Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/alloc/kvec.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Implementation of [`Vec`].
4
5
use super::{
6
allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter},
7
layout::ArrayLayout,
8
AllocError, Allocator, Box, Flags, NumaNode,
9
};
10
use crate::{
11
fmt,
12
page::AsPageIter,
13
};
14
use core::{
15
borrow::{Borrow, BorrowMut},
16
marker::PhantomData,
17
mem::{ManuallyDrop, MaybeUninit},
18
ops::Deref,
19
ops::DerefMut,
20
ops::Index,
21
ops::IndexMut,
22
ptr,
23
ptr::NonNull,
24
slice,
25
slice::SliceIndex,
26
};
27
28
mod errors;
29
pub use self::errors::{InsertError, PushError, RemoveError};
30
31
/// Create a [`KVec`] containing the arguments.
32
///
33
/// New memory is allocated with `GFP_KERNEL`.
34
///
35
/// # Examples
36
///
37
/// ```
38
/// let mut v = kernel::kvec![];
39
/// v.push(1, GFP_KERNEL)?;
40
/// assert_eq!(v, [1]);
41
///
42
/// let mut v = kernel::kvec![1; 3]?;
43
/// v.push(4, GFP_KERNEL)?;
44
/// assert_eq!(v, [1, 1, 1, 4]);
45
///
46
/// let mut v = kernel::kvec![1, 2, 3]?;
47
/// v.push(4, GFP_KERNEL)?;
48
/// assert_eq!(v, [1, 2, 3, 4]);
49
///
50
/// # Ok::<(), Error>(())
51
/// ```
52
#[macro_export]
53
macro_rules! kvec {
54
() => (
55
$crate::alloc::KVec::new()
56
);
57
($elem:expr; $n:expr) => (
58
$crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
59
);
60
($($x:expr),+ $(,)?) => (
61
match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
62
Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
63
Err(e) => Err(e),
64
}
65
);
66
}
67
68
/// The kernel's [`Vec`] type.
69
///
70
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
71
/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
72
///
73
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
74
/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
75
///
76
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
77
///
78
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
79
/// capacity of the vector (the number of elements that currently fit into the vector), its length
80
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
81
/// to allocate (and free) the backing buffer.
82
///
83
/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
84
/// and manually modified.
85
///
86
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
87
/// are added to the vector.
88
///
89
/// # Invariants
90
///
91
/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
92
/// zero-sized types, is a dangling, well aligned pointer.
93
///
94
/// - `self.len` always represents the exact number of elements stored in the vector.
95
///
96
/// - `self.layout` represents the absolute number of elements that can be stored within the vector
97
/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
98
/// backing buffer to be larger than `layout`.
99
///
100
/// - `self.len()` is always less than or equal to `self.capacity()`.
101
///
102
/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
103
/// was allocated with (and must be freed with).
104
pub struct Vec<T, A: Allocator> {
105
ptr: NonNull<T>,
106
/// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
107
///
108
/// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
109
/// elements we can still store without reallocating.
110
layout: ArrayLayout<T>,
111
len: usize,
112
_p: PhantomData<A>,
113
}
114
115
/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
116
///
117
/// # Examples
118
///
119
/// ```
120
/// let mut v = KVec::new();
121
/// v.push(1, GFP_KERNEL)?;
122
/// assert_eq!(&v, &[1]);
123
///
124
/// # Ok::<(), Error>(())
125
/// ```
126
pub type KVec<T> = Vec<T, Kmalloc>;
127
128
/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
129
///
130
/// # Examples
131
///
132
/// ```
133
/// let mut v = VVec::new();
134
/// v.push(1, GFP_KERNEL)?;
135
/// assert_eq!(&v, &[1]);
136
///
137
/// # Ok::<(), Error>(())
138
/// ```
139
pub type VVec<T> = Vec<T, Vmalloc>;
140
141
/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
142
///
143
/// # Examples
144
///
145
/// ```
146
/// let mut v = KVVec::new();
147
/// v.push(1, GFP_KERNEL)?;
148
/// assert_eq!(&v, &[1]);
149
///
150
/// # Ok::<(), Error>(())
151
/// ```
152
pub type KVVec<T> = Vec<T, KVmalloc>;
153
154
// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
155
unsafe impl<T, A> Send for Vec<T, A>
156
where
157
T: Send,
158
A: Allocator,
159
{
160
}
161
162
// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
163
unsafe impl<T, A> Sync for Vec<T, A>
164
where
165
T: Sync,
166
A: Allocator,
167
{
168
}
169
170
impl<T, A> Vec<T, A>
171
where
172
A: Allocator,
173
{
174
#[inline]
175
const fn is_zst() -> bool {
176
core::mem::size_of::<T>() == 0
177
}
178
179
/// Returns the number of elements that can be stored within the vector without allocating
180
/// additional memory.
181
pub const fn capacity(&self) -> usize {
182
if const { Self::is_zst() } {
183
usize::MAX
184
} else {
185
self.layout.len()
186
}
187
}
188
189
/// Returns the number of elements stored within the vector.
190
#[inline]
191
pub const fn len(&self) -> usize {
192
self.len
193
}
194
195
/// Increments `self.len` by `additional`.
