Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/list/arc.rs
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
// Copyright (C) 2024 Google LLC.
4
5
//! A wrapper around `Arc` for linked lists.
6
7
use crate::alloc::{AllocError, Flags};
8
use crate::prelude::*;
9
use crate::sync::{Arc, ArcBorrow, UniqueArc};
10
use core::marker::PhantomPinned;
11
use core::ops::Deref;
12
use core::pin::Pin;
13
use core::sync::atomic::{AtomicBool, Ordering};
14
15
/// Declares that this type has some way to ensure that there is exactly one `ListArc` instance for
16
/// this id.
17
///
18
/// Types that implement this trait should include some kind of logic for keeping track of whether
19
/// a [`ListArc`] exists or not. We refer to this logic as "the tracking inside `T`".
20
///
21
/// We allow the case where the tracking inside `T` thinks that a [`ListArc`] exists, but actually,
22
/// there isn't a [`ListArc`]. However, we do not allow the opposite situation where a [`ListArc`]
23
/// exists, but the tracking thinks it doesn't. This is because the former can at most result in us
24
/// failing to create a [`ListArc`] when the operation could succeed, whereas the latter can result
25
/// in the creation of two [`ListArc`] references. Only the latter situation can lead to memory
26
/// safety issues.
27
///
28
/// A consequence of the above is that you may implement the tracking inside `T` by not actually
29
/// keeping track of anything. To do this, you always claim that a [`ListArc`] exists, even if
30
/// there isn't one. This implementation is allowed by the above rule, but it means that
31
/// [`ListArc`] references can only be created if you have ownership of *all* references to the
32
/// refcounted object, as you otherwise have no way of knowing whether a [`ListArc`] exists.
33
pub trait ListArcSafe<const ID: u64 = 0> {
34
/// Informs the tracking inside this type that it now has a [`ListArc`] reference.
35
///
36
/// This method may be called even if the tracking inside this type thinks that a `ListArc`
37
/// reference exists. (But only if that's not actually the case.)
38
///
39
/// # Safety
40
///
41
/// Must not be called if a [`ListArc`] already exist for this value.
42
unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>);
43
44
/// Informs the tracking inside this type that there is no [`ListArc`] reference anymore.
45
///
46
/// # Safety
47
///
48
/// Must only be called if there is no [`ListArc`] reference, but the tracking thinks there is.
49
unsafe fn on_drop_list_arc(&self);
50
}
51
52
/// Declares that this type is able to safely attempt to create `ListArc`s at any time.
53
///
54
/// # Safety
55
///
56
/// The guarantees of `try_new_list_arc` must be upheld.
57
pub unsafe trait TryNewListArc<const ID: u64 = 0>: ListArcSafe<ID> {
58
/// Attempts to convert an `Arc<Self>` into an `ListArc<Self>`. Returns `true` if the
59
/// conversion was successful.
60
///
61
/// This method should not be called directly. Use [`ListArc::try_from_arc`] instead.
62
///
63
/// # Guarantees
64
///
65
/// If this call returns `true`, then there is no [`ListArc`] pointing to this value.
66
/// Additionally, this call will have transitioned the tracking inside `Self` from not thinking
67
/// that a [`ListArc`] exists, to thinking that a [`ListArc`] exists.
68
fn try_new_list_arc(&self) -> bool;
69
}
70
71
/// Declares that this type supports [`ListArc`].
72
///
73
/// This macro supports a few different strategies for implementing the tracking inside the type:
74
///
75
/// * The `untracked` strategy does not actually keep track of whether a [`ListArc`] exists. When
76
/// using this strategy, the only way to create a [`ListArc`] is using a [`UniqueArc`].
77
/// * The `tracked_by` strategy defers the tracking to a field of the struct. The user must specify
78
/// which field to defer the tracking to. The field must implement [`ListArcSafe`]. If the field
79
/// implements [`TryNewListArc`], then the type will also implement [`TryNewListArc`].
80
///
81
/// The `tracked_by` strategy is usually used by deferring to a field of type
82
/// [`AtomicTracker`]. However, it is also possible to defer the tracking to another struct
83
/// using also using this macro.
