Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/security.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Security plug functions
4
*
5
* Copyright (C) 2001 WireX Communications, Inc <[email protected]>
6
* Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
7
* Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
8
* Copyright (C) 2016 Mellanox Technologies
9
* Copyright (C) 2023 Microsoft Corporation <[email protected]>
10
*/
11
12
#define pr_fmt(fmt) "LSM: " fmt
13
14
#include <linux/bpf.h>
15
#include <linux/capability.h>
16
#include <linux/dcache.h>
17
#include <linux/export.h>
18
#include <linux/init.h>
19
#include <linux/kernel.h>
20
#include <linux/kernel_read_file.h>
21
#include <linux/lsm_hooks.h>
22
#include <linux/mman.h>
23
#include <linux/mount.h>
24
#include <linux/personality.h>
25
#include <linux/backing-dev.h>
26
#include <linux/string.h>
27
#include <linux/xattr.h>
28
#include <linux/msg.h>
29
#include <linux/overflow.h>
30
#include <linux/perf_event.h>
31
#include <linux/fs.h>
32
#include <net/flow.h>
33
#include <net/sock.h>
34
35
#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36
37
/*
38
* Identifier for the LSM static calls.
39
* HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40
* IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41
*/
42
#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43
44
/*
45
* Call the macro M for each LSM hook MAX_LSM_COUNT times.
46
*/
47
#define LSM_LOOP_UNROLL(M, ...) \
48
do { \
49
UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
50
} while (0)
51
52
#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53
54
/*
55
* These are descriptions of the reasons that can be passed to the
56
* security_locked_down() LSM hook. Placing this array here allows
57
* all security modules to use the same descriptions for auditing
58
* purposes.
59
*/
60
const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61
[LOCKDOWN_NONE] = "none",
62
[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63
[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64
[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65
[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66
[LOCKDOWN_HIBERNATION] = "hibernation",
67
[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68
[LOCKDOWN_IOPORT] = "raw io port access",
69
[LOCKDOWN_MSR] = "raw MSR access",
70
[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71
[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72
[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73
[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74
[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75
[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76
[LOCKDOWN_DEBUGFS] = "debugfs access",
77
[LOCKDOWN_XMON_WR] = "xmon write access",
78
[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79
[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80
[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81
[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82
[LOCKDOWN_KCORE] = "/proc/kcore access",
83
[LOCKDOWN_KPROBES] = "use of kprobes",
84
[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85
[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86
[LOCKDOWN_PERF] = "unsafe use of perf",
87
[LOCKDOWN_TRACEFS] = "use of tracefs",
88
[LOCKDOWN_XMON_RW] = "xmon read and write access",
89
[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90
[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91
};
92
93
static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94
95
static struct kmem_cache *lsm_file_cache;
96
static struct kmem_cache *lsm_inode_cache;
97
98
char *lsm_names;
99
static struct lsm_blob_sizes blob_sizes __ro_after_init;
100
101
/* Boot-time LSM user choice */
102
static __initdata const char *chosen_lsm_order;
103
static __initdata const char *chosen_major_lsm;
104
105
static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106
107
/* Ordered list of LSMs to initialize. */
108
static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109
static __initdata struct lsm_info *exclusive;
110
111
#ifdef CONFIG_HAVE_STATIC_CALL
112
#define LSM_HOOK_TRAMP(NAME, NUM) \
113
&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114
#else
115
#define LSM_HOOK_TRAMP(NAME, NUM) NULL
116
#endif
117
118
/*
119
* Define static calls and static keys for each LSM hook.
120
*/
121
#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
122
DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
123
*((RET(*)(__VA_ARGS__))NULL)); \
124
DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125
126
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
127
LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128
#include <linux/lsm_hook_defs.h>
129
#undef LSM_HOOK
130
#undef DEFINE_LSM_STATIC_CALL
131
132
/*
133
* Initialise a table of static calls for each LSM hook.
134
* DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135
* and a trampoline (STATIC_CALL_TRAMP) which are used to call
136
* __static_call_update when updating the static call.
137
*
138
* The static calls table is used by early LSMs, some architectures can fault on
139
* unaligned accesses and the fault handling code may not be ready by then.
140
* Thus, the static calls table should be aligned to avoid any unhandled faults
141
* in early init.
142
*/
143
struct lsm_static_calls_table
144
static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145
#define INIT_LSM_STATIC_CALL(NUM, NAME) \
146
(struct lsm_static_call) { \
147
.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
148
.trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
149
.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
150
},
151
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
152
.NAME = { \
153
LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
154
},
155
#include <linux/lsm_hook_defs.h>
156
#undef LSM_HOOK
157
#undef INIT_LSM_STATIC_CALL
158
};
159
160
static __initdata bool debug;
161
#define init_debug(...) \
162
do { \
163
if (debug) \
164
pr_info(__VA_ARGS__); \
165
} while (0)
166
167
static bool __init is_enabled(struct lsm_info *lsm)
168
{
169
if (!lsm->enabled)
170
return false;
171
172
return *lsm->enabled;
173
}
174
175
/* Mark an LSM's enabled flag. */
176
static int lsm_enabled_true __initdata = 1;
177
static int lsm_enabled_false __initdata = 0;
178
static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179
{
180
/*
181
* When an LSM hasn't configured an enable variable, we can use
182
* a hard-coded location for storing the default enabled state.
183
*/
184
if (!lsm->enabled) {
185
if (enabled)
186
lsm->enabled = &lsm_enabled_true;
187
else
188
lsm->enabled = &lsm_enabled_false;
189
} else if (lsm->enabled == &lsm_enabled_true) {
190
if (!enabled)
191
lsm->enabled = &lsm_enabled_false;
192
} else if (lsm->enabled == &lsm_enabled_false) {
193
if (enabled)
194
lsm->enabled = &lsm_enabled_true;
195
} else {
196
*lsm->enabled = enabled;
197
}
198
}
199
200
/* Is an LSM already listed in the ordered LSMs list? */
201
static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202
{
203
struct lsm_info **check;
204
205
for (check = ordered_lsms; *check; check++)
206
if (*check == lsm)
207
return true;
208
209
return false;
210
}
211
212
/* Append an LSM to the list of ordered LSMs to initialize. */
213
static int last_lsm __initdata;
214
static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215
{
216
/* Ignore duplicate selections. */
217
if (exists_ordered_lsm(lsm))
218
return;
219
220
if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221
return;
222
223
/* Enable this LSM, if it is not already set. */
224
if (!lsm->enabled)
225
lsm->enabled = &lsm_enabled_true;
226
ordered_lsms[last_lsm++] = lsm;
227
228
init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229
is_enabled(lsm) ? "enabled" : "disabled");
230
}
231
232
/* Is an LSM allowed to be initialized? */
233
static bool __init lsm_allowed(struct lsm_info *lsm)
234
{
235
/* Skip if the LSM is disabled. */
236
if (!is_enabled(lsm))
237
return false;
238
239
/* Not allowed if another exclusive LSM already initialized. */
240
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241
init_debug("exclusive disabled: %s\n", lsm->name);
242
return false;
243
}
244
245
return true;
246
}
247
248
static void __init lsm_set_blob_size(int *need, int *lbs)
249
{
250
int offset;
251
252
if (*need <= 0)
253
return;
254
255
offset = ALIGN(*lbs, sizeof(void *));
256
*lbs = offset + *need;
257
*need = offset;
258
}
259
260
static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261
{
262
if (!needed)
263
return;
264
265
lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266
lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267
lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268
/*
269
* The inode blob gets an rcu_head in addition to
270
* what the modules might need.
271
*/
272
if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273
blob_sizes.lbs_inode = sizeof(struct rcu_head);
274
lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275
lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276
lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277
lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278
lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279
lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280
lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281
lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282
lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283
lsm_set_blob_size(&needed->lbs_xattr_count,
284
&blob_sizes.lbs_xattr_count);
285
lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286
lsm_set_blob_size(&needed->lbs_bpf_map, &blob_sizes.lbs_bpf_map);
287
lsm_set_blob_size(&needed->lbs_bpf_prog, &blob_sizes.lbs_bpf_prog);
288
lsm_set_blob_size(&needed->lbs_bpf_token, &blob_sizes.lbs_bpf_token);
289
}
290
291
/* Prepare LSM for initialization. */
292
static void __init prepare_lsm(struct lsm_info *lsm)
293
{
294
int enabled = lsm_allowed(lsm);
295
296
/* Record enablement (to handle any following exclusive LSMs). */
297
set_enabled(lsm, enabled);
298
299
/* If enabled, do pre-initialization work. */
300
if (enabled) {
301
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
302
exclusive = lsm;
303
init_debug("exclusive chosen: %s\n", lsm->name);
304
}
305
306
lsm_set_blob_sizes(lsm->blobs);
307
}
308
}
309
310
/* Initialize a given LSM, if it is enabled. */
311
static void __init initialize_lsm(struct lsm_info *lsm)
312
{
313
if (is_enabled(lsm)) {
314
int ret;
315
316
init_debug("initializing %s\n", lsm->name);
317
ret = lsm->init();
318
WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
319
}
320
}
321
322
/*
323
* Current index to use while initializing the lsm id list.
324
*/
325
u32 lsm_active_cnt __ro_after_init;
326
const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
327
328
/* Populate ordered LSMs list from comma-separated LSM name list. */
329
static void __init ordered_lsm_parse(const char *order, const char *origin)
330
{
331
struct lsm_info *lsm;
332
char *sep, *name, *next;
333
334
/* LSM_ORDER_FIRST is always first. */
335
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
336
if (lsm->order == LSM_ORDER_FIRST)
337
append_ordered_lsm(lsm, " first");
338
}
339
340
/* Process "security=", if given. */
341
if (chosen_major_lsm) {
342
struct lsm_info *major;
343
344
/*
345
* To match the original "security=" behavior, this
346
* explicitly does NOT fallback to another Legacy Major
347
* if the selected one was separately disabled: disable
348
* all non-matching Legacy Major LSMs.
349
*/
350
for (major = __start_lsm_info; major < __end_lsm_info;
351
major++) {
352
if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
353
strcmp(major->name, chosen_major_lsm) != 0) {
354
set_enabled(major, false);
355
init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
356
chosen_major_lsm, major->name);
357
}
358
}
359
}
360
361
sep = kstrdup(order, GFP_KERNEL);
362
next = sep;
363
/* Walk the list, looking for matching LSMs. */
364
while ((name = strsep(&next, ",")) != NULL) {
365
bool found = false;
366
367
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
368
if (strcmp(lsm->name, name) == 0) {
369
if (lsm->order == LSM_ORDER_MUTABLE)
370
append_ordered_lsm(lsm, origin);
371
found = true;
372
}
373
}
374
375
if (!found)
376
init_debug("%s ignored: %s (not built into kernel)\n",
377
origin, name);
378
}
379
380
/* Process "security=", if given. */
381
if (chosen_major_lsm) {
382
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
383
if (exists_ordered_lsm(lsm))
384
continue;
385
if (strcmp(lsm->name, chosen_major_lsm) == 0)
386
append_ordered_lsm(lsm, "security=");
387
}
388
}
389
390
/* LSM_ORDER_LAST is always last. */
391
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
392
if (lsm->order == LSM_ORDER_LAST)
393
append_ordered_lsm(lsm, " last");
394
}
395
396
/* Disable all LSMs not in the ordered list. */
397
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
398
if (exists_ordered_lsm(lsm))
399
continue;
400
set_enabled(lsm, false);
401
init_debug("%s skipped: %s (not in requested order)\n",
402
origin, lsm->name);
403
}
404
405
kfree(sep);
406
}
407
408
static void __init lsm_static_call_init(struct security_hook_list *hl)
409
{
410
struct lsm_static_call *scall = hl->scalls;
411
int i;
412
413
for (i = 0; i < MAX_LSM_COUNT; i++) {
414
/* Update the first static call that is not used yet */
415
if (!scall->hl) {
416
__static_call_update(scall->key, scall->trampoline,
417
hl->hook.lsm_func_addr);
418
scall->hl = hl;
419
static_branch_enable(scall->active);
420
return;
421
}
422
scall++;
423
}
424
panic("%s - Ran out of static slots.\n", __func__);
425
}
426
427
static void __init lsm_early_cred(struct cred *cred);
428
static void __init lsm_early_task(struct task_struct *task);
429
430
static int lsm_append(const char *new, char **result);
431
432
static void __init report_lsm_order(void)
433
{
434
struct lsm_info **lsm, *early;
435
int first = 0;
436
437
pr_info("initializing lsm=");
438
439
/* Report each enabled LSM name, comma separated. */
440
for (early = __start_early_lsm_info;
441
early < __end_early_lsm_info; early++)
442
if (is_enabled(early))
443
pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
444
for (lsm = ordered_lsms; *lsm; lsm++)
445
if (is_enabled(*lsm))
446
pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
447
448
pr_cont("\n");
449
}
450
451
static void __init ordered_lsm_init(void)
452
{
453
struct lsm_info **lsm;
454
455
if (chosen_lsm_order) {
456
if (chosen_major_lsm) {
457
pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
458
chosen_major_lsm, chosen_lsm_order);
459
chosen_major_lsm = NULL;
460
}
461
ordered_lsm_parse(chosen_lsm_order, "cmdline");
462
} else
463
ordered_lsm_parse(builtin_lsm_order, "builtin");
464
465
for (lsm = ordered_lsms; *lsm; lsm++)
466
prepare_lsm(*lsm);
467
468
report_lsm_order();
469
470
init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
471
init_debug("file blob size = %d\n", blob_sizes.lbs_file);
472
init_debug("ib blob size = %d\n", blob_sizes.lbs_ib);
473
init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
474
init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
475
#ifdef CONFIG_KEYS
476
init_debug("key blob size = %d\n", blob_sizes.lbs_key);
477
#endif /* CONFIG_KEYS */
478
init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
479
init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
480
init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
481
init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
482
init_debug("task blob size = %d\n", blob_sizes.lbs_task);
483
init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
484
init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
485
init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev);
486
init_debug("bpf map blob size = %d\n", blob_sizes.lbs_bpf_map);
487
init_debug("bpf prog blob size = %d\n", blob_sizes.lbs_bpf_prog);
488
init_debug("bpf token blob size = %d\n", blob_sizes.lbs_bpf_token);
489
490
/*
491
* Create any kmem_caches needed for blobs
492
*/
493
if (blob_sizes.lbs_file)
494
lsm_file_cache = kmem_cache_create("lsm_file_cache",
495
blob_sizes.lbs_file, 0,
496
SLAB_PANIC, NULL);
497
if (blob_sizes.lbs_inode)
498
lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
499
blob_sizes.lbs_inode, 0,
500
SLAB_PANIC, NULL);
501
502
lsm_early_cred((struct cred *) current->cred);
503
lsm_early_task(current);
504
for (lsm = ordered_lsms; *lsm; lsm++)
505
initialize_lsm(*lsm);
506
}
507
508
int __init early_security_init(void)
509
{
510
struct lsm_info *lsm;
511
512
for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
513
if (!lsm->enabled)
514
lsm->enabled = &lsm_enabled_true;
515
prepare_lsm(lsm);
516
initialize_lsm(lsm);
517
}
518
519
return 0;
520
}
521
522
/**
523
* security_init - initializes the security framework
524
*
525
* This should be called early in the kernel initialization sequence.
