Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/device.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Generic devices that are part of the kernel's driver model.
4
//!
5
//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6
7
use crate::{
8
bindings, fmt,
9
sync::aref::ARef,
10
types::{ForeignOwnable, Opaque},
11
};
12
use core::{marker::PhantomData, ptr};
13
14
#[cfg(CONFIG_PRINTK)]
15
use crate::c_str;
16
17
pub mod property;
18
19
/// The core representation of a device in the kernel's driver model.
20
///
21
/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
22
/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
23
/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
24
///
25
/// # Device Types
26
///
27
/// A [`Device`] can represent either a bus device or a class device.
28
///
29
/// ## Bus Devices
30
///
31
/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
32
/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
33
/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
34
/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
35
///
36
/// ## Class Devices
37
///
38
/// A class device is a [`Device`] that is associated with a logical category of functionality
39
/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
40
/// cards, and input devices. Class devices are grouped under a common class and exposed to
41
/// userspace via entries in `/sys/class/<class-name>/`.
42
///
43
/// # Device Context
44
///
45
/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
46
/// a [`Device`].
47
///
48
/// As the name indicates, this type state represents the context of the scope the [`Device`]
49
/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
50
/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
51
///
52
/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
53
///
54
/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
55
/// itself has no additional requirements.
56
///
57
/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
58
/// type for the corresponding scope the [`Device`] reference is created in.
59
///
60
/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
61
/// [bus devices](#bus-devices) only.
62
///
63
/// # Implementing Bus Devices
64
///
65
/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
66
/// [`platform::Device`].
67
///
68
/// A bus specific device should be defined as follows.
69
///
70
/// ```ignore
71
/// #[repr(transparent)]
72
/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
73
/// Opaque<bindings::bus_device_type>,
74
/// PhantomData<Ctx>,
75
/// );
76
/// ```
77
///
78
/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
79
/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
80
/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
81
///
82
/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
83
/// implementations should call the [`impl_device_context_deref`] macro as shown below.
84
///
85
/// ```ignore
86
/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
87
/// // generic argument.
88
/// kernel::impl_device_context_deref!(unsafe { Device });
89
/// ```
90
///
91
/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
92
/// the following macro call.
93
///
94
/// ```ignore
95
/// kernel::impl_device_context_into_aref!(Device);
96
/// ```
97
///
98
/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
99
/// easily derive a generic [`Device`] reference.
100
///
101
/// ```ignore
102
/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
103
/// fn as_ref(&self) -> &device::Device<Ctx> {
104
/// ...
105
/// }
106
/// }
107
/// ```
108
///
109
/// # Implementing Class Devices
110
///
111
/// Class device implementations require less infrastructure and depend slightly more on the
112
/// specific subsystem.
113
///
114
/// An example implementation for a class device could look like this.
115
///
116
/// ```ignore
117
/// #[repr(C)]
118
/// pub struct Device<T: class::Driver> {
119
/// dev: Opaque<bindings::class_device_type>,
120
/// data: T::Data,
121
/// }
122
/// ```
123
///
124
/// This class device uses the sub-classing pattern to embed the driver's private data within the
125
/// allocation of the class device. For this to be possible the class device is generic over the
126
/// class specific `Driver` trait implementation.
127
///
128
/// Just like any device, class devices are reference counted and should hence implement
129
/// [`AlwaysRefCounted`] for `Device`.
130
///
131
/// Class devices should also implement the following [`AsRef`] implementation, such that users can
132
/// easily derive a generic [`Device`] reference.
133
///
134
/// ```ignore
135
/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
136
/// fn as_ref(&self) -> &device::Device {
137
/// ...
138
/// }
139
/// }
140
/// ```
141
///
142
/// An example for a class device implementation is
143
#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
144
#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
145
///
146
/// # Invariants
147
///
148
/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
149
///
150
/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
151
/// that the allocation remains valid at least until the matching call to `put_device`.
152
///
153
/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
154
/// dropped from any thread.
155
///
156
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
157
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
158
/// [`pci::Device`]: kernel::pci::Device
159
/// [`platform::Device`]: kernel::platform::Device
160
#[repr(transparent)]
161
pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
162
163
impl Device {
164
/// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
165
///
166
/// # Safety
167
///
168
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
169
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
170
/// can't drop to zero, for the duration of this function call.
171
///
172
/// It must also be ensured that `bindings::device::release` can be called from any thread.