84
#[macro_export]
85
macro_rules! impl_list_arc_safe {
86
(impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { untracked; } $($rest:tt)*) => {
87
impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
88
unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {}
89
unsafe fn on_drop_list_arc(&self) {}
90
}
91
$crate::list::impl_list_arc_safe! { $($rest)* }
92
};
93
94
(impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty {
95
tracked_by $field:ident : $fty:ty;
96
} $($rest:tt)*) => {
97
impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
98
unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {
99
::pin_init::assert_pinned!($t, $field, $fty, inline);
100
101
// SAFETY: This field is structurally pinned as per the above assertion.
102
let field = unsafe {
103
::core::pin::Pin::map_unchecked_mut(self, |me| &mut me.$field)
104
};
105
// SAFETY: The caller promises that there is no `ListArc`.
106
unsafe {
107
<$fty as $crate::list::ListArcSafe<$num>>::on_create_list_arc_from_unique(field)
108
};
109
}
110
unsafe fn on_drop_list_arc(&self) {
111
// SAFETY: The caller promises that there is no `ListArc` reference, and also
112
// promises that the tracking thinks there is a `ListArc` reference.
113
unsafe { <$fty as $crate::list::ListArcSafe<$num>>::on_drop_list_arc(&self.$field) };
114
}
115
}
116
unsafe impl$(<$($generics)*>)? $crate::list::TryNewListArc<$num> for $t
117
where
118
$fty: TryNewListArc<$num>,
119
{
120
fn try_new_list_arc(&self) -> bool {
121
<$fty as $crate::list::TryNewListArc<$num>>::try_new_list_arc(&self.$field)
122
}
123
}
124
$crate::list::impl_list_arc_safe! { $($rest)* }
125
};
126
127
() => {};
128
}
129
pub use impl_list_arc_safe;
130
131
/// A wrapper around [`Arc`] that's guaranteed unique for the given id.
132
///
133
/// The `ListArc` type can be thought of as a special reference to a refcounted object that owns the
134
/// permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring
135
/// that each object has only one `ListArc` reference, the owner of that reference is assured
136
/// exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a [`List`],
137
/// the [`List`] takes ownership of the `ListArc` reference.
138
///
139
/// There are various strategies to ensuring that a value has only one `ListArc` reference. The
140
/// simplest is to convert a [`UniqueArc`] into a `ListArc`. However, the refcounted object could
141
/// also keep track of whether a `ListArc` exists using a boolean, which could allow for the
142
/// creation of new `ListArc` references from an [`Arc`] reference. Whatever strategy is used, the
143
/// relevant tracking is referred to as "the tracking inside `T`", and the [`ListArcSafe`] trait
144
/// (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed.
145
///
146
/// Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but
147
/// actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a
148
/// `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most
149
/// result in us failing to create a `ListArc` when the operation could succeed, whereas the latter
150
/// can result in the creation of two `ListArc` references.
151
///
152
/// While this `ListArc` is unique for the given id, there still might exist normal `Arc`
153
/// references to the object.
154
///
155
/// # Invariants
156
///
157
/// * Each reference counted object has at most one `ListArc` for each value of `ID`.
158
/// * The tracking inside `T` is aware that a `ListArc` reference exists.
159
///
160
/// [`List`]: crate::list::List
161
#[repr(transparent)]
162
#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
163
pub struct ListArc<T, const ID: u64 = 0>
164
where
165
T: ListArcSafe<ID> + ?Sized,
166
{
167
arc: Arc<T>,
168
}
169
170
impl<T: ListArcSafe<ID>, const ID: u64> ListArc<T, ID> {
171
/// Constructs a new reference counted instance of `T`.
172
#[inline]
173
pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
174
Ok(Self::from(UniqueArc::new(contents, flags)?))
175
}
176
177
/// Use the given initializer to in-place initialize a `T`.
178
///
179
/// If `T: !Unpin` it will not be able to move afterwards.
180
// We don't implement `InPlaceInit` because `ListArc` is implicitly pinned. This is similar to
181
// what we do for `Arc`.
182
#[inline]
183
pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self, E>
184
where
185
E: From<AllocError>,
186
{
187
Ok(Self::from(UniqueArc::try_pin_init(init, flags)?))
