVIFCNT: {
1573
struct sioc_vif_req buffer;
1574
1575
return sock_ioctl_inout(sk, cmd, arg, &buffer,
1576
sizeof(buffer));
1577
}
1578
case SIOCGETSGCNT: {
1579
struct sioc_sg_req buffer;
1580
1581
return sock_ioctl_inout(sk, cmd, arg, &buffer,
1582
sizeof(buffer));
1583
}
1584
}
1585
/* return code > 0 means that the ioctl was not executed */
1586
return 1;
1587
}
1588
1589
/* Getsock opt support for the multicast routing system. */
1590
int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1591
sockptr_t optlen)
1592
{
1593
int olr;
1594
int val;
1595
struct net *net = sock_net(sk);
1596
struct mr_table *mrt;
1597
1598
if (sk->sk_type != SOCK_RAW ||
1599
inet_sk(sk)->inet_num != IPPROTO_IGMP)
1600
return -EOPNOTSUPP;
1601
1602
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1603
if (!mrt)
1604
return -ENOENT;
1605
1606
switch (optname) {
1607
case MRT_VERSION:
1608
val = 0x0305;
1609
break;
1610
case MRT_PIM:
1611
if (!ipmr_pimsm_enabled())
1612
return -ENOPROTOOPT;
1613
val = mrt->mroute_do_pim;
1614
break;
1615
case MRT_ASSERT:
1616
val = mrt->mroute_do_assert;
1617
break;
1618
default:
1619
return -ENOPROTOOPT;
1620
}
1621
1622
if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1623
return -EFAULT;
1624
if (olr < 0)
1625
return -EINVAL;
1626
1627
olr = min_t(unsigned int, olr, sizeof(int));
1628
1629
if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1630
return -EFAULT;
1631
if (copy_to_sockptr(optval, &val, olr))
1632
return -EFAULT;
1633
return 0;
1634
}
1635
1636
/* The IP multicast ioctl support routines. */
1637
int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1638
{
1639
struct vif_device *vif;
1640
struct mfc_cache *c;
1641
struct net *net = sock_net(sk);
1642
struct sioc_vif_req *vr;
1643
struct sioc_sg_req *sr;
1644
struct mr_table *mrt;
1645
1646
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1647
if (!mrt)
1648
return -ENOENT;
1649
1650
switch (cmd) {
1651
case SIOCGETVIFCNT:
1652
vr = (struct sioc_vif_req *)arg;
1653
if (vr->vifi >= mrt->maxvif)
1654
return -EINVAL;
1655
vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1656
rcu_read_lock();
1657
vif = &mrt->vif_table[vr->vifi];
1658
if (VIF_EXISTS(mrt, vr->vifi)) {
1659
vr->icount = READ_ONCE(vif->pkt_in);
1660
vr->ocount = READ_ONCE(vif->pkt_out);
1661
vr->ibytes = READ_ONCE(vif->bytes_in);
1662
vr->obytes = READ_ONCE(vif->bytes_out);
1663
rcu_read_unlock();
1664
1665
return 0;
1666
}
1667
rcu_read_unlock();
1668
return -EADDRNOTAVAIL;
1669
case SIOCGETSGCNT:
1670
sr = (struct sioc_sg_req *)arg;
1671
1672
rcu_read_lock();
1673
c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1674
if (c) {
1675
sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1676
sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1677
sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1678
rcu_read_unlock();
1679
return 0;
1680
}
1681
rcu_read_unlock();
1682
return -EADDRNOTAVAIL;
1683
default:
1684
return -ENOIOCTLCMD;
1685
}
1686
}
1687
1688
#ifdef CONFIG_COMPAT
1689
struct compat_sioc_sg_req {
1690
struct in_addr src;
1691
struct in_addr grp;
1692
compat_ulong_t pktcnt;
1693
compat_ulong_t bytecnt;
1694
compat_ulong_t wrong_if;
1695
};
1696
1697
struct compat_sioc_vif_req {
1698
vifi_t vifi; /* Which iface */
1699
compat_ulong_t icount;
1700
compat_ulong_t ocount;
1701
compat_ulong_t ibytes;
1702
compat_ulong_t obytes;
1703
};
1704
1705
int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1706
{
1707
struct compat_sioc_sg_req sr;
1708
struct compat_sioc_vif_req vr;
1709
struct vif_device *vif;
1710
struct mfc_cache *c;
1711
struct net *net = sock_net(sk);
1712
struct mr_table *mrt;
1713
1714
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1715
if (!mrt)
1716
return -ENOENT;
1717
1718
switch (cmd) {
1719
case SIOCGETVIFCNT:
1720
if (copy_from_user(&vr, arg, sizeof(vr)))
1721
return -EFAULT;
1722
if (vr.vifi >= mrt->maxvif)
1723
return -EINVAL;
1724
vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1725
rcu_read_lock();
1726
vif = &mrt->vif_table[vr.vifi];
1727
if (VIF_EXISTS(mrt, vr.vifi)) {
1728
vr.icount = READ_ONCE(vif->pkt_in);
1729
vr.ocount = READ_ONCE(vif->pkt_out);
1730
vr.ibytes = READ_ONCE(vif->bytes_in);
1731
vr.obytes = READ_ONCE(vif->bytes_out);
1732
rcu_read_unlock();
1733
1734
if (copy_to_user(arg, &vr, sizeof(vr)))
1735
return -EFAULT;
1736
return 0;
1737
}
1738
rcu_read_unlock();
1739
return -EADDRNOTAVAIL;
1740
case SIOCGETSGCNT:
1741
if (copy_from_user(&sr, arg, sizeof(sr)))
1742
return -EFAULT;
1743
1744
rcu_read_lock();
1745
c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1746
if (c) {
1747
sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1748
sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1749
sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1750
rcu_read_unlock();
1751
1752
if (copy_to_user(arg, &sr, sizeof(sr)))
1753
return -EFAULT;
1754
return 0;
1755
}
1756
rcu_read_unlock();
1757
return -EADDRNOTAVAIL;
1758
default:
1759
return -ENOIOCTLCMD;
1760
}
1761
}
1762
#endif
1763
1764
static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1765
{
1766
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1767
struct net *net = dev_net(dev);
1768
struct mr_table *mrt;
1769
struct vif_device *v;
1770
int ct;
1771
1772
if (event != NETDEV_UNREGISTER)
1773
return NOTIFY_DONE;
1774
1775
ipmr_for_each_table(mrt, net) {
1776
v = &mrt->vif_table[0];
1777
for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1778
if (rcu_access_pointer(v->dev) == dev)
1779
vif_delete(mrt, ct, 1, NULL);
1780
}
1781
}
1782
return NOTIFY_DONE;
1783
}
1784
1785
static struct notifier_block ip_mr_notifier = {
1786
.notifier_call = ipmr_device_event,
1787
};
1788
1789
/* Encapsulate a packet by attaching a valid IPIP header to it.