173
/// While not officially documented, this should be the case for any `struct device`.
174
pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
175
// SAFETY: By the safety requirements ptr is valid
176
unsafe { Self::from_raw(ptr) }.into()
177
}
178
179
/// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
180
///
181
/// # Safety
182
///
183
/// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
184
/// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
185
pub unsafe fn as_bound(&self) -> &Device<Bound> {
186
let ptr = core::ptr::from_ref(self);
187
188
// CAST: By the safety requirements the caller is responsible to guarantee that the
189
// returned reference only lives as long as the device is actually bound.
190
let ptr = ptr.cast();
191
192
// SAFETY:
193
// - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
194
// - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
195
unsafe { &*ptr }
196
}
197
}
198
199
impl Device<CoreInternal> {
200
/// Store a pointer to the bound driver's private data.
201
pub fn set_drvdata(&self, data: impl ForeignOwnable) {
202
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
203
unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }
204
}
205
206
/// Take ownership of the private data stored in this [`Device`].
207
///
208
/// # Safety
209
///
210
/// - Must only be called once after a preceding call to [`Device::set_drvdata`].
211
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
212
/// [`Device::set_drvdata`].
213
pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T {
214
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
215
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
216
217
// SAFETY:
218
// - By the safety requirements of this function, `ptr` comes from a previous call to
219
// `into_foreign()`.
220
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
221
// in `into_foreign()`.
222
unsafe { T::from_foreign(ptr.cast()) }
223
}
224
225
/// Borrow the driver's private data bound to this [`Device`].
226
///
227
/// # Safety
228
///
229
/// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
230
/// [`Device::drvdata_obtain`].
231
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
232
/// [`Device::set_drvdata`].
233
pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> {
234
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
235
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
236
237
// SAFETY:
238
// - By the safety requirements of this function, `ptr` comes from a previous call to
239
// `into_foreign()`.
240
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
241
// in `into_foreign()`.
242
unsafe { T::borrow(ptr.cast()) }
243
}
244
}
245
246
impl<Ctx: DeviceContext> Device<Ctx> {
247
/// Obtain the raw `struct device *`.
248
pub(crate) fn as_raw(&self) -> *mut bindings::device {
249
self.0.get()
250
}
251
252
/// Returns a reference to the parent device, if any.
253
#[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
254
pub(crate) fn parent(&self) -> Option<&Self> {
255
// SAFETY:
256
// - By the type invariant `self.as_raw()` is always valid.
257
// - The parent device is only ever set at device creation.
258
let parent = unsafe { (*self.as_raw()).parent };
259
260
if parent.is_null() {
261
None
262
} else {
263
// SAFETY:
264
// - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
265
// - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
266
// reference count of its parent.
267
Some(unsafe { Self::from_raw(parent) })
268
}
269
}
270
271
/// Convert a raw C `struct device` pointer to a `&'a Device`.
272
///
273
/// # Safety
274
///
275
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
276
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
277
/// can't drop to zero, for the duration of this function call and the entire duration when the
278
/// returned reference exists.
279
pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
280
// SAFETY: Guaranteed by the safety requirements of the function.
281
unsafe { &*ptr.cast() }
282
}
283
284
/// Prints an emergency-level message (level 0) prefixed with device information.
285
///
286
/// More details are available from [`dev_emerg`].
287
///
288
/// [`dev_emerg`]: crate::dev_emerg
289
pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
290
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
291
unsafe { self.printk(bindings::KERN_EMERG, args) };
292
}
293
294
/// Prints an alert-level message (level 1) prefixed with device information.
295
///
296
/// More details are available from [`dev_alert`].
297
///
298
/// [`dev_alert`]: crate::dev_alert
299
pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
300
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
301
unsafe { self.printk(bindings::KERN_ALERT, args) };
302
}
303
304
/// Prints a critical-level message (level 2) prefixed with device information.
305
///
306
/// More details are available from [`dev_crit`].
307
///
308
/// [`dev_crit`]: crate::dev_crit
309
pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
310
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
311
unsafe { self.printk(bindings::KERN_CRIT, args) };
312
}
313
314
/// Prints an error-level message (level 3) prefixed with device information.
315
///
316
/// More details are available from [`dev_err`].
317
///
318
/// [`dev_err`]: crate::dev_err
319
pub fn pr_err(&self, args: fmt::Arguments<'_>) {
320
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
321
unsafe { self.printk(bindings::KERN_ERR, args) };
322
}
323
324
/// Prints a warning-level message (level 4) prefixed with device information.