196
///
197
/// # Safety
198
///
199
/// - `additional` must be less than or equal to `self.capacity - self.len`.
200
/// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
201
#[inline]
202
pub const unsafe fn inc_len(&mut self, additional: usize) {
203
// Guaranteed by the type invariant to never underflow.
204
debug_assert!(additional <= self.capacity() - self.len());
205
// INVARIANT: By the safety requirements of this method this represents the exact number of
206
// elements stored within `self`.
207
self.len += additional;
208
}
209
210
/// Decreases `self.len` by `count`.
211
///
212
/// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
213
/// responsibility to drop these elements if necessary.
214
///
215
/// # Safety
216
///
217
/// - `count` must be less than or equal to `self.len`.
218
unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
219
debug_assert!(count <= self.len());
220
// INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
221
// self.len)`, hence the updated value of `set.len` represents the exact number of elements
222
// stored within `self`.
223
self.len -= count;
224
// SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
225
// elements of type `T`.
226
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
227
}
228
229
/// Returns a slice of the entire vector.
230
///
231
/// # Examples
232
///
233
/// ```
234
/// let mut v = KVec::new();
235
/// v.push(1, GFP_KERNEL)?;
236
/// v.push(2, GFP_KERNEL)?;
237
/// assert_eq!(v.as_slice(), &[1, 2]);
238
/// # Ok::<(), Error>(())
239
/// ```
240
#[inline]
241
pub fn as_slice(&self) -> &[T] {
242
self
243
}
244
245
/// Returns a mutable slice of the entire vector.
246
#[inline]
247
pub fn as_mut_slice(&mut self) -> &mut [T] {
248
self
249
}
250
251
/// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
252
/// dangling raw pointer.
253
#[inline]
254
pub fn as_mut_ptr(&mut self) -> *mut T {
255
self.ptr.as_ptr()
256
}
257
258
/// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
259
/// pointer.
260
#[inline]
261
pub const fn as_ptr(&self) -> *const T {
262
self.ptr.as_ptr()
263
}
264
265
/// Returns `true` if the vector contains no elements, `false` otherwise.
266
///
267
/// # Examples
268
///
269
/// ```
270
/// let mut v = KVec::new();
271
/// assert!(v.is_empty());
272
///
273
/// v.push(1, GFP_KERNEL);
274
/// assert!(!v.is_empty());
275
/// ```
276
#[inline]
277
pub const fn is_empty(&self) -> bool {
278
self.len() == 0
279
}
280
281
/// Creates a new, empty `Vec<T, A>`.
282
///
283
/// This method does not allocate by itself.
284
#[inline]
285
pub const fn new() -> Self {
286
// INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
287
// - `ptr` is a properly aligned dangling pointer for type `T`,
288
// - `layout` is an empty `ArrayLayout` (zero capacity)
289
// - `len` is zero, since no elements can be or have been stored,
290
// - `A` is always valid.
291
Self {
292
ptr: NonNull::dangling(),
293
layout: ArrayLayout::empty(),
294
len: 0,
295
_p: PhantomData::<A>,
296
}
297
}
298
299
/// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
300
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
301
// SAFETY:
302
// - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
303
// resulting pointer is guaranteed to be part of the same allocated object.
304
// - `self.len` can not overflow `isize`.
305
let ptr = unsafe { self.as_mut_ptr().add(self.len) }.cast::<MaybeUninit<T>>();
306
307
// SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
308
// and valid, but uninitialized.
309
unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
310
}
311
312
/// Appends an element to the back of the [`Vec`] instance.
313
///
314
/// # Examples
315
///
316
/// ```
317
/// let mut v = KVec::new();
318
/// v.push(1, GFP_KERNEL)?;
319
/// assert_eq!(&v, &[1]);
320
///
321
/// v.push(2, GFP_KERNEL)?;
322
/// assert_eq!(&v, &[1, 2]);
323
/// # Ok::<(), Error>(())
324
/// ```
325
pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
326
self.reserve(1, flags)?;
327
// SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
328
// than the length.
329
unsafe { self.push_within_capacity_unchecked(v) };
330
Ok(())
331
}
332
333
/// Appends an element to the back of the [`Vec`] instance without reallocating.
334
///
335
/// Fails if the vector does not have capacity for the new element.
336
///
337
/// # Examples
338
///
339
/// ```
340
/// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
341
/// for i in 0..10 {
342
/// v.push_within_capacity(i)?;
343
/// }
344
///
345
/// assert!(v.push_within_capacity(10).is_err());
346
/// # Ok::<(), Error>(())
347
/// ```
348
pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
349
if self.len() < self.capacity() {
350
// SAFETY: The length is less than the capacity.
351
unsafe { self.push_within_capacity_unchecked(v) };
352
Ok(())
353
} else {
354
Err(PushError(v))
355
}
356
}
357
358
/// Appends an element to the back of the [`Vec`] instance without reallocating.
359
///
360
/// # Safety
361
///
362
/// The length must be less than the capacity.
363
unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
364
let spare = self.spare_capacity_mut();
365
366
// SAFETY: By the safety requirements, `spare` is non-empty.