526
*/
527
int __init security_init(void)
528
{
529
struct lsm_info *lsm;
530
531
init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
532
init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
533
init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
534
535
/*
536
* Append the names of the early LSM modules now that kmalloc() is
537
* available
538
*/
539
for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
540
init_debug(" early started: %s (%s)\n", lsm->name,
541
is_enabled(lsm) ? "enabled" : "disabled");
542
if (lsm->enabled)
543
lsm_append(lsm->name, &lsm_names);
544
}
545
546
/* Load LSMs in specified order. */
547
ordered_lsm_init();
548
549
return 0;
550
}
551
552
/* Save user chosen LSM */
553
static int __init choose_major_lsm(char *str)
554
{
555
chosen_major_lsm = str;
556
return 1;
557
}
558
__setup("security=", choose_major_lsm);
559
560
/* Explicitly choose LSM initialization order. */
561
static int __init choose_lsm_order(char *str)
562
{
563
chosen_lsm_order = str;
564
return 1;
565
}
566
__setup("lsm=", choose_lsm_order);
567
568
/* Enable LSM order debugging. */
569
static int __init enable_debug(char *str)
570
{
571
debug = true;
572
return 1;
573
}
574
__setup("lsm.debug", enable_debug);
575
576
static bool match_last_lsm(const char *list, const char *lsm)
577
{
578
const char *last;
579
580
if (WARN_ON(!list || !lsm))
581
return false;
582
last = strrchr(list, ',');
583
if (last)
584
/* Pass the comma, strcmp() will check for '\0' */
585
last++;
586
else
587
last = list;
588
return !strcmp(last, lsm);
589
}
590
591
static int lsm_append(const char *new, char **result)
592
{
593
char *cp;
594
595
if (*result == NULL) {
596
*result = kstrdup(new, GFP_KERNEL);
597
if (*result == NULL)
598
return -ENOMEM;
599
} else {
600
/* Check if it is the last registered name */
601
if (match_last_lsm(*result, new))
602
return 0;
603
cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
604
if (cp == NULL)
605
return -ENOMEM;
606
kfree(*result);
607
*result = cp;
608
}
609
return 0;
610
}
611
612
/**
613
* security_add_hooks - Add a modules hooks to the hook lists.
614
* @hooks: the hooks to add
615
* @count: the number of hooks to add
616
* @lsmid: the identification information for the security module
617
*
618
* Each LSM has to register its hooks with the infrastructure.
619
*/
620
void __init security_add_hooks(struct security_hook_list *hooks, int count,
621
const struct lsm_id *lsmid)
622
{
623
int i;
624
625
/*
626
* A security module may call security_add_hooks() more
627
* than once during initialization, and LSM initialization
628
* is serialized. Landlock is one such case.
629
* Look at the previous entry, if there is one, for duplication.
630
*/
631
if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
632
if (lsm_active_cnt >= MAX_LSM_COUNT)
633
panic("%s Too many LSMs registered.\n", __func__);
634
lsm_idlist[lsm_active_cnt++] = lsmid;
635
}
636
637
for (i = 0; i < count; i++) {
638
hooks[i].lsmid = lsmid;
639
lsm_static_call_init(&hooks[i]);
640
}
641
642
/*
643
* Don't try to append during early_security_init(), we'll come back
644
* and fix this up afterwards.
645
*/
646
if (slab_is_available()) {
647
if (lsm_append(lsmid->name, &lsm_names) < 0)
648
panic("%s - Cannot get early memory.\n", __func__);
649
}
650
}
651
652
int call_blocking_lsm_notifier(enum lsm_event event, void *data)
653
{
654
return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
655
event, data);
656
}
657
EXPORT_SYMBOL(call_blocking_lsm_notifier);
658
659
int register_blocking_lsm_notifier(struct notifier_block *nb)
660
{
661
return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
662
nb);
663
}
664
EXPORT_SYMBOL(register_blocking_lsm_notifier);
665
666
int unregister_blocking_lsm_notifier(struct notifier_block *nb)
667
{
668
return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
669
nb);
670
}
671
EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
672
673
/**
674
* lsm_blob_alloc - allocate a composite blob
675
* @dest: the destination for the blob
676
* @size: the size of the blob
677
* @gfp: allocation type
678
*
679
* Allocate a blob for all the modules
680
*
681
* Returns 0, or -ENOMEM if memory can't be allocated.
682
*/
683
static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
684
{
685
if (size == 0) {
686
*dest = NULL;
687
return 0;
688
}
689
690
*dest = kzalloc(size, gfp);
691
if (*dest == NULL)
692
return -ENOMEM;
693
return 0;
694
}
695
696
/**
697
* lsm_cred_alloc - allocate a composite cred blob
698
* @cred: the cred that needs a blob
699
* @gfp: allocation type
700
*
701
* Allocate the cred blob for all the modules
702
*
703
* Returns 0, or -ENOMEM if memory can't be allocated.
704
*/
705
static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
706
{
707
return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
708
}
709
710
/**
711
* lsm_early_cred - during initialization allocate a composite cred blob
712
* @cred: the cred that needs a blob
713
*
714
* Allocate the cred blob for all the modules
715
*/
716
static void __init lsm_early_cred(struct cred *cred)
717
{
718
int rc = lsm_cred_alloc(cred, GFP_KERNEL);
719
720
if (rc)
721
panic("%s: Early cred alloc failed.\n", __func__);
722
}
723
724
/**
725
* lsm_file_alloc - allocate a composite file blob
726
* @file: the file that needs a blob
727
*
728
* Allocate the file blob for all the modules
729
*
730
* Returns 0, or -ENOMEM if memory can't be allocated.
731
*/
732
static int lsm_file_alloc(struct file *file)
733
{
734
if (!lsm_file_cache) {
735
file->f_security = NULL;
736
return 0;
737
}
738
739
file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
740
if (file->f_security == NULL)
741
return -ENOMEM;
742
return 0;
743
}
744
745
/**
746
* lsm_inode_alloc - allocate a composite inode blob
747
* @inode: the inode that needs a blob
748
* @gfp: allocation flags
749
*
750
* Allocate the inode blob for all the modules
751
*
752
* Returns 0, or -ENOMEM if memory can't be allocated.
753
*/
754
static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
755
{
756
if (!lsm_inode_cache) {
757
inode->i_security = NULL;
758
return 0;
759
}
760
761
inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
762
if (inode->i_security == NULL)
763
return -ENOMEM;
764
return 0;
765
}
766
767
/**
768
* lsm_task_alloc - allocate a composite task blob
769
* @task: the task that needs a blob
770
*
771
* Allocate the task blob for all the modules
772
*
773
* Returns 0, or -ENOMEM if memory can't be allocated.
774
*/
775
static int lsm_task_alloc(struct task_struct *task)
776
{
777
return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
778
}
779
780
/**
781
* lsm_ipc_alloc - allocate a composite ipc blob
782
* @kip: the ipc that needs a blob
783
*
784
* Allocate the ipc blob for all the modules
785
*
786
* Returns 0, or -ENOMEM if memory can't be allocated.
787
*/
788
static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
789
{
790
return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
791
}
792
793
#ifdef CONFIG_KEYS
794
/**
795
* lsm_key_alloc - allocate a composite key blob
796
* @key: the key that needs a blob
797
*
798
* Allocate the key blob for all the modules
799
*
800
* Returns 0, or -ENOMEM if memory can't be allocated.
801
*/
802
static int lsm_key_alloc(struct key *key)
803
{
804
return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
805
}
806
#endif /* CONFIG_KEYS */
807
808
/**
809
* lsm_msg_msg_alloc - allocate a composite msg_msg blob
810
* @mp: the msg_msg that needs a blob
811
*
812
* Allocate the ipc blob for all the modules
813
*
814
* Returns 0, or -ENOMEM if memory can't be allocated.
815
*/
816
static int lsm_msg_msg_alloc(struct msg_msg *mp)
817
{
818
return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
819
GFP_KERNEL);
820
}
821
822
/**
823
* lsm_bdev_alloc - allocate a composite block_device blob
824
* @bdev: the block_device that needs a blob
825
*
826
* Allocate the block_device blob for all the modules
827
*
828
* Returns 0, or -ENOMEM if memory can't be allocated.
829
*/
830
static int lsm_bdev_alloc(struct block_device *bdev)
831
{
832
return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev,
833
GFP_KERNEL);
834
}
835
836
#ifdef CONFIG_BPF_SYSCALL
837
/**
838
* lsm_bpf_map_alloc - allocate a composite bpf_map blob
839
* @map: the bpf_map that needs a blob
840
*
841
* Allocate the bpf_map blob for all the modules
842
*
843
* Returns 0, or -ENOMEM if memory can't be allocated.
844
*/
845
static int lsm_bpf_map_alloc(struct bpf_map *map)
846
{
847
return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL);
848
}
849
850
/**
851
* lsm_bpf_prog_alloc - allocate a composite bpf_prog blob
852
* @prog: the bpf_prog that needs a blob
853
*
854
* Allocate the bpf_prog blob for all the modules
855
*
856
* Returns 0, or -ENOMEM if memory can't be allocated.
857
*/
858
static int lsm_bpf_prog_alloc(struct bpf_prog *prog)
859
{
860
return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL);
861
}
862
863
/**
864
* lsm_bpf_token_alloc - allocate a composite bpf_token blob
865
* @token: the bpf_token that needs a blob
866
*
867
* Allocate the bpf_token blob for all the modules
868
*
869
* Returns 0, or -ENOMEM if memory can't be allocated.
870
*/
871
static int lsm_bpf_token_alloc(struct bpf_token *token)
872
{
873
return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL);
874
}
875
#endif /* CONFIG_BPF_SYSCALL */
876
877
/**
878
* lsm_early_task - during initialization allocate a composite task blob
879
* @task: the task that needs a blob
880
*
881
* Allocate the task blob for all the modules
882
*/
883
static void __init lsm_early_task(struct task_struct *task)
884
{
885
int rc = lsm_task_alloc(task);
886
887
if (rc)
888
panic("%s: Early task alloc failed.\n", __func__);
889
}
890
891
/**
892
* lsm_superblock_alloc - allocate a composite superblock blob
893
* @sb: the superblock that needs a blob
894
*
895
* Allocate the superblock blob for all the modules
896
*
897
* Returns 0, or -ENOMEM if memory can't be allocated.
898
*/
899
static int lsm_superblock_alloc(struct super_block *sb)
900
{
901
return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
902
GFP_KERNEL);
903
}
904
905
/**
906
* lsm_fill_user_ctx - Fill a user space lsm_ctx structure
907
* @uctx: a userspace LSM context to be filled
908
* @uctx_len: available uctx size (input), used uctx size (output)
909
* @val: the new LSM context value
910
* @val_len: the size of the new LSM context value
911
* @id: LSM id
912
* @flags: LSM defined flags
913
*
914
* Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
915
* simply calculate the required size to output via @utc_len and return
916
* success.