325
///
326
/// More details are available from [`dev_warn`].
327
///
328
/// [`dev_warn`]: crate::dev_warn
329
pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
330
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
331
unsafe { self.printk(bindings::KERN_WARNING, args) };
332
}
333
334
/// Prints a notice-level message (level 5) prefixed with device information.
335
///
336
/// More details are available from [`dev_notice`].
337
///
338
/// [`dev_notice`]: crate::dev_notice
339
pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
340
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
341
unsafe { self.printk(bindings::KERN_NOTICE, args) };
342
}
343
344
/// Prints an info-level message (level 6) prefixed with device information.
345
///
346
/// More details are available from [`dev_info`].
347
///
348
/// [`dev_info`]: crate::dev_info
349
pub fn pr_info(&self, args: fmt::Arguments<'_>) {
350
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
351
unsafe { self.printk(bindings::KERN_INFO, args) };
352
}
353
354
/// Prints a debug-level message (level 7) prefixed with device information.
355
///
356
/// More details are available from [`dev_dbg`].
357
///
358
/// [`dev_dbg`]: crate::dev_dbg
359
pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
360
if cfg!(debug_assertions) {
361
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
362
unsafe { self.printk(bindings::KERN_DEBUG, args) };
363
}
364
}
365
366
/// Prints the provided message to the console.
367
///
368
/// # Safety
369
///
370
/// Callers must ensure that `klevel` is null-terminated; in particular, one of the
371
/// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
372
#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
373
unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
374
// SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
375
// is valid because `self` is valid. The "%pA" format string expects a pointer to
376
// `fmt::Arguments`, which is what we're passing as the last argument.
377
#[cfg(CONFIG_PRINTK)]
378
unsafe {
379
bindings::_dev_printk(
380
klevel.as_ptr().cast::<crate::ffi::c_char>(),
381
self.as_raw(),
382
c_str!("%pA").as_char_ptr(),
383
core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
384
)
385
};
386
}
387
388
/// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
389
pub fn fwnode(&self) -> Option<&property::FwNode> {
390
// SAFETY: `self` is valid.
391
let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
392
if fwnode_handle.is_null() {
393
return None;
394
}
395
// SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
396
// return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
397
// doesn't increment the refcount. It is safe to cast from a
398
// `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
399
// defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
400
Some(unsafe { &*fwnode_handle.cast() })
401
}
402
}
403
404
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
405
// argument.
406
kernel::impl_device_context_deref!(unsafe { Device });
407
kernel::impl_device_context_into_aref!(Device);
408
409
// SAFETY: Instances of `Device` are always reference-counted.
410
unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
411
fn inc_ref(&self) {
412
// SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
413
unsafe { bindings::get_device(self.as_raw()) };
414
}
415
416
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
417
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
418
unsafe { bindings::put_device(obj.cast().as_ptr()) }
419
}
420
}
421
422
// SAFETY: As by the type invariant `Device` can be sent to any thread.
423
unsafe impl Send for Device {}
424
425
// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
426
// synchronization in `struct device`.
427
unsafe impl Sync for Device {}
428
429
/// Marker trait for the context or scope of a bus specific device.
430
///
431
/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
432
/// [`Device`].
433
///
434
/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
435
///
436
/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
437
/// defines which [`DeviceContext`] type can be derived from another. For instance, any
438
/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
439
///
440
/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
441
///
442
/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
443
///
444
/// Bus devices can automatically implement the dereference hierarchy by using
445
/// [`impl_device_context_deref`].
446
///
447
/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
448
/// from the specific scope the [`Device`] reference is valid in.
449
///
450
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
451
pub trait DeviceContext: private::Sealed {}
452
453
/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
454
///
455
/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
456
/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
457
/// [`AlwaysRefCounted`] for.
458
///
459
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
460
pub struct Normal;
461
462
/// The [`Core`] context is the context of a bus specific device when it appears as argument of
463
/// any bus specific callback, such as `probe()`.
464
///
465
/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
466
/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
467
/// implementations can implement methods for [`Device<Core>`], such that they can only be called
468
/// from bus callbacks.
469
pub struct Core;
470
471
/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
472
/// abstraction.
473
///
474
/// The internal core context is intended to be used in exactly the same way as the [`Core`]
475
/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
476
/// abstraction.