367
unsafe { spare.get_unchecked_mut(0) }.write(v);
368
369
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
370
// by 1. We also know that the new length is <= capacity because the caller guarantees that
371
// the length is less than the capacity at the beginning of this function.
372
unsafe { self.inc_len(1) };
373
}
374
375
/// Inserts an element at the given index in the [`Vec`] instance.
376
///
377
/// Fails if the vector does not have capacity for the new element. Panics if the index is out
378
/// of bounds.
379
///
380
/// # Examples
381
///
382
/// ```
383
/// use kernel::alloc::kvec::InsertError;
384
///
385
/// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
386
/// for i in 0..5 {
387
/// v.insert_within_capacity(0, i)?;
388
/// }
389
///
390
/// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
391
/// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
392
/// assert_eq!(v, [4, 3, 2, 1, 0]);
393
/// # Ok::<(), Error>(())
394
/// ```
395
pub fn insert_within_capacity(
396
&mut self,
397
index: usize,
398
element: T,
399
) -> Result<(), InsertError<T>> {
400
let len = self.len();
401
if index > len {
402
return Err(InsertError::IndexOutOfBounds(element));
403
}
404
405
if len >= self.capacity() {
406
return Err(InsertError::OutOfCapacity(element));
407
}
408
409
// SAFETY: This is in bounds since `index <= len < capacity`.
410
let p = unsafe { self.as_mut_ptr().add(index) };
411
// INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
412
// but we restore the invariants below.
413
// SAFETY: Both the src and dst ranges end no later than one element after the length.
414
// Since the length is less than the capacity, both ranges are in bounds of the allocation.
415
unsafe { ptr::copy(p, p.add(1), len - index) };
416
// INVARIANT: This restores the Vec invariants.
417
// SAFETY: The pointer is in-bounds of the allocation.
418
unsafe { ptr::write(p, element) };
419
// SAFETY: Index `len` contains a valid element due to the above copy and write.
420
unsafe { self.inc_len(1) };
421
Ok(())
422
}
423
424
/// Removes the last element from a vector and returns it, or `None` if it is empty.
425
///
426
/// # Examples
427
///
428
/// ```
429
/// let mut v = KVec::new();
430
/// v.push(1, GFP_KERNEL)?;
431
/// v.push(2, GFP_KERNEL)?;
432
/// assert_eq!(&v, &[1, 2]);
433
///
434
/// assert_eq!(v.pop(), Some(2));
435
/// assert_eq!(v.pop(), Some(1));
436
/// assert_eq!(v.pop(), None);
437
/// # Ok::<(), Error>(())
438
/// ```
439
pub fn pop(&mut self) -> Option<T> {
440
if self.is_empty() {
441
return None;
442
}
443
444
let removed: *mut T = {
445
// SAFETY: We just checked that the length is at least one.
446
let slice = unsafe { self.dec_len(1) };
447
// SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
448
unsafe { slice.get_unchecked_mut(0) }
449
};
450
451
// SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
452
Some(unsafe { removed.read() })
453
}
454
455
/// Removes the element at the given index.
456
///
457
/// # Examples
458
///
459
/// ```
460
/// let mut v = kernel::kvec![1, 2, 3]?;
461
/// assert_eq!(v.remove(1)?, 2);
462
/// assert_eq!(v, [1, 3]);
463
/// # Ok::<(), Error>(())
464
/// ```
465
pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
466
let value = {
467
let value_ref = self.get(i).ok_or(RemoveError)?;
468
// INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
469
// restore the invariants below.
470
// SAFETY: The value at index `i` is valid, because otherwise we would have already
471
// failed with `RemoveError`.
472
unsafe { ptr::read(value_ref) }
473
};
474
475
// SAFETY: We checked that `i` is in-bounds.
476
let p = unsafe { self.as_mut_ptr().add(i) };
477
478
// INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
479
// are restored after the below call to `dec_len(1)`.
480
// SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
481
// beginning of the vector, so this is in-bounds of the vector's allocation.
482
unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
483
484
// SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
485
// the length is at least one.
486
unsafe { self.dec_len(1) };
487
488
Ok(value)
489
}
490
491
/// Creates a new [`Vec`] instance with at least the given capacity.
492
///
493
/// # Examples
494
///
495
/// ```
496
/// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
497
///
498
/// assert!(v.capacity() >= 20);
499
/// # Ok::<(), Error>(())
500
/// ```
501
pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
502
let mut v = Vec::new();
503
504
v.reserve(capacity, flags)?;
505
506
Ok(v)
507
}
508
509
/// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
510
///
511
/// # Examples
512
///
513
/// ```
514
/// let mut v = kernel::kvec![1, 2, 3]?;
515
/// v.reserve(1, GFP_KERNEL)?;
516
///
517
/// let (mut ptr, mut len, cap) = v.into_raw_parts();
518
///
519
/// // SAFETY: We've just reserved memory for another element.
520
/// unsafe { ptr.add(len).write(4) };
521
/// len += 1;
522
///
523
/// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
524
/// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
525
/// // from the exact same raw parts.