1790
* This avoids tunnel drivers and other mess and gives us the speed so
1791
* important for multicast video.
1792
*/
1793
static void ip_encap(struct net *net, struct sk_buff *skb,
1794
__be32 saddr, __be32 daddr)
1795
{
1796
struct iphdr *iph;
1797
const struct iphdr *old_iph = ip_hdr(skb);
1798
1799
skb_push(skb, sizeof(struct iphdr));
1800
skb->transport_header = skb->network_header;
1801
skb_reset_network_header(skb);
1802
iph = ip_hdr(skb);
1803
1804
iph->version = 4;
1805
iph->tos = old_iph->tos;
1806
iph->ttl = old_iph->ttl;
1807
iph->frag_off = 0;
1808
iph->daddr = daddr;
1809
iph->saddr = saddr;
1810
iph->protocol = IPPROTO_IPIP;
1811
iph->ihl = 5;
1812
iph->tot_len = htons(skb->len);
1813
ip_select_ident(net, skb, NULL);
1814
ip_send_check(iph);
1815
1816
memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1817
nf_reset_ct(skb);
1818
}
1819
1820
static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1821
struct sk_buff *skb)
1822
{
1823
struct ip_options *opt = &(IPCB(skb)->opt);
1824
1825
IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1826
1827
if (unlikely(opt->optlen))
1828
ip_forward_options(skb);
1829
1830
return dst_output(net, sk, skb);
1831
}
1832
1833
#ifdef CONFIG_NET_SWITCHDEV
1834
static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1835
int in_vifi, int out_vifi)
1836
{
1837
struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1838
struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1839
1840
if (!skb->offload_l3_fwd_mark)
1841
return false;
1842
if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1843
return false;
1844
return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1845
&in_vif->dev_parent_id);
1846
}
1847
#else
1848
static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1849
int in_vifi, int out_vifi)
1850
{
1851
return false;
1852
}
1853
#endif
1854
1855
/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1856
1857
static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt,
1858
struct sk_buff *skb, int vifi)
1859
{
1860
const struct iphdr *iph = ip_hdr(skb);
1861
struct vif_device *vif = &mrt->vif_table[vifi];
1862
struct net_device *vif_dev;
1863
struct rtable *rt;
1864
struct flowi4 fl4;
1865
int encap = 0;
1866
1867
vif_dev = vif_dev_read(vif);
1868
if (!vif_dev)
1869
return -1;
1870
1871
if (vif->flags & VIFF_REGISTER) {
1872
WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1873
WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1874
DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1875
DEV_STATS_INC(vif_dev, tx_packets);
1876
ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1877
return -1;
1878
}
1879
1880
if (vif->flags & VIFF_TUNNEL) {
1881
rt = ip_route_output_ports(net, &fl4, NULL,
1882
vif->remote, vif->local,
1883
0, 0,
1884
IPPROTO_IPIP,
1885
iph->tos & INET_DSCP_MASK, vif->link);
1886
if (IS_ERR(rt))
1887
return -1;
1888
encap = sizeof(struct iphdr);
1889
} else {
1890
rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1891
0, 0,
1892
IPPROTO_IPIP,
1893
iph->tos & INET_DSCP_MASK, vif->link);
1894
if (IS_ERR(rt))
1895
return -1;
1896
}
1897
1898
if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1899
/* Do not fragment multicasts. Alas, IPv4 does not
1900
* allow to send ICMP, so that packets will disappear
1901
* to blackhole.
1902
*/
1903
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1904
ip_rt_put(rt);
1905
return -1;
1906
}
1907
1908
encap += LL_RESERVED_SPACE(dst_dev_rcu(&rt->dst)) + rt->dst.header_len;
1909
1910
if (skb_cow(skb, encap)) {
1911
ip_rt_put(rt);
1912
return -1;
1913
}
1914
1915
WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1916
WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1917
1918
skb_dst_drop(skb);
1919
skb_dst_set(skb, &rt->dst);
1920
ip_decrease_ttl(ip_hdr(skb));
1921
1922
/* FIXME: forward and output firewalls used to be called here.
1923
* What do we do with netfilter? -- RR
1924
*/
1925
if (vif->flags & VIFF_TUNNEL) {
1926
ip_encap(net, skb, vif->local, vif->remote);
1927
/* FIXME: extra output firewall step used to be here. --RR */
1928
DEV_STATS_INC(vif_dev, tx_packets);
1929
DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1930
}
1931
1932
return 0;
1933
}
1934
1935
static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt,
1936
int in_vifi, struct sk_buff *skb, int vifi)
1937
{
1938
struct rtable *rt;
1939
1940
if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1941
goto out_free;
1942
1943
if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1944
goto out_free;
1945
1946
rt = skb_rtable(skb);
1947
1948
IPCB(skb)->flags |= IPSKB_FORWARDED;
1949
1950
/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1951
* not only before forwarding, but after forwarding on all output
1952
* interfaces. It is clear, if mrouter runs a multicasting
1953
* program, it should receive packets not depending to what interface
1954
* program is joined.
1955
* If we will not make it, the program will have to join on all
1956
* interfaces. On the other hand, multihoming host (or router, but
1957
* not mrouter) cannot join to more than one interface - it will
1958
* result in receiving multiple packets.
1959
*/
1960
NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1961
net, NULL, skb, skb->dev, dst_dev_rcu(&rt->dst),
1962
ipmr_forward_finish);
1963
return;
1964
1965
out_free:
1966
kfree_skb(skb);
1967
}
1968
1969
static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt,
1970
struct sk_buff *skb, int vifi)
1971
{
1972
if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1973
goto out_free;
1974
1975
ip_mc_output(net, NULL, skb);
1976
return;
1977
1978
out_free:
1979
kfree_skb(skb);
1980
}
1981
1982
/* Called with mrt_lock or rcu_read_lock() */
1983
static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1984
{
1985
int ct;
1986
/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1987
for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1988
if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1989
break;
1990
}
1991
return ct;
1992
}
1993
1994
/* "local" means that we should preserve one skb (for local delivery) */
1995
/* Called uner rcu_read_lock() */
1996
static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1997
struct net_device *dev, struct sk_buff *skb,
1998
struct mfc_cache *c, int local)
1999
{
2000
int true_vifi = ipmr_find_vif(mrt, dev);
2001
int psend = -1;
2002
int vif, ct;
2003
2004
vif = c->_c.mfc_parent;
2005
atomic_long_inc(&c->_c.mfc_un.res.pkt);
2006
atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2007
WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2008
2009
if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
2010
struct mfc_cache *cache_proxy;
2011
2012
/* For an (*,G) entry, we only check that the incoming
2013
* interface is part of the static tree.
