Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/mptcp/protocol.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Multipath TCP
3
*
4
* Copyright (c) 2017 - 2019, Intel Corporation.
5
*/
6
7
#define pr_fmt(fmt) "MPTCP: " fmt
8
9
#include <linux/kernel.h>
10
#include <linux/module.h>
11
#include <linux/netdevice.h>
12
#include <linux/sched/signal.h>
13
#include <linux/atomic.h>
14
#include <net/aligned_data.h>
15
#include <net/rps.h>
16
#include <net/sock.h>
17
#include <net/inet_common.h>
18
#include <net/inet_hashtables.h>
19
#include <net/protocol.h>
20
#include <net/tcp_states.h>
21
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
22
#include <net/transp_v6.h>
23
#endif
24
#include <net/mptcp.h>
25
#include <net/hotdata.h>
26
#include <net/xfrm.h>
27
#include <asm/ioctls.h>
28
#include "protocol.h"
29
#include "mib.h"
30
31
#define CREATE_TRACE_POINTS
32
#include <trace/events/mptcp.h>
33
34
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
35
struct mptcp6_sock {
36
struct mptcp_sock msk;
37
struct ipv6_pinfo np;
38
};
39
#endif
40
41
enum {
42
MPTCP_CMSG_TS = BIT(0),
43
MPTCP_CMSG_INQ = BIT(1),
44
};
45
46
static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47
48
static void __mptcp_destroy_sock(struct sock *sk);
49
static void mptcp_check_send_data_fin(struct sock *sk);
50
51
DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53
};
54
static struct net_device *mptcp_napi_dev;
55
56
/* Returns end sequence number of the receiver's advertised window */
57
static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58
{
59
return READ_ONCE(msk->wnd_end);
60
}
61
62
static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63
{
64
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
65
if (sk->sk_prot == &tcpv6_prot)
66
return &inet6_stream_ops;
67
#endif
68
WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69
return &inet_stream_ops;
70
}
71
72
bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73
{
74
struct net *net = sock_net((struct sock *)msk);
75
76
if (__mptcp_check_fallback(msk))
77
return true;
78
79
spin_lock_bh(&msk->fallback_lock);
80
if (!msk->allow_infinite_fallback) {
81
spin_unlock_bh(&msk->fallback_lock);
82
return false;
83
}
84
85
msk->allow_subflows = false;
86
set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87
__MPTCP_INC_STATS(net, fb_mib);
88
spin_unlock_bh(&msk->fallback_lock);
89
return true;
90
}
91
92
static int __mptcp_socket_create(struct mptcp_sock *msk)
93
{
94
struct mptcp_subflow_context *subflow;
95
struct sock *sk = (struct sock *)msk;
96
struct socket *ssock;
97
int err;
98
99
err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100
if (err)
101
return err;
102
103
msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104
WRITE_ONCE(msk->first, ssock->sk);
105
subflow = mptcp_subflow_ctx(ssock->sk);
106
list_add(&subflow->node, &msk->conn_list);
107
sock_hold(ssock->sk);
108
subflow->request_mptcp = 1;
109
subflow->subflow_id = msk->subflow_id++;
110
111
/* This is the first subflow, always with id 0 */
112
WRITE_ONCE(subflow->local_id, 0);
113
mptcp_sock_graft(msk->first, sk->sk_socket);
114
iput(SOCK_INODE(ssock));
115
116
return 0;
117
}
118
119
/* If the MPC handshake is not started, returns the first subflow,
120
* eventually allocating it.
121
*/
122
struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123
{
124
struct sock *sk = (struct sock *)msk;
125
int ret;
126
127
if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128
return ERR_PTR(-EINVAL);
129
130
if (!msk->first) {
131
ret = __mptcp_socket_create(msk);
132
if (ret)
133
return ERR_PTR(ret);
134
}
135
136
return msk->first;
137
}
138
139
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140
{
141
sk_drops_skbadd(sk, skb);
142
__kfree_skb(skb);
143
}
144
145
static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146
struct sk_buff *from, bool *fragstolen,
147
int *delta)
148
{
149
int limit = READ_ONCE(sk->sk_rcvbuf);
150
151
if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152
MPTCP_SKB_CB(from)->offset ||
153
((to->len + from->len) > (limit >> 3)) ||
154
!skb_try_coalesce(to, from, fragstolen, delta))
155
return false;
156
157
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159
to->len, MPTCP_SKB_CB(from)->end_seq);
160
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161
return true;
162
}
163
164
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165
struct sk_buff *from)
166
{
167
bool fragstolen;
168
int delta;
169
170
if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171
return false;
172
173
/* note the fwd memory can reach a negative value after accounting
174
* for the delta, but the later skb free will restore a non
175
* negative one
176
*/
177
atomic_add(delta, &sk->sk_rmem_alloc);
178
sk_mem_charge(sk, delta);
179
kfree_skb_partial(from, fragstolen);
180
181
return true;
182
}
183
184
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185
struct sk_buff *from)
186
{
187
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188
return false;
189
190
return mptcp_try_coalesce((struct sock *)msk, to, from);
191
}
192
193
/* "inspired" by tcp_rcvbuf_grow(), main difference:
194
* - mptcp does not maintain a msk-level window clamp
195
* - returns true when the receive buffer is actually updated
196
*/
197
static bool mptcp_rcvbuf_grow(struct sock *sk)
198
{
199
struct mptcp_sock *msk = mptcp_sk(sk);
200
const struct net *net = sock_net(sk);
201
int rcvwin, rcvbuf, cap;
202
203
if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
204
(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
205
return false;
206
207
rcvwin = msk->rcvq_space.space << 1;
208
209
if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
210
rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
211
212
cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
213
214
rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
215
if (rcvbuf > sk->sk_rcvbuf) {
216
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
217
return true;
218
}
219
return false;
220
}
221
222
/* "inspired" by tcp_data_queue_ofo(), main differences:
223
* - use mptcp seqs
224
* - don't cope with sacks
225
*/
226
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
227
{
228
struct sock *sk = (struct sock *)msk;
229
struct rb_node **p, *parent;
230
u64 seq, end_seq, max_seq;
231
struct sk_buff *skb1;
232
233
seq = MPTCP_SKB_CB(skb)->map_seq;
234
end_seq = MPTCP_SKB_CB(skb)->end_seq;
235
max_seq = atomic64_read(&msk->rcv_wnd_sent);
236
237
pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
238
RB_EMPTY_ROOT(&msk->out_of_order_queue));
239
if (after64(end_seq, max_seq)) {
240
/* out of window */
241
mptcp_drop(sk, skb);
242
pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
243
(unsigned long long)end_seq - (unsigned long)max_seq,
244
(unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
245
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
246
return;
247
}
248
249
p = &msk->out_of_order_queue.rb_node;
250
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
251
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
252
rb_link_node(&skb->rbnode, NULL, p);
253
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254
msk->ooo_last_skb = skb;
255
goto end;
256
}
257
258
/* with 2 subflows, adding at end of ooo queue is quite likely
259
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
260
*/
261
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
262
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
263
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
264
return;
265
}
266
267
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
268
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
269
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
270
parent = &msk->ooo_last_skb->rbnode;
271
p = &parent->rb_right;
272
goto insert;
273
}
274
275
/* Find place to insert this segment. Handle overlaps on the way. */
276
parent = NULL;
277
while (*p) {
278
parent = *p;
279
skb1 = rb_to_skb(parent);
280
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
281
p = &parent->rb_left;
282
continue;
283
}
284
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
286
/* All the bits are present. Drop. */
287
mptcp_drop(sk, skb);
288
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289
return;
290
}
291
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
292
/* partial overlap:
293
* | skb |
294
* | skb1 |
295
* continue traversing
296
*/
297
} else {
298
/* skb's seq == skb1's seq and skb covers skb1.
299
* Replace skb1 with skb.
300
*/
301
rb_replace_node(&skb1->rbnode, &skb->rbnode,
302
&msk->out_of_order_queue);
303
mptcp_drop(sk, skb1);
304
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
305
goto merge_right;
306
}
307
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
308
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
309
return;
310
}
311
p = &parent->rb_right;
312
}
313
314
insert:
315
/* Insert segment into RB tree. */
316
rb_link_node(&skb->rbnode, parent, p);
317
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
318
319
merge_right:
320
/* Remove other segments covered by skb. */
321
while ((skb1 = skb_rb_next(skb)) != NULL) {
322
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
323
break;
324
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
325
mptcp_drop(sk, skb1);
326
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327
}
328
/* If there is no skb after us, we are the last_skb ! */
329
if (!skb1)
330
msk->ooo_last_skb = skb;
331
332
end:
333
skb_condense(skb);
334
skb_set_owner_r(skb, sk);
335
/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
336
if (sk->sk_socket)
337
mptcp_rcvbuf_grow(sk);
338
}
339
340
static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
341
int copy_len)
342
{
343
const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344
bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
345
346
/* the skb map_seq accounts for the skb offset:
347
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
348
* value
349
*/
350
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
351
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
352
MPTCP_SKB_CB(skb)->offset = offset;
353
MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
354
MPTCP_SKB_CB(skb)->cant_coalesce = 0;
355
356
__skb_unlink(skb, &ssk->sk_receive_queue);
357
358
skb_ext_reset(skb);
359
skb_dst_drop(skb);
360
}
361
362
static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
363
{
364
u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
365
struct mptcp_sock *msk = mptcp_sk(sk);
366
struct sk_buff *tail;
367
368
/* try to fetch required memory from subflow */
369
if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
370
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
371
goto drop;
372
}
373
374
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
375
/* in sequence */
376
msk->bytes_received += copy_len;
377
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
378
tail = skb_peek_tail(&sk->sk_receive_queue);
379
if (tail && mptcp_try_coalesce(sk, tail, skb))
380
return true;
381
382
skb_set_owner_r(skb, sk);
383
__skb_queue_tail(&sk->sk_receive_queue, skb);
384
return true;
385
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
386
mptcp_data_queue_ofo(msk, skb);
387
return false;
388
}
389
390
/* old data, keep it simple and drop the whole pkt, sender
391
* will retransmit as needed, if needed.
392
*/
393
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
394
drop:
395
mptcp_drop(sk, skb);
396
return false;
397
}
398
399
static void mptcp_stop_rtx_timer(struct sock *sk)
400
{
401
struct inet_connection_sock *icsk = inet_csk(sk);
402
403
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
404
mptcp_sk(sk)->timer_ival = 0;
405
}
406
407
static void mptcp_close_wake_up(struct sock *sk)
408
{
409
if (sock_flag(sk, SOCK_DEAD))
410
return;
411
412
sk->sk_state_change(sk);
413
if (sk->sk_shutdown == SHUTDOWN_MASK ||
414
sk->sk_state == TCP_CLOSE)
415
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
416
else
417
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
418
}
419
420
static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
421
{
422
struct mptcp_subflow_context *subflow;
423
424
mptcp_for_each_subflow(msk, subflow) {
425
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
426
bool slow;
427
428
slow = lock_sock_fast(ssk);
429
tcp_shutdown(ssk, SEND_SHUTDOWN);
430
unlock_sock_fast(ssk, slow);
431
}
432
}
433
434
/* called under the msk socket lock */
435
static bool mptcp_pending_data_fin_ack(struct sock *sk)
436
{
437
struct mptcp_sock *msk = mptcp_sk(sk);
438
439
return ((1 << sk->sk_state) &
440
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
441
msk->write_seq == READ_ONCE(msk->snd_una);
442
}
443
444
static void mptcp_check_data_fin_ack(struct sock *sk)
445
{
446
struct mptcp_sock *msk = mptcp_sk(sk);
447
448
/* Look for an acknowledged DATA_FIN */
449
if (mptcp_pending_data_fin_ack(sk)) {
450
WRITE_ONCE(msk->snd_data_fin_enable, 0);
451
452
switch (sk->sk_state) {
453
case TCP_FIN_WAIT1:
454
mptcp_set_state(sk, TCP_FIN_WAIT2);
455
break;
456
case TCP_CLOSING:
457
case TCP_LAST_ACK:
458
mptcp_shutdown_subflows(msk);
459
mptcp_set_state(sk, TCP_CLOSE);
460
break;
461
}
462
463
mptcp_close_wake_up(sk);
464
}
465
}
466
467
/* can be called with no lock acquired */
468
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
469
{
470
struct mptcp_sock *msk = mptcp_sk(sk);
471
472
if (READ_ONCE(msk->rcv_data_fin) &&
473
((1 << inet_sk_state_load(sk)) &
474
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
475
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
476
477
if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
478
if (seq)
479
*seq = rcv_data_fin_seq;
480
481
return true;
482
}
483
}
484
485
return false;
486
}
487
488
static void mptcp_set_datafin_timeout(struct sock *sk)
489
{
490
struct inet_connection_sock *icsk = inet_csk(sk);
491
u32 retransmits;
492
493
retransmits = min_t(u32, icsk->icsk_retransmits,
494
ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
495
496
mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
497
}
498
499
static void __mptcp_set_timeout(struct sock *sk, long tout)
500
{
501
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
502
}
503
504
static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
505
{
506
const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
507
508
return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
509
icsk_timeout(inet_csk(ssk)) - jiffies : 0;
510
}
511
512
static void mptcp_set_timeout(struct sock *sk)
513
{
514
struct mptcp_subflow_context *subflow;
515
long tout = 0;
516
517
mptcp_for_each_subflow(mptcp_sk(sk), subflow)
518
tout = max(tout, mptcp_timeout_from_subflow(subflow));
519
__mptcp_set_timeout(sk, tout);
520
}
521
522
static inline bool tcp_can_send_ack(const struct sock *ssk)
523
{
524
return !((1 << inet_sk_state_load(ssk)) &
525
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
526
}
527
528
void __mptcp_subflow_send_ack(struct sock *ssk)
529
{
530
if (tcp_can_send_ack(ssk))
531
tcp_send_ack(ssk);
532
}
533
534
static void mptcp_subflow_send_ack(struct sock *ssk)
535
{
536
bool slow;
537
538
slow = lock_sock_fast(ssk);
539
__mptcp_subflow_send_ack(ssk);
540
unlock_sock_fast(ssk, slow);
541
}
542
543
static void mptcp_send_ack(struct mptcp_sock *msk)
544
{
545
struct mptcp_subflow_context *subflow;
546
547
mptcp_for_each_subflow(msk, subflow)
548
mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
549
}
550
551
static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
552
{
553
bool slow;
554
555
slow = lock_sock_fast(ssk);
556
if (tcp_can_send_ack(ssk))
557
tcp_cleanup_rbuf(ssk, copied);
558
unlock_sock_fast(ssk, slow);
559
}
560
561
static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
562
{
563
const struct inet_connection_sock *icsk = inet_csk(ssk);
564
u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
565
const struct tcp_sock *tp = tcp_sk(ssk);
566
567
return (ack_pending & ICSK_ACK_SCHED) &&
568
((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
569
READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
570
(rx_empty && ack_pending &
571
(ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
572
}
573
574
static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
575
{
576
int old_space = READ_ONCE(msk->old_wspace);
577
struct mptcp_subflow_context *subflow;
578
struct sock *sk = (struct sock *)msk;
579
int space = __mptcp_space(sk);
580
bool cleanup, rx_empty;
581
582
cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
583
rx_empty = !sk_rmem_alloc_get(sk) && copied;
584
585
mptcp_for_each_subflow(msk, subflow) {
586
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
587
588
if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
589
mptcp_subflow_cleanup_rbuf(ssk, copied);
590
}
591
}
592
593
static void mptcp_check_data_fin(struct sock *sk)
594
{
595
struct mptcp_sock *msk = mptcp_sk(sk);
596
u64 rcv_data_fin_seq;
597
598
/* Need to ack a DATA_FIN received from a peer while this side
599
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
600
* msk->rcv_data_fin was set when parsing the incoming options
601
* at the subflow level and the msk lock was not held, so this
602
* is the first opportunity to act on the DATA_FIN and change
603
* the msk state.