917
*
918
* Returns 0 on success, -E2BIG if userspace buffer is not large enough,
919
* -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
920
*/
921
int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
922
void *val, size_t val_len,
923
u64 id, u64 flags)
924
{
925
struct lsm_ctx *nctx = NULL;
926
size_t nctx_len;
927
int rc = 0;
928
929
nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
930
if (nctx_len > *uctx_len) {
931
rc = -E2BIG;
932
goto out;
933
}
934
935
/* no buffer - return success/0 and set @uctx_len to the req size */
936
if (!uctx)
937
goto out;
938
939
nctx = kzalloc(nctx_len, GFP_KERNEL);
940
if (nctx == NULL) {
941
rc = -ENOMEM;
942
goto out;
943
}
944
nctx->id = id;
945
nctx->flags = flags;
946
nctx->len = nctx_len;
947
nctx->ctx_len = val_len;
948
memcpy(nctx->ctx, val, val_len);
949
950
if (copy_to_user(uctx, nctx, nctx_len))
951
rc = -EFAULT;
952
953
out:
954
kfree(nctx);
955
*uctx_len = nctx_len;
956
return rc;
957
}
958
959
/*
960
* The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
961
* can be accessed with:
962
*
963
* LSM_RET_DEFAULT(<hook_name>)
964
*
965
* The macros below define static constants for the default value of each
966
* LSM hook.
967
*/
968
#define LSM_RET_DEFAULT(NAME) (NAME##_default)
969
#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
970
#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
971
static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
972
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
973
DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
974
975
#include <linux/lsm_hook_defs.h>
976
#undef LSM_HOOK
977
978
/*
979
* Hook list operation macros.
980
*
981
* call_void_hook:
982
* This is a hook that does not return a value.
983
*
984
* call_int_hook:
985
* This is a hook that returns a value.
986
*/
987
#define __CALL_STATIC_VOID(NUM, HOOK, ...) \
988
do { \
989
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
990
static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
991
} \
992
} while (0);
993
994
#define call_void_hook(HOOK, ...) \
995
do { \
996
LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
997
} while (0)
998
999
1000
#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
1001
do { \
1002
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
1003
R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
1004
if (R != LSM_RET_DEFAULT(HOOK)) \
1005
goto LABEL; \
1006
} \
1007
} while (0);
1008
1009
#define call_int_hook(HOOK, ...) \
1010
({ \
1011
__label__ OUT; \
1012
int RC = LSM_RET_DEFAULT(HOOK); \
1013
\
1014
LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
1015
OUT: \
1016
RC; \
1017
})
1018
1019
#define lsm_for_each_hook(scall, NAME) \
1020
for (scall = static_calls_table.NAME; \
1021
scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
1022
if (static_key_enabled(&scall->active->key))
1023
1024
/* Security operations */
1025
1026
/**
1027
* security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
1028
* @mgr: task credentials of current binder process
1029
*
1030
* Check whether @mgr is allowed to be the binder context manager.
1031
*
1032
* Return: Return 0 if permission is granted.
1033
*/
1034
int security_binder_set_context_mgr(const struct cred *mgr)
1035
{
1036
return call_int_hook(binder_set_context_mgr, mgr);
1037
}
1038
1039
/**
1040
* security_binder_transaction() - Check if a binder transaction is allowed
1041
* @from: sending process
1042
* @to: receiving process
1043
*
1044
* Check whether @from is allowed to invoke a binder transaction call to @to.
1045
*
1046
* Return: Returns 0 if permission is granted.
1047
*/
1048
int security_binder_transaction(const struct cred *from,
1049
const struct cred *to)
1050
{
1051
return call_int_hook(binder_transaction, from, to);
1052
}
1053
1054
/**
1055
* security_binder_transfer_binder() - Check if a binder transfer is allowed
1056
* @from: sending process
1057
* @to: receiving process
1058
*
1059
* Check whether @from is allowed to transfer a binder reference to @to.
1060
*
1061
* Return: Returns 0 if permission is granted.
1062
*/
1063
int security_binder_transfer_binder(const struct cred *from,
1064
const struct cred *to)
1065
{
1066
return call_int_hook(binder_transfer_binder, from, to);
1067
}
1068
1069
/**
1070
* security_binder_transfer_file() - Check if a binder file xfer is allowed
1071
* @from: sending process
1072
* @to: receiving process
1073
* @file: file being transferred
1074
*
1075
* Check whether @from is allowed to transfer @file to @to.
1076
*
1077
* Return: Returns 0 if permission is granted.
1078
*/
1079
int security_binder_transfer_file(const struct cred *from,
1080
const struct cred *to, const struct file *file)
1081
{
1082
return call_int_hook(binder_transfer_file, from, to, file);
1083
}
1084
1085
/**
1086
* security_ptrace_access_check() - Check if tracing is allowed
1087
* @child: target process
1088
* @mode: PTRACE_MODE flags
1089
*
1090
* Check permission before allowing the current process to trace the @child
1091
* process. Security modules may also want to perform a process tracing check
1092
* during an execve in the set_security or apply_creds hooks of tracing check
1093
* during an execve in the bprm_set_creds hook of binprm_security_ops if the
1094
* process is being traced and its security attributes would be changed by the
1095
* execve.
1096
*
1097
* Return: Returns 0 if permission is granted.
1098
*/
1099
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1100
{
1101
return call_int_hook(ptrace_access_check, child, mode);
1102
}
1103
1104
/**
1105
* security_ptrace_traceme() - Check if tracing is allowed
1106
* @parent: tracing process
1107
*
1108
* Check that the @parent process has sufficient permission to trace the
1109
* current process before allowing the current process to present itself to the
1110
* @parent process for tracing.
1111
*
1112
* Return: Returns 0 if permission is granted.
1113
*/
1114
int security_ptrace_traceme(struct task_struct *parent)
1115
{
1116
return call_int_hook(ptrace_traceme, parent);
1117
}
1118
1119
/**
1120
* security_capget() - Get the capability sets for a process
1121
* @target: target process
1122
* @effective: effective capability set
1123
* @inheritable: inheritable capability set
1124
* @permitted: permitted capability set
1125
*
1126
* Get the @effective, @inheritable, and @permitted capability sets for the
1127
* @target process. The hook may also perform permission checking to determine
1128
* if the current process is allowed to see the capability sets of the @target
1129
* process.
1130
*
1131
* Return: Returns 0 if the capability sets were successfully obtained.
1132
*/
1133
int security_capget(const struct task_struct *target,
1134
kernel_cap_t *effective,
1135
kernel_cap_t *inheritable,
1136
kernel_cap_t *permitted)
1137
{
1138
return call_int_hook(capget, target, effective, inheritable, permitted);
1139
}
1140
1141
/**
1142
* security_capset() - Set the capability sets for a process
1143
* @new: new credentials for the target process
1144
* @old: current credentials of the target process
1145
* @effective: effective capability set
1146
* @inheritable: inheritable capability set
1147
* @permitted: permitted capability set
1148
*
1149
* Set the @effective, @inheritable, and @permitted capability sets for the
1150
* current process.
1151
*
1152
* Return: Returns 0 and update @new if permission is granted.
1153
*/
1154
int security_capset(struct cred *new, const struct cred *old,
1155
const kernel_cap_t *effective,
1156
const kernel_cap_t *inheritable,
1157
const kernel_cap_t *permitted)
1158
{
1159
return call_int_hook(capset, new, old, effective, inheritable,
1160
permitted);
1161
}
1162
1163
/**
1164
* security_capable() - Check if a process has the necessary capability
1165
* @cred: credentials to examine
1166
* @ns: user namespace
1167
* @cap: capability requested
1168
* @opts: capability check options
1169
*
1170
* Check whether the @tsk process has the @cap capability in the indicated
1171
* credentials. @cap contains the capability <include/linux/capability.h>.
1172
* @opts contains options for the capable check <include/linux/security.h>.
1173
*
1174
* Return: Returns 0 if the capability is granted.
1175
*/
1176
int security_capable(const struct cred *cred,
1177
struct user_namespace *ns,
1178
int cap,
1179
unsigned int opts)
1180
{
1181
return call_int_hook(capable, cred, ns, cap, opts);
1182
}
1183
1184
/**
1185
* security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1186
* @cmds: commands
1187
* @type: type
1188
* @id: id
1189
* @sb: filesystem
1190
*
1191
* Check whether the quotactl syscall is allowed for this @sb.
1192
*
1193
* Return: Returns 0 if permission is granted.
1194
*/
1195
int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1196
{
1197
return call_int_hook(quotactl, cmds, type, id, sb);
1198
}
1199
1200
/**
1201
* security_quota_on() - Check if QUOTAON is allowed for a dentry
1202
* @dentry: dentry
1203
*
1204
* Check whether QUOTAON is allowed for @dentry.
1205
*
1206
* Return: Returns 0 if permission is granted.
1207
*/
1208
int security_quota_on(struct dentry *dentry)
1209
{
1210
return call_int_hook(quota_on, dentry);
1211
}
1212
1213
/**
1214
* security_syslog() - Check if accessing the kernel message ring is allowed
1215
* @type: SYSLOG_ACTION_* type
1216
*
1217
* Check permission before accessing the kernel message ring or changing
1218
* logging to the console. See the syslog(2) manual page for an explanation of
1219
* the @type values.
1220
*
1221
* Return: Return 0 if permission is granted.
1222
*/
1223
int security_syslog(int type)
1224
{
1225
return call_int_hook(syslog, type);
1226
}
1227
1228
/**
1229
* security_settime64() - Check if changing the system time is allowed
1230
* @ts: new time
1231
* @tz: timezone
1232
*
1233
* Check permission to change the system time, struct timespec64 is defined in
1234
* <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1235
*
1236
* Return: Returns 0 if permission is granted.
1237
*/
1238
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1239
{
1240
return call_int_hook(settime, ts, tz);
1241
}
1242
1243
/**
1244
* security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1245
* @mm: mm struct
1246
* @pages: number of pages
1247
*
1248
* Check permissions for allocating a new virtual mapping. If all LSMs return
1249
* a positive value, __vm_enough_memory() will be called with cap_sys_admin
1250
* set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1251
* called with cap_sys_admin cleared.
1252
*
1253
* Return: Returns 0 if permission is granted by the LSM infrastructure to the
1254
* caller.
1255
*/
1256
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1257
{
1258
struct lsm_static_call *scall;
1259
int cap_sys_admin = 1;
1260
int rc;
1261
1262
/*
1263
* The module will respond with 0 if it thinks the __vm_enough_memory()
1264
* call should be made with the cap_sys_admin set. If all of the modules
1265
* agree that it should be set it will. If any module thinks it should
1266
* not be set it won't.
1267
*/
1268
lsm_for_each_hook(scall, vm_enough_memory) {
1269
rc = scall->hl->hook.vm_enough_memory(mm, pages);
1270
if (rc < 0) {
1271
cap_sys_admin = 0;
1272
break;
1273
}
1274
}
1275
return __vm_enough_memory(mm, pages, cap_sys_admin);
1276
}
1277
1278
/**
1279
* security_bprm_creds_for_exec() - Prepare the credentials for exec()
1280
* @bprm: binary program information
1281
*
1282
* If the setup in prepare_exec_creds did not setup @bprm->cred->security
1283
* properly for executing @bprm->file, update the LSM's portion of
1284
* @bprm->cred->security to be what commit_creds needs to install for the new
1285
* program. This hook may also optionally check permissions (e.g. for
1286
* transitions between security domains). The hook must set @bprm->secureexec
1287
* to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1288
* contains the linux_binprm structure.
1289
*
1290
* If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1291
* set. The result must be the same as without this flag even if the execution
1292
* will never really happen and @bprm will always be dropped.
1293
*
1294
* This hook must not change current->cred, only @bprm->cred.
1295
*
1296
* Return: Returns 0 if the hook is successful and permission is granted.
1297
*/
1298
int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1299
{
1300
return call_int_hook(bprm_creds_for_exec, bprm);
1301
}
1302
1303
/**
1304
* security_bprm_creds_from_file() - Update linux_binprm creds based on file
1305
* @bprm: binary program information
1306
* @file: associated file
1307
*
1308
* If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1309
* exec, update @bprm->cred to reflect that change. This is called after
1310
* finding the binary that will be executed without an interpreter. This
1311
* ensures that the credentials will not be derived from a script that the
1312
* binary will need to reopen, which when reopend may end up being a completely
1313
* different file. This hook may also optionally check permissions (e.g. for
1314
* transitions between security domains). The hook must set @bprm->secureexec
1315
* to 1 if AT_SECURE should be set to request libc enable secure mode. The
1316
* hook must add to @bprm->per_clear any personality flags that should be
1317
* cleared from current->personality. @bprm contains the linux_binprm
1318
* structure.
1319
*
1320
* Return: Returns 0 if the hook is successful and permission is granted.
1321
*/
1322
int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1323
{
1324
return call_int_hook(bprm_creds_from_file, bprm, file);
1325
}
1326
1327
/**
1328
* security_bprm_check() - Mediate binary handler search
1329
* @bprm: binary program information
1330
*
1331
* This hook mediates the point when a search for a binary handler will begin.
