Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/dma.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Direct memory access (DMA).
4
//!
5
//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7
use crate::{
8
bindings, build_assert, device,
9
device::{Bound, Core},
10
error::{to_result, Result},
11
prelude::*,
12
sync::aref::ARef,
13
transmute::{AsBytes, FromBytes},
14
};
15
16
/// DMA address type.
17
///
18
/// Represents a bus address used for Direct Memory Access (DMA) operations.
19
///
20
/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
21
/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
22
///
23
/// Note that this may be `u64` even on 32-bit architectures.
24
pub type DmaAddress = bindings::dma_addr_t;
25
26
/// Trait to be implemented by DMA capable bus devices.
27
///
28
/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
29
/// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
30
/// [`platform::Device`](::kernel::platform::Device).
31
pub trait Device: AsRef<device::Device<Core>> {
32
/// Set up the device's DMA streaming addressing capabilities.
33
///
34
/// This method is usually called once from `probe()` as soon as the device capabilities are
35
/// known.
36
///
37
/// # Safety
38
///
39
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
40
/// such as [`CoherentAllocation::alloc_attrs`].
41
unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
42
// SAFETY:
43
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
44
// - The safety requirement of this function guarantees that there are no concurrent calls
45
// to DMA allocation and mapping primitives using this mask.
46
to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
47
}
48
49
/// Set up the device's DMA coherent addressing capabilities.
50
///
51
/// This method is usually called once from `probe()` as soon as the device capabilities are
52
/// known.
53
///
54
/// # Safety
55
///
56
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
57
/// such as [`CoherentAllocation::alloc_attrs`].
58
unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
59
// SAFETY:
60
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
61
// - The safety requirement of this function guarantees that there are no concurrent calls
62
// to DMA allocation and mapping primitives using this mask.
63
to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
64
}
65
66
/// Set up the device's DMA addressing capabilities.
67
///
68
/// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
69
///
70
/// This method is usually called once from `probe()` as soon as the device capabilities are
71
/// known.
72
///
73
/// # Safety
74
///
75
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
76
/// such as [`CoherentAllocation::alloc_attrs`].
77
unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
78
// SAFETY:
79
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
80
// - The safety requirement of this function guarantees that there are no concurrent calls
81
// to DMA allocation and mapping primitives using this mask.
82
to_result(unsafe {
83
bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
84
})
85
}
86
}
87
88
/// A DMA mask that holds a bitmask with the lowest `n` bits set.
89
///
90
/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
91
/// are guaranteed to never exceed the bit width of `u64`.
92
///
93
/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
94
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
95
pub struct DmaMask(u64);
96
97
impl DmaMask {
98
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
99
///
100
/// For `n <= 64`, sets exactly the lowest `n` bits.
101
/// For `n > 64`, results in a build error.
102
///
103
/// # Examples
104
///
105
/// ```
106
/// use kernel::dma::DmaMask;
107
///
108
/// let mask0 = DmaMask::new::<0>();
109
/// assert_eq!(mask0.value(), 0);
110
///
111
/// let mask1 = DmaMask::new::<1>();
112
/// assert_eq!(mask1.value(), 0b1);
113
///
114
/// let mask64 = DmaMask::new::<64>();
115
/// assert_eq!(mask64.value(), u64::MAX);
116
///
117
/// // Build failure.
118
/// // let mask_overflow = DmaMask::new::<100>();
119
/// ```
120
#[inline]
121
pub const fn new<const N: u32>() -> Self {
122
let Ok(mask) = Self::try_new(N) else {
123
build_error!("Invalid DMA Mask.");
124
};
125
126
mask
127
}
128
129
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
130
///
131
/// For `n <= 64`, sets exactly the lowest `n` bits.
132
/// For `n > 64`, returns [`EINVAL`].
133
///
134
/// # Examples
135
///
136
/// ```
137
/// use kernel::dma::DmaMask;
138
///
139
/// let mask0 = DmaMask::try_new(0)?;
140
/// assert_eq!(mask0.value(), 0);
141
///
142
/// let mask1 = DmaMask::try_new(1)?;
143
/// assert_eq!(mask1.value(), 0b1);
144
///
145
/// let mask64 = DmaMask::try_new(64)?;
146
/// assert_eq!(mask64.value(), u64::MAX);
147
///
148
/// let mask_overflow = DmaMask::try_new(100);
149
/// assert!(mask_overflow.is_err());
150
/// # Ok::<(), Error>(())
151
/// ```
152
#[inline]
153
pub const fn try_new(n: u32) -> Result<Self> {
154
Ok(Self(match n {
155
0 => 0,
156
1..=64 => u64::MAX >> (64 - n),
157
_ => return Err(EINVAL),
158
}))
159
}
160
161
/// Returns the underlying `u64` bitmask value.