604
*
605
* If we are caught up to the sequence number of the incoming
606
* DATA_FIN, send the DATA_ACK now and do state transition. If
607
* not caught up, do nothing and let the recv code send DATA_ACK
608
* when catching up.
609
*/
610
611
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
612
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
613
WRITE_ONCE(msk->rcv_data_fin, 0);
614
615
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
616
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
617
618
switch (sk->sk_state) {
619
case TCP_ESTABLISHED:
620
mptcp_set_state(sk, TCP_CLOSE_WAIT);
621
break;
622
case TCP_FIN_WAIT1:
623
mptcp_set_state(sk, TCP_CLOSING);
624
break;
625
case TCP_FIN_WAIT2:
626
mptcp_shutdown_subflows(msk);
627
mptcp_set_state(sk, TCP_CLOSE);
628
break;
629
default:
630
/* Other states not expected */
631
WARN_ON_ONCE(1);
632
break;
633
}
634
635
if (!__mptcp_check_fallback(msk))
636
mptcp_send_ack(msk);
637
mptcp_close_wake_up(sk);
638
}
639
}
640
641
static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
642
{
643
if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
644
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
645
mptcp_subflow_reset(ssk);
646
}
647
}
648
649
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
650
struct sock *ssk)
651
{
652
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
653
struct sock *sk = (struct sock *)msk;
654
bool more_data_avail;
655
struct tcp_sock *tp;
656
bool ret = false;
657
658
pr_debug("msk=%p ssk=%p\n", msk, ssk);
659
tp = tcp_sk(ssk);
660
do {
661
u32 map_remaining, offset;
662
u32 seq = tp->copied_seq;
663
struct sk_buff *skb;
664
bool fin;
665
666
if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
667
break;
668
669
/* try to move as much data as available */
670
map_remaining = subflow->map_data_len -
671
mptcp_subflow_get_map_offset(subflow);
672
673
skb = skb_peek(&ssk->sk_receive_queue);
674
if (unlikely(!skb))
675
break;
676
677
if (__mptcp_check_fallback(msk)) {
678
/* Under fallback skbs have no MPTCP extension and TCP could
679
* collapse them between the dummy map creation and the
680
* current dequeue. Be sure to adjust the map size.
681
*/
682
map_remaining = skb->len;
683
subflow->map_data_len = skb->len;
684
}
685
686
offset = seq - TCP_SKB_CB(skb)->seq;
687
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
688
if (fin)
689
seq++;
690
691
if (offset < skb->len) {
692
size_t len = skb->len - offset;
693
694
mptcp_init_skb(ssk, skb, offset, len);
695
skb_orphan(skb);
696
ret = __mptcp_move_skb(sk, skb) || ret;
697
seq += len;
698
699
if (unlikely(map_remaining < len)) {
700
DEBUG_NET_WARN_ON_ONCE(1);
701
mptcp_dss_corruption(msk, ssk);
702
}
703
} else {
704
if (unlikely(!fin)) {
705
DEBUG_NET_WARN_ON_ONCE(1);
706
mptcp_dss_corruption(msk, ssk);
707
}
708
709
sk_eat_skb(ssk, skb);
710
}
711
712
WRITE_ONCE(tp->copied_seq, seq);
713
more_data_avail = mptcp_subflow_data_available(ssk);
714
715
} while (more_data_avail);
716
717
if (ret)
718
msk->last_data_recv = tcp_jiffies32;
719
return ret;
720
}
721
722
static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
723
{
724
struct sock *sk = (struct sock *)msk;
725
struct sk_buff *skb, *tail;
726
bool moved = false;
727
struct rb_node *p;
728
u64 end_seq;
729
730
p = rb_first(&msk->out_of_order_queue);
731
pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
732
while (p) {
733
skb = rb_to_skb(p);
734
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
735
break;
736
737
p = rb_next(p);
738
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
739
740
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
741
msk->ack_seq))) {
742
mptcp_drop(sk, skb);
743
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
744
continue;
745
}
746
747
end_seq = MPTCP_SKB_CB(skb)->end_seq;
748
tail = skb_peek_tail(&sk->sk_receive_queue);
749
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
750
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
751
752
/* skip overlapping data, if any */
753
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
754
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
755
delta);
756
MPTCP_SKB_CB(skb)->offset += delta;
757
MPTCP_SKB_CB(skb)->map_seq += delta;
758
__skb_queue_tail(&sk->sk_receive_queue, skb);
759
}
760
msk->bytes_received += end_seq - msk->ack_seq;
761
WRITE_ONCE(msk->ack_seq, end_seq);
762
moved = true;
763
}
764
return moved;
765
}
766
767
static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
768
{
769
int err = sock_error(ssk);
770
int ssk_state;
771
772
if (!err)
773
return false;
774
775
/* only propagate errors on fallen-back sockets or
776
* on MPC connect
777
*/
778
if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
779
return false;
780
781
/* We need to propagate only transition to CLOSE state.
782
* Orphaned socket will see such state change via
783
* subflow_sched_work_if_closed() and that path will properly
784
* destroy the msk as needed.
785
*/
786
ssk_state = inet_sk_state_load(ssk);
787
if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
788
mptcp_set_state(sk, ssk_state);
789
WRITE_ONCE(sk->sk_err, -err);
790
791
/* This barrier is coupled with smp_rmb() in mptcp_poll() */
792
smp_wmb();
793
sk_error_report(sk);
794
return true;
795
}
796
797
void __mptcp_error_report(struct sock *sk)
798
{
799
struct mptcp_subflow_context *subflow;
800
struct mptcp_sock *msk = mptcp_sk(sk);
801
802
mptcp_for_each_subflow(msk, subflow)
803
if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
804
break;
805
}
806
807
/* In most cases we will be able to lock the mptcp socket. If its already
808
* owned, we need to defer to the work queue to avoid ABBA deadlock.
809
*/
810
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
811
{
812
struct sock *sk = (struct sock *)msk;
813
bool moved;
814
815
moved = __mptcp_move_skbs_from_subflow(msk, ssk);
816
__mptcp_ofo_queue(msk);
817
if (unlikely(ssk->sk_err))
818
__mptcp_subflow_error_report(sk, ssk);
819
820
/* If the moves have caught up with the DATA_FIN sequence number
821
* it's time to ack the DATA_FIN and change socket state, but
822
* this is not a good place to change state. Let the workqueue
823
* do it.
824
*/
825
if (mptcp_pending_data_fin(sk, NULL))
826
mptcp_schedule_work(sk);
827
return moved;
828
}
829
830
static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
831
{
832
struct mptcp_sock *msk = mptcp_sk(sk);
833
834
/* Wake-up the reader only for in-sequence data */
835
if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
836
sk->sk_data_ready(sk);
837
}
838
839
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
840
{
841
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
842
843
/* The peer can send data while we are shutting down this
844
* subflow at msk destruction time, but we must avoid enqueuing
845
* more data to the msk receive queue
846
*/
847
if (unlikely(subflow->disposable))
848
return;
849
850
mptcp_data_lock(sk);
851
if (!sock_owned_by_user(sk))
852
__mptcp_data_ready(sk, ssk);
853
else
854
__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
855
mptcp_data_unlock(sk);
856
}
857
858
static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
859
{
860
mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
861
msk->allow_infinite_fallback = false;
862
mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
863
}
864
865
static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
866
{
867
struct sock *sk = (struct sock *)msk;
868
869
if (sk->sk_state != TCP_ESTABLISHED)
870
return false;
871
872
spin_lock_bh(&msk->fallback_lock);
873
if (!msk->allow_subflows) {
874
spin_unlock_bh(&msk->fallback_lock);
875
return false;
876
}
877
mptcp_subflow_joined(msk, ssk);
878
spin_unlock_bh(&msk->fallback_lock);
879
880
/* attach to msk socket only after we are sure we will deal with it
881
* at close time
882
*/
883
if (sk->sk_socket && !ssk->sk_socket)
884
mptcp_sock_graft(ssk, sk->sk_socket);
885
886
mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
887
mptcp_sockopt_sync_locked(msk, ssk);
888
mptcp_stop_tout_timer(sk);
889
__mptcp_propagate_sndbuf(sk, ssk);
890
return true;
891
}
892
893
static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
894
{
895
struct mptcp_subflow_context *tmp, *subflow;
896
struct mptcp_sock *msk = mptcp_sk(sk);
897
898
list_for_each_entry_safe(subflow, tmp, join_list, node) {
899
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
900
bool slow = lock_sock_fast(ssk);
901
902
list_move_tail(&subflow->node, &msk->conn_list);
903
if (!__mptcp_finish_join(msk, ssk))
904
mptcp_subflow_reset(ssk);
905
unlock_sock_fast(ssk, slow);
906
}
907
}
908
909
static bool mptcp_rtx_timer_pending(struct sock *sk)
910
{
911
return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
912
}
913
914
static void mptcp_reset_rtx_timer(struct sock *sk)
915
{
916
struct inet_connection_sock *icsk = inet_csk(sk);
917
unsigned long tout;
918
919
/* prevent rescheduling on close */
920
if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
921
return;
922
923
tout = mptcp_sk(sk)->timer_ival;
924
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
925
}
926
927
bool mptcp_schedule_work(struct sock *sk)
928
{
929
if (inet_sk_state_load(sk) != TCP_CLOSE &&
930
schedule_work(&mptcp_sk(sk)->work)) {
931
/* each subflow already holds a reference to the sk, and the
932
* workqueue is invoked by a subflow, so sk can't go away here.
933
*/
934
sock_hold(sk);
935
return true;
936
}
937
return false;
938
}
939
940
static bool mptcp_skb_can_collapse_to(u64 write_seq,
941
const struct sk_buff *skb,
942
const struct mptcp_ext *mpext)
943
{
944
if (!tcp_skb_can_collapse_to(skb))
945
return false;
946
947
/* can collapse only if MPTCP level sequence is in order and this
948
* mapping has not been xmitted yet
949
*/
950
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
951
!mpext->frozen;
952
}
953
954
/* we can append data to the given data frag if:
955
* - there is space available in the backing page_frag
956
* - the data frag tail matches the current page_frag free offset
957
* - the data frag end sequence number matches the current write seq
958
*/
959
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
960
const struct page_frag *pfrag,
961
const struct mptcp_data_frag *df)
962
{
963
return df && pfrag->page == df->page &&
964
pfrag->size - pfrag->offset > 0 &&
965
pfrag->offset == (df->offset + df->data_len) &&
966
df->data_seq + df->data_len == msk->write_seq;
967
}
968
969
static void dfrag_uncharge(struct sock *sk, int len)
970
{
971
sk_mem_uncharge(sk, len);
972
sk_wmem_queued_add(sk, -len);
973
}
974
975
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
976
{
977
int len = dfrag->data_len + dfrag->overhead;
978
979
list_del(&dfrag->list);
980
dfrag_uncharge(sk, len);
981
put_page(dfrag->page);
982
}
983
984
/* called under both the msk socket lock and the data lock */
985
static void __mptcp_clean_una(struct sock *sk)
986
{
987
struct mptcp_sock *msk = mptcp_sk(sk);
988
struct mptcp_data_frag *dtmp, *dfrag;
989
u64 snd_una;
990
991
snd_una = msk->snd_una;
992
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
993
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
994
break;
995
996
if (unlikely(dfrag == msk->first_pending)) {
997
/* in recovery mode can see ack after the current snd head */
998
if (WARN_ON_ONCE(!msk->recovery))
999
break;
1000
1001
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1002
}
1003
1004
dfrag_clear(sk, dfrag);
1005
}
1006
1007
dfrag = mptcp_rtx_head(sk);
1008
if (dfrag && after64(snd_una, dfrag->data_seq)) {
1009
u64 delta = snd_una - dfrag->data_seq;
1010
1011
/* prevent wrap around in recovery mode */
1012
if (unlikely(delta > dfrag->already_sent)) {
1013
if (WARN_ON_ONCE(!msk->recovery))
1014
goto out;
1015
if (WARN_ON_ONCE(delta > dfrag->data_len))
1016
goto out;
1017
dfrag->already_sent += delta - dfrag->already_sent;
1018
}
1019
1020
dfrag->data_seq += delta;
1021
dfrag->offset += delta;
1022
dfrag->data_len -= delta;
1023
dfrag->already_sent -= delta;
1024
1025
dfrag_uncharge(sk, delta);
1026
}
1027
1028
/* all retransmitted data acked, recovery completed */
1029
if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1030
msk->recovery = false;
1031
1032
out:
1033
if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1034
if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1035
mptcp_stop_rtx_timer(sk);
1036
} else {
1037
mptcp_reset_rtx_timer(sk);
1038
}
1039
1040
if (mptcp_pending_data_fin_ack(sk))
1041
mptcp_schedule_work(sk);
1042
}
1043
1044
static void __mptcp_clean_una_wakeup(struct sock *sk)
1045
{
1046
lockdep_assert_held_once(&sk->sk_lock.slock);
1047
1048
__mptcp_clean_una(sk);
1049
mptcp_write_space(sk);
1050
}
1051
1052
static void mptcp_clean_una_wakeup(struct sock *sk)
1053
{
1054
mptcp_data_lock(sk);
1055
__mptcp_clean_una_wakeup(sk);
1056
mptcp_data_unlock(sk);
1057
}
1058
1059
static void mptcp_enter_memory_pressure(struct sock *sk)
1060
{
1061
struct mptcp_subflow_context *subflow;
1062
struct mptcp_sock *msk = mptcp_sk(sk);
1063
bool first = true;
1064
1065
mptcp_for_each_subflow(msk, subflow) {
1066
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1067
1068
if (first)
1069
tcp_enter_memory_pressure(ssk);
1070
sk_stream_moderate_sndbuf(ssk);
1071
1072
first = false;
1073
}
1074
__mptcp_sync_sndbuf(sk);
1075
}
1076
1077
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1078
* data
1079
*/
1080
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1081
{
1082
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1083
pfrag, sk->sk_allocation)))
1084
return true;
1085
1086
mptcp_enter_memory_pressure(sk);
1087
return false;
1088
}
1089
1090
static struct mptcp_data_frag *
1091
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1092
int orig_offset)
1093
{
1094
int offset = ALIGN(orig_offset, sizeof(long));
1095
struct mptcp_data_frag *dfrag;
1096
1097
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1098
dfrag->data_len = 0;
1099
dfrag->data_seq = msk->write_seq;
1100
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1101
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1102
dfrag->already_sent = 0;
1103
dfrag->page = pfrag->page;
1104
1105
return dfrag;
1106
}
1107
1108
struct mptcp_sendmsg_info {
1109
int mss_now;
1110
int size_goal;
1111
u16 limit;
1112
u16 sent;
1113
unsigned int flags;
1114
bool data_lock_held;
1115
};
1116
1117
static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1118
u64 data_seq, int avail_size)
1119
{
1120
u64 window_end = mptcp_wnd_end(msk);
1121
u64 mptcp_snd_wnd;
1122
1123
if (__mptcp_check_fallback(msk))
1124
return avail_size;
1125
1126
mptcp_snd_wnd = window_end - data_seq;
1127
avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1128
1129
if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1130
tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1131
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1132
}
1133
1134
return avail_size;
1135
}
1136
1137
static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1138
{
1139
struct skb_ext *mpext = __skb_ext_alloc(gfp);
1140
1141
if (!mpext)
1142
return false;
1143
__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1144
return true;
1145
}
1146
1147
static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1148
{
1149
struct sk_buff *skb;
1150
1151
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1152
if (likely(skb)) {
1153
if (likely(__mptcp_add_ext(skb, gfp))) {
1154
skb_reserve(skb, MAX_TCP_HEADER);
1155
skb->ip_summed = CHECKSUM_PARTIAL;
1156
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1157
return skb;
1158
}
1159
__kfree_skb(skb);
1160
} else {
1161
mptcp_enter_memory_pressure(sk);
1162
}
1163
return NULL;
1164
}
1165
1166
static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1167
{
1168
struct sk_buff *skb;
1169
1170
skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1171
if (!skb)
1172
return NULL;
1173
1174
if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1175
tcp_skb_entail(ssk, skb);
1176
return skb;
1177
}
1178
tcp_skb_tsorted_anchor_cleanup(skb);
1179
kfree_skb(skb);
1180
return NULL;
1181
}
1182
1183
static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1184
{
1185
gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1186
1187
return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1188
}
1189
1190
/* note: this always recompute the csum on the whole skb, even
1191
* if we just appended a single frag. More status info needed
1192
*/
1193
static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1194
{
1195
struct mptcp_ext *mpext = mptcp_get_ext(skb);
1196
__wsum csum = ~csum_unfold(mpext->csum);
1197
int offset = skb->len - added;
1198
1199
mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1200
}
1201
1202
static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1203
struct sock *ssk,
1204
struct mptcp_ext *mpext)
1205
{
1206
if (!mpext)
1207
return;
1208
1209
mpext->infinite_map = 1;
1210
mpext->data_len = 0;
1211
1212
if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1213
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1214
mptcp_subflow_reset(ssk);
1215
return;
1216
}
1217
1218
mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1219
}
1220
1221
#define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1222
1223
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1224
struct mptcp_data_frag *dfrag,
1225
struct mptcp_sendmsg_info *info)
1226
{
1227
u64 data_seq = dfrag->data_seq + info->sent;
1228
int offset = dfrag->offset + info->sent;
1229
struct mptcp_sock *msk = mptcp_sk(sk);
1230
bool zero_window_probe = false;
1231
struct mptcp_ext *mpext = NULL;
1232
bool can_coalesce = false;
1233
bool reuse_skb = true;
1234
struct sk_buff *skb;
1235
size_t copy;
1236
int i;
1237
1238
pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1239
msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1240
1241
if (WARN_ON_ONCE(info->sent > info->limit ||
1242
info->limit > dfrag->data_len))
1243
return 0;
1244
1245
if (unlikely(!__tcp_can_send(ssk)))
1246
return -EAGAIN;
1247
1248
/* compute send limit */
1249
if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1250
ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1251
info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1252
copy = info->size_goal;
1253
1254
skb = tcp_write_queue_tail(ssk);
1255
if (skb && copy > skb->len) {
1256
/* Limit the write to the size available in the
1257
* current skb, if any, so that we create at most a new skb.