526
/// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
527
///
528
/// assert_eq!(v, [1, 2, 3, 4]);
529
///
530
/// # Ok::<(), Error>(())
531
/// ```
532
///
533
/// # Safety
534
///
535
/// If `T` is a ZST:
536
///
537
/// - `ptr` must be a dangling, well aligned pointer.
538
///
539
/// Otherwise:
540
///
541
/// - `ptr` must have been allocated with the allocator `A`.
542
/// - `ptr` must satisfy or exceed the alignment requirements of `T`.
543
/// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
544
/// - The allocated size in bytes must not be larger than `isize::MAX`.
545
/// - `length` must be less than or equal to `capacity`.
546
/// - The first `length` elements must be initialized values of type `T`.
547
///
548
/// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
549
/// `cap` and `len`.
550
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
551
let layout = if Self::is_zst() {
552
ArrayLayout::empty()
553
} else {
554
// SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
555
// smaller than `isize::MAX`.
556
unsafe { ArrayLayout::new_unchecked(capacity) }
557
};
558
559
// INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
560
// covered by the safety requirements of this function.
561
Self {
562
// SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
563
// memory allocation, allocated with `A`.
564
ptr: unsafe { NonNull::new_unchecked(ptr) },
565
layout,
566
len: length,
567
_p: PhantomData::<A>,
568
}
569
}
570
571
/// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
572
///
573
/// This will not run the destructor of the contained elements and for non-ZSTs the allocation
574
/// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
575
/// elements and free the allocation, if any.
576
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
577
let mut me = ManuallyDrop::new(self);
578
let len = me.len();
579
let capacity = me.capacity();
580
let ptr = me.as_mut_ptr();
581
(ptr, len, capacity)
582
}
583
584
/// Clears the vector, removing all values.
585
///
586
/// Note that this method has no effect on the allocated capacity
587
/// of the vector.
588
///
589
/// # Examples
590
///
591
/// ```
592
/// let mut v = kernel::kvec![1, 2, 3]?;
593
///
594
/// v.clear();
595
///
596
/// assert!(v.is_empty());
597
/// # Ok::<(), Error>(())
598
/// ```
599
#[inline]
600
pub fn clear(&mut self) {
601
self.truncate(0);
602
}
603
604
/// Ensures that the capacity exceeds the length by at least `additional` elements.
605
///
606
/// # Examples
607
///
608
/// ```
609
/// let mut v = KVec::new();
610
/// v.push(1, GFP_KERNEL)?;
611
///
612
/// v.reserve(10, GFP_KERNEL)?;
613
/// let cap = v.capacity();
614
/// assert!(cap >= 10);
615
///
616
/// v.reserve(10, GFP_KERNEL)?;
617
/// let new_cap = v.capacity();
618
/// assert_eq!(new_cap, cap);
619
///
620
/// # Ok::<(), Error>(())
621
/// ```
622
pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
623
let len = self.len();
624
let cap = self.capacity();
625
626
if cap - len >= additional {
627
return Ok(());
628
}
629
630
if Self::is_zst() {
631
// The capacity is already `usize::MAX` for ZSTs, we can't go higher.
632
return Err(AllocError);
633
}
634
635
// We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
636
// multiplication by two won't overflow.
637
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
638
let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
639
640
// SAFETY:
641
// - `ptr` is valid because it's either `None` or comes from a previous call to
642
// `A::realloc`.
643
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
644
let ptr = unsafe {
645
A::realloc(
646
Some(self.ptr.cast()),
647
layout.into(),
648
self.layout.into(),
649
flags,
650
NumaNode::NO_NODE,
651
)?
652
};
653
654
// INVARIANT:
655
// - `layout` is some `ArrayLayout::<T>`,
656
// - `ptr` has been created by `A::realloc` from `layout`.
657
self.ptr = ptr.cast();
658
self.layout = layout;
659
660
Ok(())
661
}
662
663
/// Shortens the vector, setting the length to `len` and drops the removed values.
664
/// If `len` is greater than or equal to the current length, this does nothing.
665
///
666
/// This has no effect on the capacity and will not allocate.
667
///
668
/// # Examples
669
///
670
/// ```
671
/// let mut v = kernel::kvec![1, 2, 3]?;
672
/// v.truncate(1);
673
/// assert_eq!(v.len(), 1);
674
/// assert_eq!(&v, &[1]);
675
///
676
/// # Ok::<(), Error>(())
677
/// ```
678
pub fn truncate(&mut self, len: usize) {
679
if let Some(count) = self.len().checked_sub(len) {
680
// SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
681
// equal to `self.len()`.
682
let ptr: *mut [T] = unsafe { self.dec_len(count) };
683
684
// SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
685
// valid elements whose ownership has been transferred to the caller.
686
unsafe { ptr::drop_in_place(ptr) };
687
}
688
}
689
690
/// Takes ownership of all items in this vector without consuming the allocation.
691
///
692
/// # Examples
693
///
694
/// ```
695
/// let mut v = kernel::kvec![0, 1, 2, 3]?;
696
///
697
/// for (i, j) in v.drain_all().enumerate() {
698
/// assert_eq!(i, j);
699
/// }
700
///
701
/// assert!(v.capacity() >= 4);
702
/// # Ok::<(), Error>(())
703
/// ```
704
pub fn drain_all(&mut self) -> DrainAll<'_, T> {
705
// SAFETY: This does not underflow the length.