2014
*/
2015
cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2016
if (cache_proxy &&
2017
cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2018
goto forward;
2019
}
2020
2021
/* Wrong interface: drop packet and (maybe) send PIM assert. */
2022
if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2023
if (rt_is_output_route(skb_rtable(skb))) {
2024
/* It is our own packet, looped back.
2025
* Very complicated situation...
2026
*
2027
* The best workaround until routing daemons will be
2028
* fixed is not to redistribute packet, if it was
2029
* send through wrong interface. It means, that
2030
* multicast applications WILL NOT work for
2031
* (S,G), which have default multicast route pointing
2032
* to wrong oif. In any case, it is not a good
2033
* idea to use multicasting applications on router.
2034
*/
2035
goto dont_forward;
2036
}
2037
2038
atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2039
2040
if (true_vifi >= 0 && mrt->mroute_do_assert &&
2041
/* pimsm uses asserts, when switching from RPT to SPT,
2042
* so that we cannot check that packet arrived on an oif.
2043
* It is bad, but otherwise we would need to move pretty
2044
* large chunk of pimd to kernel. Ough... --ANK
2045
*/
2046
(mrt->mroute_do_pim ||
2047
c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2048
time_after(jiffies,
2049
c->_c.mfc_un.res.last_assert +
2050
MFC_ASSERT_THRESH)) {
2051
c->_c.mfc_un.res.last_assert = jiffies;
2052
ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2053
if (mrt->mroute_do_wrvifwhole)
2054
ipmr_cache_report(mrt, skb, true_vifi,
2055
IGMPMSG_WRVIFWHOLE);
2056
}
2057
goto dont_forward;
2058
}
2059
2060
forward:
2061
WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2062
mrt->vif_table[vif].pkt_in + 1);
2063
WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2064
mrt->vif_table[vif].bytes_in + skb->len);
2065
2066
/* Forward the frame */
2067
if (c->mfc_origin == htonl(INADDR_ANY) &&
2068
c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2069
if (true_vifi >= 0 &&
2070
true_vifi != c->_c.mfc_parent &&
2071
ip_hdr(skb)->ttl >
2072
c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2073
/* It's an (*,*) entry and the packet is not coming from
2074
* the upstream: forward the packet to the upstream
2075
* only.
2076
*/
2077
psend = c->_c.mfc_parent;
2078
goto last_forward;
2079
}
2080
goto dont_forward;
2081
}
2082
for (ct = c->_c.mfc_un.res.maxvif - 1;
2083
ct >= c->_c.mfc_un.res.minvif; ct--) {
2084
/* For (*,G) entry, don't forward to the incoming interface */
2085
if ((c->mfc_origin != htonl(INADDR_ANY) ||
2086
ct != true_vifi) &&
2087
ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2088
if (psend != -1) {
2089
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2090
2091
if (skb2)
2092
ipmr_queue_fwd_xmit(net, mrt, true_vifi,
2093
skb2, psend);
2094
}
2095
psend = ct;
2096
}
2097
}
2098
last_forward:
2099
if (psend != -1) {
2100
if (local) {
2101
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2102
2103
if (skb2)
2104
ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb2,
2105
psend);
2106
} else {
2107
ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb, psend);
2108
return;
2109
}
2110
}
2111
2112
dont_forward:
2113
if (!local)
2114
kfree_skb(skb);
2115
}
2116
2117
static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2118
{
2119
struct rtable *rt = skb_rtable(skb);
2120
struct iphdr *iph = ip_hdr(skb);
2121
struct flowi4 fl4 = {
2122
.daddr = iph->daddr,
2123
.saddr = iph->saddr,
2124
.flowi4_dscp = ip4h_dscp(iph),
2125
.flowi4_oif = (rt_is_output_route(rt) ?
2126
skb->dev->ifindex : 0),
2127
.flowi4_iif = (rt_is_output_route(rt) ?
2128
LOOPBACK_IFINDEX :
2129
skb->dev->ifindex),
2130
.flowi4_mark = skb->mark,
2131
};
2132
struct mr_table *mrt;
2133
int err;
2134
2135
err = ipmr_fib_lookup(net, &fl4, &mrt);
2136
if (err)
2137
return ERR_PTR(err);
2138
return mrt;
2139
}
2140
2141
/* Multicast packets for forwarding arrive here
2142
* Called with rcu_read_lock();
2143
*/
2144
int ip_mr_input(struct sk_buff *skb)
2145
{
2146
struct mfc_cache *cache;
2147
struct net *net = dev_net(skb->dev);
2148
int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2149
struct mr_table *mrt;
2150
struct net_device *dev;
2151
2152
/* skb->dev passed in is the loX master dev for vrfs.
2153
* As there are no vifs associated with loopback devices,
2154
* get the proper interface that does have a vif associated with it.
2155
*/
2156
dev = skb->dev;
2157
if (netif_is_l3_master(skb->dev)) {
2158
dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2159
if (!dev) {
2160
kfree_skb(skb);
2161
return -ENODEV;
2162
}
2163
}
2164
2165
/* Packet is looped back after forward, it should not be
2166
* forwarded second time, but still can be delivered locally.
2167
*/
2168
if (IPCB(skb)->flags & IPSKB_FORWARDED)
2169
goto dont_forward;
2170
2171
mrt = ipmr_rt_fib_lookup(net, skb);
2172
if (IS_ERR(mrt)) {
2173
kfree_skb(skb);
2174
return PTR_ERR(mrt);
2175
}
2176
if (!local) {
2177
if (IPCB(skb)->opt.router_alert) {
2178
if (ip_call_ra_chain(skb))
2179
return 0;
2180
} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2181
/* IGMPv1 (and broken IGMPv2 implementations sort of
2182
* Cisco IOS <= 11.2(8)) do not put router alert
2183
* option to IGMP packets destined to routable
2184
* groups. It is very bad, because it means
2185
* that we can forward NO IGMP messages.