1258
* Explicitly tells TCP internals to avoid collapsing on later
1259
* queue management operation, to avoid breaking the ext <->
1260
* SSN association set here
1261
*/
1262
mpext = mptcp_get_ext(skb);
1263
if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1264
TCP_SKB_CB(skb)->eor = 1;
1265
tcp_mark_push(tcp_sk(ssk), skb);
1266
goto alloc_skb;
1267
}
1268
1269
i = skb_shinfo(skb)->nr_frags;
1270
can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1271
if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1272
tcp_mark_push(tcp_sk(ssk), skb);
1273
goto alloc_skb;
1274
}
1275
1276
copy -= skb->len;
1277
} else {
1278
alloc_skb:
1279
skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1280
if (!skb)
1281
return -ENOMEM;
1282
1283
i = skb_shinfo(skb)->nr_frags;
1284
reuse_skb = false;
1285
mpext = mptcp_get_ext(skb);
1286
}
1287
1288
/* Zero window and all data acked? Probe. */
1289
copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1290
if (copy == 0) {
1291
u64 snd_una = READ_ONCE(msk->snd_una);
1292
1293
if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1294
tcp_remove_empty_skb(ssk);
1295
return 0;
1296
}
1297
1298
zero_window_probe = true;
1299
data_seq = snd_una - 1;
1300
copy = 1;
1301
}
1302
1303
copy = min_t(size_t, copy, info->limit - info->sent);
1304
if (!sk_wmem_schedule(ssk, copy)) {
1305
tcp_remove_empty_skb(ssk);
1306
return -ENOMEM;
1307
}
1308
1309
if (can_coalesce) {
1310
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1311
} else {
1312
get_page(dfrag->page);
1313
skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1314
}
1315
1316
skb->len += copy;
1317
skb->data_len += copy;
1318
skb->truesize += copy;
1319
sk_wmem_queued_add(ssk, copy);
1320
sk_mem_charge(ssk, copy);
1321
WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1322
TCP_SKB_CB(skb)->end_seq += copy;
1323
tcp_skb_pcount_set(skb, 0);
1324
1325
/* on skb reuse we just need to update the DSS len */
1326
if (reuse_skb) {
1327
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1328
mpext->data_len += copy;
1329
goto out;
1330
}
1331
1332
memset(mpext, 0, sizeof(*mpext));
1333
mpext->data_seq = data_seq;
1334
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1335
mpext->data_len = copy;
1336
mpext->use_map = 1;
1337
mpext->dsn64 = 1;
1338
1339
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1340
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1341
mpext->dsn64);
1342
1343
if (zero_window_probe) {
1344
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1345
mpext->frozen = 1;
1346
if (READ_ONCE(msk->csum_enabled))
1347
mptcp_update_data_checksum(skb, copy);
1348
tcp_push_pending_frames(ssk);
1349
return 0;
1350
}
1351
out:
1352
if (READ_ONCE(msk->csum_enabled))
1353
mptcp_update_data_checksum(skb, copy);
1354
if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1355
mptcp_update_infinite_map(msk, ssk, mpext);
1356
trace_mptcp_sendmsg_frag(mpext);
1357
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1358
return copy;
1359
}
1360
1361
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1362
sizeof(struct tcphdr) - \
1363
MAX_TCP_OPTION_SPACE - \
1364
sizeof(struct ipv6hdr) - \
1365
sizeof(struct frag_hdr))
1366
1367
struct subflow_send_info {
1368
struct sock *ssk;
1369
u64 linger_time;
1370
};
1371
1372
void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1373
{
1374
if (!subflow->stale)
1375
return;
1376
1377
subflow->stale = 0;
1378
MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1379
}
1380
1381
bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1382
{
1383
if (unlikely(subflow->stale)) {
1384
u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1385
1386
if (subflow->stale_rcv_tstamp == rcv_tstamp)
1387
return false;
1388
1389
mptcp_subflow_set_active(subflow);
1390
}
1391
return __mptcp_subflow_active(subflow);
1392
}
1393
1394
#define SSK_MODE_ACTIVE 0
1395
#define SSK_MODE_BACKUP 1
1396
#define SSK_MODE_MAX 2
1397
1398
/* implement the mptcp packet scheduler;
1399
* returns the subflow that will transmit the next DSS
1400
* additionally updates the rtx timeout
1401
*/
1402
struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1403
{
1404
struct subflow_send_info send_info[SSK_MODE_MAX];
1405
struct mptcp_subflow_context *subflow;
1406
struct sock *sk = (struct sock *)msk;
1407
u32 pace, burst, wmem;
1408
int i, nr_active = 0;
1409
struct sock *ssk;
1410
u64 linger_time;
1411
long tout = 0;
1412
1413
/* pick the subflow with the lower wmem/wspace ratio */
1414
for (i = 0; i < SSK_MODE_MAX; ++i) {
1415
send_info[i].ssk = NULL;
1416
send_info[i].linger_time = -1;
1417
}
1418
1419
mptcp_for_each_subflow(msk, subflow) {
1420
bool backup = subflow->backup || subflow->request_bkup;
1421
1422
trace_mptcp_subflow_get_send(subflow);
1423
ssk = mptcp_subflow_tcp_sock(subflow);
1424
if (!mptcp_subflow_active(subflow))
1425
continue;
1426
1427
tout = max(tout, mptcp_timeout_from_subflow(subflow));
1428
nr_active += !backup;
1429
pace = subflow->avg_pacing_rate;
1430
if (unlikely(!pace)) {
1431
/* init pacing rate from socket */
1432
subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1433
pace = subflow->avg_pacing_rate;
1434
if (!pace)
1435
continue;
1436
}
1437
1438
linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1439
if (linger_time < send_info[backup].linger_time) {
1440
send_info[backup].ssk = ssk;
1441
send_info[backup].linger_time = linger_time;
1442
}
1443
}
1444
__mptcp_set_timeout(sk, tout);
1445
1446
/* pick the best backup if no other subflow is active */
1447
if (!nr_active)
1448
send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1449
1450
/* According to the blest algorithm, to avoid HoL blocking for the
1451
* faster flow, we need to:
1452
* - estimate the faster flow linger time
1453
* - use the above to estimate the amount of byte transferred
1454
* by the faster flow
1455
* - check that the amount of queued data is greater than the above,
1456
* otherwise do not use the picked, slower, subflow
1457
* We select the subflow with the shorter estimated time to flush
1458
* the queued mem, which basically ensure the above. We just need
1459
* to check that subflow has a non empty cwin.
1460
*/
1461
ssk = send_info[SSK_MODE_ACTIVE].ssk;
1462
if (!ssk || !sk_stream_memory_free(ssk))
1463
return NULL;
1464
1465
burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1466
wmem = READ_ONCE(ssk->sk_wmem_queued);
1467
if (!burst)
1468
return ssk;
1469
1470
subflow = mptcp_subflow_ctx(ssk);
1471
subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1472
READ_ONCE(ssk->sk_pacing_rate) * burst,
1473
burst + wmem);
1474
msk->snd_burst = burst;
1475
return ssk;
1476
}
1477
1478
static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1479
{
1480
tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1481
release_sock(ssk);
1482
}
1483
1484
static void mptcp_update_post_push(struct mptcp_sock *msk,
1485
struct mptcp_data_frag *dfrag,
1486
u32 sent)
1487
{
1488
u64 snd_nxt_new = dfrag->data_seq;
1489
1490
dfrag->already_sent += sent;
1491
1492
msk->snd_burst -= sent;
1493
1494
snd_nxt_new += dfrag->already_sent;
1495
1496
/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1497
* is recovering after a failover. In that event, this re-sends
1498
* old segments.
1499
*
1500
* Thus compute snd_nxt_new candidate based on
1501
* the dfrag->data_seq that was sent and the data
1502
* that has been handed to the subflow for transmission
1503
* and skip update in case it was old dfrag.
1504
*/
1505
if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1506
msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1507
WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1508
}
1509
}
1510
1511
void mptcp_check_and_set_pending(struct sock *sk)
1512
{
1513
if (mptcp_send_head(sk)) {
1514
mptcp_data_lock(sk);
1515
mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1516
mptcp_data_unlock(sk);
1517
}
1518
}
1519
1520
static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1521
struct mptcp_sendmsg_info *info)
1522
{
1523
struct mptcp_sock *msk = mptcp_sk(sk);
1524
struct mptcp_data_frag *dfrag;
1525
int len, copied = 0, err = 0;
1526
1527
while ((dfrag = mptcp_send_head(sk))) {
1528
info->sent = dfrag->already_sent;
1529
info->limit = dfrag->data_len;
1530
len = dfrag->data_len - dfrag->already_sent;
1531
while (len > 0) {
1532
int ret = 0;
1533
1534
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1535
if (ret <= 0) {
1536
err = copied ? : ret;
1537
goto out;
1538
}
1539
1540
info->sent += ret;
1541
copied += ret;
1542
len -= ret;
1543
1544
mptcp_update_post_push(msk, dfrag, ret);
1545
}
1546
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1547
1548
if (msk->snd_burst <= 0 ||
1549
!sk_stream_memory_free(ssk) ||
1550
!mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1551
err = copied;
1552
goto out;
1553
}
1554
mptcp_set_timeout(sk);
1555
}
1556
err = copied;
1557
1558
out:
1559
if (err > 0)
1560
msk->last_data_sent = tcp_jiffies32;
1561
return err;
1562
}
1563
1564
void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1565
{
1566
struct sock *prev_ssk = NULL, *ssk = NULL;
1567
struct mptcp_sock *msk = mptcp_sk(sk);
1568
struct mptcp_sendmsg_info info = {
1569
.flags = flags,
1570
};
1571
bool do_check_data_fin = false;
1572
int push_count = 1;
1573
1574
while (mptcp_send_head(sk) && (push_count > 0)) {
1575
struct mptcp_subflow_context *subflow;
1576
int ret = 0;
1577
1578
if (mptcp_sched_get_send(msk))
1579
break;
1580
1581
push_count = 0;
1582
1583
mptcp_for_each_subflow(msk, subflow) {
1584
if (READ_ONCE(subflow->scheduled)) {
1585
mptcp_subflow_set_scheduled(subflow, false);
1586
1587
prev_ssk = ssk;
1588
ssk = mptcp_subflow_tcp_sock(subflow);
1589
if (ssk != prev_ssk) {
1590
/* First check. If the ssk has changed since
1591
* the last round, release prev_ssk
1592
*/
1593
if (prev_ssk)
1594
mptcp_push_release(prev_ssk, &info);
1595
1596
/* Need to lock the new subflow only if different
1597
* from the previous one, otherwise we are still
1598
* helding the relevant lock
1599
*/
1600
lock_sock(ssk);
1601
}
1602
1603
push_count++;
1604
1605
ret = __subflow_push_pending(sk, ssk, &info);
1606
if (ret <= 0) {
1607
if (ret != -EAGAIN ||
1608
(1 << ssk->sk_state) &
1609
(TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1610
push_count--;
1611
continue;
1612
}
1613
do_check_data_fin = true;
1614
}
1615
}
1616
}
1617
1618
/* at this point we held the socket lock for the last subflow we used */
1619
if (ssk)
1620
mptcp_push_release(ssk, &info);
1621
1622
/* ensure the rtx timer is running */
1623
if (!mptcp_rtx_timer_pending(sk))
1624
mptcp_reset_rtx_timer(sk);
1625
if (do_check_data_fin)
1626
mptcp_check_send_data_fin(sk);
1627
}
1628
1629
static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1630
{
1631
struct mptcp_sock *msk = mptcp_sk(sk);
1632
struct mptcp_sendmsg_info info = {
1633
.data_lock_held = true,
1634
};
1635
bool keep_pushing = true;
1636
struct sock *xmit_ssk;
1637
int copied = 0;
1638
1639
info.flags = 0;
1640
while (mptcp_send_head(sk) && keep_pushing) {
1641
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1642
int ret = 0;
1643
1644
/* check for a different subflow usage only after
1645
* spooling the first chunk of data
1646
*/
1647
if (first) {
1648
mptcp_subflow_set_scheduled(subflow, false);
1649
ret = __subflow_push_pending(sk, ssk, &info);
1650
first = false;
1651
if (ret <= 0)
1652
break;
1653
copied += ret;
1654
continue;
1655
}
1656
1657
if (mptcp_sched_get_send(msk))
1658
goto out;
1659
1660
if (READ_ONCE(subflow->scheduled)) {
1661
mptcp_subflow_set_scheduled(subflow, false);
1662
ret = __subflow_push_pending(sk, ssk, &info);
1663
if (ret <= 0)
1664
keep_pushing = false;
1665
copied += ret;
1666
}
1667
1668
mptcp_for_each_subflow(msk, subflow) {
1669
if (READ_ONCE(subflow->scheduled)) {
1670
xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1671
if (xmit_ssk != ssk) {
1672
mptcp_subflow_delegate(subflow,
1673
MPTCP_DELEGATE_SEND);
1674
keep_pushing = false;
1675
}
1676
}
1677
}
1678
}
1679
1680
out:
1681
/* __mptcp_alloc_tx_skb could have released some wmem and we are
1682
* not going to flush it via release_sock()
1683
*/
1684
if (copied) {
1685
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1686
info.size_goal);
1687
if (!mptcp_rtx_timer_pending(sk))
1688
mptcp_reset_rtx_timer(sk);
1689
1690
if (msk->snd_data_fin_enable &&
1691
msk->snd_nxt + 1 == msk->write_seq)
1692
mptcp_schedule_work(sk);
1693
}
1694
}
1695
1696
static int mptcp_disconnect(struct sock *sk, int flags);
1697
1698
static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1699
size_t len, int *copied_syn)
1700
{
1701
unsigned int saved_flags = msg->msg_flags;
1702
struct mptcp_sock *msk = mptcp_sk(sk);
1703
struct sock *ssk;
1704
int ret;
1705
1706
/* on flags based fastopen the mptcp is supposed to create the
1707
* first subflow right now. Otherwise we are in the defer_connect
1708
* path, and the first subflow must be already present.