477
///
478
/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
479
/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
480
pub struct CoreInternal;
481
482
/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
483
/// be bound to a driver.
484
///
485
/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
486
/// reference, the [`Device`] is guaranteed to be bound to a driver.
487
///
488
/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
489
/// which can be proven with the [`Bound`] device context.
490
///
491
/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
492
/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
493
/// from optimizations for accessing device resources, see also [`Devres::access`].
494
///
495
/// [`Devres`]: kernel::devres::Devres
496
/// [`Devres::access`]: kernel::devres::Devres::access
497
/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
498
pub struct Bound;
499
500
mod private {
501
pub trait Sealed {}
502
503
impl Sealed for super::Bound {}
504
impl Sealed for super::Core {}
505
impl Sealed for super::CoreInternal {}
506
impl Sealed for super::Normal {}
507
}
508
509
impl DeviceContext for Bound {}
510
impl DeviceContext for Core {}
511
impl DeviceContext for CoreInternal {}
512
impl DeviceContext for Normal {}
513
514
/// # Safety
515
///
516
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
517
/// generic argument of `$device`.
518
#[doc(hidden)]
519
#[macro_export]
520
macro_rules! __impl_device_context_deref {
521
(unsafe { $device:ident, $src:ty => $dst:ty }) => {
522
impl ::core::ops::Deref for $device<$src> {
523
type Target = $device<$dst>;
524
525
fn deref(&self) -> &Self::Target {
526
let ptr: *const Self = self;
527
528
// CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
529
// safety requirement of the macro.
530
let ptr = ptr.cast::<Self::Target>();
531
532
// SAFETY: `ptr` was derived from `&self`.
533
unsafe { &*ptr }
534
}
535
}
536
};
537
}
538
539
/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
540
/// specific) device.
541
///
542
/// # Safety
543
///
544
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
545
/// generic argument of `$device`.
546
#[macro_export]
547
macro_rules! impl_device_context_deref {
548
(unsafe { $device:ident }) => {
549
// SAFETY: This macro has the exact same safety requirement as
550
// `__impl_device_context_deref!`.
551
::kernel::__impl_device_context_deref!(unsafe {
552
$device,
553
$crate::device::CoreInternal => $crate::device::Core
554
});
555
556
// SAFETY: This macro has the exact same safety requirement as
557
// `__impl_device_context_deref!`.
558
::kernel::__impl_device_context_deref!(unsafe {
559
$device,
560
$crate::device::Core => $crate::device::Bound
561
});
562
563
// SAFETY: This macro has the exact same safety requirement as
564
// `__impl_device_context_deref!`.
565
::kernel::__impl_device_context_deref!(unsafe {
566
$device,
567
$crate::device::Bound => $crate::device::Normal
568
});
569
};
570
}
571
572
#[doc(hidden)]
573
#[macro_export]
574
macro_rules! __impl_device_context_into_aref {
575
($src:ty, $device:tt) => {
576
impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
577
fn from(dev: &$device<$src>) -> Self {
578
(&**dev).into()
579
}
580
}
581
};
582
}
583
584
/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
585
/// `ARef<Device>`.
586
#[macro_export]
587
macro_rules! impl_device_context_into_aref {
588
($device:tt) => {
589
::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
590
::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
591
::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
592
};
593
}
594
595
#[doc(hidden)]
596
#[macro_export]
597
macro_rules! dev_printk {
598
($method:ident, $dev:expr, $($f:tt)*) => {
599
{
600
($dev).$method($crate::prelude::fmt!($($f)*));
601
}
602
}
603
}
604
605
/// Prints an emergency-level message (level 0) prefixed with device information.
606
///
607
/// This level should be used if the system is unusable.
608
///
609
/// Equivalent to the kernel's `dev_emerg` macro.
610
///
611
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
612
/// [`core::fmt`] and [`std::format!`].
613
///
614
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
615
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
616
///
617
/// # Examples
618
///
619
/// ```
620
/// # use kernel::device::Device;
621
///
622
/// fn example(dev: &Device) {
623
/// dev_emerg!(dev, "hello {}\n", "there");
624
/// }
625
/// ```
626
#[macro_export]
627
macro_rules! dev_emerg {
628
($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
629
}
630
631
/// Prints an alert-level message (level 1) prefixed with device information.
632
///
633
/// This level should be used if action must be taken immediately.