1332
* It allows a check against the @bprm->cred->security value which was set in
1333
* the preceding creds_for_exec call. The argv list and envp list are reliably
1334
* available in @bprm. This hook may be called multiple times during a single
1335
* execve. @bprm contains the linux_binprm structure.
1336
*
1337
* Return: Returns 0 if the hook is successful and permission is granted.
1338
*/
1339
int security_bprm_check(struct linux_binprm *bprm)
1340
{
1341
return call_int_hook(bprm_check_security, bprm);
1342
}
1343
1344
/**
1345
* security_bprm_committing_creds() - Install creds for a process during exec()
1346
* @bprm: binary program information
1347
*
1348
* Prepare to install the new security attributes of a process being
1349
* transformed by an execve operation, based on the old credentials pointed to
1350
* by @current->cred and the information set in @bprm->cred by the
1351
* bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1352
* hook is a good place to perform state changes on the process such as closing
1353
* open file descriptors to which access will no longer be granted when the
1354
* attributes are changed. This is called immediately before commit_creds().
1355
*/
1356
void security_bprm_committing_creds(const struct linux_binprm *bprm)
1357
{
1358
call_void_hook(bprm_committing_creds, bprm);
1359
}
1360
1361
/**
1362
* security_bprm_committed_creds() - Tidy up after cred install during exec()
1363
* @bprm: binary program information
1364
*
1365
* Tidy up after the installation of the new security attributes of a process
1366
* being transformed by an execve operation. The new credentials have, by this
1367
* point, been set to @current->cred. @bprm points to the linux_binprm
1368
* structure. This hook is a good place to perform state changes on the
1369
* process such as clearing out non-inheritable signal state. This is called
1370
* immediately after commit_creds().
1371
*/
1372
void security_bprm_committed_creds(const struct linux_binprm *bprm)
1373
{
1374
call_void_hook(bprm_committed_creds, bprm);
1375
}
1376
1377
/**
1378
* security_fs_context_submount() - Initialise fc->security
1379
* @fc: new filesystem context
1380
* @reference: dentry reference for submount/remount
1381
*
1382
* Fill out the ->security field for a new fs_context.
1383
*
1384
* Return: Returns 0 on success or negative error code on failure.
1385
*/
1386
int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1387
{
1388
return call_int_hook(fs_context_submount, fc, reference);
1389
}
1390
1391
/**
1392
* security_fs_context_dup() - Duplicate a fs_context LSM blob
1393
* @fc: destination filesystem context
1394
* @src_fc: source filesystem context
1395
*
1396
* Allocate and attach a security structure to sc->security. This pointer is
1397
* initialised to NULL by the caller. @fc indicates the new filesystem context.
1398
* @src_fc indicates the original filesystem context.
1399
*
1400
* Return: Returns 0 on success or a negative error code on failure.
1401
*/
1402
int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1403
{
1404
return call_int_hook(fs_context_dup, fc, src_fc);
1405
}
1406
1407
/**
1408
* security_fs_context_parse_param() - Configure a filesystem context
1409
* @fc: filesystem context
1410
* @param: filesystem parameter
1411
*
1412
* Userspace provided a parameter to configure a superblock. The LSM can
1413
* consume the parameter or return it to the caller for use elsewhere.
1414
*
1415
* Return: If the parameter is used by the LSM it should return 0, if it is
1416
* returned to the caller -ENOPARAM is returned, otherwise a negative
1417
* error code is returned.
1418
*/
1419
int security_fs_context_parse_param(struct fs_context *fc,
1420
struct fs_parameter *param)
1421
{
1422
struct lsm_static_call *scall;
1423
int trc;
1424
int rc = -ENOPARAM;
1425
1426
lsm_for_each_hook(scall, fs_context_parse_param) {
1427
trc = scall->hl->hook.fs_context_parse_param(fc, param);
1428
if (trc == 0)
1429
rc = 0;
1430
else if (trc != -ENOPARAM)
1431
return trc;
1432
}
1433
return rc;
1434
}
1435
1436
/**
1437
* security_sb_alloc() - Allocate a super_block LSM blob
1438
* @sb: filesystem superblock
1439
*
1440
* Allocate and attach a security structure to the sb->s_security field. The
1441
* s_security field is initialized to NULL when the structure is allocated.
1442
* @sb contains the super_block structure to be modified.
1443
*
1444
* Return: Returns 0 if operation was successful.
1445
*/
1446
int security_sb_alloc(struct super_block *sb)
1447
{
1448
int rc = lsm_superblock_alloc(sb);
1449
1450
if (unlikely(rc))
1451
return rc;
1452
rc = call_int_hook(sb_alloc_security, sb);
1453
if (unlikely(rc))
1454
security_sb_free(sb);
1455
return rc;
1456
}
1457
1458
/**
1459
* security_sb_delete() - Release super_block LSM associated objects
1460
* @sb: filesystem superblock
1461
*
1462
* Release objects tied to a superblock (e.g. inodes). @sb contains the
1463
* super_block structure being released.
1464
*/
1465
void security_sb_delete(struct super_block *sb)
1466
{
1467
call_void_hook(sb_delete, sb);
1468
}
1469
1470
/**
1471
* security_sb_free() - Free a super_block LSM blob
1472
* @sb: filesystem superblock
1473
*
1474
* Deallocate and clear the sb->s_security field. @sb contains the super_block
1475
* structure to be modified.
1476
*/
1477
void security_sb_free(struct super_block *sb)
1478
{
1479
call_void_hook(sb_free_security, sb);
1480
kfree(sb->s_security);
1481
sb->s_security = NULL;
1482
}
1483
1484
/**
1485
* security_free_mnt_opts() - Free memory associated with mount options
1486
* @mnt_opts: LSM processed mount options
1487
*
1488
* Free memory associated with @mnt_ops.
1489
*/
1490
void security_free_mnt_opts(void **mnt_opts)
1491
{
1492
if (!*mnt_opts)
1493
return;
1494
call_void_hook(sb_free_mnt_opts, *mnt_opts);
1495
*mnt_opts = NULL;
1496
}
1497
EXPORT_SYMBOL(security_free_mnt_opts);
1498
1499
/**
1500
* security_sb_eat_lsm_opts() - Consume LSM mount options
1501
* @options: mount options
1502
* @mnt_opts: LSM processed mount options
1503
*
1504
* Eat (scan @options) and save them in @mnt_opts.
1505
*
1506
* Return: Returns 0 on success, negative values on failure.
1507
*/
1508
int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1509
{
1510
return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1511
}
1512
EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1513
1514
/**
1515
* security_sb_mnt_opts_compat() - Check if new mount options are allowed
1516
* @sb: filesystem superblock
1517
* @mnt_opts: new mount options
1518
*
1519
* Determine if the new mount options in @mnt_opts are allowed given the
1520
* existing mounted filesystem at @sb. @sb superblock being compared.
1521
*
1522
* Return: Returns 0 if options are compatible.
1523
*/
1524
int security_sb_mnt_opts_compat(struct super_block *sb,
1525
void *mnt_opts)
1526
{
1527
return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1528
}
1529
EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1530
1531
/**
1532
* security_sb_remount() - Verify no incompatible mount changes during remount
1533
* @sb: filesystem superblock
1534
* @mnt_opts: (re)mount options
1535
*
1536
* Extracts security system specific mount options and verifies no changes are
1537
* being made to those options.
1538
*
1539
* Return: Returns 0 if permission is granted.
1540
*/
1541
int security_sb_remount(struct super_block *sb,
1542
void *mnt_opts)
1543
{
1544
return call_int_hook(sb_remount, sb, mnt_opts);
1545
}
1546
EXPORT_SYMBOL(security_sb_remount);
1547
1548
/**
1549
* security_sb_kern_mount() - Check if a kernel mount is allowed
1550
* @sb: filesystem superblock
1551
*
1552
* Mount this @sb if allowed by permissions.
1553
*
1554
* Return: Returns 0 if permission is granted.
1555
*/
1556
int security_sb_kern_mount(const struct super_block *sb)
1557
{
1558
return call_int_hook(sb_kern_mount, sb);
1559
}
1560
1561
/**
1562
* security_sb_show_options() - Output the mount options for a superblock
1563
* @m: output file
1564
* @sb: filesystem superblock
1565
*
1566
* Show (print on @m) mount options for this @sb.
1567
*
1568
* Return: Returns 0 on success, negative values on failure.
1569
*/
1570
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1571
{
1572
return call_int_hook(sb_show_options, m, sb);
1573
}
1574
1575
/**
1576
* security_sb_statfs() - Check if accessing fs stats is allowed
1577
* @dentry: superblock handle
1578
*
1579
* Check permission before obtaining filesystem statistics for the @mnt
1580
* mountpoint. @dentry is a handle on the superblock for the filesystem.
1581
*
1582
* Return: Returns 0 if permission is granted.
1583
*/
1584
int security_sb_statfs(struct dentry *dentry)
1585
{
1586
return call_int_hook(sb_statfs, dentry);
1587
}
1588
1589
/**
1590
* security_sb_mount() - Check permission for mounting a filesystem
1591
* @dev_name: filesystem backing device
1592
* @path: mount point
1593
* @type: filesystem type
1594
* @flags: mount flags
1595
* @data: filesystem specific data
1596
*
1597
* Check permission before an object specified by @dev_name is mounted on the
1598
* mount point named by @nd. For an ordinary mount, @dev_name identifies a
1599
* device if the file system type requires a device. For a remount
1600
* (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1601
* (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1602
* mounted.
1603
*
1604
* Return: Returns 0 if permission is granted.
1605
*/
1606
int security_sb_mount(const char *dev_name, const struct path *path,
1607
const char *type, unsigned long flags, void *data)
1608
{
1609
return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1610
}
1611
1612
/**
1613
* security_sb_umount() - Check permission for unmounting a filesystem
1614
* @mnt: mounted filesystem
1615
* @flags: unmount flags
1616
*
1617
* Check permission before the @mnt file system is unmounted.
1618
*
1619
* Return: Returns 0 if permission is granted.
1620
*/
1621
int security_sb_umount(struct vfsmount *mnt, int flags)
1622
{
1623
return call_int_hook(sb_umount, mnt, flags);
1624
}
1625
1626
/**
1627
* security_sb_pivotroot() - Check permissions for pivoting the rootfs
1628
* @old_path: new location for current rootfs
1629
* @new_path: location of the new rootfs
1630
*
1631
* Check permission before pivoting the root filesystem.
1632
*
1633
* Return: Returns 0 if permission is granted.
1634
*/
1635
int security_sb_pivotroot(const struct path *old_path,
1636
const struct path *new_path)
1637
{
1638
return call_int_hook(sb_pivotroot, old_path, new_path);
1639
}
1640
1641
/**
1642
* security_sb_set_mnt_opts() - Set the mount options for a filesystem
1643
* @sb: filesystem superblock
1644
* @mnt_opts: binary mount options
1645
* @kern_flags: kernel flags (in)
1646
* @set_kern_flags: kernel flags (out)
1647
*
1648
* Set the security relevant mount options used for a superblock.
1649
*
1650
* Return: Returns 0 on success, error on failure.
1651
*/
1652
int security_sb_set_mnt_opts(struct super_block *sb,
1653
void *mnt_opts,
1654
unsigned long kern_flags,
1655
unsigned long *set_kern_flags)
1656
{
1657
struct lsm_static_call *scall;
1658
int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1659
1660
lsm_for_each_hook(scall, sb_set_mnt_opts) {
1661
rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1662
set_kern_flags);
1663
if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1664
break;
1665
}
1666
return rc;
1667
}
1668
EXPORT_SYMBOL(security_sb_set_mnt_opts);
1669
1670
/**
1671
* security_sb_clone_mnt_opts() - Duplicate superblock mount options
1672
* @oldsb: source superblock
1673
* @newsb: destination superblock
1674
* @kern_flags: kernel flags (in)
1675
* @set_kern_flags: kernel flags (out)
1676
*
1677
* Copy all security options from a given superblock to another.
1678
*
1679
* Return: Returns 0 on success, error on failure.
1680
*/
1681
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1682
struct super_block *newsb,
1683
unsigned long kern_flags,
1684
unsigned long *set_kern_flags)
1685
{
1686
return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1687
kern_flags, set_kern_flags);
1688
}
1689
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1690
1691
/**
1692
* security_move_mount() - Check permissions for moving a mount
1693
* @from_path: source mount point
1694
* @to_path: destination mount point
1695
*
1696
* Check permission before a mount is moved.
1697
*
1698
* Return: Returns 0 if permission is granted.
1699
*/
1700
int security_move_mount(const struct path *from_path,
1701
const struct path *to_path)
1702
{
1703
return call_int_hook(move_mount, from_path, to_path);
1704
}
1705
1706
/**
1707
* security_path_notify() - Check if setting a watch is allowed
1708
* @path: file path
1709
* @mask: event mask
1710
* @obj_type: file path type
1711
*
1712
* Check permissions before setting a watch on events as defined by @mask, on
1713
* an object at @path, whose type is defined by @obj_type.
1714
*
1715
* Return: Returns 0 if permission is granted.