188
}
189
190
/// Use the given initializer to in-place initialize a `T`.
191
///
192
/// This is equivalent to [`ListArc<T>::pin_init`], since a [`ListArc`] is always pinned.
193
#[inline]
194
pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
195
where
196
E: From<AllocError>,
197
{
198
Ok(Self::from(UniqueArc::try_init(init, flags)?))
199
}
200
}
201
202
impl<T, const ID: u64> From<UniqueArc<T>> for ListArc<T, ID>
203
where
204
T: ListArcSafe<ID> + ?Sized,
205
{
206
/// Convert a [`UniqueArc`] into a [`ListArc`].
207
#[inline]
208
fn from(unique: UniqueArc<T>) -> Self {
209
Self::from(Pin::from(unique))
210
}
211
}
212
213
impl<T, const ID: u64> From<Pin<UniqueArc<T>>> for ListArc<T, ID>
214
where
215
T: ListArcSafe<ID> + ?Sized,
216
{
217
/// Convert a pinned [`UniqueArc`] into a [`ListArc`].
218
#[inline]
219
fn from(mut unique: Pin<UniqueArc<T>>) -> Self {
220
// SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
221
unsafe { T::on_create_list_arc_from_unique(unique.as_mut()) };
222
let arc = Arc::from(unique);
223
// SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`,
224
// so we can create a `ListArc`.
225
unsafe { Self::transmute_from_arc(arc) }
226
}
227
}
228
229
impl<T, const ID: u64> ListArc<T, ID>
230
where
231
T: ListArcSafe<ID> + ?Sized,
232
{
233
/// Creates two `ListArc`s from a [`UniqueArc`].
234
///
235
/// The two ids must be different.
236
#[inline]
237
pub fn pair_from_unique<const ID2: u64>(unique: UniqueArc<T>) -> (Self, ListArc<T, ID2>)
238
where
239
T: ListArcSafe<ID2>,
240
{
241
Self::pair_from_pin_unique(Pin::from(unique))
242
}
243
244
/// Creates two `ListArc`s from a pinned [`UniqueArc`].
245
///
246
/// The two ids must be different.
247
#[inline]
248
pub fn pair_from_pin_unique<const ID2: u64>(
249
mut unique: Pin<UniqueArc<T>>,
250
) -> (Self, ListArc<T, ID2>)
251
where
252
T: ListArcSafe<ID2>,
253
{
254
build_assert!(ID != ID2);
255
256
// SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
257
unsafe { <T as ListArcSafe<ID>>::on_create_list_arc_from_unique(unique.as_mut()) };
258
// SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
259
unsafe { <T as ListArcSafe<ID2>>::on_create_list_arc_from_unique(unique.as_mut()) };
260
261
let arc1 = Arc::from(unique);
262
let arc2 = Arc::clone(&arc1);
263
264
// SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`
265
// for both IDs (which are different), so we can create two `ListArc`s.
266
unsafe {
267
(
268
Self::transmute_from_arc(arc1),
269
ListArc::transmute_from_arc(arc2),
270
)
271
}
272
}
273
274
/// Try to create a new `ListArc`.
275
///
276
/// This fails if this value already has a `ListArc`.
277
pub fn try_from_arc(arc: Arc<T>) -> Result<Self, Arc<T>>
278
where
279
T: TryNewListArc<ID>,
280
{
281
if arc.try_new_list_arc() {
282
// SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
283
// that a `ListArc` exists. This lets us create a `ListArc`.
284
Ok(unsafe { Self::transmute_from_arc(arc) })
285
} else {
286
Err(arc)
287
}
288
}
289
290
/// Try to create a new `ListArc`.
291
///
292
/// This fails if this value already has a `ListArc`.
293
pub fn try_from_arc_borrow(arc: ArcBorrow<'_, T>) -> Option<Self>
294
where
295
T: TryNewListArc<ID>,
296
{
297
if arc.try_new_list_arc() {
298
// SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
299
// that a `ListArc` exists. This lets us create a `ListArc`.
300
Some(unsafe { Self::transmute_from_arc(Arc::from(arc)) })
301
} else {
302
None
303
}
304
}
305
306
/// Try to create a new `ListArc`.