2186
*/
2187
struct sock *mroute_sk;
2188
2189
mroute_sk = rcu_dereference(mrt->mroute_sk);
2190
if (mroute_sk) {
2191
nf_reset_ct(skb);
2192
raw_rcv(mroute_sk, skb);
2193
return 0;
2194
}
2195
}
2196
}
2197
2198
/* already under rcu_read_lock() */
2199
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2200
if (!cache) {
2201
int vif = ipmr_find_vif(mrt, dev);
2202
2203
if (vif >= 0)
2204
cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2205
vif);
2206
}
2207
2208
/* No usable cache entry */
2209
if (!cache) {
2210
int vif;
2211
2212
if (local) {
2213
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2214
ip_local_deliver(skb);
2215
if (!skb2)
2216
return -ENOBUFS;
2217
skb = skb2;
2218
}
2219
2220
vif = ipmr_find_vif(mrt, dev);
2221
if (vif >= 0)
2222
return ipmr_cache_unresolved(mrt, vif, skb, dev);
2223
kfree_skb(skb);
2224
return -ENODEV;
2225
}
2226
2227
ip_mr_forward(net, mrt, dev, skb, cache, local);
2228
2229
if (local)
2230
return ip_local_deliver(skb);
2231
2232
return 0;
2233
2234
dont_forward:
2235
if (local)
2236
return ip_local_deliver(skb);
2237
kfree_skb(skb);
2238
return 0;
2239
}
2240
2241
static void ip_mr_output_finish(struct net *net, struct mr_table *mrt,
2242
struct net_device *dev, struct sk_buff *skb,
2243
struct mfc_cache *c)
2244
{
2245
int psend = -1;
2246
int ct;
2247
2248
atomic_long_inc(&c->_c.mfc_un.res.pkt);
2249
atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2250
WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2251
2252
/* Forward the frame */
2253
if (c->mfc_origin == htonl(INADDR_ANY) &&
2254
c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2255
if (ip_hdr(skb)->ttl >
2256
c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2257
/* It's an (*,*) entry and the packet is not coming from
2258
* the upstream: forward the packet to the upstream
2259
* only.
2260
*/
2261
psend = c->_c.mfc_parent;
2262
goto last_xmit;
2263
}
2264
goto dont_xmit;
2265
}
2266
2267
for (ct = c->_c.mfc_un.res.maxvif - 1;
2268
ct >= c->_c.mfc_un.res.minvif; ct--) {
2269
if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2270
if (psend != -1) {
2271
struct sk_buff *skb2;
2272
2273
skb2 = skb_clone(skb, GFP_ATOMIC);
2274
if (skb2)
2275
ipmr_queue_output_xmit(net, mrt,
2276
skb2, psend);
2277
}
2278
psend = ct;
2279
}
2280
}
2281
2282
last_xmit:
2283
if (psend != -1) {
2284
ipmr_queue_output_xmit(net, mrt, skb, psend);
2285
return;
2286
}
2287
2288
dont_xmit:
2289
kfree_skb(skb);
2290
}
2291
2292
/* Multicast packets for forwarding arrive here
2293
* Called with rcu_read_lock();
2294
*/
2295
int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb)
2296
{
2297
struct rtable *rt = skb_rtable(skb);
2298
struct mfc_cache *cache;
2299
struct net_device *dev;
2300
struct mr_table *mrt;
2301
int vif;
2302
2303
guard(rcu)();
2304
2305
dev = dst_dev_rcu(&rt->dst);
2306
2307
if (IPCB(skb)->flags & IPSKB_FORWARDED)
2308
goto mc_output;
2309
if (!(IPCB(skb)->flags & IPSKB_MCROUTE))
2310
goto mc_output;
2311
2312
skb->dev = dev;
2313
2314
mrt = ipmr_rt_fib_lookup(net, skb);
2315
if (IS_ERR(mrt))
2316
goto mc_output;
2317
2318
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2319
if (!cache) {
2320
vif = ipmr_find_vif(mrt, dev);
2321
if (vif >= 0)
2322
cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2323
vif);
2324
}
2325
2326
/* No usable cache entry */
2327
if (!cache) {
2328
vif = ipmr_find_vif(mrt, dev);
2329
if (vif >= 0)
2330
return ipmr_cache_unresolved(mrt, vif, skb, dev);
2331
goto mc_output;
2332
}
2333
2334
vif = cache->_c.mfc_parent;
2335
if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev)
2336
goto mc_output;
2337
2338
ip_mr_output_finish(net, mrt, dev, skb, cache);
2339
return 0;
2340
2341
mc_output:
2342
return ip_mc_output(net, sk, skb);
2343
}
2344
2345
#ifdef CONFIG_IP_PIMSM_V1
2346
/* Handle IGMP messages of PIMv1 */
2347
int pim_rcv_v1(struct sk_buff *skb)
2348
{
2349
struct igmphdr *pim;
2350
struct net *net = dev_net(skb->dev);
2351
struct mr_table *mrt;
2352
2353
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2354
goto drop;
2355
2356
pim = igmp_hdr(skb);
2357
2358
mrt = ipmr_rt_fib_lookup(net, skb);
2359
if (IS_ERR(mrt))
2360
goto drop;
2361
if (!mrt->mroute_do_pim ||
2362
pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2363
goto drop;
2364
2365
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2366
drop:
2367
kfree_skb(skb);
2368
}
2369
return 0;
2370
}
2371
#endif
2372
2373
#ifdef CONFIG_IP_PIMSM_V2
2374
static int pim_rcv(struct sk_buff *skb)
2375
{
2376
struct pimreghdr *pim;
2377
struct net *net = dev_net(skb->dev);
2378
struct mr_table *mrt;
2379
2380
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2381
goto drop;
2382
2383
pim = (struct pimreghdr *)skb_transport_header(skb);
2384
if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2385
(pim->flags & PIM_NULL_REGISTER) ||
2386
(ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2387
csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2388
goto drop;
2389
2390
mrt = ipmr_rt_fib_lookup(net, skb);
2391
if (IS_ERR(mrt))
2392
goto drop;
2393
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2394
drop:
2395
kfree_skb(skb);
2396
}
2397
return 0;
2398
}
2399
#endif
2400
2401
int ipmr_get_route(struct net *net, struct sk_buff *skb,
2402
__be32 saddr, __be32 daddr,
2403
struct rtmsg *rtm, u32 portid)
2404
{
2405
struct mfc_cache *cache;
2406
struct mr_table *mrt;
2407
int err;
2408
2409
rcu_read_lock();
2410
mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2411
if (!mrt) {
2412
rcu_read_unlock();
2413
return -ENOENT;
2414
}
2415
2416
cache = ipmr_cache_find(mrt, saddr, daddr);
2417
if (!cache && skb->dev) {
2418
int vif = ipmr_find_vif(mrt, skb->dev);
2419
2420
if (vif >= 0)
2421
cache = ipmr_cache_find_any(mrt, daddr, vif);
2422
}
2423
if (!cache) {
2424
struct sk_buff *skb2;
2425
struct iphdr *iph;
2426
struct net_device *dev;
2427
int vif = -1;
2428
2429
dev = skb->dev;
2430
if (dev)
2431
vif = ipmr_find_vif(mrt, dev);
2432
if (vif < 0) {
2433
rcu_read_unlock();
2434
return -ENODEV;
2435
}
2436
2437
skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2438