1709
* Since the defer_connect flag is cleared after the first succsful
1710
* fastopen attempt, no need to check for additional subflow status.
1711
*/
1712
if (msg->msg_flags & MSG_FASTOPEN) {
1713
ssk = __mptcp_nmpc_sk(msk);
1714
if (IS_ERR(ssk))
1715
return PTR_ERR(ssk);
1716
}
1717
if (!msk->first)
1718
return -EINVAL;
1719
1720
ssk = msk->first;
1721
1722
lock_sock(ssk);
1723
msg->msg_flags |= MSG_DONTWAIT;
1724
msk->fastopening = 1;
1725
ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1726
msk->fastopening = 0;
1727
msg->msg_flags = saved_flags;
1728
release_sock(ssk);
1729
1730
/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1731
if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1732
ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1733
msg->msg_namelen, msg->msg_flags, 1);
1734
1735
/* Keep the same behaviour of plain TCP: zero the copied bytes in
1736
* case of any error, except timeout or signal
1737
*/
1738
if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1739
*copied_syn = 0;
1740
} else if (ret && ret != -EINPROGRESS) {
1741
/* The disconnect() op called by tcp_sendmsg_fastopen()/
1742
* __inet_stream_connect() can fail, due to looking check,
1743
* see mptcp_disconnect().
1744
* Attempt it again outside the problematic scope.
1745
*/
1746
if (!mptcp_disconnect(sk, 0)) {
1747
sk->sk_disconnects++;
1748
sk->sk_socket->state = SS_UNCONNECTED;
1749
}
1750
}
1751
inet_clear_bit(DEFER_CONNECT, sk);
1752
1753
return ret;
1754
}
1755
1756
static int do_copy_data_nocache(struct sock *sk, int copy,
1757
struct iov_iter *from, char *to)
1758
{
1759
if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1760
if (!copy_from_iter_full_nocache(to, copy, from))
1761
return -EFAULT;
1762
} else if (!copy_from_iter_full(to, copy, from)) {
1763
return -EFAULT;
1764
}
1765
return 0;
1766
}
1767
1768
/* open-code sk_stream_memory_free() plus sent limit computation to
1769
* avoid indirect calls in fast-path.
1770
* Called under the msk socket lock, so we can avoid a bunch of ONCE
1771
* annotations.
1772
*/
1773
static u32 mptcp_send_limit(const struct sock *sk)
1774
{
1775
const struct mptcp_sock *msk = mptcp_sk(sk);
1776
u32 limit, not_sent;
1777
1778
if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1779
return 0;
1780
1781
limit = mptcp_notsent_lowat(sk);
1782
if (limit == UINT_MAX)
1783
return UINT_MAX;
1784
1785
not_sent = msk->write_seq - msk->snd_nxt;
1786
if (not_sent >= limit)
1787
return 0;
1788
1789
return limit - not_sent;
1790
}
1791
1792
static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1793
{
1794
struct mptcp_subflow_context *subflow;
1795
1796
if (!rfs_is_needed())
1797
return;
1798
1799
mptcp_for_each_subflow(msk, subflow) {
1800
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1801
1802
sock_rps_record_flow(ssk);
1803
}
1804
}
1805
1806
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1807
{
1808
struct mptcp_sock *msk = mptcp_sk(sk);
1809
struct page_frag *pfrag;
1810
size_t copied = 0;
1811
int ret = 0;
1812
long timeo;
1813
1814
/* silently ignore everything else */
1815
msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1816
1817
lock_sock(sk);
1818
1819
mptcp_rps_record_subflows(msk);
1820
1821
if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1822
msg->msg_flags & MSG_FASTOPEN)) {
1823
int copied_syn = 0;
1824
1825
ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1826
copied += copied_syn;
1827
if (ret == -EINPROGRESS && copied_syn > 0)
1828
goto out;
1829
else if (ret)
1830
goto do_error;
1831
}
1832
1833
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1834
1835
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1836
ret = sk_stream_wait_connect(sk, &timeo);
1837
if (ret)
1838
goto do_error;
1839
}
1840
1841
ret = -EPIPE;
1842
if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1843
goto do_error;
1844
1845
pfrag = sk_page_frag(sk);
1846
1847
while (msg_data_left(msg)) {
1848
int total_ts, frag_truesize = 0;
1849
struct mptcp_data_frag *dfrag;
1850
bool dfrag_collapsed;
1851
size_t psize, offset;
1852
u32 copy_limit;
1853
1854
/* ensure fitting the notsent_lowat() constraint */
1855
copy_limit = mptcp_send_limit(sk);
1856
if (!copy_limit)
1857
goto wait_for_memory;
1858
1859
/* reuse tail pfrag, if possible, or carve a new one from the
1860
* page allocator
1861
*/
1862
dfrag = mptcp_pending_tail(sk);
1863
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1864
if (!dfrag_collapsed) {
1865
if (!mptcp_page_frag_refill(sk, pfrag))
1866
goto wait_for_memory;
1867
1868
dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1869
frag_truesize = dfrag->overhead;
1870
}
1871
1872
/* we do not bound vs wspace, to allow a single packet.
1873
* memory accounting will prevent execessive memory usage
1874
* anyway
1875
*/
1876
offset = dfrag->offset + dfrag->data_len;
1877
psize = pfrag->size - offset;
1878
psize = min_t(size_t, psize, msg_data_left(msg));
1879
psize = min_t(size_t, psize, copy_limit);
1880
total_ts = psize + frag_truesize;
1881
1882
if (!sk_wmem_schedule(sk, total_ts))
1883
goto wait_for_memory;
1884
1885
ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1886
page_address(dfrag->page) + offset);
1887
if (ret)
1888
goto do_error;
1889
1890
/* data successfully copied into the write queue */
1891
sk_forward_alloc_add(sk, -total_ts);
1892
copied += psize;
1893
dfrag->data_len += psize;
1894
frag_truesize += psize;
1895
pfrag->offset += frag_truesize;
1896
WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1897
1898
/* charge data on mptcp pending queue to the msk socket
1899
* Note: we charge such data both to sk and ssk
1900
*/
1901
sk_wmem_queued_add(sk, frag_truesize);
1902
if (!dfrag_collapsed) {
1903
get_page(dfrag->page);
1904
list_add_tail(&dfrag->list, &msk->rtx_queue);
1905
if (!msk->first_pending)
1906
WRITE_ONCE(msk->first_pending, dfrag);
1907
}
1908
pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1909
dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1910
!dfrag_collapsed);
1911
1912
continue;
1913
1914
wait_for_memory:
1915
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1916
__mptcp_push_pending(sk, msg->msg_flags);
1917
ret = sk_stream_wait_memory(sk, &timeo);
1918
if (ret)
1919
goto do_error;
1920
}
1921
1922
if (copied)
1923
__mptcp_push_pending(sk, msg->msg_flags);
1924
1925
out:
1926
release_sock(sk);
1927
return copied;
1928
1929
do_error:
1930
if (copied)
1931
goto out;
1932
1933
copied = sk_stream_error(sk, msg->msg_flags, ret);
1934
goto out;
1935
}
1936
1937
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1938
1939
static int __mptcp_recvmsg_mskq(struct sock *sk,
1940
struct msghdr *msg,
1941
size_t len, int flags,
1942
struct scm_timestamping_internal *tss,
1943
int *cmsg_flags)
1944
{
1945
struct mptcp_sock *msk = mptcp_sk(sk);
1946
struct sk_buff *skb, *tmp;
1947
int copied = 0;
1948
1949
skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1950
u32 offset = MPTCP_SKB_CB(skb)->offset;
1951
u32 data_len = skb->len - offset;
1952
u32 count = min_t(size_t, len - copied, data_len);
1953
int err;
1954
1955
if (!(flags & MSG_TRUNC)) {
1956
err = skb_copy_datagram_msg(skb, offset, msg, count);
1957
if (unlikely(err < 0)) {
1958
if (!copied)
1959
return err;
1960
break;
1961
}
1962
}
1963
1964
if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1965
tcp_update_recv_tstamps(skb, tss);
1966
*cmsg_flags |= MPTCP_CMSG_TS;
1967
}
1968
1969
copied += count;
1970
1971
if (count < data_len) {
1972
if (!(flags & MSG_PEEK)) {
1973
MPTCP_SKB_CB(skb)->offset += count;
1974
MPTCP_SKB_CB(skb)->map_seq += count;
1975
msk->bytes_consumed += count;
1976
}
1977
break;
1978
}
1979
1980
if (!(flags & MSG_PEEK)) {
1981
/* avoid the indirect call, we know the destructor is sock_rfree */
1982
skb->destructor = NULL;
1983
skb->sk = NULL;
1984
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1985
sk_mem_uncharge(sk, skb->truesize);
1986
__skb_unlink(skb, &sk->sk_receive_queue);
1987
skb_attempt_defer_free(skb);
1988
msk->bytes_consumed += count;
1989
}
1990
1991
if (copied >= len)
1992
break;
1993
}
1994
1995
mptcp_rcv_space_adjust(msk, copied);
1996
return copied;
1997
}
1998
1999
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
2000
*
2001
* Only difference: Use highest rtt estimate of the subflows in use.
2002
*/
2003
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2004
{
2005
struct mptcp_subflow_context *subflow;
2006
struct sock *sk = (struct sock *)msk;
2007
u8 scaling_ratio = U8_MAX;
2008
u32 time, advmss = 1;
2009
u64 rtt_us, mstamp;
2010
2011
msk_owned_by_me(msk);
2012
2013
if (copied <= 0)
2014
return;
2015
2016
if (!msk->rcvspace_init)
2017
mptcp_rcv_space_init(msk, msk->first);
2018
2019
msk->rcvq_space.copied += copied;
2020
2021
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2022
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2023
2024
rtt_us = msk->rcvq_space.rtt_us;
2025
if (rtt_us && time < (rtt_us >> 3))
2026
return;
2027
2028
rtt_us = 0;
2029
mptcp_for_each_subflow(msk, subflow) {
2030
const struct tcp_sock *tp;
2031
u64 sf_rtt_us;
2032
u32 sf_advmss;
2033
2034
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2035
2036
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2037
sf_advmss = READ_ONCE(tp->advmss);
2038
2039
rtt_us = max(sf_rtt_us, rtt_us);
2040
advmss = max(sf_advmss, advmss);
2041
scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2042
}
2043
2044
msk->rcvq_space.rtt_us = rtt_us;
2045
msk->scaling_ratio = scaling_ratio;
2046
if (time < (rtt_us >> 3) || rtt_us == 0)
2047
return;
2048
2049
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2050
goto new_measure;
2051
2052
msk->rcvq_space.space = msk->rcvq_space.copied;
2053
if (mptcp_rcvbuf_grow(sk)) {
2054
2055
/* Make subflows follow along. If we do not do this, we
2056
* get drops at subflow level if skbs can't be moved to
2057
* the mptcp rx queue fast enough (announced rcv_win can
2058
* exceed ssk->sk_rcvbuf).
2059
*/
2060
mptcp_for_each_subflow(msk, subflow) {
2061
struct sock *ssk;
2062
bool slow;
2063
2064
ssk = mptcp_subflow_tcp_sock(subflow);
2065
slow = lock_sock_fast(ssk);
2066
tcp_sk(ssk)->rcvq_space.space = msk->rcvq_space.copied;
2067
tcp_rcvbuf_grow(ssk);
2068
unlock_sock_fast(ssk, slow);
2069
}
2070
}
2071
2072
new_measure:
2073
msk->rcvq_space.copied = 0;
2074
msk->rcvq_space.time = mstamp;
2075
}
2076
2077
static struct mptcp_subflow_context *
2078
__mptcp_first_ready_from(struct mptcp_sock *msk,
2079
struct mptcp_subflow_context *subflow)
2080
{
2081
struct mptcp_subflow_context *start_subflow = subflow;
2082
2083
while (!READ_ONCE(subflow->data_avail)) {
2084
subflow = mptcp_next_subflow(msk, subflow);
2085
if (subflow == start_subflow)
2086
return NULL;
2087
}
2088
return subflow;
2089
}
2090
2091
static bool __mptcp_move_skbs(struct sock *sk)
2092
{
2093
struct mptcp_subflow_context *subflow;
2094
struct mptcp_sock *msk = mptcp_sk(sk);
2095
bool ret = false;
2096
2097
if (list_empty(&msk->conn_list))
2098
return false;
2099
2100
subflow = list_first_entry(&msk->conn_list,
2101
struct mptcp_subflow_context, node);
2102
for (;;) {
2103
struct sock *ssk;
2104
bool slowpath;
2105
2106
/*
2107
* As an optimization avoid traversing the subflows list
2108
* and ev. acquiring the subflow socket lock before baling out
2109
*/
2110
if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2111
break;
2112
2113
subflow = __mptcp_first_ready_from(msk, subflow);
2114
if (!subflow)
2115
break;
2116
2117
ssk = mptcp_subflow_tcp_sock(subflow);
2118
slowpath = lock_sock_fast(ssk);
2119
ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2120
if (unlikely(ssk->sk_err))
2121
__mptcp_error_report(sk);
2122
unlock_sock_fast(ssk, slowpath);
2123
2124
subflow = mptcp_next_subflow(msk, subflow);
2125
}
2126
2127
__mptcp_ofo_queue(msk);
2128
if (ret)
2129
mptcp_check_data_fin((struct sock *)msk);
2130
return ret;
2131
}
2132
2133
static unsigned int mptcp_inq_hint(const struct sock *sk)
2134
{
2135
const struct mptcp_sock *msk = mptcp_sk(sk);
2136
const struct sk_buff *skb;
2137
2138
skb = skb_peek(&sk->sk_receive_queue);
2139
if (skb) {
2140
u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2141
2142
if (hint_val >= INT_MAX)
2143
return INT_MAX;
2144
2145
return (unsigned int)hint_val;
2146
}
2147
2148
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2149
return 1;
2150
2151
return 0;
2152
}
2153
2154
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2155
int flags, int *addr_len)
2156
{
2157
struct mptcp_sock *msk = mptcp_sk(sk);
2158
struct scm_timestamping_internal tss;
2159
int copied = 0, cmsg_flags = 0;
2160
int target;
2161
long timeo;
2162
2163
/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2164
if (unlikely(flags & MSG_ERRQUEUE))
2165
return inet_recv_error(sk, msg, len, addr_len);
2166
2167
lock_sock(sk);
2168
if (unlikely(sk->sk_state == TCP_LISTEN)) {
2169
copied = -ENOTCONN;
2170
goto out_err;
2171
}
2172
2173
mptcp_rps_record_subflows(msk);
2174
2175
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2176
2177
len = min_t(size_t, len, INT_MAX);
2178
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2179
2180
if (unlikely(msk->recvmsg_inq))
2181
cmsg_flags = MPTCP_CMSG_INQ;
2182
2183
while (copied < len) {
2184
int err, bytes_read;
2185
2186
bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2187
if (unlikely(bytes_read < 0)) {
2188
if (!copied)
2189
copied = bytes_read;
2190
goto out_err;
2191
}
2192
2193
copied += bytes_read;
2194
2195
if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2196
continue;
2197
2198
/* only the MPTCP socket status is relevant here. The exit
2199
* conditions mirror closely tcp_recvmsg()
2200
*/
2201
if (copied >= target)
2202
break;
2203
2204
if (copied) {
2205
if (sk->sk_err ||
2206
sk->sk_state == TCP_CLOSE ||
2207
(sk->sk_shutdown & RCV_SHUTDOWN) ||
2208
!timeo ||
2209
signal_pending(current))
2210
break;
2211
} else {
2212
if (sk->sk_err) {
2213
copied = sock_error(sk);
2214
break;
2215
}
2216
2217
if (sk->sk_shutdown & RCV_SHUTDOWN)
2218
break;
2219
2220
if (sk->sk_state == TCP_CLOSE) {
2221
copied = -ENOTCONN;
2222
break;
2223
}
2224
2225
if (!timeo) {
2226
copied = -EAGAIN;
2227
break;
2228
}
2229
2230
if (signal_pending(current)) {
2231
copied = sock_intr_errno(timeo);
2232
break;
2233
}
2234
}
2235
2236
pr_debug("block timeout %ld\n", timeo);
2237
mptcp_cleanup_rbuf(msk, copied);
2238
err = sk_wait_data(sk, &timeo, NULL);
2239
if (err < 0) {
2240
err = copied ? : err;
2241
goto out_err;
2242
}
2243
}
2244
2245
mptcp_cleanup_rbuf(msk, copied);
2246
2247
out_err:
2248
if (cmsg_flags && copied >= 0) {
2249
if (cmsg_flags & MPTCP_CMSG_TS)
2250
tcp_recv_timestamp(msg, sk, &tss);
2251
2252
if (cmsg_flags & MPTCP_CMSG_INQ) {
2253
unsigned int inq = mptcp_inq_hint(sk);
2254
2255
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2256
}
2257
}
2258
2259
pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2260
msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2261
2262
release_sock(sk);
2263
return copied;
2264
}
2265
2266
static void mptcp_retransmit_timer(struct timer_list *t)
2267
{
2268
struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2269
icsk_retransmit_timer);
2270
struct sock *sk = &icsk->icsk_inet.sk;
2271
struct mptcp_sock *msk = mptcp_sk(sk);
2272
2273
bh_lock_sock(sk);
2274
if (!sock_owned_by_user(sk)) {
2275
/* we need a process context to retransmit */
2276
if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2277
mptcp_schedule_work(sk);
2278
} else {
2279
/* delegate our work to tcp_release_cb() */
2280
__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2281
}
2282
bh_unlock_sock(sk);
2283
sock_put(sk);
2284
}
2285
2286
static void mptcp_tout_timer(struct timer_list *t)
2287
{
2288
struct sock *sk = timer_container_of(sk, t, sk_timer);
2289
2290
mptcp_schedule_work(sk);
2291
sock_put(sk);
2292
}
2293
2294
/* Find an idle subflow. Return NULL if there is unacked data at tcp
2295
* level.