1716
*/
1717
int security_path_notify(const struct path *path, u64 mask,
1718
unsigned int obj_type)
1719
{
1720
return call_int_hook(path_notify, path, mask, obj_type);
1721
}
1722
1723
/**
1724
* security_inode_alloc() - Allocate an inode LSM blob
1725
* @inode: the inode
1726
* @gfp: allocation flags
1727
*
1728
* Allocate and attach a security structure to @inode->i_security. The
1729
* i_security field is initialized to NULL when the inode structure is
1730
* allocated.
1731
*
1732
* Return: Return 0 if operation was successful.
1733
*/
1734
int security_inode_alloc(struct inode *inode, gfp_t gfp)
1735
{
1736
int rc = lsm_inode_alloc(inode, gfp);
1737
1738
if (unlikely(rc))
1739
return rc;
1740
rc = call_int_hook(inode_alloc_security, inode);
1741
if (unlikely(rc))
1742
security_inode_free(inode);
1743
return rc;
1744
}
1745
1746
static void inode_free_by_rcu(struct rcu_head *head)
1747
{
1748
/* The rcu head is at the start of the inode blob */
1749
call_void_hook(inode_free_security_rcu, head);
1750
kmem_cache_free(lsm_inode_cache, head);
1751
}
1752
1753
/**
1754
* security_inode_free() - Free an inode's LSM blob
1755
* @inode: the inode
1756
*
1757
* Release any LSM resources associated with @inode, although due to the
1758
* inode's RCU protections it is possible that the resources will not be
1759
* fully released until after the current RCU grace period has elapsed.
1760
*
1761
* It is important for LSMs to note that despite being present in a call to
1762
* security_inode_free(), @inode may still be referenced in a VFS path walk
1763
* and calls to security_inode_permission() may be made during, or after,
1764
* a call to security_inode_free(). For this reason the inode->i_security
1765
* field is released via a call_rcu() callback and any LSMs which need to
1766
* retain inode state for use in security_inode_permission() should only
1767
* release that state in the inode_free_security_rcu() LSM hook callback.
1768
*/
1769
void security_inode_free(struct inode *inode)
1770
{
1771
call_void_hook(inode_free_security, inode);
1772
if (!inode->i_security)
1773
return;
1774
call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1775
}
1776
1777
/**
1778
* security_dentry_init_security() - Perform dentry initialization
1779
* @dentry: the dentry to initialize
1780
* @mode: mode used to determine resource type
1781
* @name: name of the last path component
1782
* @xattr_name: name of the security/LSM xattr
1783
* @lsmctx: pointer to the resulting LSM context
1784
*
1785
* Compute a context for a dentry as the inode is not yet available since NFSv4
1786
* has no label backed by an EA anyway. It is important to note that
1787
* @xattr_name does not need to be free'd by the caller, it is a static string.
1788
*
1789
* Return: Returns 0 on success, negative values on failure.
1790
*/
1791
int security_dentry_init_security(struct dentry *dentry, int mode,
1792
const struct qstr *name,
1793
const char **xattr_name,
1794
struct lsm_context *lsmctx)
1795
{
1796
return call_int_hook(dentry_init_security, dentry, mode, name,
1797
xattr_name, lsmctx);
1798
}
1799
EXPORT_SYMBOL(security_dentry_init_security);
1800
1801
/**
1802
* security_dentry_create_files_as() - Perform dentry initialization
1803
* @dentry: the dentry to initialize
1804
* @mode: mode used to determine resource type
1805
* @name: name of the last path component
1806
* @old: creds to use for LSM context calculations
1807
* @new: creds to modify
1808
*
1809
* Compute a context for a dentry as the inode is not yet available and set
1810
* that context in passed in creds so that new files are created using that
1811
* context. Context is calculated using the passed in creds and not the creds
1812
* of the caller.
1813
*
1814
* Return: Returns 0 on success, error on failure.
1815
*/
1816
int security_dentry_create_files_as(struct dentry *dentry, int mode,
1817
const struct qstr *name,
1818
const struct cred *old, struct cred *new)
1819
{
1820
return call_int_hook(dentry_create_files_as, dentry, mode,
1821
name, old, new);
1822
}
1823
EXPORT_SYMBOL(security_dentry_create_files_as);
1824
1825
/**
1826
* security_inode_init_security() - Initialize an inode's LSM context
1827
* @inode: the inode
1828
* @dir: parent directory
1829
* @qstr: last component of the pathname
1830
* @initxattrs: callback function to write xattrs
1831
* @fs_data: filesystem specific data
1832
*
1833
* Obtain the security attribute name suffix and value to set on a newly
1834
* created inode and set up the incore security field for the new inode. This
1835
* hook is called by the fs code as part of the inode creation transaction and
1836
* provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1837
* hooks called by the VFS.
1838
*
1839
* The hook function is expected to populate the xattrs array, by calling
1840
* lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1841
* with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1842
* slot, the hook function should set ->name to the attribute name suffix
1843
* (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1844
* to the attribute value, to set ->value_len to the length of the value. If
1845
* the security module does not use security attributes or does not wish to put
1846
* a security attribute on this particular inode, then it should return
1847
* -EOPNOTSUPP to skip this processing.
1848
*
1849
* Return: Returns 0 if the LSM successfully initialized all of the inode
1850
* security attributes that are required, negative values otherwise.
1851
*/
1852
int security_inode_init_security(struct inode *inode, struct inode *dir,
1853
const struct qstr *qstr,
1854
const initxattrs initxattrs, void *fs_data)
1855
{
1856
struct lsm_static_call *scall;
1857
struct xattr *new_xattrs = NULL;
1858
int ret = -EOPNOTSUPP, xattr_count = 0;
1859
1860
if (unlikely(IS_PRIVATE(inode)))
1861
return 0;
1862
1863
if (!blob_sizes.lbs_xattr_count)
1864
return 0;
1865
1866
if (initxattrs) {
1867
/* Allocate +1 as terminator. */
1868
new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1869
sizeof(*new_xattrs), GFP_NOFS);
1870
if (!new_xattrs)
1871
return -ENOMEM;
1872
}
1873
1874
lsm_for_each_hook(scall, inode_init_security) {
1875
ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1876
&xattr_count);
1877
if (ret && ret != -EOPNOTSUPP)
1878
goto out;
1879
/*
1880
* As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1881
* means that the LSM is not willing to provide an xattr, not
1882
* that it wants to signal an error. Thus, continue to invoke
1883
* the remaining LSMs.
1884
*/
1885
}
1886
1887
/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1888
if (!xattr_count)
1889
goto out;
1890
1891
ret = initxattrs(inode, new_xattrs, fs_data);
1892
out:
1893
for (; xattr_count > 0; xattr_count--)
1894
kfree(new_xattrs[xattr_count - 1].value);
1895
kfree(new_xattrs);
1896
return (ret == -EOPNOTSUPP) ? 0 : ret;
1897
}
1898
EXPORT_SYMBOL(security_inode_init_security);
1899
1900
/**
1901
* security_inode_init_security_anon() - Initialize an anonymous inode
1902
* @inode: the inode
1903
* @name: the anonymous inode class
1904
* @context_inode: an optional related inode
1905
*
1906
* Set up the incore security field for the new anonymous inode and return
1907
* whether the inode creation is permitted by the security module or not.
1908
*
1909
* Return: Returns 0 on success, -EACCES if the security module denies the
1910
* creation of this inode, or another -errno upon other errors.
1911
*/
1912
int security_inode_init_security_anon(struct inode *inode,
1913
const struct qstr *name,
1914
const struct inode *context_inode)
1915
{
1916
return call_int_hook(inode_init_security_anon, inode, name,
1917
context_inode);
1918
}
1919
1920
#ifdef CONFIG_SECURITY_PATH
1921
/**
1922
* security_path_mknod() - Check if creating a special file is allowed
1923
* @dir: parent directory
1924
* @dentry: new file
1925
* @mode: new file mode
1926
* @dev: device number
1927
*
1928
* Check permissions when creating a file. Note that this hook is called even
1929
* if mknod operation is being done for a regular file.
1930
*
1931
* Return: Returns 0 if permission is granted.
1932
*/
1933
int security_path_mknod(const struct path *dir, struct dentry *dentry,
1934
umode_t mode, unsigned int dev)
1935
{
1936
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1937
return 0;
1938
return call_int_hook(path_mknod, dir, dentry, mode, dev);
1939
}
1940
EXPORT_SYMBOL(security_path_mknod);
1941
1942
/**
1943
* security_path_post_mknod() - Update inode security after reg file creation
1944
* @idmap: idmap of the mount
1945
* @dentry: new file
1946
*
1947
* Update inode security field after a regular file has been created.
1948
*/
1949
void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1950
{
1951
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1952
return;
1953
call_void_hook(path_post_mknod, idmap, dentry);
1954
}
1955
1956
/**
1957
* security_path_mkdir() - Check if creating a new directory is allowed
1958
* @dir: parent directory
1959
* @dentry: new directory
1960
* @mode: new directory mode
1961
*
1962
* Check permissions to create a new directory in the existing directory.
1963
*
1964
* Return: Returns 0 if permission is granted.
1965
*/
1966
int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1967
umode_t mode)
1968
{
1969
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1970
return 0;
1971
return call_int_hook(path_mkdir, dir, dentry, mode);
1972
}
1973
EXPORT_SYMBOL(security_path_mkdir);
1974
1975
/**
1976
* security_path_rmdir() - Check if removing a directory is allowed
1977
* @dir: parent directory
1978
* @dentry: directory to remove
1979
*
1980
* Check the permission to remove a directory.
1981
*
1982
* Return: Returns 0 if permission is granted.
1983
*/
1984
int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1985
{
1986
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1987
return 0;
1988
return call_int_hook(path_rmdir, dir, dentry);
1989
}
1990
1991
/**
1992
* security_path_unlink() - Check if removing a hard link is allowed
1993
* @dir: parent directory
1994
* @dentry: file
1995
*
1996
* Check the permission to remove a hard link to a file.
1997
*
1998
* Return: Returns 0 if permission is granted.
1999
*/
2000
int security_path_unlink(const struct path *dir, struct dentry *dentry)
2001
{
2002
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
2003
return 0;
2004
return call_int_hook(path_unlink, dir, dentry);
2005
}
2006
EXPORT_SYMBOL(security_path_unlink);
2007
2008
/**
2009
* security_path_symlink() - Check if creating a symbolic link is allowed
2010
* @dir: parent directory
2011
* @dentry: symbolic link
2012
* @old_name: file pathname
2013
*
2014
* Check the permission to create a symbolic link to a file.
2015
*
2016
* Return: Returns 0 if permission is granted.
2017
*/
2018
int security_path_symlink(const struct path *dir, struct dentry *dentry,
2019
const char *old_name)
2020
{
2021
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
2022
return 0;
2023
return call_int_hook(path_symlink, dir, dentry, old_name);
2024
}
2025
2026
/**
2027
* security_path_link - Check if creating a hard link is allowed
2028
* @old_dentry: existing file
2029
* @new_dir: new parent directory
2030
* @new_dentry: new link
2031
*
2032
* Check permission before creating a new hard link to a file.
2033
*
2034
* Return: Returns 0 if permission is granted.
2035
*/
2036
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
2037
struct dentry *new_dentry)
2038
{
2039
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2040
return 0;
2041
return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2042
}
2043
2044
/**
2045
* security_path_rename() - Check if renaming a file is allowed
2046
* @old_dir: parent directory of the old file
2047
* @old_dentry: the old file
2048
* @new_dir: parent directory of the new file
2049
* @new_dentry: the new file
2050
* @flags: flags
2051
*
2052
* Check for permission to rename a file or directory.
2053
*
2054
* Return: Returns 0 if permission is granted.
2055
*/
2056
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2057
const struct path *new_dir, struct dentry *new_dentry,
2058
unsigned int flags)
2059
{
2060
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2061
(d_is_positive(new_dentry) &&
2062
IS_PRIVATE(d_backing_inode(new_dentry)))))
2063
return 0;
2064
2065
return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2066
new_dentry, flags);
2067
}
2068
EXPORT_SYMBOL(security_path_rename);
2069
2070
/**
2071
* security_path_truncate() - Check if truncating a file is allowed
2072
* @path: file
2073
*
2074
* Check permission before truncating the file indicated by path. Note that
2075
* truncation permissions may also be checked based on already opened files,
2076
* using the security_file_truncate() hook.
2077
*
2078
* Return: Returns 0 if permission is granted.
2079
*/
2080
int security_path_truncate(const struct path *path)
2081
{
2082
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2083
return 0;
2084
return call_int_hook(path_truncate, path);
2085
}
2086
2087
/**
2088
* security_path_chmod() - Check if changing the file's mode is allowed
2089
* @path: file
2090
* @mode: new mode
2091
*
2092
* Check for permission to change a mode of the file @path. The new mode is
2093
* specified in @mode which is a bitmask of constants from
2094
* <include/uapi/linux/stat.h>.
2095
*
2096
* Return: Returns 0 if permission is granted.
2097
*/
2098
int security_path_chmod(const struct path *path, umode_t mode)
2099
{
2100
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2101
return 0;
2102
return call_int_hook(path_chmod, path, mode);
2103
}
2104
2105
/**
2106
* security_path_chown() - Check if changing the file's owner/group is allowed
2107
* @path: file
2108
* @uid: file owner
2109
* @gid: file group
2110
*
2111
* Check for permission to change owner/group of a file or directory.
