Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/driver.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4
//!
5
//! This documentation describes how to implement a bus specific driver API and how to align it with
6
//! the design of (bus specific) devices.
7
//!
8
//! Note: Readers are expected to know the content of the documentation of [`Device`] and
9
//! [`DeviceContext`].
10
//!
11
//! # Driver Trait
12
//!
13
//! The main driver interface is defined by a bus specific driver trait. For instance:
14
//!
15
//! ```ignore
16
//! pub trait Driver: Send {
17
//! /// The type holding information about each device ID supported by the driver.
18
//! type IdInfo: 'static;
19
//!
20
//! /// The table of OF device ids supported by the driver.
21
//! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22
//!
23
//! /// The table of ACPI device ids supported by the driver.
24
//! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25
//!
26
//! /// Driver probe.
27
//! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
28
//!
29
//! /// Driver unbind (optional).
30
//! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31
//! let _ = (dev, this);
32
//! }
33
//! }
34
//! ```
35
//!
36
//! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`].
37
//!
38
//! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private
39
//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
40
//! [`Device`] infrastructure provides common helpers for this purpose on its
41
//! [`Device<CoreInternal>`] implementation.
42
//!
43
//! All driver callbacks should provide a reference to the driver's private data. Once the driver
44
//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
45
//! private data from the corresponding [`Device`] and [`drop`] it.
46
//!
47
//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
48
//!
49
//! # Adapter
50
//!
51
//! The adapter implementation of a bus represents the abstraction layer between the C bus
52
//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
53
//! the [driver trait](#driver-trait).
54
//!
55
//! ```ignore
56
//! pub struct Adapter<T: Driver>;
57
//! ```
58
//!
59
//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
60
//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
61
//!
62
//! # Driver Registration
63
//!
64
//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
65
//! should implement the [`RegistrationOps`] trait.
66
//!
67
//! This trait implementation can be used to create the actual registration with the common
68
//! [`Registration`] type.
69
//!
70
//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
71
//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
72
//!
73
//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
74
//!
75
//! # Device IDs
76
//!
77
//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
78
//! may need to implement their own device ID types.
79
//!
80
//! For this purpose the generic infrastructure in [`device_id`] should be used.
81
//!
82
//! [`auxiliary::Driver`]: kernel::auxiliary::Driver
83
//! [`Core`]: device::Core
84
//! [`Device`]: device::Device
85
//! [`Device<Core>`]: device::Device<device::Core>
86
//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
87
//! [`DeviceContext`]: device::DeviceContext
88
//! [`device_id`]: kernel::device_id
89
//! [`module_driver`]: kernel::module_driver
90
//! [`pci::Driver`]: kernel::pci::Driver
91
//! [`platform::Driver`]: kernel::platform::Driver
92
93
use crate::error::{Error, Result};
94
use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
95
use core::pin::Pin;
96
use pin_init::{pin_data, pinned_drop, PinInit};
97
98
/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
99
/// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
100
/// unregister a driver of the particular type (`RegType`).
101
///
102
/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
103
/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
104
/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
105
///
106
/// # Safety
107
///
108
/// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a
109
/// preceding call to [`RegistrationOps::register`] has been successful.
110
pub unsafe trait RegistrationOps {
111
/// The type that holds information about the registration. This is typically a struct defined
112
/// by the C portion of the kernel.
113
type RegType: Default;
114
115
/// Registers a driver.
116
///
117
/// # Safety
118
///
119
/// On success, `reg` must remain pinned and valid until the matching call to
120
/// [`RegistrationOps::unregister`].
121
unsafe fn register(
122
reg: &Opaque<Self::RegType>,
123
name: &'static CStr,
124
module: &'static ThisModule,
125
) -> Result;
126
127
/// Unregisters a driver previously registered with [`RegistrationOps::register`].
128
///
129
/// # Safety
130
///
131
/// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
132
/// the same `reg`.
133
unsafe fn unregister(reg: &Opaque<Self::RegType>);
134
}
135
136
/// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
137
/// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
138
/// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
139
/// `T::unregister` calls result in the subsystem specific registration calls.
140
///
141
///Once the `Registration` structure is dropped, the driver is unregistered.
