Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/alloc/kbox.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Implementation of [`Box`].
4
5
#[allow(unused_imports)] // Used in doc comments.
6
use super::allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter};
7
use super::{AllocError, Allocator, Flags, NumaNode};
8
use core::alloc::Layout;
9
use core::borrow::{Borrow, BorrowMut};
10
use core::marker::PhantomData;
11
use core::mem::ManuallyDrop;
12
use core::mem::MaybeUninit;
13
use core::ops::{Deref, DerefMut};
14
use core::pin::Pin;
15
use core::ptr::NonNull;
16
use core::result::Result;
17
18
use crate::ffi::c_void;
19
use crate::fmt;
20
use crate::init::InPlaceInit;
21
use crate::page::AsPageIter;
22
use crate::types::ForeignOwnable;
23
use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption};
24
25
/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
26
///
27
/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
28
/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
29
/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
30
/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
31
/// that may allocate memory are fallible.
32
///
33
/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
34
/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
35
///
36
/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
37
///
38
/// # Examples
39
///
40
/// ```
41
/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
42
///
43
/// assert_eq!(*b, 24_u64);
44
/// # Ok::<(), Error>(())
45
/// ```
46
///
47
/// ```
48
/// # use kernel::bindings;
49
/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
50
/// struct Huge([u8; SIZE]);
51
///
52
/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
53
/// ```
54
///
55
/// ```
56
/// # use kernel::bindings;
57
/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
58
/// struct Huge([u8; SIZE]);
59
///
60
/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
61
/// ```
62
///
63
/// [`Box`]es can also be used to store trait objects by coercing their type:
64
///
65
/// ```
66
/// trait FooTrait {}
67
///
68
/// struct FooStruct;
69
/// impl FooTrait for FooStruct {}
70
///
71
/// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>;
72
/// # Ok::<(), Error>(())
73
/// ```
74
///
75
/// # Invariants
76
///
77
/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
78
/// zero-sized types, is a dangling, well aligned pointer.
79
#[repr(transparent)]
80
#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
81
pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>(
82
NonNull<T>,
83
PhantomData<A>,
84
);
85
86
// This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the
87
// dynamically-sized type (DST) `U`.
88
#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
89
impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A>
90
where
91
T: ?Sized + core::marker::Unsize<U>,
92
U: ?Sized,
93
A: Allocator,
94
{
95
}
96
97
// This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U,
98
// A>`.
99
#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
100
impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A>
101
where
102
T: ?Sized + core::marker::Unsize<U>,
103
U: ?Sized,
104
A: Allocator,
105
{
106
}
107
108
/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
109
///
110
/// # Examples
111
///
112
/// ```
113
/// let b = KBox::new(24_u64, GFP_KERNEL)?;
114
///
115
/// assert_eq!(*b, 24_u64);
116
/// # Ok::<(), Error>(())
117
/// ```
118
pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
119
120
/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
121
///
122
/// # Examples
123
///
124
/// ```
125
/// let b = VBox::new(24_u64, GFP_KERNEL)?;
126
///
127
/// assert_eq!(*b, 24_u64);
128
/// # Ok::<(), Error>(())
129
/// ```
130
pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
131
132
/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
133
///
134
/// # Examples
135
///
136
/// ```
137
/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
138
///
139
/// assert_eq!(*b, 24_u64);
140
/// # Ok::<(), Error>(())
141
/// ```
142
pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
143
144
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
145
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
146
unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {}
147
148
// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
149
unsafe impl<T, A> Send for Box<T, A>
150
where
151
T: Send + ?Sized,
152
A: Allocator,
153
{
154
}
155
156
// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
157
unsafe impl<T, A> Sync for Box<T, A>
158
where
159
T: Sync + ?Sized,
160
A: Allocator,
161
{
162
}
163
164
impl<T, A> Box<T, A>
165
where
166
T: ?Sized,
167
A: Allocator,
168
{
169
/// Creates a new `Box<T, A>` from a raw pointer.
170
///
171
/// # Safety
172
///
173
/// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
174
/// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
175
/// `Box`.
176
///
177
/// For ZSTs, `raw` must be a dangling, well aligned pointer.