706
let elems = unsafe { self.dec_len(self.len()) };
707
// INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
708
// just set the length to zero, we may transfer ownership to the `DrainAll` object.
709
DrainAll {
710
elements: elems.iter_mut(),
711
}
712
}
713
714
/// Removes all elements that don't match the provided closure.
715
///
716
/// # Examples
717
///
718
/// ```
719
/// let mut v = kernel::kvec![1, 2, 3, 4]?;
720
/// v.retain(|i| *i % 2 == 0);
721
/// assert_eq!(v, [2, 4]);
722
/// # Ok::<(), Error>(())
723
/// ```
724
pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
725
let mut num_kept = 0;
726
let mut next_to_check = 0;
727
while let Some(to_check) = self.get_mut(next_to_check) {
728
if f(to_check) {
729
self.swap(num_kept, next_to_check);
730
num_kept += 1;
731
}
732
next_to_check += 1;
733
}
734
self.truncate(num_kept);
735
}
736
}
737
738
impl<T: Clone, A: Allocator> Vec<T, A> {
739
/// Extend the vector by `n` clones of `value`.
740
pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
741
if n == 0 {
742
return Ok(());
743
}
744
745
self.reserve(n, flags)?;
746
747
let spare = self.spare_capacity_mut();
748
749
for item in spare.iter_mut().take(n - 1) {
750
item.write(value.clone());
751
}
752
753
// We can write the last element directly without cloning needlessly.
754
spare[n - 1].write(value);
755
756
// SAFETY:
757
// - `self.len() + n < self.capacity()` due to the call to reserve above,
758
// - the loop and the line above initialized the next `n` elements.
759
unsafe { self.inc_len(n) };
760
761
Ok(())
762
}
763
764
/// Pushes clones of the elements of slice into the [`Vec`] instance.
765
///
766
/// # Examples
767
///
768
/// ```
769
/// let mut v = KVec::new();
770
/// v.push(1, GFP_KERNEL)?;
771
///
772
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
773
/// assert_eq!(&v, &[1, 20, 30, 40]);
774
///
775
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
776
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
777
/// # Ok::<(), Error>(())
778
/// ```
779
pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
780
self.reserve(other.len(), flags)?;
781
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
782
slot.write(item.clone());
783
}
784
785
// SAFETY:
786
// - `other.len()` spare entries have just been initialized, so it is safe to increase
787
// the length by the same number.
788
// - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
789
// call.
790
unsafe { self.inc_len(other.len()) };
791
Ok(())
792
}
793
794
/// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
795
pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
796
let mut v = Self::with_capacity(n, flags)?;
797
798
v.extend_with(n, value, flags)?;
799
800
Ok(v)
801
}
802
803
/// Resizes the [`Vec`] so that `len` is equal to `new_len`.
804
///
805
/// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
806
/// If `new_len` is larger, each new slot is filled with clones of `value`.
807
///
808
/// # Examples
809
///
810
/// ```
811
/// let mut v = kernel::kvec![1, 2, 3]?;
812
/// v.resize(1, 42, GFP_KERNEL)?;
813
/// assert_eq!(&v, &[1]);
814
///
815
/// v.resize(3, 42, GFP_KERNEL)?;
816
/// assert_eq!(&v, &[1, 42, 42]);
817
///
818
/// # Ok::<(), Error>(())
819
/// ```
820
pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
821
match new_len.checked_sub(self.len()) {
822
Some(n) => self.extend_with(n, value, flags),
823
None => {
824
self.truncate(new_len);
825
Ok(())
826
}
827
}
828
}
829
}
830
831
impl<T, A> Drop for Vec<T, A>
832
where
833
A: Allocator,
834
{
835
fn drop(&mut self) {
836
// SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
837
unsafe {
838
ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
839
self.as_mut_ptr(),
840
self.len,
841
))
842
};
843
844
// SAFETY:
845
// - `self.ptr` was previously allocated with `A`.
846
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
847
unsafe { A::free(self.ptr.cast(), self.layout.into()) };
848
}
849
}
850
851
impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
852
where
853
A: Allocator,
854
{
855
fn from(b: Box<[T; N], A>) -> Vec<T, A> {
856
let len = b.len();
857
let ptr = Box::into_raw(b);
858
859
// SAFETY:
860
// - `b` has been allocated with `A`,
861
// - `ptr` fulfills the alignment requirements for `T`,
862
// - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
863
// - all elements within `b` are initialized values of `T`,
864
// - `len` does not exceed `isize::MAX`.
865
unsafe { Vec::from_raw_parts(ptr.cast(), len, len) }
866
}
867
}
868
869
impl<T, A: Allocator> Default for Vec<T, A> {
870
#[inline]
871
fn default() -> Self {
872
Self::new()
873
}
874
}
875
876
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
877
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
878
fmt::Debug::fmt(&**self, f)
879
}
880
}
881
882
impl<T, A> Deref for Vec<T, A>
883
where
884
A: Allocator,
885
{
886
type Target = [T];
887
888
#[inline]
889
fn deref(&self) -> &[T] {
890
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
891
// initialized elements of type `T`.