2296
*
2297
* A backup subflow is returned only if that is the only kind available.
2298
*/
2299
struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2300
{
2301
struct sock *backup = NULL, *pick = NULL;
2302
struct mptcp_subflow_context *subflow;
2303
int min_stale_count = INT_MAX;
2304
2305
mptcp_for_each_subflow(msk, subflow) {
2306
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2307
2308
if (!__mptcp_subflow_active(subflow))
2309
continue;
2310
2311
/* still data outstanding at TCP level? skip this */
2312
if (!tcp_rtx_and_write_queues_empty(ssk)) {
2313
mptcp_pm_subflow_chk_stale(msk, ssk);
2314
min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2315
continue;
2316
}
2317
2318
if (subflow->backup || subflow->request_bkup) {
2319
if (!backup)
2320
backup = ssk;
2321
continue;
2322
}
2323
2324
if (!pick)
2325
pick = ssk;
2326
}
2327
2328
if (pick)
2329
return pick;
2330
2331
/* use backup only if there are no progresses anywhere */
2332
return min_stale_count > 1 ? backup : NULL;
2333
}
2334
2335
bool __mptcp_retransmit_pending_data(struct sock *sk)
2336
{
2337
struct mptcp_data_frag *cur, *rtx_head;
2338
struct mptcp_sock *msk = mptcp_sk(sk);
2339
2340
if (__mptcp_check_fallback(msk))
2341
return false;
2342
2343
/* the closing socket has some data untransmitted and/or unacked:
2344
* some data in the mptcp rtx queue has not really xmitted yet.
2345
* keep it simple and re-inject the whole mptcp level rtx queue
2346
*/
2347
mptcp_data_lock(sk);
2348
__mptcp_clean_una_wakeup(sk);
2349
rtx_head = mptcp_rtx_head(sk);
2350
if (!rtx_head) {
2351
mptcp_data_unlock(sk);
2352
return false;
2353
}
2354
2355
msk->recovery_snd_nxt = msk->snd_nxt;
2356
msk->recovery = true;
2357
mptcp_data_unlock(sk);
2358
2359
msk->first_pending = rtx_head;
2360
msk->snd_burst = 0;
2361
2362
/* be sure to clear the "sent status" on all re-injected fragments */
2363
list_for_each_entry(cur, &msk->rtx_queue, list) {
2364
if (!cur->already_sent)
2365
break;
2366
cur->already_sent = 0;
2367
}
2368
2369
return true;
2370
}
2371
2372
/* flags for __mptcp_close_ssk() */
2373
#define MPTCP_CF_PUSH BIT(1)
2374
#define MPTCP_CF_FASTCLOSE BIT(2)
2375
2376
/* be sure to send a reset only if the caller asked for it, also
2377
* clean completely the subflow status when the subflow reaches
2378
* TCP_CLOSE state
2379
*/
2380
static void __mptcp_subflow_disconnect(struct sock *ssk,
2381
struct mptcp_subflow_context *subflow,
2382
unsigned int flags)
2383
{
2384
if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2385
(flags & MPTCP_CF_FASTCLOSE)) {
2386
/* The MPTCP code never wait on the subflow sockets, TCP-level
2387
* disconnect should never fail
2388
*/
2389
WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2390
mptcp_subflow_ctx_reset(subflow);
2391
} else {
2392
tcp_shutdown(ssk, SEND_SHUTDOWN);
2393
}
2394
}
2395
2396
/* subflow sockets can be either outgoing (connect) or incoming
2397
* (accept).
2398
*
2399
* Outgoing subflows use in-kernel sockets.
2400
* Incoming subflows do not have their own 'struct socket' allocated,
2401
* so we need to use tcp_close() after detaching them from the mptcp
2402
* parent socket.
2403
*/
2404
static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2405
struct mptcp_subflow_context *subflow,
2406
unsigned int flags)
2407
{
2408
struct mptcp_sock *msk = mptcp_sk(sk);
2409
bool dispose_it, need_push = false;
2410
2411
/* If the first subflow moved to a close state before accept, e.g. due
2412
* to an incoming reset or listener shutdown, the subflow socket is
2413
* already deleted by inet_child_forget() and the mptcp socket can't
2414
* survive too.
2415
*/
2416
if (msk->in_accept_queue && msk->first == ssk &&
2417
(sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2418
/* ensure later check in mptcp_worker() will dispose the msk */
2419
sock_set_flag(sk, SOCK_DEAD);
2420
mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2421
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2422
mptcp_subflow_drop_ctx(ssk);
2423
goto out_release;
2424
}
2425
2426
dispose_it = msk->free_first || ssk != msk->first;
2427
if (dispose_it)
2428
list_del(&subflow->node);
2429
2430
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2431
2432
if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2433
/* be sure to force the tcp_close path
2434
* to generate the egress reset
2435
*/
2436
ssk->sk_lingertime = 0;
2437
sock_set_flag(ssk, SOCK_LINGER);
2438
subflow->send_fastclose = 1;
2439
}
2440
2441
need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2442
if (!dispose_it) {
2443
__mptcp_subflow_disconnect(ssk, subflow, flags);
2444
release_sock(ssk);
2445
2446
goto out;
2447
}
2448
2449
subflow->disposable = 1;
2450
2451
/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2452
* the ssk has been already destroyed, we just need to release the
2453
* reference owned by msk;
2454
*/
2455
if (!inet_csk(ssk)->icsk_ulp_ops) {
2456
WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2457
kfree_rcu(subflow, rcu);
2458
} else {
2459
/* otherwise tcp will dispose of the ssk and subflow ctx */
2460
__tcp_close(ssk, 0);
2461
2462
/* close acquired an extra ref */
2463
__sock_put(ssk);
2464
}
2465
2466
out_release:
2467
__mptcp_subflow_error_report(sk, ssk);
2468
release_sock(ssk);
2469
2470
sock_put(ssk);
2471
2472
if (ssk == msk->first)
2473
WRITE_ONCE(msk->first, NULL);
2474
2475
out:
2476
__mptcp_sync_sndbuf(sk);
2477
if (need_push)
2478
__mptcp_push_pending(sk, 0);
2479
2480
/* Catch every 'all subflows closed' scenario, including peers silently
2481
* closing them, e.g. due to timeout.
2482
* For established sockets, allow an additional timeout before closing,
2483
* as the protocol can still create more subflows.
2484
*/
2485
if (list_is_singular(&msk->conn_list) && msk->first &&
2486
inet_sk_state_load(msk->first) == TCP_CLOSE) {
2487
if (sk->sk_state != TCP_ESTABLISHED ||
2488
msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2489
mptcp_set_state(sk, TCP_CLOSE);
2490
mptcp_close_wake_up(sk);
2491
} else {
2492
mptcp_start_tout_timer(sk);
2493
}
2494
}
2495
}
2496
2497
void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2498
struct mptcp_subflow_context *subflow)
2499
{
2500
/* The first subflow can already be closed and still in the list */
2501
if (subflow->close_event_done)
2502
return;
2503
2504
subflow->close_event_done = true;
2505
2506
if (sk->sk_state == TCP_ESTABLISHED)
2507
mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2508
2509
/* subflow aborted before reaching the fully_established status
2510
* attempt the creation of the next subflow
2511
*/
2512
mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2513
2514
__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2515
}
2516
2517
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2518
{
2519
return 0;
2520
}
2521
2522
static void __mptcp_close_subflow(struct sock *sk)
2523
{
2524
struct mptcp_subflow_context *subflow, *tmp;
2525
struct mptcp_sock *msk = mptcp_sk(sk);
2526
2527
might_sleep();
2528
2529
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2530
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2531
int ssk_state = inet_sk_state_load(ssk);
2532
2533
if (ssk_state != TCP_CLOSE &&
2534
(ssk_state != TCP_CLOSE_WAIT ||
2535
inet_sk_state_load(sk) != TCP_ESTABLISHED))
2536
continue;
2537
2538
/* 'subflow_data_ready' will re-sched once rx queue is empty */
2539
if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2540
continue;
2541
2542
mptcp_close_ssk(sk, ssk, subflow);
2543
}
2544
2545
}
2546
2547
static bool mptcp_close_tout_expired(const struct sock *sk)
2548
{
2549
if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2550
sk->sk_state == TCP_CLOSE)
2551
return false;
2552
2553
return time_after32(tcp_jiffies32,
2554
inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2555
}
2556
2557
static void mptcp_check_fastclose(struct mptcp_sock *msk)
2558
{
2559
struct mptcp_subflow_context *subflow, *tmp;
2560
struct sock *sk = (struct sock *)msk;
2561
2562
if (likely(!READ_ONCE(msk->rcv_fastclose)))
2563
return;
2564
2565
mptcp_token_destroy(msk);
2566
2567
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2568
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2569
bool slow;
2570
2571
slow = lock_sock_fast(tcp_sk);
2572
if (tcp_sk->sk_state != TCP_CLOSE) {
2573
mptcp_send_active_reset_reason(tcp_sk);
2574
tcp_set_state(tcp_sk, TCP_CLOSE);
2575
}
2576
unlock_sock_fast(tcp_sk, slow);
2577
}
2578
2579
/* Mirror the tcp_reset() error propagation */
2580
switch (sk->sk_state) {
2581
case TCP_SYN_SENT:
2582
WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2583
break;
2584
case TCP_CLOSE_WAIT:
2585
WRITE_ONCE(sk->sk_err, EPIPE);
2586
break;
2587
case TCP_CLOSE:
2588
return;
2589
default:
2590
WRITE_ONCE(sk->sk_err, ECONNRESET);
2591
}
2592
2593
mptcp_set_state(sk, TCP_CLOSE);
2594
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2595
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2596
set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2597
2598
/* the calling mptcp_worker will properly destroy the socket */
2599
if (sock_flag(sk, SOCK_DEAD))
2600
return;
2601
2602
sk->sk_state_change(sk);
2603
sk_error_report(sk);
2604
}
2605
2606
static void __mptcp_retrans(struct sock *sk)
2607
{
2608
struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2609
struct mptcp_sock *msk = mptcp_sk(sk);
2610
struct mptcp_subflow_context *subflow;
2611
struct mptcp_data_frag *dfrag;
2612
struct sock *ssk;
2613
int ret, err;
2614
u16 len = 0;
2615
2616
mptcp_clean_una_wakeup(sk);
2617
2618
/* first check ssk: need to kick "stale" logic */
2619
err = mptcp_sched_get_retrans(msk);
2620
dfrag = mptcp_rtx_head(sk);
2621
if (!dfrag) {
2622
if (mptcp_data_fin_enabled(msk)) {
2623
struct inet_connection_sock *icsk = inet_csk(sk);
2624
2625
WRITE_ONCE(icsk->icsk_retransmits,
2626
icsk->icsk_retransmits + 1);
2627
mptcp_set_datafin_timeout(sk);
2628
mptcp_send_ack(msk);
2629
2630
goto reset_timer;
2631
}
2632
2633
if (!mptcp_send_head(sk))
2634
return;
2635
2636
goto reset_timer;
2637
}
2638
2639
if (err)
2640
goto reset_timer;
2641
2642
mptcp_for_each_subflow(msk, subflow) {
2643
if (READ_ONCE(subflow->scheduled)) {
2644
u16 copied = 0;
2645
2646
mptcp_subflow_set_scheduled(subflow, false);
2647
2648
ssk = mptcp_subflow_tcp_sock(subflow);
2649
2650
lock_sock(ssk);
2651
2652
/* limit retransmission to the bytes already sent on some subflows */
2653
info.sent = 0;
2654
info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2655
dfrag->already_sent;
2656
2657
/*
2658
* make the whole retrans decision, xmit, disallow
2659
* fallback atomic
2660
*/
2661
spin_lock_bh(&msk->fallback_lock);
2662
if (__mptcp_check_fallback(msk)) {
2663
spin_unlock_bh(&msk->fallback_lock);
2664
release_sock(ssk);
2665
return;
2666
}
2667
2668
while (info.sent < info.limit) {
2669
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2670
if (ret <= 0)
2671
break;
2672
2673
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2674
copied += ret;
2675
info.sent += ret;
2676
}
2677
if (copied) {
2678
len = max(copied, len);
2679
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2680
info.size_goal);
2681
msk->allow_infinite_fallback = false;
2682
}
2683
spin_unlock_bh(&msk->fallback_lock);
2684
2685
release_sock(ssk);
2686
}
2687
}
2688
2689
msk->bytes_retrans += len;
2690
dfrag->already_sent = max(dfrag->already_sent, len);
2691
2692
reset_timer:
2693
mptcp_check_and_set_pending(sk);
2694
2695
if (!mptcp_rtx_timer_pending(sk))
2696
mptcp_reset_rtx_timer(sk);
2697
}
2698
2699
/* schedule the timeout timer for the relevant event: either close timeout
2700
* or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2701
*/
2702
void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2703
{
2704
struct sock *sk = (struct sock *)msk;
2705
unsigned long timeout, close_timeout;
2706
2707
if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2708
return;
2709
2710
close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2711
tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2712
2713
/* the close timeout takes precedence on the fail one, and here at least one of
2714
* them is active
2715
*/
2716
timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2717
2718
sk_reset_timer(sk, &sk->sk_timer, timeout);
2719
}
2720
2721
static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2722
{
2723
struct sock *ssk = msk->first;
2724
bool slow;
2725
2726
if (!ssk)
2727
return;
2728
2729
pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2730
2731
slow = lock_sock_fast(ssk);
2732
mptcp_subflow_reset(ssk);
2733
WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2734
unlock_sock_fast(ssk, slow);
2735
}
2736
2737
static void mptcp_do_fastclose(struct sock *sk)
2738
{