178
#[inline]
179
pub const unsafe fn from_raw(raw: *mut T) -> Self {
180
// INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
181
// SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
182
Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
183
}
184
185
/// Consumes the `Box<T, A>` and returns a raw pointer.
186
///
187
/// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
188
/// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
189
/// allocation, if any.
190
///
191
/// # Examples
192
///
193
/// ```
194
/// let x = KBox::new(24, GFP_KERNEL)?;
195
/// let ptr = KBox::into_raw(x);
196
/// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
197
/// let x = unsafe { KBox::from_raw(ptr) };
198
///
199
/// assert_eq!(*x, 24);
200
/// # Ok::<(), Error>(())
201
/// ```
202
#[inline]
203
pub fn into_raw(b: Self) -> *mut T {
204
ManuallyDrop::new(b).0.as_ptr()
205
}
206
207
/// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
208
///
209
/// See [`Box::into_raw`] for more details.
210
#[inline]
211
pub fn leak<'a>(b: Self) -> &'a mut T {
212
// SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
213
// which points to an initialized instance of `T`.
214
unsafe { &mut *Box::into_raw(b) }
215
}
216
}
217
218
impl<T, A> Box<MaybeUninit<T>, A>
219
where
220
A: Allocator,
221
{
222
/// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
223
///
224
/// It is undefined behavior to call this function while the value inside of `b` is not yet
225
/// fully initialized.
226
///
227
/// # Safety
228
///
229
/// Callers must ensure that the value inside of `b` is in an initialized state.
230
pub unsafe fn assume_init(self) -> Box<T, A> {
231
let raw = Self::into_raw(self);
232
233
// SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
234
// of this function, the value inside the `Box` is in an initialized state. Hence, it is
235
// safe to reconstruct the `Box` as `Box<T, A>`.
236
unsafe { Box::from_raw(raw.cast()) }
237
}
238
239
/// Writes the value and converts to `Box<T, A>`.
240
pub fn write(mut self, value: T) -> Box<T, A> {
241
(*self).write(value);
242
243
// SAFETY: We've just initialized `b`'s value.
244
unsafe { self.assume_init() }
245
}
246
}
247
248
impl<T, A> Box<T, A>
249
where
250
A: Allocator,
251
{
252
/// Creates a new `Box<T, A>` and initializes its contents with `x`.
253
///
254
/// New memory is allocated with `A`. The allocation may fail, in which case an error is
255
/// returned. For ZSTs no memory is allocated.
256
pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
257
let b = Self::new_uninit(flags)?;
258
Ok(Box::write(b, x))
259
}
260
261
/// Creates a new `Box<T, A>` with uninitialized contents.
262
///
263
/// New memory is allocated with `A`. The allocation may fail, in which case an error is
264
/// returned. For ZSTs no memory is allocated.
265
///
266
/// # Examples
267
///
268
/// ```
269
/// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
270
/// let b = KBox::write(b, 24);
271
///
272
/// assert_eq!(*b, 24_u64);
273
/// # Ok::<(), Error>(())
274
/// ```
275
pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
276
let layout = Layout::new::<MaybeUninit<T>>();
277
let ptr = A::alloc(layout, flags, NumaNode::NO_NODE)?;
278
279
// INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
280
// which is sufficient in size and alignment for storing a `T`.
281
Ok(Box(ptr.cast(), PhantomData))
282
}
283
284
/// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
285
/// pinned in memory and can't be moved.
286
#[inline]
287
pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
288
where
289
A: 'static,
290
{
291
Ok(Self::new(x, flags)?.into())
292
}
293
294
/// Construct a pinned slice of elements `Pin<Box<[T], A>>`.
295
///
296
/// This is a convenient means for creation of e.g. slices of structrures containing spinlocks
297
/// or mutexes.
298
///
299
/// # Examples
300
///
301
/// ```
302
/// use kernel::sync::{new_spinlock, SpinLock};
303
///
304
/// struct Inner {
305
/// a: u32,
306
/// b: u32,
307
/// }
308
///
309
/// #[pin_data]
310
/// struct Example {
311
/// c: u32,
312
/// #[pin]
313
/// d: SpinLock<Inner>,
314
/// }
315
///
316
/// impl Example {
317
/// fn new() -> impl PinInit<Self, Error> {
318
/// try_pin_init!(Self {
319
/// c: 10,
320
/// d <- new_spinlock!(Inner { a: 20, b: 30 }),
321
/// })
322
/// }
323
/// }
324
///
325
/// // Allocate a boxed slice of 10 `Example`s.