if (!skb2) {
2439
rcu_read_unlock();
2440
return -ENOMEM;
2441
}
2442
2443
NETLINK_CB(skb2).portid = portid;
2444
skb_push(skb2, sizeof(struct iphdr));
2445
skb_reset_network_header(skb2);
2446
iph = ip_hdr(skb2);
2447
iph->ihl = sizeof(struct iphdr) >> 2;
2448
iph->saddr = saddr;
2449
iph->daddr = daddr;
2450
iph->version = 0;
2451
err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2452
rcu_read_unlock();
2453
return err;
2454
}
2455
2456
err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2457
rcu_read_unlock();
2458
return err;
2459
}
2460
2461
static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2462
u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2463
int flags)
2464
{
2465
struct nlmsghdr *nlh;
2466
struct rtmsg *rtm;
2467
int err;
2468
2469
nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2470
if (!nlh)
2471
return -EMSGSIZE;
2472
2473
rtm = nlmsg_data(nlh);
2474
rtm->rtm_family = RTNL_FAMILY_IPMR;
2475
rtm->rtm_dst_len = 32;
2476
rtm->rtm_src_len = 32;
2477
rtm->rtm_tos = 0;
2478
rtm->rtm_table = mrt->id;
2479
if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2480
goto nla_put_failure;
2481
rtm->rtm_type = RTN_MULTICAST;
2482
rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2483
if (c->_c.mfc_flags & MFC_STATIC)
2484
rtm->rtm_protocol = RTPROT_STATIC;
2485
else
2486
rtm->rtm_protocol = RTPROT_MROUTED;
2487
rtm->rtm_flags = 0;
2488
2489
if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2490
nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2491
goto nla_put_failure;
2492
err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2493
/* do not break the dump if cache is unresolved */
2494
if (err < 0 && err != -ENOENT)
2495
goto nla_put_failure;
2496
2497
nlmsg_end(skb, nlh);
2498
return 0;
2499
2500
nla_put_failure:
2501
nlmsg_cancel(skb, nlh);
2502
return -EMSGSIZE;
2503
}
2504
2505
static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2506
u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2507
int flags)
2508
{
2509
return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2510
cmd, flags);
2511
}
2512
2513
static size_t mroute_msgsize(bool unresolved, int maxvif)
2514
{
2515
size_t len =
2516
NLMSG_ALIGN(sizeof(struct rtmsg))
2517
+ nla_total_size(4) /* RTA_TABLE */
2518
+ nla_total_size(4) /* RTA_SRC */
2519
+ nla_total_size(4) /* RTA_DST */
2520
;
2521
2522
if (!unresolved)
2523
len = len
2524
+ nla_total_size(4) /* RTA_IIF */
2525
+ nla_total_size(0) /* RTA_MULTIPATH */
2526
+ maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2527
/* RTA_MFC_STATS */
2528
+ nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2529
;
2530
2531
return len;
2532
}
2533
2534
static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2535
int cmd)
2536
{
2537
struct net *net = read_pnet(&mrt->net);
2538
struct sk_buff *skb;
2539
int err = -ENOBUFS;
2540
2541
skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2542
mrt->maxvif),
2543
GFP_ATOMIC);
2544
if (!skb)
2545
goto errout;
2546
2547
err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2548
if (err < 0)
2549
goto errout;
2550
2551
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2552
return;
2553
2554
errout:
2555
kfree_skb(skb);
2556
rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2557
}
2558
2559
static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2560
{
2561
size_t len =
2562
NLMSG_ALIGN(sizeof(struct rtgenmsg))
2563
+ nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2564
+ nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2565
+ nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2566
+ nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2567
+ nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2568
/* IPMRA_CREPORT_PKT */
2569
+ nla_total_size(payloadlen)
2570
;
2571
2572
return len;
2573
}
2574
2575
static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2576
{
2577
struct net *net = read_pnet(&mrt->net);
2578
struct nlmsghdr *nlh;
2579
struct rtgenmsg *rtgenm;
2580
struct igmpmsg *msg;
2581
struct sk_buff *skb;
2582
struct nlattr *nla;
2583
int payloadlen;
2584
2585
payloadlen = pkt->len - sizeof(struct igmpmsg);
2586
msg = (struct igmpmsg *)skb_network_header(pkt);
2587
2588
skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2589
if (!skb)
2590
goto errout;
2591
2592
nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2593
sizeof(struct rtgenmsg), 0);
2594
if (!nlh)
2595
goto errout;
2596
rtgenm = nlmsg_data(nlh);
2597
rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2598
if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2599
nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2600
nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2601
msg->im_src.s_addr) ||
2602
nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2603
msg->im_dst.s_addr) ||
2604
nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2605
goto nla_put_failure;
2606
2607
nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2608
if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2609
nla_data(nla), payloadlen))
2610
goto nla_put_failure;
2611
2612
nlmsg_end(skb, nlh);
2613
2614
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2615
return;
2616
2617
nla_put_failure:
2618
nlmsg_cancel(skb, nlh);
2619
errout:
2620
kfree_skb(skb);
2621
rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2622
}
2623
2624
static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2625
const struct nlmsghdr *nlh,
2626
struct nlattr **tb,
2627
struct netlink_ext_ack *extack)
2628
{
2629
struct rtmsg *rtm;
2630
int i, err;
2631
2632
rtm = nlmsg_payload(nlh, sizeof(*rtm));
2633
if (!rtm) {
2634
NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2635
return -EINVAL;
2636
}
2637
2638
if (!netlink_strict_get_check(skb))
2639
return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2640
rtm_ipv4_policy, extack);
2641
2642
if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2643
(rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2644
rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2645
rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2646
NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2647
return -EINVAL;
2648
}
2649
2650
err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2651
rtm_ipv4_policy, extack);
2652
if (err)
2653
return err;
2654
2655
if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2656
(tb[RTA_DST] && !rtm->rtm_dst_len)) {
2657
NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2658
return -EINVAL;
2659
}
2660
2661
for (i = 0; i <= RTA_MAX; i++) {
2662
if (!tb[i])
2663
continue;
2664
2665
switch (i) {
2666
case RTA_SRC:
2667
case RTA_DST:
2668
case RTA_TABLE:
2669
break;
2670
default:
2671
NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2672
return -EINVAL;
2673
}
2674
}
2675
2676
return 0;
2677
}
2678
2679
static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2680
struct netlink_ext_ack *extack)
2681
{
2682
struct net *net = sock_net(in_skb->sk);
2683
struct nlattr *tb[RTA_MAX + 1];
2684
struct sk_buff *skb = NULL;
2685
struct mfc_cache *cache;
2686
struct mr_table *mrt;
2687
__be32 src, grp;
2688
u32 tableid;
2689
int err;
2690
2691
err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2692
if (err < 0)
2693
goto errout;
2694
2695
src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2696
grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2697
tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2698
2699
mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2700
if (!mrt) {
2701
err = -ENOENT;
2702
goto errout_free;
2703
}
2704
2705
/* entries are added/deleted only under RTNL */
2706
rcu_read_lock();
2707
cache = ipmr_cache_find(mrt, src, grp);
2708
rcu_read_unlock();
2709
if (!cache) {
2710
err = -ENOENT;
2711
goto errout_free;
2712
}
2713
2714
skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2715
if (!skb) {
2716
err = -ENOBUFS;
2717
goto errout_free;
2718
}
2719
2720
err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2721
nlh->nlmsg_seq, cache,
2722
RTM_NEWROUTE, 0);
2723
if (err < 0)
2724
goto errout_free;
2725
2726
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2727
2728
errout:
2729
return err;
2730
2731
errout_free:
2732
kfree_skb(skb);
2733
goto errout;
2734
}
2735
2736
static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2737
{
2738
struct fib_dump_filter filter = {
2739
.rtnl_held = true,
2740
};
2741
int err;
2742
2743
if (cb->strict_check) {
2744
err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2745
&filter, cb);
2746
if (err < 0)
2747
return err;
2748
}
2749
2750
if (filter.table_id) {
2751
struct mr_table *mrt;
2752
2753
mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2754
if (!mrt) {
2755
if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2756
return skb->len;
2757
2758
NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2759
return -ENOENT;
2760
}
2761
err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2762
&mfc_unres_lock, &filter);
2763
return skb->len ? : err;
2764
}
2765
2766
return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2767
_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2768
}
2769
2770
static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2771
[RTA_SRC] = { .type = NLA_U32 },
2772
[RTA_DST] = { .type = NLA_U32 },
2773
[RTA_IIF] = { .type = NLA_U32 },
2774
[RTA_TABLE] = { .type = NLA_U32 },
2775
[RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2776
};
2777
2778
static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2779
{
2780
switch (rtm_protocol) {
2781
case RTPROT_STATIC:
2782
case RTPROT_MROUTED:
2783
return true;
2784
}
2785
return false;
2786
}
2787
2788
static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2789
{
2790
struct rtnexthop *rtnh = nla_data(nla);
2791
int remaining = nla_len(nla), vifi = 0;
2792
2793
while (rtnh_ok(rtnh, remaining)) {
2794
mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2795
if (++vifi == MAXVIFS)
2796
break;
2797
rtnh = rtnh_next(rtnh, &remaining);
2798
}
2799
2800
return remaining > 0 ? -EINVAL : vifi;
2801
}
2802
2803
/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2804
static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2805
struct mfcctl *mfcc, int *mrtsock,
2806
struct mr_table **mrtret,
2807
struct netlink_ext_ack *extack)
2808
{
2809
struct net_device *dev = NULL;
2810
u32 tblid = RT_TABLE_DEFAULT;
2811
struct mr_table *mrt;
2812
struct nlattr *attr;
2813
struct rtmsg *rtm;
2814
int ret, rem;
2815
2816
ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2817
rtm_ipmr_policy, extack);
2818
if (ret < 0)
2819
goto out;
2820
rtm = nlmsg_data(nlh);
2821
2822
ret = -EINVAL;
2823
if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2824
rtm->rtm_type != RTN_MULTICAST ||
2825
rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2826
!ipmr_rtm_validate_proto(rtm->rtm_protocol))
2827
goto out;
2828
2829
memset(mfcc, 0, sizeof(*mfcc));
2830
mfcc->mfcc_parent = -1;
2831
ret = 0;
2832
nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2833
switch (nla_type(attr)) {
2834
case RTA_SRC:
2835
mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2836
break;
2837
case RTA_DST:
2838
mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2839
break;
2840
case RTA_IIF:
2841
dev = __dev_get_by_index(net, nla_get_u32(attr));
2842
if (!dev) {
2843
ret = -ENODEV;
2844
goto out;
2845
}
2846
break;
2847
case RTA_MULTIPATH:
2848
if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2849
ret = -EINVAL;
2850
goto out;
2851
}
2852
break;
2853
case RTA_PREFSRC:
2854
ret = 1;
2855
break;
2856
case RTA_TABLE:
2857
tblid = nla_get_u32(attr);
2858
break;
2859
}
2860
}
2861
mrt = __ipmr_get_table(net, tblid);
2862
if (!mrt) {
2863
ret = -ENOENT;
2864
goto out;
2865
}
2866
*mrtret = mrt;
2867
*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2868
if (dev)
2869
mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2870
2871
out:
2872
return ret;
2873
}
2874
2875
/* takes care of both newroute and delroute */
2876
static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2877
struct netlink_ext_ack *extack)
2878
{
2879
struct net *net = sock_net(skb->sk);
2880
int ret, mrtsock, parent;
2881