2112
*
2113
* Return: Returns 0 if permission is granted.
2114
*/
2115
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2116
{
2117
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2118
return 0;
2119
return call_int_hook(path_chown, path, uid, gid);
2120
}
2121
2122
/**
2123
* security_path_chroot() - Check if changing the root directory is allowed
2124
* @path: directory
2125
*
2126
* Check for permission to change root directory.
2127
*
2128
* Return: Returns 0 if permission is granted.
2129
*/
2130
int security_path_chroot(const struct path *path)
2131
{
2132
return call_int_hook(path_chroot, path);
2133
}
2134
#endif /* CONFIG_SECURITY_PATH */
2135
2136
/**
2137
* security_inode_create() - Check if creating a file is allowed
2138
* @dir: the parent directory
2139
* @dentry: the file being created
2140
* @mode: requested file mode
2141
*
2142
* Check permission to create a regular file.
2143
*
2144
* Return: Returns 0 if permission is granted.
2145
*/
2146
int security_inode_create(struct inode *dir, struct dentry *dentry,
2147
umode_t mode)
2148
{
2149
if (unlikely(IS_PRIVATE(dir)))
2150
return 0;
2151
return call_int_hook(inode_create, dir, dentry, mode);
2152
}
2153
EXPORT_SYMBOL_GPL(security_inode_create);
2154
2155
/**
2156
* security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2157
* @idmap: idmap of the mount
2158
* @inode: inode of the new tmpfile
2159
*
2160
* Update inode security data after a tmpfile has been created.
2161
*/
2162
void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2163
struct inode *inode)
2164
{
2165
if (unlikely(IS_PRIVATE(inode)))
2166
return;
2167
call_void_hook(inode_post_create_tmpfile, idmap, inode);
2168
}
2169
2170
/**
2171
* security_inode_link() - Check if creating a hard link is allowed
2172
* @old_dentry: existing file
2173
* @dir: new parent directory
2174
* @new_dentry: new link
2175
*
2176
* Check permission before creating a new hard link to a file.
2177
*
2178
* Return: Returns 0 if permission is granted.
2179
*/
2180
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2181
struct dentry *new_dentry)
2182
{
2183
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2184
return 0;
2185
return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2186
}
2187
2188
/**
2189
* security_inode_unlink() - Check if removing a hard link is allowed
2190
* @dir: parent directory
2191
* @dentry: file
2192
*
2193
* Check the permission to remove a hard link to a file.
2194
*
2195
* Return: Returns 0 if permission is granted.
2196
*/
2197
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2198
{
2199
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2200
return 0;
2201
return call_int_hook(inode_unlink, dir, dentry);
2202
}
2203
2204
/**
2205
* security_inode_symlink() - Check if creating a symbolic link is allowed
2206
* @dir: parent directory
2207
* @dentry: symbolic link
2208
* @old_name: existing filename
2209
*
2210
* Check the permission to create a symbolic link to a file.
2211
*
2212
* Return: Returns 0 if permission is granted.
2213
*/
2214
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2215
const char *old_name)
2216
{
2217
if (unlikely(IS_PRIVATE(dir)))
2218
return 0;
2219
return call_int_hook(inode_symlink, dir, dentry, old_name);
2220
}
2221
2222
/**
2223
* security_inode_mkdir() - Check if creating a new directory is allowed
2224
* @dir: parent directory
2225
* @dentry: new directory
2226
* @mode: new directory mode
2227
*
2228
* Check permissions to create a new directory in the existing directory
2229
* associated with inode structure @dir.
2230
*
2231
* Return: Returns 0 if permission is granted.
2232
*/
2233
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2234
{
2235
if (unlikely(IS_PRIVATE(dir)))
2236
return 0;
2237
return call_int_hook(inode_mkdir, dir, dentry, mode);
2238
}
2239
EXPORT_SYMBOL_GPL(security_inode_mkdir);
2240
2241
/**
2242
* security_inode_rmdir() - Check if removing a directory is allowed
2243
* @dir: parent directory
2244
* @dentry: directory to be removed
2245
*
2246
* Check the permission to remove a directory.
2247
*
2248
* Return: Returns 0 if permission is granted.
2249
*/
2250
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2251
{
2252
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253
return 0;
2254
return call_int_hook(inode_rmdir, dir, dentry);
2255
}
2256
2257
/**
2258
* security_inode_mknod() - Check if creating a special file is allowed
2259
* @dir: parent directory
2260
* @dentry: new file
2261
* @mode: new file mode
2262
* @dev: device number
2263
*
2264
* Check permissions when creating a special file (or a socket or a fifo file
2265
* created via the mknod system call). Note that if mknod operation is being
2266
* done for a regular file, then the create hook will be called and not this
2267
* hook.
2268
*
2269
* Return: Returns 0 if permission is granted.
2270
*/
2271
int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2272
umode_t mode, dev_t dev)
2273
{
2274
if (unlikely(IS_PRIVATE(dir)))
2275
return 0;
2276
return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2277
}
2278
2279
/**
2280
* security_inode_rename() - Check if renaming a file is allowed
2281
* @old_dir: parent directory of the old file
2282
* @old_dentry: the old file
2283
* @new_dir: parent directory of the new file
2284
* @new_dentry: the new file
2285
* @flags: flags
2286
*
2287
* Check for permission to rename a file or directory.
2288
*
2289
* Return: Returns 0 if permission is granted.
2290
*/
2291
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2292
struct inode *new_dir, struct dentry *new_dentry,
2293
unsigned int flags)
2294
{
2295
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2296
(d_is_positive(new_dentry) &&
2297
IS_PRIVATE(d_backing_inode(new_dentry)))))
2298
return 0;
2299
2300
if (flags & RENAME_EXCHANGE) {
2301
int err = call_int_hook(inode_rename, new_dir, new_dentry,
2302
old_dir, old_dentry);
2303
if (err)
2304
return err;
2305
}
2306
2307
return call_int_hook(inode_rename, old_dir, old_dentry,
2308
new_dir, new_dentry);
2309
}
2310
2311
/**
2312
* security_inode_readlink() - Check if reading a symbolic link is allowed
2313
* @dentry: link
2314
*
2315
* Check the permission to read the symbolic link.
2316
*
2317
* Return: Returns 0 if permission is granted.
2318
*/
2319
int security_inode_readlink(struct dentry *dentry)
2320
{
2321
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322
return 0;
2323
return call_int_hook(inode_readlink, dentry);
2324
}
2325
2326
/**
2327
* security_inode_follow_link() - Check if following a symbolic link is allowed
2328
* @dentry: link dentry
2329
* @inode: link inode
2330
* @rcu: true if in RCU-walk mode
2331
*
2332
* Check permission to follow a symbolic link when looking up a pathname. If
2333
* @rcu is true, @inode is not stable.
2334
*
2335
* Return: Returns 0 if permission is granted.
2336
*/
2337
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2338
bool rcu)
2339
{
2340
if (unlikely(IS_PRIVATE(inode)))
2341
return 0;
2342
return call_int_hook(inode_follow_link, dentry, inode, rcu);
2343
}
2344
2345
/**
2346
* security_inode_permission() - Check if accessing an inode is allowed
2347
* @inode: inode
2348
* @mask: access mask
2349
*
2350
* Check permission before accessing an inode. This hook is called by the
2351
* existing Linux permission function, so a security module can use it to
2352
* provide additional checking for existing Linux permission checks. Notice
2353
* that this hook is called when a file is opened (as well as many other
2354
* operations), whereas the file_security_ops permission hook is called when
2355
* the actual read/write operations are performed.
2356
*
2357
* Return: Returns 0 if permission is granted.
2358
*/
2359
int security_inode_permission(struct inode *inode, int mask)
2360
{
2361
if (unlikely(IS_PRIVATE(inode)))
2362
return 0;
2363
return call_int_hook(inode_permission, inode, mask);
2364
}
2365
2366
/**
2367
* security_inode_setattr() - Check if setting file attributes is allowed
2368
* @idmap: idmap of the mount
2369
* @dentry: file
2370
* @attr: new attributes
2371
*
2372
* Check permission before setting file attributes. Note that the kernel call
2373
* to notify_change is performed from several locations, whenever file
2374
* attributes change (such as when a file is truncated, chown/chmod operations,
2375
* transferring disk quotas, etc).
2376
*
2377
* Return: Returns 0 if permission is granted.
2378
*/
2379
int security_inode_setattr(struct mnt_idmap *idmap,
2380
struct dentry *dentry, struct iattr *attr)
2381
{
2382
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2383
return 0;
2384
return call_int_hook(inode_setattr, idmap, dentry, attr);
2385
}
2386
EXPORT_SYMBOL_GPL(security_inode_setattr);
2387
2388
/**
2389
* security_inode_post_setattr() - Update the inode after a setattr operation
2390
* @idmap: idmap of the mount
2391
* @dentry: file
2392
* @ia_valid: file attributes set
2393
*
2394
* Update inode security field after successful setting file attributes.
2395
*/
2396
void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2397
int ia_valid)
2398
{
2399
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2400
return;
2401
call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2402
}
2403
2404
/**
2405
* security_inode_getattr() - Check if getting file attributes is allowed
2406
* @path: file
2407
*
2408
* Check permission before obtaining file attributes.
2409
*
2410
* Return: Returns 0 if permission is granted.
2411
*/
2412
int security_inode_getattr(const struct path *path)
2413
{
2414
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2415
return 0;
2416
return call_int_hook(inode_getattr, path);
2417
}
2418
2419
/**
2420
* security_inode_setxattr() - Check if setting file xattrs is allowed
2421
* @idmap: idmap of the mount
2422
* @dentry: file
2423
* @name: xattr name
2424
* @value: xattr value
2425
* @size: size of xattr value
2426
* @flags: flags
2427
*
2428
* This hook performs the desired permission checks before setting the extended
2429
* attributes (xattrs) on @dentry. It is important to note that we have some
2430
* additional logic before the main LSM implementation calls to detect if we
2431
* need to perform an additional capability check at the LSM layer.
2432
*
2433
* Normally we enforce a capability check prior to executing the various LSM
2434
* hook implementations, but if a LSM wants to avoid this capability check,
2435
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2436
* xattrs that it wants to avoid the capability check, leaving the LSM fully
2437
* responsible for enforcing the access control for the specific xattr. If all
2438
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2439
* or return a 0 (the default return value), the capability check is still
2440
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2441
* check is performed.
2442
*
2443
* Return: Returns 0 if permission is granted.
2444
*/
2445
int security_inode_setxattr(struct mnt_idmap *idmap,
2446
struct dentry *dentry, const char *name,
2447
const void *value, size_t size, int flags)
2448
{
2449
int rc;
2450
2451
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2452
return 0;
2453
2454
/* enforce the capability checks at the lsm layer, if needed */
2455
if (!call_int_hook(inode_xattr_skipcap, name)) {
2456
rc = cap_inode_setxattr(dentry, name, value, size, flags);
2457
if (rc)
2458
return rc;
2459
}
2460
2461
return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2462
flags);
2463
}
2464
2465
/**
2466
* security_inode_set_acl() - Check if setting posix acls is allowed
2467
* @idmap: idmap of the mount
2468
* @dentry: file
2469
* @acl_name: acl name
2470
* @kacl: acl struct
2471
*
2472
* Check permission before setting posix acls, the posix acls in @kacl are
2473
* identified by @acl_name.
2474
*
2475
* Return: Returns 0 if permission is granted.
2476
*/
2477
int security_inode_set_acl(struct mnt_idmap *idmap,
2478
struct dentry *dentry, const char *acl_name,
2479
struct posix_acl *kacl)
2480
{
2481
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2482
return 0;
2483
return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2484
}
2485
2486
/**
2487
* security_inode_post_set_acl() - Update inode security from posix acls set
2488
* @dentry: file
2489
* @acl_name: acl name
2490
* @kacl: acl struct
2491
*
2492
* Update inode security data after successfully setting posix acls on @dentry.
2493
* The posix acls in @kacl are identified by @acl_name.
2494
*/
2495
void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2496
struct posix_acl *kacl)
2497
{
2498
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2499
return;
2500
call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2501
}
2502
2503
/**
2504
* security_inode_get_acl() - Check if reading posix acls is allowed
2505
* @idmap: idmap of the mount
2506
* @dentry: file
2507
* @acl_name: acl name
2508
*
2509
* Check permission before getting osix acls, the posix acls are identified by
2510
* @acl_name.
2511
*
2512
* Return: Returns 0 if permission is granted.
2513
*/
2514
int security_inode_get_acl(struct mnt_idmap *idmap,
2515
struct dentry *dentry, const char *acl_name)
2516
{
2517
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2518
return 0;
2519
return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2520
}
2521
2522
/**
2523
* security_inode_remove_acl() - Check if removing a posix acl is allowed
2524
* @idmap: idmap of the mount
2525
* @dentry: file
2526
* @acl_name: acl name
2527
*
2528
* Check permission before removing posix acls, the posix acls are identified
2529
* by @acl_name.