326
/// let s = KBox::pin_slice(
327
/// | _i | Example::new(),
328
/// 10,
329
/// GFP_KERNEL
330
/// )?;
331
///
332
/// assert_eq!(s[5].c, 10);
333
/// assert_eq!(s[3].d.lock().a, 20);
334
/// # Ok::<(), Error>(())
335
/// ```
336
pub fn pin_slice<Func, Item, E>(
337
mut init: Func,
338
len: usize,
339
flags: Flags,
340
) -> Result<Pin<Box<[T], A>>, E>
341
where
342
Func: FnMut(usize) -> Item,
343
Item: PinInit<T, E>,
344
E: From<AllocError>,
345
{
346
let mut buffer = super::Vec::<T, A>::with_capacity(len, flags)?;
347
for i in 0..len {
348
let ptr = buffer.spare_capacity_mut().as_mut_ptr().cast();
349
// SAFETY:
350
// - `ptr` is a valid pointer to uninitialized memory.
351
// - `ptr` is not used if an error is returned.
352
// - `ptr` won't be moved until it is dropped, i.e. it is pinned.
353
unsafe { init(i).__pinned_init(ptr)? };
354
355
// SAFETY:
356
// - `i + 1 <= len`, hence we don't exceed the capacity, due to the call to
357
// `with_capacity()` above.
358
// - The new value at index buffer.len() + 1 is the only element being added here, and
359
// it has been initialized above by `init(i).__pinned_init(ptr)`.
360
unsafe { buffer.inc_len(1) };
361
}
362
363
let (ptr, _, _) = buffer.into_raw_parts();
364
let slice = core::ptr::slice_from_raw_parts_mut(ptr, len);
365
366
// SAFETY: `slice` points to an allocation allocated with `A` (`buffer`) and holds a valid
367
// `[T]`.
368
Ok(Pin::from(unsafe { Box::from_raw(slice) }))
369
}
370
371
/// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement
372
/// [`Unpin`], then `x` will be pinned in memory and can't be moved.
373
pub fn into_pin(this: Self) -> Pin<Self> {
374
this.into()
375
}
376
377
/// Forgets the contents (does not run the destructor), but keeps the allocation.
378
fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
379
let ptr = Self::into_raw(this);
380
381
// SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
382
unsafe { Box::from_raw(ptr.cast()) }
383
}
384
385
/// Drops the contents, but keeps the allocation.
386
///
387
/// # Examples
388
///
389
/// ```
390
/// let value = KBox::new([0; 32], GFP_KERNEL)?;
391
/// assert_eq!(*value, [0; 32]);
392
/// let value = KBox::drop_contents(value);
393
/// // Now we can re-use `value`:
394
/// let value = KBox::write(value, [1; 32]);
395
/// assert_eq!(*value, [1; 32]);
396
/// # Ok::<(), Error>(())
397
/// ```
398
pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
399
let ptr = this.0.as_ptr();
400
401
// SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
402
// value stored in `this` again.
403
unsafe { core::ptr::drop_in_place(ptr) };
404
405
Self::forget_contents(this)
406
}
407
408
/// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
409
pub fn into_inner(b: Self) -> T {
410
// SAFETY: By the type invariant `&*b` is valid for `read`.
411
let value = unsafe { core::ptr::read(&*b) };
412
let _ = Self::forget_contents(b);
413
value
414
}
415
}
416
417
impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
418
where
419
T: ?Sized,
420
A: Allocator,
421
{
422
/// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
423
/// `*b` will be pinned in memory and can't be moved.
424
///
425
/// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
426
fn from(b: Box<T, A>) -> Self {
427
// SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
428
// as `T` does not implement `Unpin`.
429
unsafe { Pin::new_unchecked(b) }
430
}
431
}
432
433
impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
434
where
435
A: Allocator + 'static,
436
{
437
type Initialized = Box<T, A>;
438
439
fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
440
let slot = self.as_mut_ptr();
441
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
442
// slot is valid.