2739
struct mptcp_subflow_context *subflow, *tmp;
2740
struct mptcp_sock *msk = mptcp_sk(sk);
2741
2742
mptcp_set_state(sk, TCP_CLOSE);
2743
mptcp_for_each_subflow_safe(msk, subflow, tmp)
2744
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2745
subflow, MPTCP_CF_FASTCLOSE);
2746
}
2747
2748
static void mptcp_worker(struct work_struct *work)
2749
{
2750
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2751
struct sock *sk = (struct sock *)msk;
2752
unsigned long fail_tout;
2753
int state;
2754
2755
lock_sock(sk);
2756
state = sk->sk_state;
2757
if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2758
goto unlock;
2759
2760
mptcp_check_fastclose(msk);
2761
2762
mptcp_pm_worker(msk);
2763
2764
mptcp_check_send_data_fin(sk);
2765
mptcp_check_data_fin_ack(sk);
2766
mptcp_check_data_fin(sk);
2767
2768
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2769
__mptcp_close_subflow(sk);
2770
2771
if (mptcp_close_tout_expired(sk)) {
2772
mptcp_do_fastclose(sk);
2773
mptcp_close_wake_up(sk);
2774
}
2775
2776
if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2777
__mptcp_destroy_sock(sk);
2778
goto unlock;
2779
}
2780
2781
if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2782
__mptcp_retrans(sk);
2783
2784
fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2785
if (fail_tout && time_after(jiffies, fail_tout))
2786
mptcp_mp_fail_no_response(msk);
2787
2788
unlock:
2789
release_sock(sk);
2790
sock_put(sk);
2791
}
2792
2793
static void __mptcp_init_sock(struct sock *sk)
2794
{
2795
struct mptcp_sock *msk = mptcp_sk(sk);
2796
2797
INIT_LIST_HEAD(&msk->conn_list);
2798
INIT_LIST_HEAD(&msk->join_list);
2799
INIT_LIST_HEAD(&msk->rtx_queue);
2800
INIT_WORK(&msk->work, mptcp_worker);
2801
msk->out_of_order_queue = RB_ROOT;
2802
msk->first_pending = NULL;
2803
msk->timer_ival = TCP_RTO_MIN;
2804
msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2805
2806
WRITE_ONCE(msk->first, NULL);
2807
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2808
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2809
msk->allow_infinite_fallback = true;
2810
msk->allow_subflows = true;
2811
msk->recovery = false;
2812
msk->subflow_id = 1;
2813
msk->last_data_sent = tcp_jiffies32;
2814
msk->last_data_recv = tcp_jiffies32;
2815
msk->last_ack_recv = tcp_jiffies32;
2816
2817
mptcp_pm_data_init(msk);
2818
spin_lock_init(&msk->fallback_lock);
2819
2820
/* re-use the csk retrans timer for MPTCP-level retrans */
2821
timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2822
timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2823
}
2824
2825
static void mptcp_ca_reset(struct sock *sk)
2826
{
2827
struct inet_connection_sock *icsk = inet_csk(sk);
2828
2829
tcp_assign_congestion_control(sk);
2830
strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2831
sizeof(mptcp_sk(sk)->ca_name));
2832
2833
/* no need to keep a reference to the ops, the name will suffice */
2834
tcp_cleanup_congestion_control(sk);
2835
icsk->icsk_ca_ops = NULL;
2836
}
2837
2838
static int mptcp_init_sock(struct sock *sk)
2839
{
2840
struct net *net = sock_net(sk);
2841
int ret;
2842
2843
__mptcp_init_sock(sk);
2844
2845
if (!mptcp_is_enabled(net))
2846
return -ENOPROTOOPT;
2847
2848
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2849
return -ENOMEM;
2850
2851
rcu_read_lock();
2852
ret = mptcp_init_sched(mptcp_sk(sk),
2853
mptcp_sched_find(mptcp_get_scheduler(net)));
2854
rcu_read_unlock();
2855
if (ret)
2856
return ret;
2857
2858
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2859
2860
/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2861
* propagate the correct value
2862
*/
2863
mptcp_ca_reset(sk);
2864
2865
sk_sockets_allocated_inc(sk);
2866
sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2867
sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2868
2869
return 0;
2870
}
2871
2872
static void __mptcp_clear_xmit(struct sock *sk)
2873
{
2874
struct mptcp_sock *msk = mptcp_sk(sk);
2875
struct mptcp_data_frag *dtmp, *dfrag;
2876
2877
WRITE_ONCE(msk->first_pending, NULL);
2878
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2879
dfrag_clear(sk, dfrag);
2880
}
2881
2882
void mptcp_cancel_work(struct sock *sk)
2883
{
2884
struct mptcp_sock *msk = mptcp_sk(sk);
2885
2886
if (cancel_work_sync(&msk->work))
2887
__sock_put(sk);
2888
}
2889
2890
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2891
{
2892
lock_sock(ssk);
2893
2894
switch (ssk->sk_state) {
2895
case TCP_LISTEN:
2896
if (!(how & RCV_SHUTDOWN))
2897
break;
2898
fallthrough;
2899
case TCP_SYN_SENT:
2900
WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2901
break;
2902
default:
2903
if (__mptcp_check_fallback(mptcp_sk(sk))) {
2904
pr_debug("Fallback\n");
2905
ssk->sk_shutdown |= how;
2906
tcp_shutdown(ssk, how);
2907
2908
/* simulate the data_fin ack reception to let the state
2909
* machine move forward
2910
*/
2911
WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2912
mptcp_schedule_work(sk);
2913
} else {
2914
pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2915
tcp_send_ack(ssk);
2916
if (!mptcp_rtx_timer_pending(sk))
2917
mptcp_reset_rtx_timer(sk);
2918
}
2919
break;
2920
}
2921
2922
release_sock(ssk);
2923
}
2924
2925
void mptcp_set_state(struct sock *sk, int state)
2926
{
2927
int oldstate = sk->sk_state;
2928
2929
switch (state) {
2930
case TCP_ESTABLISHED:
2931
if (oldstate != TCP_ESTABLISHED)
2932
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2933
break;
2934
case TCP_CLOSE_WAIT:
2935
/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2936
* MPTCP "accepted" sockets will be created later on. So no
2937
* transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2938
*/
2939
break;
2940
default:
2941
if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2942
MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2943
}
2944
2945
inet_sk_state_store(sk, state);
2946
}
2947
2948
static const unsigned char new_state[16] = {
2949
/* current state: new state: action: */
2950
[0 /* (Invalid) */] = TCP_CLOSE,
2951
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2952
[TCP_SYN_SENT] = TCP_CLOSE,
2953
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2954
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2955
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2956
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2957
[TCP_CLOSE] = TCP_CLOSE,
2958
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2959
[TCP_LAST_ACK] = TCP_LAST_ACK,
2960
[TCP_LISTEN] = TCP_CLOSE,
2961
[TCP_CLOSING] = TCP_CLOSING,
2962
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2963
};
2964
2965
static int mptcp_close_state(struct sock *sk)
2966
{
2967
int next = (int)new_state[sk->sk_state];
2968
int ns = next & TCP_STATE_MASK;
2969
2970
mptcp_set_state(sk, ns);
2971
2972
return next & TCP_ACTION_FIN;
2973
}
2974
2975
static void mptcp_check_send_data_fin(struct sock *sk)
2976
{
2977
struct mptcp_subflow_context *subflow;
2978
struct mptcp_sock *msk = mptcp_sk(sk);
2979
2980
pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2981
msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2982
msk->snd_nxt, msk->write_seq);
2983
2984
/* we still need to enqueue subflows or not really shutting down,
2985
* skip this
2986
*/
2987
if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2988
mptcp_send_head(sk))
2989
return;
2990
2991
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2992
2993
mptcp_for_each_subflow(msk, subflow) {
2994
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2995
2996
mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2997
}
2998
}
2999
3000
static void __mptcp_wr_shutdown(struct sock *sk)
3001
{
3002
struct mptcp_sock *msk = mptcp_sk(sk);
3003
3004
pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3005
msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3006
!!mptcp_send_head(sk));
3007
3008
/* will be ignored by fallback sockets */
3009
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3010
WRITE_ONCE(msk->snd_data_fin_enable, 1);
3011
3012
mptcp_check_send_data_fin(sk);
3013
}
3014
3015
static void __mptcp_destroy_sock(struct sock *sk)
3016
{
3017
struct mptcp_sock *msk = mptcp_sk(sk);
3018
3019
pr_debug("msk=%p\n", msk);
3020
3021
might_sleep();
3022
3023
mptcp_stop_rtx_timer(sk);
3024
sk_stop_timer(sk, &sk->sk_timer);
3025
msk->pm.status = 0;
3026
mptcp_release_sched(msk);
3027
3028
sk->sk_prot->destroy(sk);
3029
3030
sk_stream_kill_queues(sk);
3031
xfrm_sk_free_policy(sk);
3032
3033
sock_put(sk);
3034
}
3035
3036
void __mptcp_unaccepted_force_close(struct sock *sk)
3037
{
3038
sock_set_flag(sk, SOCK_DEAD);
3039
mptcp_do_fastclose(sk);
3040
__mptcp_destroy_sock(sk);
3041
}
3042
3043
static __poll_t mptcp_check_readable(struct sock *sk)
3044
{
3045
return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3046
}
3047
3048
static void mptcp_check_listen_stop(struct sock *sk)
3049
{
3050
struct sock *ssk;
3051
3052
if (inet_sk_state_load(sk) != TCP_LISTEN)
3053
return;
3054
3055
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3056
ssk = mptcp_sk(sk)->first;
3057
if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3058
return;
3059
3060
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3061
tcp_set_state(ssk, TCP_CLOSE);
3062
mptcp_subflow_queue_clean(sk, ssk);
3063
inet_csk_listen_stop(ssk);
3064
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3065
release_sock(ssk);
3066
}
3067
3068
bool __mptcp_close(struct sock *sk, long timeout)
3069
{
3070
struct mptcp_subflow_context *subflow;
3071
struct mptcp_sock *msk = mptcp_sk(sk);
3072
bool do_cancel_work = false;
3073
int subflows_alive = 0;
3074
3075
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3076
3077
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3078
mptcp_check_listen_stop(sk);
3079
mptcp_set_state(sk, TCP_CLOSE);
3080
goto cleanup;
3081
}
3082
3083
if (mptcp_data_avail(msk) || timeout < 0) {
3084
/* If the msk has read data, or the caller explicitly ask it,
3085
* do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3086
*/
3087
mptcp_do_fastclose(sk);
3088
timeout = 0;
3089
} else if (mptcp_close_state(sk)) {
3090
__mptcp_wr_shutdown(sk);
3091
}
3092
3093
sk_stream_wait_close(sk, timeout);
3094
3095
cleanup:
3096
/* orphan all the subflows */
3097
mptcp_for_each_subflow(msk, subflow) {
3098
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3099
bool slow = lock_sock_fast_nested(ssk);
3100
3101
subflows_alive += ssk->sk_state != TCP_CLOSE;
3102
3103
/* since the close timeout takes precedence on the fail one,
3104
* cancel the latter
3105
*/
3106
if (ssk == msk->first)
3107
subflow->fail_tout = 0;
3108
3109
/* detach from the parent socket, but allow data_ready to
3110
* push incoming data into the mptcp stack, to properly ack it
3111
*/
3112
ssk->sk_socket = NULL;
3113
ssk->sk_wq = NULL;
3114
unlock_sock_fast(ssk, slow);
3115
}
3116
sock_orphan(sk);
3117
3118
/* all the subflows are closed, only timeout can change the msk
3119
* state, let's not keep resources busy for no reasons
3120
*/
3121
if (subflows_alive == 0)
3122
mptcp_set_state(sk, TCP_CLOSE);
3123
3124
sock_hold(sk);
3125
pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3126
mptcp_pm_connection_closed(msk);
3127
3128
if (sk->sk_state == TCP_CLOSE) {
3129
__mptcp_destroy_sock(sk);
3130
do_cancel_work = true;
3131
} else {
3132
mptcp_start_tout_timer(sk);
3133
}
3134
3135
return do_cancel_work;
3136
}
3137
3138
static void mptcp_close(struct sock *sk, long timeout)
3139
{
3140
bool do_cancel_work;
3141
3142
lock_sock(sk);
3143
3144
do_cancel_work = __mptcp_close(sk, timeout);
3145
release_sock(sk);
3146
if (do_cancel_work)
3147
mptcp_cancel_work(sk);
3148
3149
sock_put(sk);
3150
}
3151
3152
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3153
{
3154
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3155
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3156
struct ipv6_pinfo *msk6 = inet6_sk(msk);
3157
3158
msk->sk_v6_daddr = ssk->sk_v6_daddr;
3159
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3160
3161
if (msk6 && ssk6) {
3162
msk6->saddr = ssk6->saddr;
3163
msk6->flow_label = ssk6->flow_label;
3164
}
3165
#endif
3166
3167
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3168
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3169
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3170
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3171
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3172
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3173
}
3174
3175
static int mptcp_disconnect(struct sock *sk, int flags)
3176
{
3177
struct mptcp_sock *msk = mptcp_sk(sk);
3178
3179
/* We are on the fastopen error path. We can't call straight into the
3180
* subflows cleanup code due to lock nesting (we are already under
3181
* msk->firstsocket lock).