162
#[inline]
163
pub const fn value(&self) -> u64 {
164
self.0
165
}
166
}
167
168
/// Possible attributes associated with a DMA mapping.
169
///
170
/// They can be combined with the operators `|`, `&`, and `!`.
171
///
172
/// Values can be used from the [`attrs`] module.
173
///
174
/// # Examples
175
///
176
/// ```
177
/// # use kernel::device::{Bound, Device};
178
/// use kernel::dma::{attrs::*, CoherentAllocation};
179
///
180
/// # fn test(dev: &Device<Bound>) -> Result {
181
/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
182
/// let c: CoherentAllocation<u64> =
183
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
184
/// # Ok::<(), Error>(()) }
185
/// ```
186
#[derive(Clone, Copy, PartialEq)]
187
#[repr(transparent)]
188
pub struct Attrs(u32);
189
190
impl Attrs {
191
/// Get the raw representation of this attribute.
192
pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
193
self.0 as crate::ffi::c_ulong
194
}
195
196
/// Check whether `flags` is contained in `self`.
197
pub fn contains(self, flags: Attrs) -> bool {
198
(self & flags) == flags
199
}
200
}
201
202
impl core::ops::BitOr for Attrs {
203
type Output = Self;
204
fn bitor(self, rhs: Self) -> Self::Output {
205
Self(self.0 | rhs.0)
206
}
207
}
208
209
impl core::ops::BitAnd for Attrs {
210
type Output = Self;
211
fn bitand(self, rhs: Self) -> Self::Output {
212
Self(self.0 & rhs.0)
213
}
214
}
215
216
impl core::ops::Not for Attrs {
217
type Output = Self;
218
fn not(self) -> Self::Output {
219
Self(!self.0)
220
}
221
}
222
223
/// DMA mapping attributes.
224
pub mod attrs {
225
use super::Attrs;
226
227
/// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
228
/// and writes may pass each other.
229
pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
230
231
/// Specifies that writes to the mapping may be buffered to improve performance.
232
pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
233
234
/// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
235
pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
236
237
/// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
238
/// that it has been already transferred to 'device' domain.
239
pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
240
241
/// Forces contiguous allocation of the buffer in physical memory.
242
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
243
244
/// Hints DMA-mapping subsystem that it's probably not worth the time to try
245
/// to allocate memory to in a way that gives better TLB efficiency.
246
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
247
248
/// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
249
/// `__GFP_NOWARN`).
250
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
251
252
/// Indicates that the buffer is fully accessible at an elevated privilege level (and
253
/// ideally inaccessible or at least read-only at lesser-privileged levels).
254
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
255
}
256
257
/// DMA data direction.
258
///
259
/// Corresponds to the C [`enum dma_data_direction`].
260
///
261
/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
262
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
263
#[repr(u32)]
264
pub enum DataDirection {
265
/// The DMA mapping is for bidirectional data transfer.
266
///
267
/// This is used when the buffer can be both read from and written to by the device.
268
/// The cache for the corresponding memory region is both flushed and invalidated.
269
Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
270
271
/// The DMA mapping is for data transfer from memory to the device (write).
272
///
273
/// The CPU has prepared data in the buffer, and the device will read it.
274
/// The cache for the corresponding memory region is flushed before device access.
275
ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
276
277
/// The DMA mapping is for data transfer from the device to memory (read).
278
///
279
/// The device will write data into the buffer for the CPU to read.
280
/// The cache for the corresponding memory region is invalidated before CPU access.
281
FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
282
283
/// The DMA mapping is not for data transfer.
284
///
285
/// This is primarily for debugging purposes. With this direction, the DMA mapping API
286
/// will not perform any cache coherency operations.
287
None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
288
}
289
290
impl DataDirection {
291
/// Casts the bindgen-generated enum type to a `u32` at compile time.
292
///
293
/// This function will cause a compile-time error if the underlying value of the
294
/// C enum is out of bounds for `u32`.
295
const fn const_cast(val: bindings::dma_data_direction) -> u32 {
296
// CAST: The C standard allows compilers to choose different integer types for enums.
297
// To safely check the value, we cast it to a wide signed integer type (`i128`)
298
// which can hold any standard C integer enum type without truncation.
299
let wide_val = val as i128;
300
301
// Check if the value is outside the valid range for the target type `u32`.
302
// CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
303
if wide_val < 0 || wide_val > u32::MAX as i128 {
304
// Trigger a compile-time error in a const context.