307
///
308
/// If it's not possible to create a new `ListArc`, then the `Arc` is dropped. This will never
309
/// run the destructor of the value.
310
pub fn try_from_arc_or_drop(arc: Arc<T>) -> Option<Self>
311
where
312
T: TryNewListArc<ID>,
313
{
314
match Self::try_from_arc(arc) {
315
Ok(list_arc) => Some(list_arc),
316
Err(arc) => Arc::into_unique_or_drop(arc).map(Self::from),
317
}
318
}
319
320
/// Transmutes an [`Arc`] into a `ListArc` without updating the tracking inside `T`.
321
///
322
/// # Safety
323
///
324
/// * The value must not already have a `ListArc` reference.
325
/// * The tracking inside `T` must think that there is a `ListArc` reference.
326
#[inline]
327
unsafe fn transmute_from_arc(arc: Arc<T>) -> Self {
328
// INVARIANT: By the safety requirements, the invariants on `ListArc` are satisfied.
329
Self { arc }
330
}
331
332
/// Transmutes a `ListArc` into an [`Arc`] without updating the tracking inside `T`.
333
///
334
/// After this call, the tracking inside `T` will still think that there is a `ListArc`
335
/// reference.
336
#[inline]
337
fn transmute_to_arc(self) -> Arc<T> {
338
// Use a transmute to skip destructor.
339
//
340
// SAFETY: ListArc is repr(transparent).
341
unsafe { core::mem::transmute(self) }
342
}
343
344
/// Convert ownership of this `ListArc` into a raw pointer.
345
///
346
/// The returned pointer is indistinguishable from pointers returned by [`Arc::into_raw`]. The
347
/// tracking inside `T` will still think that a `ListArc` exists after this call.
348
#[inline]
349
pub fn into_raw(self) -> *const T {
350
Arc::into_raw(Self::transmute_to_arc(self))
351
}
352
353
/// Take ownership of the `ListArc` from a raw pointer.
354
///
355
/// # Safety
356
///
357
/// * `ptr` must satisfy the safety requirements of [`Arc::from_raw`].
358
/// * The value must not already have a `ListArc` reference.
359
/// * The tracking inside `T` must think that there is a `ListArc` reference.
360
#[inline]
361
pub unsafe fn from_raw(ptr: *const T) -> Self {
362
// SAFETY: The pointer satisfies the safety requirements for `Arc::from_raw`.
363
let arc = unsafe { Arc::from_raw(ptr) };
364
// SAFETY: The value doesn't already have a `ListArc` reference, but the tracking thinks it
365
// does.
366
unsafe { Self::transmute_from_arc(arc) }
367
}
368
369
/// Converts the `ListArc` into an [`Arc`].
370
#[inline]
371
pub fn into_arc(self) -> Arc<T> {
372
let arc = Self::transmute_to_arc(self);
373
// SAFETY: There is no longer a `ListArc`, but the tracking thinks there is.
374
unsafe { T::on_drop_list_arc(&arc) };
375
arc
376
}
377
378
/// Clone a `ListArc` into an [`Arc`].
379
#[inline]
380
pub fn clone_arc(&self) -> Arc<T> {
381
self.arc.clone()
382
}
383
384
/// Returns a reference to an [`Arc`] from the given [`ListArc`].
385
///
386
/// This is useful when the argument of a function call is an [`&Arc`] (e.g., in a method
387
/// receiver), but we have a [`ListArc`] instead.
388
///
389
/// [`&Arc`]: Arc
390
#[inline]
391
pub fn as_arc(&self) -> &Arc<T> {
392
&self.arc
393
}
394
395
/// Returns an [`ArcBorrow`] from the given [`ListArc`].
396
///
397
/// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
398
/// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
399
#[inline]
400
pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
401
self.arc.as_arc_borrow()
402
}
403
404
/// Compare whether two [`ListArc`] pointers reference the same underlying object.