892
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
893
}
894
}
895
896
impl<T, A> DerefMut for Vec<T, A>
897
where
898
A: Allocator,
899
{
900
#[inline]
901
fn deref_mut(&mut self) -> &mut [T] {
902
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
903
// initialized elements of type `T`.
904
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
905
}
906
}
907
908
/// # Examples
909
///
910
/// ```
911
/// # use core::borrow::Borrow;
912
/// struct Foo<B: Borrow<[u32]>>(B);
913
///
914
/// // Owned array.
915
/// let owned_array = Foo([1, 2, 3]);
916
///
917
/// // Owned vector.
918
/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
919
///
920
/// let arr = [1, 2, 3];
921
/// // Borrowed slice from `arr`.
922
/// let borrowed_slice = Foo(&arr[..]);
923
/// # Ok::<(), Error>(())
924
/// ```
925
impl<T, A> Borrow<[T]> for Vec<T, A>
926
where
927
A: Allocator,
928
{
929
fn borrow(&self) -> &[T] {
930
self.as_slice()
931
}
932
}
933
934
/// # Examples
935
///
936
/// ```
937
/// # use core::borrow::BorrowMut;
938
/// struct Foo<B: BorrowMut<[u32]>>(B);
939
///
940
/// // Owned array.
941
/// let owned_array = Foo([1, 2, 3]);
942
///
943
/// // Owned vector.
944
/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
945
///
946
/// let mut arr = [1, 2, 3];
947
/// // Borrowed slice from `arr`.
948
/// let borrowed_slice = Foo(&mut arr[..]);
949
/// # Ok::<(), Error>(())
950
/// ```
951
impl<T, A> BorrowMut<[T]> for Vec<T, A>
952
where
953
A: Allocator,
954
{
955
fn borrow_mut(&mut self) -> &mut [T] {
956
self.as_mut_slice()
957
}
958
}
959
960
impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
961
962
impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
963
where
964
A: Allocator,
965
{
966
type Output = I::Output;
967
968
#[inline]
969
fn index(&self, index: I) -> &Self::Output {
970
Index::index(&**self, index)
971
}
972
}
973
974
impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
975
where
976
A: Allocator,
977
{
978
#[inline]
979
fn index_mut(&mut self, index: I) -> &mut Self::Output {
980
IndexMut::index_mut(&mut **self, index)
981
}
982
}
983
984
macro_rules! impl_slice_eq {
985
($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
986
$(
987
impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
988
where
989
T: PartialEq<U>,
990
{
991
#[inline]
992
fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
993
}
994
)*
995
}
996
}
997
998
impl_slice_eq! {
999
[A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
1000
[A: Allocator] Vec<T, A>, &[U],
1001
[A: Allocator] Vec<T, A>, &mut [U],
1002
[A: Allocator] &[T], Vec<U, A>,
1003
[A: Allocator] &mut [T], Vec<U, A>,
1004
[A: Allocator] Vec<T, A>, [U],
1005
[A: Allocator] [T], Vec<U, A>,
1006
[A: Allocator, const N: usize] Vec<T, A>, [U; N],
1007
[A: Allocator, const N: usize] Vec<T, A>, &[U; N],
1008
}
1009
1010
impl<'a, T, A> IntoIterator for &'a Vec<T, A>
1011
where
1012
A: Allocator,
1013
{
1014
type Item = &'a T;
1015
type IntoIter = slice::Iter<'a, T>;
1016
1017
fn into_iter(self) -> Self::IntoIter {
1018
self.iter()
1019
}
1020
}
1021
1022
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
1023
where
1024
A: Allocator,
1025
{
1026
type Item = &'a mut T;
1027
type IntoIter = slice::IterMut<'a, T>;
1028
1029
fn into_iter(self) -> Self::IntoIter {
1030
self.iter_mut()
1031
}
1032
}
1033
1034
/// # Examples
1035
///
1036
/// ```
1037
/// # use kernel::prelude::*;
1038
/// use kernel::alloc::allocator::VmallocPageIter;
1039
/// use kernel::page::{AsPageIter, PAGE_SIZE};
1040
///
1041
/// let mut vec = VVec::<u8>::new();
1042
///
1043
/// assert!(vec.page_iter().next().is_none());
1044
///
1045
/// vec.reserve(PAGE_SIZE, GFP_KERNEL)?;
1046
///
1047
/// let page = vec.page_iter().next().expect("At least one page should be available.\n");
1048
///
1049
/// // SAFETY: There is no concurrent read or write to the same page.
1050
/// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? };
1051
/// # Ok::<(), Error>(())
1052
/// ```
1053
impl<T> AsPageIter for VVec<T> {
1054
type Iter<'a>
1055
= VmallocPageIter<'a>
1056
where
1057
T: 'a;
1058
1059
fn page_iter(&mut self) -> Self::Iter<'_> {
1060
let ptr = self.ptr.cast();
1061
let size = self.layout.size();
1062
1063
// SAFETY:
1064
// - `ptr` is a valid pointer to the beginning of a `Vmalloc` allocation.
1065
// - `ptr` is guaranteed to be valid for the lifetime of `'a`.