3182
*/
3183
if (msk->fastopening)
3184
return -EBUSY;
3185
3186
mptcp_check_listen_stop(sk);
3187
mptcp_set_state(sk, TCP_CLOSE);
3188
3189
mptcp_stop_rtx_timer(sk);
3190
mptcp_stop_tout_timer(sk);
3191
3192
mptcp_pm_connection_closed(msk);
3193
3194
/* msk->subflow is still intact, the following will not free the first
3195
* subflow
3196
*/
3197
mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3198
3199
/* The first subflow is already in TCP_CLOSE status, the following
3200
* can't overlap with a fallback anymore
3201
*/
3202
spin_lock_bh(&msk->fallback_lock);
3203
msk->allow_subflows = true;
3204
msk->allow_infinite_fallback = true;
3205
WRITE_ONCE(msk->flags, 0);
3206
spin_unlock_bh(&msk->fallback_lock);
3207
3208
msk->cb_flags = 0;
3209
msk->recovery = false;
3210
WRITE_ONCE(msk->can_ack, false);
3211
WRITE_ONCE(msk->fully_established, false);
3212
WRITE_ONCE(msk->rcv_data_fin, false);
3213
WRITE_ONCE(msk->snd_data_fin_enable, false);
3214
WRITE_ONCE(msk->rcv_fastclose, false);
3215
WRITE_ONCE(msk->use_64bit_ack, false);
3216
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3217
mptcp_pm_data_reset(msk);
3218
mptcp_ca_reset(sk);
3219
msk->bytes_consumed = 0;
3220
msk->bytes_acked = 0;
3221
msk->bytes_received = 0;
3222
msk->bytes_sent = 0;
3223
msk->bytes_retrans = 0;
3224
msk->rcvspace_init = 0;
3225
3226
WRITE_ONCE(sk->sk_shutdown, 0);
3227
sk_error_report(sk);
3228
return 0;
3229
}
3230
3231
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3232
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3233
{
3234
struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3235
3236
return &msk6->np;
3237
}
3238
3239
static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3240
{
3241
const struct ipv6_pinfo *np = inet6_sk(sk);
3242
struct ipv6_txoptions *opt;
3243
struct ipv6_pinfo *newnp;
3244
3245
newnp = inet6_sk(newsk);
3246
3247
rcu_read_lock();
3248
opt = rcu_dereference(np->opt);
3249
if (opt) {
3250
opt = ipv6_dup_options(newsk, opt);
3251
if (!opt)
3252
net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3253
}
3254
RCU_INIT_POINTER(newnp->opt, opt);
3255
rcu_read_unlock();
3256
}
3257
#endif
3258
3259
static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3260
{
3261
struct ip_options_rcu *inet_opt, *newopt = NULL;
3262
const struct inet_sock *inet = inet_sk(sk);
3263
struct inet_sock *newinet;
3264
3265
newinet = inet_sk(newsk);
3266
3267
rcu_read_lock();
3268
inet_opt = rcu_dereference(inet->inet_opt);
3269
if (inet_opt) {
3270
newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3271
inet_opt->opt.optlen, GFP_ATOMIC);
3272
if (!newopt)
3273
net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3274
}
3275
RCU_INIT_POINTER(newinet->inet_opt, newopt);
3276
rcu_read_unlock();
3277
}
3278
3279
struct sock *mptcp_sk_clone_init(const struct sock *sk,
3280
const struct mptcp_options_received *mp_opt,
3281
struct sock *ssk,
3282
struct request_sock *req)
3283
{
3284
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3285
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3286
struct mptcp_subflow_context *subflow;
3287
struct mptcp_sock *msk;
3288
3289
if (!nsk)
3290
return NULL;
3291
3292
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3293
if (nsk->sk_family == AF_INET6)
3294
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3295
#endif
3296
3297
__mptcp_init_sock(nsk);
3298
3299
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3300
if (nsk->sk_family == AF_INET6)
3301
mptcp_copy_ip6_options(nsk, sk);
3302
else
3303
#endif
3304
mptcp_copy_ip_options(nsk, sk);
3305
3306
msk = mptcp_sk(nsk);
3307
WRITE_ONCE(msk->local_key, subflow_req->local_key);
3308
WRITE_ONCE(msk->token, subflow_req->token);
3309
msk->in_accept_queue = 1;
3310
WRITE_ONCE(msk->fully_established, false);
3311
if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3312
WRITE_ONCE(msk->csum_enabled, true);
3313
3314
WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3315
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3316
WRITE_ONCE(msk->snd_una, msk->write_seq);
3317
WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3318
msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3319
mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3320
3321
/* passive msk is created after the first/MPC subflow */
3322
msk->subflow_id = 2;
3323
3324
sock_reset_flag(nsk, SOCK_RCU_FREE);
3325
security_inet_csk_clone(nsk, req);
3326
3327
/* this can't race with mptcp_close(), as the msk is
3328
* not yet exposted to user-space
3329
*/
3330
mptcp_set_state(nsk, TCP_ESTABLISHED);
3331
3332
/* The msk maintain a ref to each subflow in the connections list */
3333
WRITE_ONCE(msk->first, ssk);
3334
subflow = mptcp_subflow_ctx(ssk);
3335
list_add(&subflow->node, &msk->conn_list);
3336
sock_hold(ssk);
3337
3338
/* new mpc subflow takes ownership of the newly
3339
* created mptcp socket
3340
*/
3341
mptcp_token_accept(subflow_req, msk);
3342
3343
/* set msk addresses early to ensure mptcp_pm_get_local_id()
3344
* uses the correct data
3345
*/
3346
mptcp_copy_inaddrs(nsk, ssk);
3347
__mptcp_propagate_sndbuf(nsk, ssk);
3348
3349
mptcp_rcv_space_init(msk, ssk);
3350
3351
if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3352
__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3353
bh_unlock_sock(nsk);
3354
3355
/* note: the newly allocated socket refcount is 2 now */
3356
return nsk;
3357
}
3358
3359
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3360
{
3361
const struct tcp_sock *tp = tcp_sk(ssk);
3362
3363
msk->rcvspace_init = 1;
3364
msk->rcvq_space.copied = 0;
3365
msk->rcvq_space.rtt_us = 0;
3366
3367
msk->rcvq_space.time = tp->tcp_mstamp;
3368
3369
/* initial rcv_space offering made to peer */
3370
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3371
TCP_INIT_CWND * tp->advmss);
3372
if (msk->rcvq_space.space == 0)
3373
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3374
}
3375
3376
void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3377
{
3378
struct mptcp_subflow_context *subflow, *tmp;
3379
struct sock *sk = (struct sock *)msk;
3380
3381
__mptcp_clear_xmit(sk);
3382
3383
/* join list will be eventually flushed (with rst) at sock lock release time */
3384
mptcp_for_each_subflow_safe(msk, subflow, tmp)
3385
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3386
3387
__skb_queue_purge(&sk->sk_receive_queue);
3388
skb_rbtree_purge(&msk->out_of_order_queue);
3389
3390
/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3391
* inet_sock_destruct() will dispose it
3392
*/
3393
mptcp_token_destroy(msk);
3394
mptcp_pm_destroy(msk);
3395
}
3396
3397
static void mptcp_destroy(struct sock *sk)
3398
{
3399
struct mptcp_sock *msk = mptcp_sk(sk);
3400
3401
/* allow the following to close even the initial subflow */
3402
msk->free_first = 1;
3403
mptcp_destroy_common(msk, 0);
3404
sk_sockets_allocated_dec(sk);
3405
}
3406
3407
void __mptcp_data_acked(struct sock *sk)
3408
{
3409
if (!sock_owned_by_user(sk))
3410
__mptcp_clean_una(sk);
3411
else
3412
__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3413
}
3414
3415
void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3416
{
3417
if (!mptcp_send_head(sk))
3418
return;
3419
3420
if (!sock_owned_by_user(sk))
3421
__mptcp_subflow_push_pending(sk, ssk, false);
3422
else
3423
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3424
}
3425
3426
#define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3427
BIT(MPTCP_RETRANSMIT) | \
3428
BIT(MPTCP_FLUSH_JOIN_LIST) | \
3429
BIT(MPTCP_DEQUEUE))
3430
3431
/* processes deferred events and flush wmem */
3432
static void mptcp_release_cb(struct sock *sk)
3433
__must_hold(&sk->sk_lock.slock)
3434
{
3435
struct mptcp_sock *msk = mptcp_sk(sk);
3436
3437
for (;;) {
3438
unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3439
struct list_head join_list;
3440
3441
if (!flags)
3442
break;
3443
3444
INIT_LIST_HEAD(&join_list);
3445
list_splice_init(&msk->join_list, &join_list);
3446
3447
/* the following actions acquire the subflow socket lock
3448
*
3449
* 1) can't be invoked in atomic scope
3450
* 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3451
* datapath acquires the msk socket spinlock while helding
3452
* the subflow socket lock
3453
*/
3454
msk->cb_flags &= ~flags;
3455
spin_unlock_bh(&sk->sk_lock.slock);
3456
3457
if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3458
__mptcp_flush_join_list(sk, &join_list);
3459
if (flags & BIT(MPTCP_PUSH_PENDING))
3460
__mptcp_push_pending(sk, 0);
3461
if (flags & BIT(MPTCP_RETRANSMIT))
3462
__mptcp_retrans(sk);
3463
if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3464
/* notify ack seq update */
3465
mptcp_cleanup_rbuf(msk, 0);
3466
sk->sk_data_ready(sk);
3467
}
3468
3469
cond_resched();
3470
spin_lock_bh(&sk->sk_lock.slock);
3471
}
3472
3473
if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3474
__mptcp_clean_una_wakeup(sk);
3475
if (unlikely(msk->cb_flags)) {
3476
/* be sure to sync the msk state before taking actions
3477
* depending on sk_state (MPTCP_ERROR_REPORT)
3478
* On sk release avoid actions depending on the first subflow
3479
*/
3480
if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3481
__mptcp_sync_state(sk, msk->pending_state);
3482
if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3483
__mptcp_error_report(sk);
3484
if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3485
__mptcp_sync_sndbuf(sk);
3486
}
3487
}
3488
3489
/* MP_JOIN client subflow must wait for 4th ack before sending any data:
3490
* TCP can't schedule delack timer before the subflow is fully established.
3491
* MPTCP uses the delack timer to do 3rd ack retransmissions
3492
*/
3493
static void schedule_3rdack_retransmission(struct sock *ssk)
3494
{
3495
struct inet_connection_sock *icsk = inet_csk(ssk);
3496
struct tcp_sock *tp = tcp_sk(ssk);
3497
unsigned long timeout;
3498
3499
if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3500
return;
3501
3502
/* reschedule with a timeout above RTT, as we must look only for drop */
3503
if (tp->srtt_us)
3504
timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3505
else
3506
timeout = TCP_TIMEOUT_INIT;
3507
timeout += jiffies;
3508
3509
WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3510
smp_store_release(&icsk->icsk_ack.pending,
3511
icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3512
sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3513
}
3514
3515
void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3516
{
3517
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3518
struct sock *sk = subflow->conn;
3519
3520
if (status & BIT(MPTCP_DELEGATE_SEND)) {
3521
mptcp_data_lock(sk);
3522
if (!sock_owned_by_user(sk))
3523
__mptcp_subflow_push_pending(sk, ssk, true);
3524
else
3525
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3526
mptcp_data_unlock(sk);
3527
}
3528
if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3529
mptcp_data_lock(sk);
3530
if (!sock_owned_by_user(sk))
3531
__mptcp_sync_sndbuf(sk);
3532
else
3533
__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3534
mptcp_data_unlock(sk);
3535
}
3536
if (status & BIT(MPTCP_DELEGATE_ACK))
3537
schedule_3rdack_retransmission(ssk);
3538
}
3539
3540
static int mptcp_hash(struct sock *sk)
3541
{
3542
/* should never be called,
3543
* we hash the TCP subflows not the MPTCP socket
3544
*/
3545
WARN_ON_ONCE(1);
3546
return 0;
3547
}
3548
3549
static void mptcp_unhash(struct sock *sk)
3550
{
3551
/* called from sk_common_release(), but nothing to do here */
3552
}
3553
3554
static int mptcp_get_port(struct sock *sk, unsigned short snum)
3555
{
3556
struct mptcp_sock *msk = mptcp_sk(sk);
3557
3558
pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3559
if (WARN_ON_ONCE(!msk->first))
3560
return -EINVAL;
3561
3562
return inet_csk_get_port(msk->first, snum);
3563
}
3564
3565
void mptcp_finish_connect(struct sock *ssk)
3566
{
3567
struct mptcp_subflow_context *subflow;
3568
struct mptcp_sock *msk;
3569
struct sock *sk;
3570
3571
subflow = mptcp_subflow_ctx(ssk);
3572
sk = subflow->conn;
3573
msk = mptcp_sk(sk);
3574
3575
pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3576
3577
subflow->map_seq = subflow->iasn;
3578
subflow->map_subflow_seq = 1;
3579
3580
/* the socket is not connected yet, no msk/subflow ops can access/race
3581
* accessing the field below
3582
*/
3583
WRITE_ONCE(msk->local_key, subflow->local_key);
3584
3585
mptcp_pm_new_connection(msk, ssk, 0);
3586
}
3587
3588
void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3589
{
3590
write_lock_bh(&sk->sk_callback_lock);
3591
rcu_assign_pointer(sk->sk_wq, &parent->wq);
3592
sk_set_socket(sk, parent);
3593
write_unlock_bh(&sk->sk_callback_lock);
3594
}
3595
3596
bool mptcp_finish_join(struct sock *ssk)
3597
{
3598
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3599
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3600
struct sock *parent = (void *)msk;
3601
bool ret = true;
3602
3603
pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3604
3605
/* mptcp socket already closing? */
3606
if (!mptcp_is_fully_established(parent)) {
3607
subflow->reset_reason = MPTCP_RST_EMPTCP;
3608
return false;
3609
}
3610
3611
/* active subflow, already present inside the conn_list */
3612
if (!list_empty(&subflow->node)) {
3613
spin_lock_bh(&msk->fallback_lock);
3614
if (!msk->allow_subflows) {
3615
spin_unlock_bh(&msk->fallback_lock);
3616
return false;
3617
}
3618
mptcp_subflow_joined(msk, ssk);
3619
spin_unlock_bh(&msk->fallback_lock);
3620
mptcp_propagate_sndbuf(parent, ssk);
3621
return true;
3622
}
3623
3624
if (!mptcp_pm_allow_new_subflow(msk)) {
3625
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3626
goto err_prohibited;
3627
}
3628
3629
/* If we can't acquire msk socket lock here, let the release callback
3630
* handle it
3631
*/
3632
mptcp_data_lock(parent);
3633
if (!sock_owned_by_user(parent)) {
3634
ret = __mptcp_finish_join(msk, ssk);
3635
if (ret) {
3636
sock_hold(ssk);
3637
list_add_tail(&subflow->node, &msk->conn_list);
3638
}
3639
} else {
3640
sock_hold(ssk);
3641
list_add_tail(&subflow->node, &msk->join_list);
3642
__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3643
}
3644
mptcp_data_unlock(parent);
3645
3646
if (!ret) {
3647
err_prohibited:
3648
subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3649
return false;
3650
}
3651
3652
return true;
3653
}
3654
3655
static void mptcp_shutdown(struct sock *sk, int how)
3656
{
3657
pr_debug("sk=%p, how=%d\n", sk, how);
3658
3659
if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3660
__mptcp_wr_shutdown(sk);
3661
}
3662
3663
static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3664
{
3665
const struct sock *sk = (void *)msk;
3666
u64 delta;
3667
3668
if (sk->sk_state == TCP_LISTEN)
3669
return -EINVAL;
3670
3671
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3672
return 0;
3673
3674
delta = msk->write_seq - v;
3675
if (__mptcp_check_fallback(msk) && msk->first) {
3676
struct tcp_sock *tp = tcp_sk(msk->first);
3677
3678
/* the first subflow is disconnected after close - see
3679
* __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3680
* so ignore that status, too.
3681
*/
3682
if (!((1 << msk->first->sk_state) &
3683
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3684
delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3685
}
3686
if (delta > INT_MAX)
3687
delta = INT_MAX;
3688
3689
return (int)delta;
3690
}
3691
3692
static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3693
{
3694
struct mptcp_sock *msk = mptcp_sk(sk);
3695
bool slow;
3696
3697
switch (cmd) {
3698
case SIOCINQ:
3699
if (sk->sk_state == TCP_LISTEN)
3700
return -EINVAL;
3701
3702
lock_sock(sk);
3703
if (__mptcp_move_skbs(sk))
3704
mptcp_cleanup_rbuf(msk, 0);
3705
*karg = mptcp_inq_hint(sk);
3706
release_sock(sk);
3707
break;
3708
case SIOCOUTQ:
3709
slow = lock_sock_fast(sk);
3710
*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3711
unlock_sock_fast(sk, slow);
3712
break;
3713
case SIOCOUTQNSD:
3714
slow = lock_sock_fast(sk);
3715
*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3716
unlock_sock_fast(sk, slow);
3717
break;
3718
default:
3719
return -ENOIOCTLCMD;
3720
}
3721
3722
return 0;
3723
}
3724
3725
static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3726
{
3727
struct mptcp_subflow_context *subflow;
3728
struct mptcp_sock *msk = mptcp_sk(sk);
3729
int err = -EINVAL;
3730
struct sock *ssk;
3731
3732
ssk = __mptcp_nmpc_sk(msk);
3733
if (IS_ERR(ssk))
3734
return PTR_ERR(ssk);
3735
3736
mptcp_set_state(sk, TCP_SYN_SENT);
3737
subflow = mptcp_subflow_ctx(ssk);
3738
#ifdef CONFIG_TCP_MD5SIG
3739
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3740
* TCP option space.