305
build_error!("C enum value is out of bounds for the target type `u32`.");
306
}
307
308
// CAST: This cast is valid because the check above guarantees that `wide_val`
309
// is within the representable range of `u32`.
310
wide_val as u32
311
}
312
}
313
314
impl From<DataDirection> for bindings::dma_data_direction {
315
/// Returns the raw representation of [`enum dma_data_direction`].
316
fn from(direction: DataDirection) -> Self {
317
// CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
318
// The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
319
// with the enum variants of `DataDirection`, which is a valid assumption given our
320
// compile-time checks.
321
direction as u32 as Self
322
}
323
}
324
325
/// An abstraction of the `dma_alloc_coherent` API.
326
///
327
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
328
/// large coherent DMA regions.
329
///
330
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
331
/// processor's virtual address space) and the device address which can be given to the device
332
/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
333
/// is dropped.
334
///
335
/// # Invariants
336
///
337
/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
338
/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
339
/// region.
340
/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
341
/// - `size_of::<T> * count` fits into a `usize`.
342
// TODO
343
//
344
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
345
// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
346
// that device resources can never survive device unbind.
347
//
348
// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
349
// allocation from surviving device unbind; it would require RCU read side critical sections to
350
// access the memory, which may require subsequent unnecessary copies.
351
//
352
// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
353
// entire `CoherentAllocation` including the allocated memory itself.
354
pub struct CoherentAllocation<T: AsBytes + FromBytes> {
355
dev: ARef<device::Device>,
356
dma_handle: DmaAddress,
357
count: usize,
358
cpu_addr: *mut T,
359
dma_attrs: Attrs,
360
}
361
362
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
363
/// Allocates a region of `size_of::<T> * count` of coherent memory.
364
///
365
/// # Examples
366
///
367
/// ```
368
/// # use kernel::device::{Bound, Device};
369
/// use kernel::dma::{attrs::*, CoherentAllocation};
370
///
371
/// # fn test(dev: &Device<Bound>) -> Result {
372
/// let c: CoherentAllocation<u64> =
373
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
374
/// # Ok::<(), Error>(()) }
375
/// ```
376
pub fn alloc_attrs(
377
dev: &device::Device<Bound>,
378
count: usize,
379
gfp_flags: kernel::alloc::Flags,
380
dma_attrs: Attrs,
381
) -> Result<CoherentAllocation<T>> {
382
build_assert!(
383
core::mem::size_of::<T>() > 0,
384
"It doesn't make sense for the allocated type to be a ZST"
385
);
386
387
let size = count
388
.checked_mul(core::mem::size_of::<T>())
389
.ok_or(EOVERFLOW)?;
390
let mut dma_handle = 0;
391
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
392
let ret = unsafe {
393
bindings::dma_alloc_attrs(
394
dev.as_raw(),
395
size,
396
&mut dma_handle,
397
gfp_flags.as_raw(),
398
dma_attrs.as_raw(),
399
)
400
};
401
if ret.is_null() {
402
return Err(ENOMEM);
403
}
404
// INVARIANT:
405
// - We just successfully allocated a coherent region which is accessible for
406
// `count` elements, hence the cpu address is valid. We also hold a refcounted reference
407
// to the device.
408
// - The allocated `size` is equal to `size_of::<T> * count`.
409
// - The allocated `size` fits into a `usize`.
410
Ok(Self {
411
dev: dev.into(),
412
dma_handle,
413
count,
414
cpu_addr: ret.cast::<T>(),
415
dma_attrs,
416
})
417
}
418
419
/// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
420
/// `dma_attrs` is 0 by default.
421
pub fn alloc_coherent(
422
dev: &device::Device<Bound>,
423
count: usize,
424
gfp_flags: kernel::alloc::Flags,
425
) -> Result<CoherentAllocation<T>> {
426
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
427
}
428
429
/// Returns the number of elements `T` in this allocation.
430
///
431
/// Note that this is not the size of the allocation in bytes, which is provided by
432
/// [`Self::size`].
433
pub fn count(&self) -> usize {
434
self.count
435
}
436
437
/// Returns the size in bytes of this allocation.
438
pub fn size(&self) -> usize {
439
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
440
// a `usize`.
441
self.count * core::mem::size_of::<T>()
442
}
443
444
/// Returns the base address to the allocated region in the CPU's virtual address space.
445
pub fn start_ptr(&self) -> *const T {
446
self.cpu_addr
447
}
448
449
/// Returns the base address to the allocated region in the CPU's virtual address space as
450
/// a mutable pointer.