634
///
635
/// Equivalent to the kernel's `dev_alert` macro.
636
///
637
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
638
/// [`core::fmt`] and [`std::format!`].
639
///
640
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
641
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
642
///
643
/// # Examples
644
///
645
/// ```
646
/// # use kernel::device::Device;
647
///
648
/// fn example(dev: &Device) {
649
/// dev_alert!(dev, "hello {}\n", "there");
650
/// }
651
/// ```
652
#[macro_export]
653
macro_rules! dev_alert {
654
($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
655
}
656
657
/// Prints a critical-level message (level 2) prefixed with device information.
658
///
659
/// This level should be used in critical conditions.
660
///
661
/// Equivalent to the kernel's `dev_crit` macro.
662
///
663
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
664
/// [`core::fmt`] and [`std::format!`].
665
///
666
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
667
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
668
///
669
/// # Examples
670
///
671
/// ```
672
/// # use kernel::device::Device;
673
///
674
/// fn example(dev: &Device) {
675
/// dev_crit!(dev, "hello {}\n", "there");
676
/// }
677
/// ```
678
#[macro_export]
679
macro_rules! dev_crit {
680
($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
681
}
682
683
/// Prints an error-level message (level 3) prefixed with device information.
684
///
685
/// This level should be used in error conditions.
686
///
687
/// Equivalent to the kernel's `dev_err` macro.
688
///
689
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
690
/// [`core::fmt`] and [`std::format!`].
691
///
692
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
693
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
694
///
695
/// # Examples
696
///
697
/// ```
698
/// # use kernel::device::Device;
699
///
700
/// fn example(dev: &Device) {
701
/// dev_err!(dev, "hello {}\n", "there");
702
/// }
703
/// ```
704
#[macro_export]
705
macro_rules! dev_err {
706
($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
707
}
708
709
/// Prints a warning-level message (level 4) prefixed with device information.
710
///
711
/// This level should be used in warning conditions.
712
///
713
/// Equivalent to the kernel's `dev_warn` macro.
714
///
715
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
716
/// [`core::fmt`] and [`std::format!`].
717
///
718
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
719
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
720
///
721
/// # Examples
722
///
723
/// ```
724
/// # use kernel::device::Device;
725
///
726
/// fn example(dev: &Device) {
727
/// dev_warn!(dev, "hello {}\n", "there");
728
/// }
729
/// ```
730
#[macro_export]
731
macro_rules! dev_warn {
732
($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
733
}
734
735
/// Prints a notice-level message (level 5) prefixed with device information.
736
///
737
/// This level should be used in normal but significant conditions.
738
///
739
/// Equivalent to the kernel's `dev_notice` macro.
740
///
741
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
742
/// [`core::fmt`] and [`std::format!`].
743
///
744
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
745
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
746
///
747
/// # Examples
748
///
749
/// ```
750
/// # use kernel::device::Device;
751
///
752
/// fn example(dev: &Device) {
753
/// dev_notice!(dev, "hello {}\n", "there");
754
/// }
755
/// ```
756
#[macro_export]
757
macro_rules! dev_notice {
758
($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
759
}
760
761
/// Prints an info-level message (level 6) prefixed with device information.
762
///
763
/// This level should be used for informational messages.
764
///
765
/// Equivalent to the kernel's `dev_info` macro.
766
///
767
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
768
/// [`core::fmt`] and [`std::format!`].
769
///
770
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
771
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
772
///
773
/// # Examples
774
///
775
/// ```
776
/// # use kernel::device::Device;
777
///
778
/// fn example(dev: &Device) {
779
/// dev_info!(dev, "hello {}\n", "there");
780
/// }
781
/// ```
782
#[macro_export]
783
macro_rules! dev_info {
784
($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
785
}
786
787
/// Prints a debug-level message (level 7) prefixed with device information.
788
///
789
/// This level should be used for debug messages.
790
///
791
/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
792
///
793
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
794
/// [`core::fmt`] and [`std::format!`].
795
///
796
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
797
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
798
///
799
/// # Examples
800
///
801
/// ```
802
/// # use kernel::device::Device;
803
///
804
/// fn example(dev: &Device) {
805
/// dev_dbg!(dev, "hello {}\n", "there");
806
/// }
807
/// ```
808
#[macro_export]
809
macro_rules! dev_dbg {
810
($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
811
}
812
813