struct mr_table *tbl;
2882
struct mfcctl mfcc;
2883
2884
mrtsock = 0;
2885
tbl = NULL;
2886
ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2887
if (ret < 0)
2888
return ret;
2889
2890
parent = ret ? mfcc.mfcc_parent : -1;
2891
if (nlh->nlmsg_type == RTM_NEWROUTE)
2892
return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2893
else
2894
return ipmr_mfc_delete(tbl, &mfcc, parent);
2895
}
2896
2897
static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2898
{
2899
u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2900
2901
if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2902
nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2903
nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2904
mrt->mroute_reg_vif_num) ||
2905
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2906
mrt->mroute_do_assert) ||
2907
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2908
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2909
mrt->mroute_do_wrvifwhole))
2910
return false;
2911
2912
return true;
2913
}
2914
2915
static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2916
{
2917
struct net_device *vif_dev;
2918
struct nlattr *vif_nest;
2919
struct vif_device *vif;
2920
2921
vif = &mrt->vif_table[vifid];
2922
vif_dev = rtnl_dereference(vif->dev);
2923
/* if the VIF doesn't exist just continue */
2924
if (!vif_dev)
2925
return true;
2926
2927
vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2928
if (!vif_nest)
2929
return false;
2930
2931
if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2932
nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2933
nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2934
nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2935
IPMRA_VIFA_PAD) ||
2936
nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2937
IPMRA_VIFA_PAD) ||
2938
nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2939
IPMRA_VIFA_PAD) ||
2940
nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2941
IPMRA_VIFA_PAD) ||
2942
nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2943
nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2944
nla_nest_cancel(skb, vif_nest);
2945
return false;
2946
}
2947
nla_nest_end(skb, vif_nest);
2948
2949
return true;
2950
}
2951
2952
static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2953
struct netlink_ext_ack *extack)
2954
{
2955
struct ifinfomsg *ifm;
2956
2957
ifm = nlmsg_payload(nlh, sizeof(*ifm));
2958
if (!ifm) {
2959
NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2960
return -EINVAL;
2961
}
2962
2963
if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2964
NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2965
return -EINVAL;
2966
}
2967
2968
if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2969
ifm->ifi_change || ifm->ifi_index) {
2970
NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2971
return -EINVAL;
2972
}
2973
2974
return 0;
2975
}
2976
2977
static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2978
{
2979
struct net *net = sock_net(skb->sk);
2980
struct nlmsghdr *nlh = NULL;
2981
unsigned int t = 0, s_t;
2982
unsigned int e = 0, s_e;
2983
struct mr_table *mrt;
2984
2985
if (cb->strict_check) {
2986
int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2987
2988
if (err < 0)
2989
return err;
2990
}
2991
2992
s_t = cb->args[0];
2993
s_e = cb->args[1];
2994
2995
ipmr_for_each_table(mrt, net) {
2996
struct nlattr *vifs, *af;
2997
struct ifinfomsg *hdr;
2998
u32 i;
2999
3000
if (t < s_t)
3001
goto skip_table;
3002
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
3003
cb->nlh->nlmsg_seq, RTM_NEWLINK,
3004
sizeof(*hdr), NLM_F_MULTI);
3005
if (!nlh)
3006
break;
3007
3008
hdr = nlmsg_data(nlh);
3009
memset(hdr, 0, sizeof(*hdr));
3010
hdr->ifi_family = RTNL_FAMILY_IPMR;
3011
3012
af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
3013
if (!af) {
3014
nlmsg_cancel(skb, nlh);
3015
goto out;
3016
}
3017
3018
if (!ipmr_fill_table(mrt, skb)) {
3019
nlmsg_cancel(skb, nlh);
3020
goto out;
3021
}
3022
3023
vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
3024
if (!vifs) {
3025
nla_nest_end(skb, af);
3026
nlmsg_end(skb, nlh);
3027
goto out;
3028
}
3029
for (i = 0; i < mrt->maxvif; i++) {
3030
if (e < s_e)
3031
goto skip_entry;
3032
if (!ipmr_fill_vif(mrt, i, skb)) {
3033
nla_nest_end(skb, vifs);
3034
nla_nest_end(skb, af);
3035
nlmsg_end(skb, nlh);
3036
goto out;
3037
}
3038
skip_entry:
3039
e++;
3040
}
3041
s_e = 0;
3042
e = 0;
3043
nla_nest_end(skb, vifs);
3044
nla_nest_end(skb, af);
3045
nlmsg_end(skb, nlh);
3046
skip_table:
3047
t++;
3048
}
3049
3050
out:
3051
cb->args[1] = e;
3052
cb->args[0] = t;
3053
3054
return skb->len;
3055
}
3056
3057
#ifdef CONFIG_PROC_FS
3058
/* The /proc interfaces to multicast routing :
3059
* /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
3060
*/
3061
3062
static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
3063
__acquires(RCU)
3064
{
3065
struct mr_vif_iter *iter = seq->private;
3066
struct net *net = seq_file_net(seq);
3067
struct mr_table *mrt;
3068
3069
rcu_read_lock();
3070
mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
3071
if (!mrt) {
3072
rcu_read_unlock();
3073
return ERR_PTR(-ENOENT);
3074
}
3075
3076
iter->mrt = mrt;
3077
3078
return mr_vif_seq_start(seq, pos);
3079
}
3080
3081
static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
3082
__releases(RCU)
3083
{
3084
rcu_read_unlock();
3085
}
3086
3087
static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
3088
{
3089
struct mr_vif_iter *iter = seq->private;
3090
struct mr_table *mrt = iter->mrt;
3091
3092
if (v == SEQ_START_TOKEN) {
3093
seq_puts(seq,
3094
"Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
3095
} else {
3096
const struct vif_device *vif = v;
3097
const struct net_device *vif_dev;
3098
const char *name;
3099
3100
vif_dev = vif_dev_read(vif);
3101
name = vif_dev ? vif_dev->name : "none";
3102
seq_printf(seq,
3103
"%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
3104
vif - mrt->vif_table,
3105
name, vif->bytes_in, vif->pkt_in,
3106
vif->bytes_out, vif->pkt_out,
3107
vif->flags, vif->local, vif->remote);
3108
}
3109