1066
// - `size` is the size of the `Vmalloc` allocation `ptr` points to.
1067
unsafe { VmallocPageIter::new(ptr, size) }
1068
}
1069
}
1070
1071
/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
1072
///
1073
/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
1074
/// [`IntoIterator`] trait).
1075
///
1076
/// # Examples
1077
///
1078
/// ```
1079
/// let v = kernel::kvec![0, 1, 2]?;
1080
/// let iter = v.into_iter();
1081
///
1082
/// # Ok::<(), Error>(())
1083
/// ```
1084
pub struct IntoIter<T, A: Allocator> {
1085
ptr: *mut T,
1086
buf: NonNull<T>,
1087
len: usize,
1088
layout: ArrayLayout<T>,
1089
_p: PhantomData<A>,
1090
}
1091
1092
impl<T, A> IntoIter<T, A>
1093
where
1094
A: Allocator,
1095
{
1096
fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
1097
let me = ManuallyDrop::new(self);
1098
let ptr = me.ptr;
1099
let buf = me.buf;
1100
let len = me.len;
1101
let cap = me.layout.len();
1102
(ptr, buf, len, cap)
1103
}
1104
1105
/// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
1106
///
1107
/// # Examples
1108
///
1109
/// ```
1110
/// let v = kernel::kvec![1, 2, 3]?;
1111
/// let mut it = v.into_iter();
1112
///
1113
/// assert_eq!(it.next(), Some(1));
1114
///
1115
/// let v = it.collect(GFP_KERNEL);
1116
/// assert_eq!(v, [2, 3]);
1117
///
1118
/// # Ok::<(), Error>(())
1119
/// ```
1120
///
1121
/// # Implementation details
1122
///
1123
/// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
1124
/// in the kernel, namely:
1125
///
1126
/// - Rust's specialization feature is unstable. This prevents us to optimize for the special
1127
/// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
1128
/// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
1129
/// doesn't require this type to be `'static`.
1130
/// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
1131
/// we can't properly handle allocation failures.
1132
/// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
1133
/// flags.
1134
///
1135
/// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
1136
/// `Vec` again.
1137
///
1138
/// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
1139
/// buffer. However, this backing buffer may be shrunk to the actual count of elements.
1140
pub fn collect(self, flags: Flags) -> Vec<T, A> {
1141
let old_layout = self.layout;
1142
let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
1143
let has_advanced = ptr != buf.as_ptr();
1144
1145
if has_advanced {
1146
// Copy the contents we have advanced to at the beginning of the buffer.
1147
//
1148
// SAFETY:
1149
// - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
1150
// - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
1151
// - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
1152
// each other,
1153
// - both `ptr` and `buf.ptr()` are properly aligned.
1154
unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
1155
ptr = buf.as_ptr();
1156
1157
// SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
1158
// invariant.
1159
let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
1160
1161
// SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
1162
// the type invariant to be smaller than `cap`. Depending on `realloc` this operation
1163
// may shrink the buffer or leave it as it is.
1164
ptr = match unsafe {
1165
A::realloc(
1166
Some(buf.cast()),
1167
layout.into(),
1168
old_layout.into(),
1169
flags,
1170
NumaNode::NO_NODE,
1171
)
1172
} {
1173
// If we fail to shrink, which likely can't even happen, continue with the existing
1174
// buffer.
1175
Err(_) => ptr,
1176
Ok(ptr) => {
1177
cap = len;
1178
ptr.as_ptr().cast()
1179
}
1180
};
1181
}
1182
1183
// SAFETY: If the iterator has been advanced, the advanced elements have been copied to
1184
// the beginning of the buffer and `len` has been adjusted accordingly.
1185
//
1186
// - `ptr` is guaranteed to point to the start of the backing buffer.
1187
// - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
1188
// - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
1189
// `Vec`.
1190
unsafe { Vec::from_raw_parts(ptr, len, cap) }
1191
}
1192
}
1193
1194
impl<T, A> Iterator for IntoIter<T, A>
1195
where
1196
A: Allocator,
1197
{
1198
type Item = T;
1199
1200
/// # Examples
1201
///
1202
/// ```
1203
/// let v = kernel::kvec![1, 2, 3]?;
1204
/// let mut it = v.into_iter();
1205
///
1206
/// assert_eq!(it.next(), Some(1));
1207
/// assert_eq!(it.next(), Some(2));
1208
/// assert_eq!(it.next(), Some(3));
1209
/// assert_eq!(it.next(), None);
1210
///
1211
/// # Ok::<(), Error>(())
1212
/// ```
1213
fn next(&mut self) -> Option<T> {
1214
if self.len == 0 {
1215
return None;
1216
}
1217
1218
let current = self.ptr;
1219
1220
// SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
1221
// by one guarantees that.
1222
unsafe { self.ptr = self.ptr.add(1) };
1223
1224
self.len -= 1;
1225
1226
// SAFETY: `current` is guaranteed to point at a valid element within the buffer.