451
pub fn start_ptr_mut(&mut self) -> *mut T {
452
self.cpu_addr
453
}
454
455
/// Returns a DMA handle which may be given to the device as the DMA address base of
456
/// the region.
457
pub fn dma_handle(&self) -> DmaAddress {
458
self.dma_handle
459
}
460
461
/// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
462
/// device as the DMA address base of the region.
463
///
464
/// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
465
pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
466
if offset >= self.count {
467
Err(EINVAL)
468
} else {
469
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
470
// into a `usize`, and `offset` is inferior to `count`.
471
Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
472
}
473
}
474
475
/// Common helper to validate a range applied from the allocated region in the CPU's virtual
476
/// address space.
477
fn validate_range(&self, offset: usize, count: usize) -> Result {
478
if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
479
return Err(EINVAL);
480
}
481
Ok(())
482
}
483
484
/// Returns the data from the region starting from `offset` as a slice.
485
/// `offset` and `count` are in units of `T`, not the number of bytes.
486
///
487
/// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
488
/// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
489
/// instead.
490
///
491
/// # Safety
492
///
493
/// * Callers must ensure that the device does not read/write to/from memory while the returned
494
/// slice is live.
495
/// * Callers must ensure that this call does not race with a write to the same region while
496
/// the returned slice is live.
497
pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
498
self.validate_range(offset, count)?;
499
// SAFETY:
500
// - The pointer is valid due to type invariant on `CoherentAllocation`,
501
// we've just checked that the range and index is within bounds. The immutability of the
502
// data is also guaranteed by the safety requirements of the function.
503
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
504
// that `self.count` won't overflow early in the constructor.
505
Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
506
}
507
508
/// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
509
/// slice is returned.
510
///
511
/// # Safety
512
///
513
/// * Callers must ensure that the device does not read/write to/from memory while the returned
514
/// slice is live.
515
/// * Callers must ensure that this call does not race with a read or write to the same region
516
/// while the returned slice is live.
517
pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
518
self.validate_range(offset, count)?;
519
// SAFETY:
520
// - The pointer is valid due to type invariant on `CoherentAllocation`,
521
// we've just checked that the range and index is within bounds. The immutability of the
522
// data is also guaranteed by the safety requirements of the function.
523
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
524
// that `self.count` won't overflow early in the constructor.
525
Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
526
}
527
528
/// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
529
/// number of bytes.
530
///
531
/// # Safety
532
///
533
/// * Callers must ensure that the device does not read/write to/from memory while the returned
534
/// slice is live.
535
/// * Callers must ensure that this call does not race with a read or write to the same region
536
/// that overlaps with this write.
537
///
538
/// # Examples
539
///
540
/// ```
541
/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
542
/// let somedata: [u8; 4] = [0xf; 4];
543
/// let buf: &[u8] = &somedata;
544
/// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
545
/// // region.
546
/// unsafe { alloc.write(buf, 0)?; }
547
/// # Ok::<(), Error>(()) }
548
/// ```
549
pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
550
self.validate_range(offset, src.len())?;
551
// SAFETY:
552
// - The pointer is valid due to type invariant on `CoherentAllocation`
553
// and we've just checked that the range and index is within bounds.
554
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
555
// that `self.count` won't overflow early in the constructor.
556
unsafe {
557
core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
558
};
559
Ok(())
560
}
561
562
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
563
/// units of `T`, not the number of bytes.
564
///
565
/// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
566
#[doc(hidden)]
567
pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
568
if offset >= self.count {
569
return Err(EINVAL);
570
}
571
// SAFETY:
572
// - The pointer is valid due to type invariant on `CoherentAllocation`
573
// and we've just checked that the range and index is within bounds.
574
// - `offset` can't overflow since it is smaller than `self.count` and we've checked
575
// that `self.count` won't overflow early in the constructor.
576
Ok(unsafe { self.cpu_addr.add(offset) })
577
}
578
579
/// Reads the value of `field` and ensures that its type is [`FromBytes`].
580
///
581
/// # Safety
582
///
583
/// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
584
/// validated beforehand.
585
///
586
/// Public but hidden since it should only be used from [`dma_read`] macro.
587
#[doc(hidden)]
588
pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
589
// SAFETY:
590
// - By the safety requirements field is valid.
591
// - Using read_volatile() here is not sound as per the usual rules, the usage here is
592
// a special exception with the following notes in place. When dealing with a potential
593
// race from a hardware or code outside kernel (e.g. user-space program), we need that
594
// read on a valid memory is not UB. Currently read_volatile() is used for this, and the
595
// rationale behind is that it should generate the same code as READ_ONCE() which the
596
// kernel already relies on to avoid UB on data races. Note that the usage of
597
// read_volatile() is limited to this particular case, it cannot be used to prevent
598
// the UB caused by racing between two kernel functions nor do they provide atomicity.