return 0;
3110
}
3111
3112
static const struct seq_operations ipmr_vif_seq_ops = {
3113
.start = ipmr_vif_seq_start,
3114
.next = mr_vif_seq_next,
3115
.stop = ipmr_vif_seq_stop,
3116
.show = ipmr_vif_seq_show,
3117
};
3118
3119
static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3120
{
3121
struct net *net = seq_file_net(seq);
3122
struct mr_table *mrt;
3123
3124
mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3125
if (!mrt)
3126
return ERR_PTR(-ENOENT);
3127
3128
return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3129
}
3130
3131
static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3132
{
3133
int n;
3134
3135
if (v == SEQ_START_TOKEN) {
3136
seq_puts(seq,
3137
"Group Origin Iif Pkts Bytes Wrong Oifs\n");
3138
} else {
3139
const struct mfc_cache *mfc = v;
3140
const struct mr_mfc_iter *it = seq->private;
3141
const struct mr_table *mrt = it->mrt;
3142
3143
seq_printf(seq, "%08X %08X %-3hd",
3144
(__force u32) mfc->mfc_mcastgrp,
3145
(__force u32) mfc->mfc_origin,
3146
mfc->_c.mfc_parent);
3147
3148
if (it->cache != &mrt->mfc_unres_queue) {
3149
seq_printf(seq, " %8lu %8lu %8lu",
3150
atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3151
atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3152
atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3153
for (n = mfc->_c.mfc_un.res.minvif;
3154
n < mfc->_c.mfc_un.res.maxvif; n++) {
3155
if (VIF_EXISTS(mrt, n) &&
3156
mfc->_c.mfc_un.res.ttls[n] < 255)
3157
seq_printf(seq,
3158
" %2d:%-3d",
3159
n, mfc->_c.mfc_un.res.ttls[n]);
3160
}
3161
} else {
3162
/* unresolved mfc_caches don't contain
3163
* pkt, bytes and wrong_if values
3164
*/
3165
seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3166
}
3167
seq_putc(seq, '\n');
3168
}
3169
return 0;
3170
}
3171
3172
static const struct seq_operations ipmr_mfc_seq_ops = {
3173
.start = ipmr_mfc_seq_start,
3174
.next = mr_mfc_seq_next,
3175
.stop = mr_mfc_seq_stop,
3176
.show = ipmr_mfc_seq_show,
3177
};
3178
#endif
3179
3180
#ifdef CONFIG_IP_PIMSM_V2
3181
static const struct net_protocol pim_protocol = {
3182
.handler = pim_rcv,
3183
};
3184
#endif
3185
3186
static unsigned int ipmr_seq_read(const struct net *net)
3187
{
3188
return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3189
}
3190
3191
static int ipmr_dump(struct net *net, struct notifier_block *nb,
3192
struct netlink_ext_ack *extack)
3193
{
3194
return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3195
ipmr_mr_table_iter, extack);
3196
}
3197
3198
static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3199
.family = RTNL_FAMILY_IPMR,
3200
.fib_seq_read = ipmr_seq_read,
3201
.fib_dump = ipmr_dump,
3202
.owner = THIS_MODULE,
3203
};
3204
3205
static int __net_init ipmr_notifier_init(struct net *net)
3206
{
3207
struct fib_notifier_ops *ops;
3208
3209
net->ipv4.ipmr_seq = 0;
3210
3211
ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3212
if (IS_ERR(ops))
3213
return PTR_ERR(ops);
3214
net->ipv4.ipmr_notifier_ops = ops;
3215
3216
return 0;
3217
}
3218
3219
static void __net_exit ipmr_notifier_exit(struct net *net)
3220
{
3221
fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3222
net->ipv4.ipmr_notifier_ops = NULL;
3223
}
3224
3225
/* Setup for IP multicast routing */
3226
static int __net_init ipmr_net_init(struct net *net)
3227
{
3228
int err;
3229
3230
err = ipmr_notifier_init(net);
3231
if (err)
3232
goto ipmr_notifier_fail;
3233
3234
err = ipmr_rules_init(net);
3235
if (err < 0)
3236
goto ipmr_rules_fail;
3237
3238
#ifdef CONFIG_PROC_FS
3239
err = -ENOMEM;
3240
if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3241
sizeof(struct mr_vif_iter)))
3242
goto proc_vif_fail;
3243
if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3244
sizeof(struct mr_mfc_iter)))
3245
goto proc_cache_fail;
3246
#endif
3247
return 0;
3248
3249
#ifdef CONFIG_PROC_FS
3250
proc_cache_fail:
3251
remove_proc_entry("ip_mr_vif", net->proc_net);
3252
proc_vif_fail:
3253
rtnl_lock();
3254
ipmr_rules_exit(net);
3255
rtnl_unlock();
3256
#endif
3257
ipmr_rules_fail:
3258
ipmr_notifier_exit(net);
3259
ipmr_notifier_fail:
3260
return err;
3261
}
3262
3263
static void __net_exit ipmr_net_exit(struct net *net)
3264
{
3265
#ifdef CONFIG_PROC_FS
3266
remove_proc_entry("ip_mr_cache", net->proc_net);
3267
remove_proc_entry("ip_mr_vif", net->proc_net);
3268
#endif
3269
ipmr_notifier_exit(net);
3270
}
3271
3272
static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3273
{
3274
struct net *net;
3275
3276
rtnl_lock();
3277
list_for_each_entry(net, net_list, exit_list)
3278
ipmr_rules_exit(net);
3279
rtnl_unlock();
3280
}
3281
3282
static struct pernet_operations ipmr_net_ops = {
3283
.init = ipmr_net_init,
3284
.exit = ipmr_net_exit,
3285
.exit_batch = ipmr_net_exit_batch,
3286
};
3287
3288
static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3289
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3290
.dumpit = ipmr_rtm_dumplink},
3291
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3292
.doit = ipmr_rtm_route},
3293
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3294
.doit = ipmr_rtm_route},
3295
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3296
.doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3297
};
3298
3299
int __init ip_mr_init(void)
3300
{
3301
int err;
3302
3303
mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3304
3305
err = register_pernet_subsys(&ipmr_net_ops);
3306
if (err)
3307
goto reg_pernet_fail;
3308
3309
err = register_netdevice_notifier(&ip_mr_notifier);
3310
if (err)
3311
goto reg_notif_fail;
3312
#ifdef CONFIG_IP_PIMSM_V2
3313
if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3314
pr_err("%s: can't add PIM protocol\n", __func__);
3315
err = -EAGAIN;
3316
goto add_proto_fail;
3317
}
3318
#endif
3319
rtnl_register_many(ipmr_rtnl_msg_handlers);
3320
3321
return 0;
3322
3323
#ifdef CONFIG_IP_PIMSM_V2
3324
add_proto_fail:
3325
unregister_netdevice_notifier(&ip_mr_notifier);
3326
#endif
3327
reg_notif_fail:
3328
unregister_pernet_subsys(&ipmr_net_ops);
3329
reg_pernet_fail:
3330
kmem_cache_destroy(mrt_cachep);
3331
return err;
3332
}
3333
3334