142
#[pin_data(PinnedDrop)]
143
pub struct Registration<T: RegistrationOps> {
144
#[pin]
145
reg: Opaque<T::RegType>,
146
}
147
148
// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
149
// share references to it with multiple threads as nothing can be done.
150
unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
151
152
// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
153
// any thread, so `Registration` is `Send`.
154
unsafe impl<T: RegistrationOps> Send for Registration<T> {}
155
156
impl<T: RegistrationOps> Registration<T> {
157
/// Creates a new instance of the registration object.
158
pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
159
try_pin_init!(Self {
160
reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| {
161
// SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
162
unsafe { ptr.write(T::RegType::default()) };
163
164
// SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
165
// just been initialised above, so it's also valid for read.
166
let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) };
167
168
// SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
169
unsafe { T::register(drv, name, module) }
170
}),
171
})
172
}
173
}
174
175
#[pinned_drop]
176
impl<T: RegistrationOps> PinnedDrop for Registration<T> {
177
fn drop(self: Pin<&mut Self>) {
178
// SAFETY: The existence of `self` guarantees that `self.reg` has previously been
179
// successfully registered with `T::register`
180
unsafe { T::unregister(&self.reg) };
181
}
182
}
183
184
/// Declares a kernel module that exposes a single driver.
185
///
186
/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
187
/// macros.
188
#[macro_export]
189
macro_rules! module_driver {
190
(<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
191
type Ops<$gen_type> = $driver_ops;
192
193
#[$crate::prelude::pin_data]
194
struct DriverModule {
195
#[pin]
196
_driver: $crate::driver::Registration<Ops<$type>>,
197
}
198
199
impl $crate::InPlaceModule for DriverModule {
200
fn init(
201
module: &'static $crate::ThisModule
202
) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
203
$crate::try_pin_init!(Self {
204
_driver <- $crate::driver::Registration::new(
205
<Self as $crate::ModuleMetadata>::NAME,
206
module,
207
),
208
})
209
}
210
}
211
212
$crate::prelude::module! {
213
type: DriverModule,
214
$($f)*
215
}
216
}
217
}
218
219
/// The bus independent adapter to match a drivers and a devices.
220
///
221
/// This trait should be implemented by the bus specific adapter, which represents the connection
222
/// of a device and a driver.
223
///
224
/// It provides bus independent functions for device / driver interactions.
225
pub trait Adapter {
226
/// The type holding driver private data about each device id supported by the driver.
227
type IdInfo: 'static;
228
229
/// The [`acpi::IdTable`] of the corresponding driver
230
fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
231
232
/// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
233
///
234
/// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
235
fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
236
#[cfg(not(CONFIG_ACPI))]
237
{
238
let _ = dev;
239
None
240
}
241
242
#[cfg(CONFIG_ACPI)]
243
{
244
let table = Self::acpi_id_table()?;
245
246
// SAFETY:
247
// - `table` has static lifetime, hence it's valid for read,
248
// - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
249
let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
250
251
if raw_id.is_null() {
252
None
253
} else {
254
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
255
// and does not add additional invariants, so it's safe to transmute.
256
let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
257
258
Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
259
}
260
}
261
}
262
263
/// The [`of::IdTable`] of the corresponding driver.
264
fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
265
266
/// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
267
///
268
/// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
269
fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
270
#[cfg(not(CONFIG_OF))]
271
{
272
let _ = dev;
273
None
274
}
275
276
#[cfg(CONFIG_OF)]
277
{
278
let table = Self::of_id_table()?;
279
280
// SAFETY:
281
// - `table` has static lifetime, hence it's valid for read,
282
// - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
283
let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
284
285
if raw_id.is_null() {
286
None
287
} else {
288
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
289
// and does not add additional invariants, so it's safe to transmute.
290
let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
291
292
Some(
293
table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
294
id,
295
)),
296
)
297
}
298
}
299
}
300
301
/// Returns the driver's private data from the matching entry of any of the ID tables, if any.
302
///
303
/// If this returns `None`, it means that there is no match in any of the ID tables directly
304
/// associated with a [`device::Device`].
305
fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
306
let id = Self::acpi_id_info(dev);
307
if id.is_some() {
308
return id;
309
}
310
311
let id = Self::of_id_info(dev);
312
if id.is_some() {
313
return id;
314
}
315
316
None
317
}
318
}
319
320