2530
*
2531
* Return: Returns 0 if permission is granted.
2532
*/
2533
int security_inode_remove_acl(struct mnt_idmap *idmap,
2534
struct dentry *dentry, const char *acl_name)
2535
{
2536
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2537
return 0;
2538
return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2539
}
2540
2541
/**
2542
* security_inode_post_remove_acl() - Update inode security after rm posix acls
2543
* @idmap: idmap of the mount
2544
* @dentry: file
2545
* @acl_name: acl name
2546
*
2547
* Update inode security data after successfully removing posix acls on
2548
* @dentry in @idmap. The posix acls are identified by @acl_name.
2549
*/
2550
void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2551
struct dentry *dentry, const char *acl_name)
2552
{
2553
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2554
return;
2555
call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2556
}
2557
2558
/**
2559
* security_inode_post_setxattr() - Update the inode after a setxattr operation
2560
* @dentry: file
2561
* @name: xattr name
2562
* @value: xattr value
2563
* @size: xattr value size
2564
* @flags: flags
2565
*
2566
* Update inode security field after successful setxattr operation.
2567
*/
2568
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2569
const void *value, size_t size, int flags)
2570
{
2571
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2572
return;
2573
call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2574
}
2575
2576
/**
2577
* security_inode_getxattr() - Check if xattr access is allowed
2578
* @dentry: file
2579
* @name: xattr name
2580
*
2581
* Check permission before obtaining the extended attributes identified by
2582
* @name for @dentry.
2583
*
2584
* Return: Returns 0 if permission is granted.
2585
*/
2586
int security_inode_getxattr(struct dentry *dentry, const char *name)
2587
{
2588
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2589
return 0;
2590
return call_int_hook(inode_getxattr, dentry, name);
2591
}
2592
2593
/**
2594
* security_inode_listxattr() - Check if listing xattrs is allowed
2595
* @dentry: file
2596
*
2597
* Check permission before obtaining the list of extended attribute names for
2598
* @dentry.
2599
*
2600
* Return: Returns 0 if permission is granted.
2601
*/
2602
int security_inode_listxattr(struct dentry *dentry)
2603
{
2604
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2605
return 0;
2606
return call_int_hook(inode_listxattr, dentry);
2607
}
2608
2609
/**
2610
* security_inode_removexattr() - Check if removing an xattr is allowed
2611
* @idmap: idmap of the mount
2612
* @dentry: file
2613
* @name: xattr name
2614
*
2615
* This hook performs the desired permission checks before setting the extended
2616
* attributes (xattrs) on @dentry. It is important to note that we have some
2617
* additional logic before the main LSM implementation calls to detect if we
2618
* need to perform an additional capability check at the LSM layer.
2619
*
2620
* Normally we enforce a capability check prior to executing the various LSM
2621
* hook implementations, but if a LSM wants to avoid this capability check,
2622
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2623
* xattrs that it wants to avoid the capability check, leaving the LSM fully
2624
* responsible for enforcing the access control for the specific xattr. If all
2625
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2626
* or return a 0 (the default return value), the capability check is still
2627
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2628
* check is performed.
2629
*
2630
* Return: Returns 0 if permission is granted.
2631
*/
2632
int security_inode_removexattr(struct mnt_idmap *idmap,
2633
struct dentry *dentry, const char *name)
2634
{
2635
int rc;
2636
2637
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2638
return 0;
2639
2640
/* enforce the capability checks at the lsm layer, if needed */
2641
if (!call_int_hook(inode_xattr_skipcap, name)) {
2642
rc = cap_inode_removexattr(idmap, dentry, name);
2643
if (rc)
2644
return rc;
2645
}
2646
2647
return call_int_hook(inode_removexattr, idmap, dentry, name);
2648
}
2649
2650
/**
2651
* security_inode_post_removexattr() - Update the inode after a removexattr op
2652
* @dentry: file
2653
* @name: xattr name
2654
*
2655
* Update the inode after a successful removexattr operation.
2656
*/
2657
void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2658
{
2659
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2660
return;
2661
call_void_hook(inode_post_removexattr, dentry, name);
2662
}
2663
2664
/**
2665
* security_inode_file_setattr() - check if setting fsxattr is allowed
2666
* @dentry: file to set filesystem extended attributes on
2667
* @fa: extended attributes to set on the inode
2668
*
2669
* Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on
2670
* inode
2671
*
2672
* Return: Returns 0 if permission is granted.
2673
*/
2674
int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa)
2675
{
2676
return call_int_hook(inode_file_setattr, dentry, fa);
2677
}
2678
2679
/**
2680
* security_inode_file_getattr() - check if retrieving fsxattr is allowed
2681
* @dentry: file to retrieve filesystem extended attributes from
2682
* @fa: extended attributes to get
2683
*
2684
* Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on
2685
* inode
2686
*
2687
* Return: Returns 0 if permission is granted.
2688
*/
2689
int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa)
2690
{
2691
return call_int_hook(inode_file_getattr, dentry, fa);
2692
}
2693
2694
/**
2695
* security_inode_need_killpriv() - Check if security_inode_killpriv() required
2696
* @dentry: associated dentry
2697
*
2698
* Called when an inode has been changed to determine if
2699
* security_inode_killpriv() should be called.
2700
*
2701
* Return: Return <0 on error to abort the inode change operation, return 0 if
2702
* security_inode_killpriv() does not need to be called, return >0 if
2703
* security_inode_killpriv() does need to be called.
2704
*/
2705
int security_inode_need_killpriv(struct dentry *dentry)
2706
{
2707
return call_int_hook(inode_need_killpriv, dentry);
2708
}
2709
2710
/**
2711
* security_inode_killpriv() - The setuid bit is removed, update LSM state
2712
* @idmap: idmap of the mount
2713
* @dentry: associated dentry
2714
*
2715
* The @dentry's setuid bit is being removed. Remove similar security labels.
2716
* Called with the dentry->d_inode->i_mutex held.
2717
*
2718
* Return: Return 0 on success. If error is returned, then the operation
2719
* causing setuid bit removal is failed.
2720
*/
2721
int security_inode_killpriv(struct mnt_idmap *idmap,
2722
struct dentry *dentry)
2723
{
2724
return call_int_hook(inode_killpriv, idmap, dentry);
2725
}
2726
2727
/**
2728
* security_inode_getsecurity() - Get the xattr security label of an inode
2729
* @idmap: idmap of the mount
2730
* @inode: inode
2731
* @name: xattr name
2732
* @buffer: security label buffer
2733
* @alloc: allocation flag
2734
*
2735
* Retrieve a copy of the extended attribute representation of the security
2736
* label associated with @name for @inode via @buffer. Note that @name is the
2737
* remainder of the attribute name after the security prefix has been removed.
2738
* @alloc is used to specify if the call should return a value via the buffer
2739
* or just the value length.
2740
*
2741
* Return: Returns size of buffer on success.
2742
*/
2743
int security_inode_getsecurity(struct mnt_idmap *idmap,
2744
struct inode *inode, const char *name,
2745
void **buffer, bool alloc)
2746
{
2747
if (unlikely(IS_PRIVATE(inode)))
2748
return LSM_RET_DEFAULT(inode_getsecurity);
2749
2750
return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2751
alloc);
2752
}
2753
2754
/**
2755
* security_inode_setsecurity() - Set the xattr security label of an inode
2756
* @inode: inode
2757
* @name: xattr name
2758
* @value: security label
2759
* @size: length of security label
2760
* @flags: flags
2761
*
2762
* Set the security label associated with @name for @inode from the extended
2763
* attribute value @value. @size indicates the size of the @value in bytes.
2764
* @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2765
* remainder of the attribute name after the security. prefix has been removed.
2766
*
2767
* Return: Returns 0 on success.
2768
*/
2769
int security_inode_setsecurity(struct inode *inode, const char *name,
2770
const void *value, size_t size, int flags)
2771
{
2772
if (unlikely(IS_PRIVATE(inode)))
2773
return LSM_RET_DEFAULT(inode_setsecurity);
2774
2775
return call_int_hook(inode_setsecurity, inode, name, value, size,
2776
flags);
2777
}
2778
2779
/**
2780
* security_inode_listsecurity() - List the xattr security label names
2781
* @inode: inode
2782
* @buffer: buffer
2783
* @buffer_size: size of buffer
2784
*
2785
* Copy the extended attribute names for the security labels associated with
2786
* @inode into @buffer. The maximum size of @buffer is specified by
2787
* @buffer_size. @buffer may be NULL to request the size of the buffer
2788
* required.
2789
*
2790
* Return: Returns number of bytes used/required on success.
2791
*/
2792
int security_inode_listsecurity(struct inode *inode,
2793
char *buffer, size_t buffer_size)
2794
{
2795
if (unlikely(IS_PRIVATE(inode)))
2796
return 0;
2797
return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2798
}
2799
EXPORT_SYMBOL(security_inode_listsecurity);
2800
2801
/**
2802
* security_inode_getlsmprop() - Get an inode's LSM data
2803
* @inode: inode
2804
* @prop: lsm specific information to return
2805
*
2806
* Get the lsm specific information associated with the node.
2807
*/
2808
void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2809
{
2810
call_void_hook(inode_getlsmprop, inode, prop);
2811
}
2812
2813
/**
2814
* security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2815
* @src: union dentry of copy-up file
2816
* @new: newly created creds
2817
*
2818
* A file is about to be copied up from lower layer to upper layer of overlay
2819
* filesystem. Security module can prepare a set of new creds and modify as
2820
* need be and return new creds. Caller will switch to new creds temporarily to
2821
* create new file and release newly allocated creds.
2822
*
2823
* Return: Returns 0 on success or a negative error code on error.
2824
*/
2825
int security_inode_copy_up(struct dentry *src, struct cred **new)
2826
{
2827
return call_int_hook(inode_copy_up, src, new);
2828
}
2829
EXPORT_SYMBOL(security_inode_copy_up);
2830
2831
/**
2832
* security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2833
* @src: union dentry of copy-up file
2834
* @name: xattr name
2835
*
2836
* Filter the xattrs being copied up when a unioned file is copied up from a
2837
* lower layer to the union/overlay layer. The caller is responsible for
2838
* reading and writing the xattrs, this hook is merely a filter.
2839
*
2840
* Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2841
* -EOPNOTSUPP if the security module does not know about attribute,
2842
* or a negative error code to abort the copy up.
2843
*/
2844
int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2845
{
2846
int rc;
2847
2848
rc = call_int_hook(inode_copy_up_xattr, src, name);
2849
if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2850
return rc;
2851
2852
return LSM_RET_DEFAULT(inode_copy_up_xattr);
2853
}
2854
EXPORT_SYMBOL(security_inode_copy_up_xattr);
2855
2856
/**
2857
* security_inode_setintegrity() - Set the inode's integrity data
2858
* @inode: inode
2859
* @type: type of integrity, e.g. hash digest, signature, etc
2860
* @value: the integrity value
2861
* @size: size of the integrity value
2862
*
2863
* Register a verified integrity measurement of a inode with LSMs.
2864
* LSMs should free the previously saved data if @value is NULL.
2865
*
2866
* Return: Returns 0 on success, negative values on failure.
2867
*/
2868
int security_inode_setintegrity(const struct inode *inode,
2869
enum lsm_integrity_type type, const void *value,
2870
size_t size)
2871
{
2872
return call_int_hook(inode_setintegrity, inode, type, value, size);
2873
}
2874
EXPORT_SYMBOL(security_inode_setintegrity);
2875
2876
/**
2877
* security_kernfs_init_security() - Init LSM context for a kernfs node
2878
* @kn_dir: parent kernfs node
2879
* @kn: the kernfs node to initialize
2880
*
2881
* Initialize the security context of a newly created kernfs node based on its
2882
* own and its parent's attributes.
2883
*
2884
* Return: Returns 0 if permission is granted.
2885
*/
2886
int security_kernfs_init_security(struct kernfs_node *kn_dir,
2887
struct kernfs_node *kn)
2888
{
2889
return call_int_hook(kernfs_init_security, kn_dir, kn);
2890
}
2891
2892
/**
2893
* security_file_permission() - Check file permissions
2894
* @file: file
2895
* @mask: requested permissions
2896
*
2897
* Check file permissions before accessing an open file. This hook is called
2898
* by various operations that read or write files. A security module can use
2899
* this hook to perform additional checking on these operations, e.g. to
2900
* revalidate permissions on use to support privilege bracketing or policy
2901
* changes. Notice that this hook is used when the actual read/write
2902
* operations are performed, whereas the inode_security_ops hook is called when
2903
* a file is opened (as well as many other operations). Although this hook can
2904
* be used to revalidate permissions for various system call operations that
2905
* read or write files, it does not address the revalidation of permissions for
2906
* memory-mapped files. Security modules must handle this separately if they
2907
* need such revalidation.
2908
*
2909
* Return: Returns 0 if permission is granted.
2910
*/
2911
int security_file_permission(struct file *file, int mask)
2912
{
2913
return call_int_hook(file_permission, file, mask);
2914
}
2915
2916
/**
2917
* security_file_alloc() - Allocate and init a file's LSM blob
2918
* @file: the file
2919
*
2920
* Allocate and attach a security structure to the file->f_security field. The
2921
* security field is initialized to NULL when the structure is first created.