3741
*/
3742
if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3743
mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3744
#endif
3745
if (subflow->request_mptcp) {
3746
if (mptcp_active_should_disable(sk))
3747
mptcp_early_fallback(msk, subflow,
3748
MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3749
else if (mptcp_token_new_connect(ssk) < 0)
3750
mptcp_early_fallback(msk, subflow,
3751
MPTCP_MIB_TOKENFALLBACKINIT);
3752
}
3753
3754
WRITE_ONCE(msk->write_seq, subflow->idsn);
3755
WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3756
WRITE_ONCE(msk->snd_una, subflow->idsn);
3757
if (likely(!__mptcp_check_fallback(msk)))
3758
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3759
3760
/* if reaching here via the fastopen/sendmsg path, the caller already
3761
* acquired the subflow socket lock, too.
3762
*/
3763
if (!msk->fastopening)
3764
lock_sock(ssk);
3765
3766
/* the following mirrors closely a very small chunk of code from
3767
* __inet_stream_connect()
3768
*/
3769
if (ssk->sk_state != TCP_CLOSE)
3770
goto out;
3771
3772
if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3773
err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3774
if (err)
3775
goto out;
3776
}
3777
3778
err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3779
if (err < 0)
3780
goto out;
3781
3782
inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3783
3784
out:
3785
if (!msk->fastopening)
3786
release_sock(ssk);
3787
3788
/* on successful connect, the msk state will be moved to established by
3789
* subflow_finish_connect()
3790
*/
3791
if (unlikely(err)) {
3792
/* avoid leaving a dangling token in an unconnected socket */
3793
mptcp_token_destroy(msk);
3794
mptcp_set_state(sk, TCP_CLOSE);
3795
return err;
3796
}
3797
3798
mptcp_copy_inaddrs(sk, ssk);
3799
return 0;
3800
}
3801
3802
static struct proto mptcp_prot = {
3803
.name = "MPTCP",
3804
.owner = THIS_MODULE,
3805
.init = mptcp_init_sock,
3806
.connect = mptcp_connect,
3807
.disconnect = mptcp_disconnect,
3808
.close = mptcp_close,
3809
.setsockopt = mptcp_setsockopt,
3810
.getsockopt = mptcp_getsockopt,
3811
.shutdown = mptcp_shutdown,
3812
.destroy = mptcp_destroy,
3813
.sendmsg = mptcp_sendmsg,
3814
.ioctl = mptcp_ioctl,
3815
.recvmsg = mptcp_recvmsg,
3816
.release_cb = mptcp_release_cb,
3817
.hash = mptcp_hash,
3818
.unhash = mptcp_unhash,
3819
.get_port = mptcp_get_port,
3820
.stream_memory_free = mptcp_stream_memory_free,
3821
.sockets_allocated = &mptcp_sockets_allocated,
3822
3823
.memory_allocated = &net_aligned_data.tcp_memory_allocated,
3824
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3825
3826
.memory_pressure = &tcp_memory_pressure,
3827
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3828
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3829
.sysctl_mem = sysctl_tcp_mem,
3830
.obj_size = sizeof(struct mptcp_sock),
3831
.slab_flags = SLAB_TYPESAFE_BY_RCU,
3832
.no_autobind = true,
3833
};
3834
3835
static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3836
{
3837
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3838
struct sock *ssk, *sk = sock->sk;
3839
int err = -EINVAL;
3840
3841
lock_sock(sk);
3842
ssk = __mptcp_nmpc_sk(msk);
3843
if (IS_ERR(ssk)) {
3844
err = PTR_ERR(ssk);
3845
goto unlock;
3846
}
3847
3848
if (sk->sk_family == AF_INET)
3849
err = inet_bind_sk(ssk, uaddr, addr_len);
3850
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3851
else if (sk->sk_family == AF_INET6)
3852
err = inet6_bind_sk(ssk, uaddr, addr_len);
3853
#endif
3854
if (!err)
3855
mptcp_copy_inaddrs(sk, ssk);
3856
3857
unlock:
3858
release_sock(sk);
3859
return err;
3860
}
3861
3862
static int mptcp_listen(struct socket *sock, int backlog)
3863
{
3864
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3865
struct sock *sk = sock->sk;
3866
struct sock *ssk;
3867
int err;
3868
3869
pr_debug("msk=%p\n", msk);
3870
3871
lock_sock(sk);
3872
3873
err = -EINVAL;
3874
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3875
goto unlock;
3876
3877
ssk = __mptcp_nmpc_sk(msk);
3878
if (IS_ERR(ssk)) {
3879
err = PTR_ERR(ssk);
3880
goto unlock;
3881
}
3882
3883
mptcp_set_state(sk, TCP_LISTEN);
3884
sock_set_flag(sk, SOCK_RCU_FREE);
3885
3886
lock_sock(ssk);
3887
err = __inet_listen_sk(ssk, backlog);
3888
release_sock(ssk);
3889
mptcp_set_state(sk, inet_sk_state_load(ssk));
3890
3891
if (!err) {
3892
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3893
mptcp_copy_inaddrs(sk, ssk);
3894
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3895
}
3896
3897
unlock:
3898
release_sock(sk);
3899
return err;
3900
}
3901
3902
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3903
struct proto_accept_arg *arg)
3904
{
3905
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3906
struct sock *ssk, *newsk;
3907
3908
pr_debug("msk=%p\n", msk);
3909
3910
/* Buggy applications can call accept on socket states other then LISTEN
3911
* but no need to allocate the first subflow just to error out.
3912
*/
3913
ssk = READ_ONCE(msk->first);
3914
if (!ssk)
3915
return -EINVAL;
3916
3917
pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3918
newsk = inet_csk_accept(ssk, arg);
3919
if (!newsk)
3920
return arg->err;
3921
3922
pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3923
if (sk_is_mptcp(newsk)) {
3924
struct mptcp_subflow_context *subflow;
3925
struct sock *new_mptcp_sock;
3926
3927
subflow = mptcp_subflow_ctx(newsk);
3928
new_mptcp_sock = subflow->conn;
3929
3930
/* is_mptcp should be false if subflow->conn is missing, see
3931
* subflow_syn_recv_sock()
3932
*/
3933
if (WARN_ON_ONCE(!new_mptcp_sock)) {
3934
tcp_sk(newsk)->is_mptcp = 0;
3935
goto tcpfallback;
3936
}
3937
3938
newsk = new_mptcp_sock;
3939
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3940
3941
newsk->sk_kern_sock = arg->kern;
3942
lock_sock(newsk);
3943
__inet_accept(sock, newsock, newsk);
3944
3945
set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3946
msk = mptcp_sk(newsk);
3947
msk->in_accept_queue = 0;
3948
3949
/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3950
* This is needed so NOSPACE flag can be set from tcp stack.
3951
*/
3952
mptcp_for_each_subflow(msk, subflow) {
3953
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3954
3955
if (!ssk->sk_socket)
3956
mptcp_sock_graft(ssk, newsock);
3957
}
3958
3959
mptcp_rps_record_subflows(msk);
3960
3961
/* Do late cleanup for the first subflow as necessary. Also
3962
* deal with bad peers not doing a complete shutdown.
3963
*/
3964
if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3965
__mptcp_close_ssk(newsk, msk->first,
3966
mptcp_subflow_ctx(msk->first), 0);
3967
if (unlikely(list_is_singular(&msk->conn_list)))
3968
mptcp_set_state(newsk, TCP_CLOSE);
3969
}
3970
} else {
3971
tcpfallback:
3972
newsk->sk_kern_sock = arg->kern;
3973
lock_sock(newsk);
3974
__inet_accept(sock, newsock, newsk);
3975
/* we are being invoked after accepting a non-mp-capable
3976
* flow: sk is a tcp_sk, not an mptcp one.
3977
*
3978
* Hand the socket over to tcp so all further socket ops
3979
* bypass mptcp.
3980
*/
3981
WRITE_ONCE(newsock->sk->sk_socket->ops,
3982
mptcp_fallback_tcp_ops(newsock->sk));
3983
}
3984
release_sock(newsk);
3985
3986
return 0;
3987
}
3988
3989
static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3990
{
3991
struct sock *sk = (struct sock *)msk;
3992
3993
if (__mptcp_stream_is_writeable(sk, 1))
3994
return EPOLLOUT | EPOLLWRNORM;
3995
3996
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3997
smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3998
if (__mptcp_stream_is_writeable(sk, 1))
3999
return EPOLLOUT | EPOLLWRNORM;
4000
4001
return 0;
4002
}
4003
4004
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4005
struct poll_table_struct *wait)
4006
{
4007
struct sock *sk = sock->sk;
4008
struct mptcp_sock *msk;
4009
__poll_t mask = 0;
4010
u8 shutdown;
4011
int state;
4012
4013
msk = mptcp_sk(sk);
4014
sock_poll_wait(file, sock, wait);
4015
4016
state = inet_sk_state_load(sk);
4017
pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4018
if (state == TCP_LISTEN) {
4019
struct sock *ssk = READ_ONCE(msk->first);
4020
4021
if (WARN_ON_ONCE(!ssk))
4022
return 0;
4023
4024
return inet_csk_listen_poll(ssk);
4025
}
4026
4027
shutdown = READ_ONCE(sk->sk_shutdown);
4028
if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4029
mask |= EPOLLHUP;
4030
if (shutdown & RCV_SHUTDOWN)
4031
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4032
4033
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4034
mask |= mptcp_check_readable(sk);
4035
if (shutdown & SEND_SHUTDOWN)
4036
mask |= EPOLLOUT | EPOLLWRNORM;
4037
else
4038
mask |= mptcp_check_writeable(msk);
4039
} else if (state == TCP_SYN_SENT &&
4040
inet_test_bit(DEFER_CONNECT, sk)) {
4041
/* cf tcp_poll() note about TFO */
4042
mask |= EPOLLOUT | EPOLLWRNORM;
4043
}
4044
4045
/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4046
smp_rmb();
4047
if (READ_ONCE(sk->sk_err))
4048
mask |= EPOLLERR;
4049
4050
return mask;
4051
}
4052
4053
static const struct proto_ops mptcp_stream_ops = {
4054
.family = PF_INET,
4055
.owner = THIS_MODULE,
4056
.release = inet_release,
4057
.bind = mptcp_bind,
4058
.connect = inet_stream_connect,
4059
.socketpair = sock_no_socketpair,
4060
.accept = mptcp_stream_accept,
4061
.getname = inet_getname,
4062
.poll = mptcp_poll,
4063
.ioctl = inet_ioctl,
4064
.gettstamp = sock_gettstamp,
4065
.listen = mptcp_listen,
4066
.shutdown = inet_shutdown,
4067
.setsockopt = sock_common_setsockopt,
4068
.getsockopt = sock_common_getsockopt,
4069
.sendmsg = inet_sendmsg,
4070
.recvmsg = inet_recvmsg,
4071
.mmap = sock_no_mmap,
4072
.set_rcvlowat = mptcp_set_rcvlowat,
4073
};
4074
4075
static struct inet_protosw mptcp_protosw = {
4076
.type = SOCK_STREAM,
4077
.protocol = IPPROTO_MPTCP,
4078
.prot = &mptcp_prot,
4079
.ops = &mptcp_stream_ops,
4080
.flags = INET_PROTOSW_ICSK,
4081
};
4082
4083
static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4084
{
4085
struct mptcp_delegated_action *delegated;
4086
struct mptcp_subflow_context *subflow;
4087
int work_done = 0;
4088
4089
delegated = container_of(napi, struct mptcp_delegated_action, napi);
4090
while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4091
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4092
4093
bh_lock_sock_nested(ssk);
4094
if (!sock_owned_by_user(ssk)) {
4095
mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4096
} else {
4097
/* tcp_release_cb_override already processed
4098
* the action or will do at next release_sock().
4099
* In both case must dequeue the subflow here - on the same
4100
* CPU that scheduled it.
4101
*/
4102
smp_wmb();
4103
clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4104
}
4105
bh_unlock_sock(ssk);
4106
sock_put(ssk);
4107
4108
if (++work_done == budget)
4109
return budget;
4110
}
4111
4112
/* always provide a 0 'work_done' argument, so that napi_complete_done
4113
* will not try accessing the NULL napi->dev ptr
4114
*/
4115
napi_complete_done(napi, 0);
4116
return work_done;
4117
}
4118
4119
void __init mptcp_proto_init(void)
4120
{
4121
struct mptcp_delegated_action *delegated;
4122
int cpu;
4123
4124
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4125
4126
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4127
panic("Failed to allocate MPTCP pcpu counter\n");
4128
4129
mptcp_napi_dev = alloc_netdev_dummy(0);
4130
if (!mptcp_napi_dev)
4131
panic("Failed to allocate MPTCP dummy netdev\n");
4132
for_each_possible_cpu(cpu) {
4133
delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4134
INIT_LIST_HEAD(&delegated->head);
4135
netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4136
mptcp_napi_poll);
4137
napi_enable(&delegated->napi);
4138
}
4139
4140
mptcp_subflow_init();
4141
mptcp_pm_init();
4142
mptcp_sched_init();
4143
mptcp_token_init();
4144
4145
if (proto_register(&mptcp_prot, 1) != 0)
4146
panic("Failed to register MPTCP proto.\n");
4147
4148
inet_register_protosw(&mptcp_protosw);
4149
4150
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4151
}
4152
4153
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
4154
static const struct proto_ops mptcp_v6_stream_ops = {
4155
.family = PF_INET6,
4156
.owner = THIS_MODULE,
4157
.release = inet6_release,
4158
.bind = mptcp_bind,
4159
.connect = inet_stream_connect,
4160
.socketpair = sock_no_socketpair,
4161
.accept = mptcp_stream_accept,
4162
.getname = inet6_getname,
4163
.poll = mptcp_poll,
4164
.ioctl = inet6_ioctl,
4165
.gettstamp = sock_gettstamp,
4166
.listen = mptcp_listen,
4167
.shutdown = inet_shutdown,
4168
.setsockopt = sock_common_setsockopt,
4169
.getsockopt = sock_common_getsockopt,
4170
.sendmsg = inet6_sendmsg,
4171
.recvmsg = inet6_recvmsg,
4172
.mmap = sock_no_mmap,
4173
#ifdef CONFIG_COMPAT
4174
.compat_ioctl = inet6_compat_ioctl,
4175
#endif
4176
.set_rcvlowat = mptcp_set_rcvlowat,
4177
};
4178
4179
static struct proto mptcp_v6_prot;
4180
4181
static struct inet_protosw mptcp_v6_protosw = {
4182
.type = SOCK_STREAM,
4183
.protocol = IPPROTO_MPTCP,
4184
.prot = &mptcp_v6_prot,
4185
.ops = &mptcp_v6_stream_ops,
4186
.flags = INET_PROTOSW_ICSK,
4187
};
4188
4189
int __init mptcp_proto_v6_init(void)
4190
{
4191
int err;
4192
4193
mptcp_v6_prot = mptcp_prot;
4194
strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4195
mptcp_v6_prot.slab = NULL;
4196
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4197
mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4198
4199
err = proto_register(&mptcp_v6_prot, 1);
4200
if (err)
4201
return err;
4202
4203
err = inet6_register_protosw(&mptcp_v6_protosw);
4204
if (err)
4205
proto_unregister(&mptcp_v6_prot);
4206
4207
return err;
4208
}
4209
#endif
4210
4211