443
unsafe { init.__init(slot)? };
444
// SAFETY: All fields have been initialized.
445
Ok(unsafe { Box::assume_init(self) })
446
}
447
448
fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
449
let slot = self.as_mut_ptr();
450
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
451
// slot is valid and will not be moved, because we pin it later.
452
unsafe { init.__pinned_init(slot)? };
453
// SAFETY: All fields have been initialized.
454
Ok(unsafe { Box::assume_init(self) }.into())
455
}
456
}
457
458
impl<T, A> InPlaceInit<T> for Box<T, A>
459
where
460
A: Allocator + 'static,
461
{
462
type PinnedSelf = Pin<Self>;
463
464
#[inline]
465
fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
466
where
467
E: From<AllocError>,
468
{
469
Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
470
}
471
472
#[inline]
473
fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
474
where
475
E: From<AllocError>,
476
{
477
Box::<_, A>::new_uninit(flags)?.write_init(init)
478
}
479
}
480
481
// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
482
// pointer to `T` allocated by `A`.
483
unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A>
484
where
485
A: Allocator,
486
{
487
const FOREIGN_ALIGN: usize = if core::mem::align_of::<T>() < A::MIN_ALIGN {
488
A::MIN_ALIGN
489
} else {
490
core::mem::align_of::<T>()
491
};
492
493
type Borrowed<'a> = &'a T;
494
type BorrowedMut<'a> = &'a mut T;
495
496
fn into_foreign(self) -> *mut c_void {
497
Box::into_raw(self).cast()
498
}
499
500
unsafe fn from_foreign(ptr: *mut c_void) -> Self {
501
// SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
502
// call to `Self::into_foreign`.
503
unsafe { Box::from_raw(ptr.cast()) }
504
}
505
506
unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T {
507
// SAFETY: The safety requirements of this method ensure that the object remains alive and
508
// immutable for the duration of 'a.
509
unsafe { &*ptr.cast() }
510
}
511
512
unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T {
513
let ptr = ptr.cast();
514
// SAFETY: The safety requirements of this method ensure that the pointer is valid and that
515
// nothing else will access the value for the duration of 'a.
516
unsafe { &mut *ptr }
517
}
518
}
519
520
// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
521
// pointer to `T` allocated by `A`.
522
unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
523
where
524
A: Allocator,
525
{
526
const FOREIGN_ALIGN: usize = <Box<T, A> as ForeignOwnable>::FOREIGN_ALIGN;
527
type Borrowed<'a> = Pin<&'a T>;
528
type BorrowedMut<'a> = Pin<&'a mut T>;
529
530
fn into_foreign(self) -> *mut c_void {
531
// SAFETY: We are still treating the box as pinned.
532
Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast()
533
}
534
535
unsafe fn from_foreign(ptr: *mut c_void) -> Self {
536
// SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
537
// call to `Self::into_foreign`.
538
unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) }
539
}
540
541
unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> {
542
// SAFETY: The safety requirements for this function ensure that the object is still alive,
543
// so it is safe to dereference the raw pointer.
544
// The safety requirements of `from_foreign` also ensure that the object remains alive for
545
// the lifetime of the returned value.
546
let r = unsafe { &*ptr.cast() };
547
548
// SAFETY: This pointer originates from a `Pin<Box<T>>`.
549
unsafe { Pin::new_unchecked(r) }
550
}
551
552
unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> {
553
let ptr = ptr.cast();
554
// SAFETY: The safety requirements for this function ensure that the object is still alive,
555
// so it is safe to dereference the raw pointer.
556
// The safety requirements of `from_foreign` also ensure that the object remains alive for
557
// the lifetime of the returned value.
558
let r = unsafe { &mut *ptr };
559
560
// SAFETY: This pointer originates from a `Pin<Box<T>>`.
561
unsafe { Pin::new_unchecked(r) }
562
}
563
}
564
565
impl<T, A> Deref for Box<T, A>
566
where
567
T: ?Sized,
568
A: Allocator,
569
{
570
type Target = T;
571
572
fn deref(&self) -> &T {
573
// SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
574
// instance of `T`.