1227
Some(unsafe { current.read() })
1228
}
1229
1230
/// # Examples
1231
///
1232
/// ```
1233
/// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
1234
/// let mut iter = v.into_iter();
1235
/// let size = iter.size_hint().0;
1236
///
1237
/// iter.next();
1238
/// assert_eq!(iter.size_hint().0, size - 1);
1239
///
1240
/// iter.next();
1241
/// assert_eq!(iter.size_hint().0, size - 2);
1242
///
1243
/// iter.next();
1244
/// assert_eq!(iter.size_hint().0, size - 3);
1245
///
1246
/// # Ok::<(), Error>(())
1247
/// ```
1248
fn size_hint(&self) -> (usize, Option<usize>) {
1249
(self.len, Some(self.len))
1250
}
1251
}
1252
1253
impl<T, A> Drop for IntoIter<T, A>
1254
where
1255
A: Allocator,
1256
{
1257
fn drop(&mut self) {
1258
// SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
1259
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
1260
1261
// SAFETY:
1262
// - `self.buf` was previously allocated with `A`.
1263
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
1264
unsafe { A::free(self.buf.cast(), self.layout.into()) };
1265
}
1266
}
1267
1268
impl<T, A> IntoIterator for Vec<T, A>
1269
where
1270
A: Allocator,
1271
{
1272
type Item = T;
1273
type IntoIter = IntoIter<T, A>;
1274
1275
/// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
1276
/// vector (from start to end).
1277
///
1278
/// # Examples
1279
///
1280
/// ```
1281
/// let v = kernel::kvec![1, 2]?;
1282
/// let mut v_iter = v.into_iter();
1283
///
1284
/// let first_element: Option<u32> = v_iter.next();
1285
///
1286
/// assert_eq!(first_element, Some(1));
1287
/// assert_eq!(v_iter.next(), Some(2));
1288
/// assert_eq!(v_iter.next(), None);
1289
///
1290
/// # Ok::<(), Error>(())
1291
/// ```
1292
///
1293
/// ```
1294
/// let v = kernel::kvec![];
1295
/// let mut v_iter = v.into_iter();
1296
///
1297
/// let first_element: Option<u32> = v_iter.next();
1298
///
1299
/// assert_eq!(first_element, None);
1300
///
1301
/// # Ok::<(), Error>(())
1302
/// ```
1303
#[inline]
1304
fn into_iter(self) -> Self::IntoIter {
1305
let buf = self.ptr;
1306
let layout = self.layout;
1307
let (ptr, len, _) = self.into_raw_parts();
1308
1309
IntoIter {
1310
ptr,
1311
buf,
1312
len,
1313
layout,
1314
_p: PhantomData::<A>,
1315
}
1316
}
1317
}
1318
1319
/// An iterator that owns all items in a vector, but does not own its allocation.
1320
///
1321
/// # Invariants
1322
///
1323
/// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
1324
/// of.
1325
pub struct DrainAll<'vec, T> {
1326
elements: slice::IterMut<'vec, T>,
1327
}
1328
1329
impl<'vec, T> Iterator for DrainAll<'vec, T> {
1330
type Item = T;
1331
1332
fn next(&mut self) -> Option<T> {
1333
let elem: *mut T = self.elements.next()?;
1334
// SAFETY: By the type invariants, we may take ownership of this value.
1335
Some(unsafe { elem.read() })
1336
}
1337
1338
fn size_hint(&self) -> (usize, Option<usize>) {
1339
self.elements.size_hint()
1340
}
1341
}
1342
1343
impl<'vec, T> Drop for DrainAll<'vec, T> {
1344
fn drop(&mut self) {
1345
if core::mem::needs_drop::<T>() {
1346
let iter = core::mem::take(&mut self.elements);
1347
let ptr: *mut [T] = iter.into_slice();
1348
// SAFETY: By the type invariants, we own these values so we may destroy them.
1349
unsafe { ptr::drop_in_place(ptr) };
1350
}
1351
}
1352
}
1353
1354
#[macros::kunit_tests(rust_kvec)]
1355
mod tests {
1356
use super::*;
1357
use crate::prelude::*;
1358
1359
#[test]
1360
fn test_kvec_retain() {
1361
/// Verify correctness for one specific function.
1362
#[expect(clippy::needless_range_loop)]
1363
fn verify(c: &[bool]) {
1364
let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1365
let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1366
1367
for i in 0..c.len() {
1368
vec1.push_within_capacity(i).unwrap();
1369
if c[i] {
1370
vec2.push_within_capacity(i).unwrap();
1371
}
1372
}
1373
1374
vec1.retain(|i| c[*i]);
1375
1376
assert_eq!(vec1, vec2);
1377
}
1378
1379
/// Add one to a binary integer represented as a boolean array.
1380
fn add(value: &mut [bool]) {
1381
let mut carry = true;
1382
for v in value {
1383
let new_v = carry != *v;
1384
carry = carry && *v;
1385
*v = new_v;
1386
}
1387
}
1388
1389
// This boolean array represents a function from index to boolean. We check that `retain`
1390
// behaves correctly for all possible boolean arrays of every possible length less than
1391
// ten.
1392
let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
1393
for len in 0..10 {
1394
for _ in 0u32..1u32 << len {
1395
verify(&func);
1396
add(&mut func);
1397
}
1398
func.push_within_capacity(false).unwrap();
1399
}
1400
}
1401
}
1402
1403