599
unsafe { field.read_volatile() }
600
}
601
602
/// Writes a value to `field` and ensures that its type is [`AsBytes`].
603
///
604
/// # Safety
605
///
606
/// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
607
/// validated beforehand.
608
///
609
/// Public but hidden since it should only be used from [`dma_write`] macro.
610
#[doc(hidden)]
611
pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
612
// SAFETY:
613
// - By the safety requirements field is valid.
614
// - Using write_volatile() here is not sound as per the usual rules, the usage here is
615
// a special exception with the following notes in place. When dealing with a potential
616
// race from a hardware or code outside kernel (e.g. user-space program), we need that
617
// write on a valid memory is not UB. Currently write_volatile() is used for this, and the
618
// rationale behind is that it should generate the same code as WRITE_ONCE() which the
619
// kernel already relies on to avoid UB on data races. Note that the usage of
620
// write_volatile() is limited to this particular case, it cannot be used to prevent
621
// the UB caused by racing between two kernel functions nor do they provide atomicity.
622
unsafe { field.write_volatile(val) }
623
}
624
}
625
626
/// Note that the device configured to do DMA must be halted before this object is dropped.
627
impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
628
fn drop(&mut self) {
629
let size = self.count * core::mem::size_of::<T>();
630
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
631
// The cpu address, and the dma handle are valid due to the type invariants on
632
// `CoherentAllocation`.
633
unsafe {
634
bindings::dma_free_attrs(
635
self.dev.as_raw(),
636
size,
637
self.cpu_addr.cast(),
638
self.dma_handle,
639
self.dma_attrs.as_raw(),
640
)
641
}
642
}
643
}
644
645
// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
646
// can be sent to another thread.
647
unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
648
649
/// Reads a field of an item from an allocated region of structs.
650
///
651
/// # Examples
652
///
653
/// ```
654
/// use kernel::device::Device;
655
/// use kernel::dma::{attrs::*, CoherentAllocation};
656
///
657
/// struct MyStruct { field: u32, }
658
///
659
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
660
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
661
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
662
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
663
///
664
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
665
/// let whole = kernel::dma_read!(alloc[2]);
666
/// let field = kernel::dma_read!(alloc[1].field);
667
/// # Ok::<(), Error>(()) }
668
/// ```
669
#[macro_export]
670
macro_rules! dma_read {
671
($dma:expr, $idx: expr, $($field:tt)*) => {{
672
(|| -> ::core::result::Result<_, $crate::error::Error> {
673
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
674
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
675
// dereferenced. The compiler also further validates the expression on whether `field`
676
// is a member of `item` when expanded by the macro.
677
unsafe {
678
let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
679
::core::result::Result::Ok(
680
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
681
)
682
}
683
})()
684
}};
685
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
686
$crate::dma_read!($dma, $idx, $($field)*)
687
};
688
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
689
$crate::dma_read!($($dma).*, $idx, $($field)*)
690
};
691
}
692
693
/// Writes to a field of an item from an allocated region of structs.
694
///
695
/// # Examples
696
///
697
/// ```
698
/// use kernel::device::Device;
699
/// use kernel::dma::{attrs::*, CoherentAllocation};
700
///
701
/// struct MyStruct { member: u32, }
702
///
703
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
704
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
705
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
706
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
707
///
708
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
709
/// kernel::dma_write!(alloc[2].member = 0xf);
710
/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
711
/// # Ok::<(), Error>(()) }
712
/// ```
713
#[macro_export]
714
macro_rules! dma_write {
715
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
716
$crate::dma_write!($dma, $idx, $($field)*)
717
}};
718
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
719
$crate::dma_write!($($dma).*, $idx, $($field)*)
720
}};
721
($dma:expr, $idx: expr, = $val:expr) => {
722
(|| -> ::core::result::Result<_, $crate::error::Error> {
723
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
724
// SAFETY: `item_from_index` ensures that `item` is always a valid item.
725
unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
726
::core::result::Result::Ok(())
727
})()
728
};
729
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
730
(|| -> ::core::result::Result<_, $crate::error::Error> {
731
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
732
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
733
// dereferenced. The compiler also further validates the expression on whether `field`
734
// is a member of `item` when expanded by the macro.
735
unsafe {
736
let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
737
$crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
738
}
739
::core::result::Result::Ok(())
740
})()
741
};
742
}
743
744