Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/io.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Memory-mapped IO.
4
//!
5
//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6
7
use crate::error::{code::EINVAL, Result};
8
use crate::{bindings, build_assert, ffi::c_void};
9
10
pub mod mem;
11
pub mod poll;
12
pub mod resource;
13
14
pub use resource::Resource;
15
16
/// Raw representation of an MMIO region.
17
///
18
/// By itself, the existence of an instance of this structure does not provide any guarantees that
19
/// the represented MMIO region does exist or is properly mapped.
20
///
21
/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
22
/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
23
/// any guarantees are given.
24
pub struct IoRaw<const SIZE: usize = 0> {
25
addr: usize,
26
maxsize: usize,
27
}
28
29
impl<const SIZE: usize> IoRaw<SIZE> {
30
/// Returns a new `IoRaw` instance on success, an error otherwise.
31
pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
32
if maxsize < SIZE {
33
return Err(EINVAL);
34
}
35
36
Ok(Self { addr, maxsize })
37
}
38
39
/// Returns the base address of the MMIO region.
40
#[inline]
41
pub fn addr(&self) -> usize {
42
self.addr
43
}
44
45
/// Returns the maximum size of the MMIO region.
46
#[inline]
47
pub fn maxsize(&self) -> usize {
48
self.maxsize
49
}
50
}
51
52
/// IO-mapped memory region.
53
///
54
/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
55
/// mapping, performing an additional region request etc.
56
///
57
/// # Invariant
58
///
59
/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
60
/// `maxsize`.
61
///
62
/// # Examples
63
///
64
/// ```no_run
65
/// # use kernel::{bindings, ffi::c_void, io::{Io, IoRaw}};
66
/// # use core::ops::Deref;
67
///
68
/// // See also [`pci::Bar`] for a real example.
69
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
70
///
71
/// impl<const SIZE: usize> IoMem<SIZE> {
72
/// /// # Safety
73
/// ///
74
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
75
/// /// virtual address space.
76
/// unsafe fn new(paddr: usize) -> Result<Self>{
77
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
78
/// // valid for `ioremap`.
79
/// let addr = unsafe { bindings::ioremap(paddr as bindings::phys_addr_t, SIZE) };
80
/// if addr.is_null() {
81
/// return Err(ENOMEM);
82
/// }
83
///
84
/// Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
85
/// }
86
/// }
87
///
88
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
89
/// fn drop(&mut self) {
90
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
91
/// unsafe { bindings::iounmap(self.0.addr() as *mut c_void); };
92
/// }
93
/// }
94
///
95
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
96
/// type Target = Io<SIZE>;
97
///
98
/// fn deref(&self) -> &Self::Target {
99
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
100
/// unsafe { Io::from_raw(&self.0) }
101
/// }
102
/// }
103
///
104
///# fn no_run() -> Result<(), Error> {
105
/// // SAFETY: Invalid usage for example purposes.
106
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
107
/// iomem.write32(0x42, 0x0);
108
/// assert!(iomem.try_write32(0x42, 0x0).is_ok());
109
/// assert!(iomem.try_write32(0x42, 0x4).is_err());
110
/// # Ok(())
111
/// # }
112
/// ```
113
#[repr(transparent)]
114
pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
115
116
macro_rules! define_read {
117
($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
118
/// Read IO data from a given offset known at compile time.
119
///
120
/// Bound checks are performed on compile time, hence if the offset is not known at compile
121
/// time, the build will fail.
122
$(#[$attr])*
123
#[inline]
124
pub fn $name(&self, offset: usize) -> $type_name {
125
let addr = self.io_addr_assert::<$type_name>(offset);
126
127
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
128
unsafe { bindings::$c_fn(addr as *const c_void) }
129
}
130
131
/// Read IO data from a given offset.
132
///
133
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
134
/// out of bounds.
135
$(#[$attr])*
136
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
137
let addr = self.io_addr::<$type_name>(offset)?;
138
139
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
140
Ok(unsafe { bindings::$c_fn(addr as *const c_void) })
141
}
142
};
143
}
144
145
macro_rules! define_write {
146
($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
147
/// Write IO data from a given offset known at compile time.
148
///
149
/// Bound checks are performed on compile time, hence if the offset is not known at compile
150
/// time, the build will fail.
151
$(#[$attr])*
152
#[inline]
153
pub fn $name(&self, value: $type_name, offset: usize) {
154
let addr = self.io_addr_assert::<$type_name>(offset);
155
156
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
157
unsafe { bindings::$c_fn(value, addr as *mut c_void) }
158
}
159
160
/// Write IO data from a given offset.
161
///
162
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
163
/// out of bounds.
164
$(#[$attr])*
165
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
166
let addr = self.io_addr::<$type_name>(offset)?;
167
168
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
169
unsafe { bindings::$c_fn(value, addr as *mut c_void) }
170
Ok(())
171
}
172
};
173
}
174
175
impl<const SIZE: usize> Io<SIZE> {
176
/// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
177
///
178
/// # Safety
179
///
180
/// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
181
/// `maxsize`.
182
pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
183
// SAFETY: `Io` is a transparent wrapper around `IoRaw`.
184
unsafe { &*core::ptr::from_ref(raw).cast() }
185
}
186
187
/// Returns the base address of this mapping.
188
#[inline]
189
pub fn addr(&self) -> usize {
190
self.0.addr()
191
}
192
193
/// Returns the maximum size of this mapping.
194
#[inline]
195
pub fn maxsize(&self) -> usize {
196
self.0.maxsize()
197
}
198
199
#[inline]
200
const fn offset_valid<U>(offset: usize, size: usize) -> bool {
201
let type_size = core::mem::size_of::<U>();
202
if let Some(end) = offset.checked_add(type_size) {
203
end <= size && offset % type_size == 0
204
} else {
205
false
206
}
207
}
208
209
#[inline]
210
fn io_addr<U>(&self, offset: usize) -> Result<usize> {
211
if !Self::offset_valid::<U>(offset, self.maxsize()) {
212
return Err(EINVAL);
213
}
214
215
// Probably no need to check, since the safety requirements of `Self::new` guarantee that
216
// this can't overflow.
217
self.addr().checked_add(offset).ok_or(EINVAL)
218
}
219
220
#[inline]
221
fn io_addr_assert<U>(&self, offset: usize) -> usize {
222
build_assert!(Self::offset_valid::<U>(offset, SIZE));
223
224
self.addr() + offset
225
}
226
227
define_read!(read8, try_read8, readb -> u8);
228
define_read!(read16, try_read16, readw -> u16);
229
define_read!(read32, try_read32, readl -> u32);
230
define_read!(
231
#[cfg(CONFIG_64BIT)]
232
read64,
233
try_read64,
234
readq -> u64
235
);
236
237
define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
238
define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
239
define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
240
define_read!(
241
#[cfg(CONFIG_64BIT)]
242
read64_relaxed,
243
try_read64_relaxed,
244
readq_relaxed -> u64
245
);
246
247
define_write!(write8, try_write8, writeb <- u8);
248
define_write!(write16, try_write16, writew <- u16);
249
define_write!(write32, try_write32, writel <- u32);
250
define_write!(
251
#[cfg(CONFIG_64BIT)]
252
write64,
253
try_write64,
254
writeq <- u64
255
);
256
257
define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
258
define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
259
define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
260
define_write!(
261
#[cfg(CONFIG_64BIT)]
262
write64_relaxed,
263
try_write64_relaxed,
264
writeq_relaxed <- u64
265
);
266
}
267
268