575
unsafe { self.0.as_ref() }
576
}
577
}
578
579
impl<T, A> DerefMut for Box<T, A>
580
where
581
T: ?Sized,
582
A: Allocator,
583
{
584
fn deref_mut(&mut self) -> &mut T {
585
// SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
586
// instance of `T`.
587
unsafe { self.0.as_mut() }
588
}
589
}
590
591
/// # Examples
592
///
593
/// ```
594
/// # use core::borrow::Borrow;
595
/// # use kernel::alloc::KBox;
596
/// struct Foo<B: Borrow<u32>>(B);
597
///
598
/// // Owned instance.
599
/// let owned = Foo(1);
600
///
601
/// // Owned instance using `KBox`.
602
/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
603
///
604
/// let i = 1;
605
/// // Borrowed from `i`.
606
/// let borrowed = Foo(&i);
607
/// # Ok::<(), Error>(())
608
/// ```
609
impl<T, A> Borrow<T> for Box<T, A>
610
where
611
T: ?Sized,
612
A: Allocator,
613
{
614
fn borrow(&self) -> &T {
615
self.deref()
616
}
617
}
618
619
/// # Examples
620
///
621
/// ```
622
/// # use core::borrow::BorrowMut;
623
/// # use kernel::alloc::KBox;
624
/// struct Foo<B: BorrowMut<u32>>(B);
625
///
626
/// // Owned instance.
627
/// let owned = Foo(1);
628
///
629
/// // Owned instance using `KBox`.
630
/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
631
///
632
/// let mut i = 1;
633
/// // Borrowed from `i`.
634
/// let borrowed = Foo(&mut i);
635
/// # Ok::<(), Error>(())
636
/// ```
637
impl<T, A> BorrowMut<T> for Box<T, A>
638
where
639
T: ?Sized,
640
A: Allocator,
641
{
642
fn borrow_mut(&mut self) -> &mut T {
643
self.deref_mut()
644
}
645
}
646
647
impl<T, A> fmt::Display for Box<T, A>
648
where
649
T: ?Sized + fmt::Display,
650
A: Allocator,
651
{
652
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
653
<T as fmt::Display>::fmt(&**self, f)
654
}
655
}
656
657
impl<T, A> fmt::Debug for Box<T, A>
658
where
659
T: ?Sized + fmt::Debug,
660
A: Allocator,
661
{
662
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
663
<T as fmt::Debug>::fmt(&**self, f)
664
}
665
}
666
667
impl<T, A> Drop for Box<T, A>
668
where
669
T: ?Sized,
670
A: Allocator,
671
{
672
fn drop(&mut self) {
673
let layout = Layout::for_value::<T>(self);
674
675
// SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
676
unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
677
678
// SAFETY:
679
// - `self.0` was previously allocated with `A`.
680
// - `layout` is equal to the `Layout´ `self.0` was allocated with.
681
unsafe { A::free(self.0.cast(), layout) };
682
}
683
}
684
685
/// # Examples
686
///
687
/// ```
688
/// # use kernel::prelude::*;
689
/// use kernel::alloc::allocator::VmallocPageIter;
690
/// use kernel::page::{AsPageIter, PAGE_SIZE};
691
///
692
/// let mut vbox = VBox::new((), GFP_KERNEL)?;
693
///
694
/// assert!(vbox.page_iter().next().is_none());
695
///
696
/// let mut vbox = VBox::<[u8; PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
697
///
698
/// let page = vbox.page_iter().next().expect("At least one page should be available.\n");
699
///
700
/// // SAFETY: There is no concurrent read or write to the same page.
701
/// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? };
702
/// # Ok::<(), Error>(())
703
/// ```
704
impl<T> AsPageIter for VBox<T> {
705
type Iter<'a>
706
= VmallocPageIter<'a>
707
where
708
T: 'a;
709
710
fn page_iter(&mut self) -> Self::Iter<'_> {
711
let ptr = self.0.cast();
712
let size = core::mem::size_of::<T>();
713
714
// SAFETY:
715
// - `ptr` is a valid pointer to the beginning of a `Vmalloc` allocation.
716
// - `ptr` is guaranteed to be valid for the lifetime of `'a`.
717
// - `size` is the size of the `Vmalloc` allocation `ptr` points to.
718
unsafe { VmallocPageIter::new(ptr, size) }
719
}
720
}
721
722