405
#[inline]
406
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
407
Arc::ptr_eq(&this.arc, &other.arc)
408
}
409
}
410
411
impl<T, const ID: u64> Deref for ListArc<T, ID>
412
where
413
T: ListArcSafe<ID> + ?Sized,
414
{
415
type Target = T;
416
417
#[inline]
418
fn deref(&self) -> &Self::Target {
419
self.arc.deref()
420
}
421
}
422
423
impl<T, const ID: u64> Drop for ListArc<T, ID>
424
where
425
T: ListArcSafe<ID> + ?Sized,
426
{
427
#[inline]
428
fn drop(&mut self) {
429
// SAFETY: There is no longer a `ListArc`, but the tracking thinks there is by the type
430
// invariants on `Self`.
431
unsafe { T::on_drop_list_arc(&self.arc) };
432
}
433
}
434
435
impl<T, const ID: u64> AsRef<Arc<T>> for ListArc<T, ID>
436
where
437
T: ListArcSafe<ID> + ?Sized,
438
{
439
#[inline]
440
fn as_ref(&self) -> &Arc<T> {
441
self.as_arc()
442
}
443
}
444
445
// This is to allow coercion from `ListArc<T>` to `ListArc<U>` if `T` can be converted to the
446
// dynamically-sized type (DST) `U`.
447
#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
448
impl<T, U, const ID: u64> core::ops::CoerceUnsized<ListArc<U, ID>> for ListArc<T, ID>
449
where
450
T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized,
451
U: ListArcSafe<ID> + ?Sized,
452
{
453
}
454
455
// This is to allow `ListArc<U>` to be dispatched on when `ListArc<T>` can be coerced into
456
// `ListArc<U>`.
457
#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
458
impl<T, U, const ID: u64> core::ops::DispatchFromDyn<ListArc<U, ID>> for ListArc<T, ID>
459
where
460
T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized,
461
U: ListArcSafe<ID> + ?Sized,
462
{
463
}
464
465
/// A utility for tracking whether a [`ListArc`] exists using an atomic.
466
///
467
/// # Invariants
468
///
469
/// If the boolean is `false`, then there is no [`ListArc`] for this value.
470
#[repr(transparent)]
471
pub struct AtomicTracker<const ID: u64 = 0> {
472
inner: AtomicBool,
473
// This value needs to be pinned to justify the INVARIANT: comment in `AtomicTracker::new`.
474
_pin: PhantomPinned,
475
}
476
477
impl<const ID: u64> AtomicTracker<ID> {
478
/// Creates a new initializer for this type.
479
pub fn new() -> impl PinInit<Self> {
480
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
481
// not be constructed in an `Arc` that already has a `ListArc`.
482
Self {
483
inner: AtomicBool::new(false),
484
_pin: PhantomPinned,
485
}
486
}
487
488
fn project_inner(self: Pin<&mut Self>) -> &mut AtomicBool {
489
// SAFETY: The `inner` field is not structurally pinned, so we may obtain a mutable
490
// reference to it even if we only have a pinned reference to `self`.
491
unsafe { &mut Pin::into_inner_unchecked(self).inner }
492
}
493
}
494
495
impl<const ID: u64> ListArcSafe<ID> for AtomicTracker<ID> {
496
unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>) {
497
// INVARIANT: We just created a ListArc, so the boolean should be true.
498
*self.project_inner().get_mut() = true;
499
}
500
501
unsafe fn on_drop_list_arc(&self) {
502
// INVARIANT: We just dropped a ListArc, so the boolean should be false.
503
self.inner.store(false, Ordering::Release);
504
}
505
}
506
507
// SAFETY: If this method returns `true`, then by the type invariant there is no `ListArc` before
508
// this call, so it is okay to create a new `ListArc`.
509
//
510
// The acquire ordering will synchronize with the release store from the destruction of any
511
// previous `ListArc`, so if there was a previous `ListArc`, then the destruction of the previous
512
// `ListArc` happens-before the creation of the new `ListArc`.
513
unsafe impl<const ID: u64> TryNewListArc<ID> for AtomicTracker<ID> {
514
fn try_new_list_arc(&self) -> bool {
515
// INVARIANT: If this method returns true, then the boolean used to be false, and is no
516
// longer false, so it is okay for the caller to create a new [`ListArc`].
517
self.inner
518
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
519
.is_ok()
520
}
521
}
522
523