2922
*
2923
* Return: Return 0 if the hook is successful and permission is granted.
2924
*/
2925
int security_file_alloc(struct file *file)
2926
{
2927
int rc = lsm_file_alloc(file);
2928
2929
if (rc)
2930
return rc;
2931
rc = call_int_hook(file_alloc_security, file);
2932
if (unlikely(rc))
2933
security_file_free(file);
2934
return rc;
2935
}
2936
2937
/**
2938
* security_file_release() - Perform actions before releasing the file ref
2939
* @file: the file
2940
*
2941
* Perform actions before releasing the last reference to a file.
2942
*/
2943
void security_file_release(struct file *file)
2944
{
2945
call_void_hook(file_release, file);
2946
}
2947
2948
/**
2949
* security_file_free() - Free a file's LSM blob
2950
* @file: the file
2951
*
2952
* Deallocate and free any security structures stored in file->f_security.
2953
*/
2954
void security_file_free(struct file *file)
2955
{
2956
void *blob;
2957
2958
call_void_hook(file_free_security, file);
2959
2960
blob = file->f_security;
2961
if (blob) {
2962
file->f_security = NULL;
2963
kmem_cache_free(lsm_file_cache, blob);
2964
}
2965
}
2966
2967
/**
2968
* security_file_ioctl() - Check if an ioctl is allowed
2969
* @file: associated file
2970
* @cmd: ioctl cmd
2971
* @arg: ioctl arguments
2972
*
2973
* Check permission for an ioctl operation on @file. Note that @arg sometimes
2974
* represents a user space pointer; in other cases, it may be a simple integer
2975
* value. When @arg represents a user space pointer, it should never be used
2976
* by the security module.
2977
*
2978
* Return: Returns 0 if permission is granted.
2979
*/
2980
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2981
{
2982
return call_int_hook(file_ioctl, file, cmd, arg);
2983
}
2984
EXPORT_SYMBOL_GPL(security_file_ioctl);
2985
2986
/**
2987
* security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2988
* @file: associated file
2989
* @cmd: ioctl cmd
2990
* @arg: ioctl arguments
2991
*
2992
* Compat version of security_file_ioctl() that correctly handles 32-bit
2993
* processes running on 64-bit kernels.
2994
*
2995
* Return: Returns 0 if permission is granted.
2996
*/
2997
int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2998
unsigned long arg)
2999
{
3000
return call_int_hook(file_ioctl_compat, file, cmd, arg);
3001
}
3002
EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
3003
3004
static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
3005
{
3006
/*
3007
* Does we have PROT_READ and does the application expect
3008
* it to imply PROT_EXEC? If not, nothing to talk about...
3009
*/
3010
if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
3011
return prot;
3012
if (!(current->personality & READ_IMPLIES_EXEC))
3013
return prot;
3014
/*
3015
* if that's an anonymous mapping, let it.
3016
*/
3017
if (!file)
3018
return prot | PROT_EXEC;
3019
/*
3020
* ditto if it's not on noexec mount, except that on !MMU we need
3021
* NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
3022
*/
3023
if (!path_noexec(&file->f_path)) {
3024
#ifndef CONFIG_MMU
3025
if (file->f_op->mmap_capabilities) {
3026
unsigned caps = file->f_op->mmap_capabilities(file);
3027
if (!(caps & NOMMU_MAP_EXEC))
3028
return prot;
3029
}
3030
#endif
3031
return prot | PROT_EXEC;
3032
}
3033
/* anything on noexec mount won't get PROT_EXEC */
3034
return prot;
3035
}
3036
3037
/**
3038
* security_mmap_file() - Check if mmap'ing a file is allowed
3039
* @file: file
3040
* @prot: protection applied by the kernel
3041
* @flags: flags
3042
*
3043
* Check permissions for a mmap operation. The @file may be NULL, e.g. if
3044
* mapping anonymous memory.
3045
*
3046
* Return: Returns 0 if permission is granted.
3047
*/
3048
int security_mmap_file(struct file *file, unsigned long prot,
3049
unsigned long flags)
3050
{
3051
return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
3052
flags);
3053
}
3054
3055
/**
3056
* security_mmap_addr() - Check if mmap'ing an address is allowed
3057
* @addr: address
3058
*
3059
* Check permissions for a mmap operation at @addr.
3060
*
3061
* Return: Returns 0 if permission is granted.
3062
*/
3063
int security_mmap_addr(unsigned long addr)
3064
{
3065
return call_int_hook(mmap_addr, addr);
3066
}
3067
3068
/**
3069
* security_file_mprotect() - Check if changing memory protections is allowed
3070
* @vma: memory region
3071
* @reqprot: application requested protection
3072
* @prot: protection applied by the kernel
3073
*
3074
* Check permissions before changing memory access permissions.
3075
*
3076
* Return: Returns 0 if permission is granted.
3077
*/
3078
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3079
unsigned long prot)
3080
{
3081
return call_int_hook(file_mprotect, vma, reqprot, prot);
3082
}
3083
3084
/**
3085
* security_file_lock() - Check if a file lock is allowed
3086
* @file: file
3087
* @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3088
*
3089
* Check permission before performing file locking operations. Note the hook
3090
* mediates both flock and fcntl style locks.
3091
*
3092
* Return: Returns 0 if permission is granted.
3093
*/
3094
int security_file_lock(struct file *file, unsigned int cmd)
3095
{
3096
return call_int_hook(file_lock, file, cmd);
3097
}
3098
3099
/**
3100
* security_file_fcntl() - Check if fcntl() op is allowed
3101
* @file: file
3102
* @cmd: fcntl command
3103
* @arg: command argument
3104
*
3105
* Check permission before allowing the file operation specified by @cmd from
3106
* being performed on the file @file. Note that @arg sometimes represents a
3107
* user space pointer; in other cases, it may be a simple integer value. When
3108
* @arg represents a user space pointer, it should never be used by the
3109
* security module.
3110
*
3111
* Return: Returns 0 if permission is granted.
3112
*/
3113
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3114
{
3115
return call_int_hook(file_fcntl, file, cmd, arg);
3116
}
3117
3118
/**
3119
* security_file_set_fowner() - Set the file owner info in the LSM blob
3120
* @file: the file
3121
*
3122
* Save owner security information (typically from current->security) in
3123
* file->f_security for later use by the send_sigiotask hook.
3124
*
3125
* This hook is called with file->f_owner.lock held.
3126
*
3127
* Return: Returns 0 on success.
3128
*/
3129
void security_file_set_fowner(struct file *file)
3130
{
3131
call_void_hook(file_set_fowner, file);
3132
}
3133
3134
/**
3135
* security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3136
* @tsk: target task
3137
* @fown: signal sender
3138
* @sig: signal to be sent, SIGIO is sent if 0
3139
*
3140
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
3141
* process @tsk. Note that this hook is sometimes called from interrupt. Note
3142
* that the fown_struct, @fown, is never outside the context of a struct file,
3143
* so the file structure (and associated security information) can always be
3144
* obtained: container_of(fown, struct file, f_owner).
3145
*
3146
* Return: Returns 0 if permission is granted.
3147
*/
3148
int security_file_send_sigiotask(struct task_struct *tsk,
3149
struct fown_struct *fown, int sig)
3150
{
3151
return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3152
}
3153
3154
/**
3155
* security_file_receive() - Check if receiving a file via IPC is allowed
3156
* @file: file being received
3157
*
3158
* This hook allows security modules to control the ability of a process to
3159
* receive an open file descriptor via socket IPC.
3160
*
3161
* Return: Returns 0 if permission is granted.
3162
*/
3163
int security_file_receive(struct file *file)
3164
{
3165
return call_int_hook(file_receive, file);
3166
}
3167
3168
/**
3169
* security_file_open() - Save open() time state for late use by the LSM
3170
* @file:
3171
*
3172
* Save open-time permission checking state for later use upon file_permission,
3173
* and recheck access if anything has changed since inode_permission.
3174
*
3175
* We can check if a file is opened for execution (e.g. execve(2) call), either
3176
* directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3177
* __FMODE_EXEC .
3178
*
3179
* Return: Returns 0 if permission is granted.
3180
*/
3181
int security_file_open(struct file *file)
3182
{
3183
return call_int_hook(file_open, file);
3184
}
3185
3186
/**
3187
* security_file_post_open() - Evaluate a file after it has been opened
3188
* @file: the file
3189
* @mask: access mask
3190
*
3191
* Evaluate an opened file and the access mask requested with open(). The hook
3192
* is useful for LSMs that require the file content to be available in order to
3193
* make decisions.
3194
*
3195
* Return: Returns 0 if permission is granted.
3196
*/
3197
int security_file_post_open(struct file *file, int mask)
3198
{
3199
return call_int_hook(file_post_open, file, mask);
3200
}
3201
EXPORT_SYMBOL_GPL(security_file_post_open);
3202
3203
/**
3204
* security_file_truncate() - Check if truncating a file is allowed
3205
* @file: file
3206
*
3207
* Check permission before truncating a file, i.e. using ftruncate. Note that
3208
* truncation permission may also be checked based on the path, using the
3209
* @path_truncate hook.
3210
*
3211
* Return: Returns 0 if permission is granted.
3212
*/
3213
int security_file_truncate(struct file *file)
3214
{
3215
return call_int_hook(file_truncate, file);
3216
}
3217
3218
/**
3219
* security_task_alloc() - Allocate a task's LSM blob
3220
* @task: the task
3221
* @clone_flags: flags indicating what is being shared
3222
*
3223
* Handle allocation of task-related resources.
3224
*
3225
* Return: Returns a zero on success, negative values on failure.
3226
*/
3227
int security_task_alloc(struct task_struct *task, u64 clone_flags)
3228
{
3229
int rc = lsm_task_alloc(task);
3230
3231
if (rc)
3232
return rc;
3233
rc = call_int_hook(task_alloc, task, clone_flags);
3234
if (unlikely(rc))
3235
security_task_free(task);
3236
return rc;
3237
}
3238
3239
/**
3240
* security_task_free() - Free a task's LSM blob and related resources
3241
* @task: task
3242
*
3243
* Handle release of task-related resources. Note that this can be called from
3244
* interrupt context.
3245
*/
3246
void security_task_free(struct task_struct *task)
3247
{
3248
call_void_hook(task_free, task);
3249
3250
kfree(task->security);
3251
task->security = NULL;
3252
}
3253
3254
/**
3255
* security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3256
* @cred: credentials
3257
* @gfp: gfp flags
3258
*
3259
* Only allocate sufficient memory and attach to @cred such that
3260
* cred_transfer() will not get ENOMEM.
3261
*
3262
* Return: Returns 0 on success, negative values on failure.
3263
*/
3264
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3265
{
3266
int rc = lsm_cred_alloc(cred, gfp);
3267
3268
if (rc)
3269
return rc;
3270
3271
rc = call_int_hook(cred_alloc_blank, cred, gfp);
3272
if (unlikely(rc))
3273
security_cred_free(cred);
3274
return rc;
3275
}
3276
3277
/**
3278
* security_cred_free() - Free the cred's LSM blob and associated resources
3279
* @cred: credentials
3280
*
3281
* Deallocate and clear the cred->security field in a set of credentials.
3282
*/
3283
void security_cred_free(struct cred *cred)
3284
{
3285
/*
3286
* There is a failure case in prepare_creds() that
3287
* may result in a call here with ->security being NULL.
3288
*/
3289
if (unlikely(cred->security == NULL))
3290
return;
3291
3292
call_void_hook(cred_free, cred);
3293
3294
kfree(cred->security);
3295
cred->security = NULL;
3296
}
3297
3298
/**
3299
* security_prepare_creds() - Prepare a new set of credentials
3300
* @new: new credentials
3301
* @old: original credentials
3302
* @gfp: gfp flags
3303
*
3304
* Prepare a new set of credentials by copying the data from the old set.
3305
*
3306
* Return: Returns 0 on success, negative values on failure.
3307
*/
3308
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3309
{
3310
int rc = lsm_cred_alloc(new, gfp);
3311
3312
if (rc)
3313
return rc;
3314
3315
rc = call_int_hook(cred_prepare, new, old, gfp);
3316
if (unlikely(rc))
3317
security_cred_free(new);
3318
return rc;
3319
}
3320
3321
/**
3322
* security_transfer_creds() - Transfer creds
3323
* @new: target credentials
3324
* @old: original credentials
3325
*
3326
* Transfer data from original creds to new creds.
3327
*/
3328
void security_transfer_creds(struct cred *new, const struct cred *old)
3329
{
3330
call_void_hook(cred_transfer, new, old);
3331
}
3332
3333
/**
3334
* security_cred_getsecid() - Get the secid from a set of credentials
3335
* @c: credentials
3336
* @secid: secid value
3337
*
3338
* Retrieve the security identifier of the cred structure @c. In case of
3339
* failure, @secid will be set to zero.
3340
*/
3341
void security_cred_getsecid(const struct cred *c, u32 *secid)
3342
{
3343
*secid = 0;
3344
call_void_hook(cred_getsecid, c, secid);
3345
}
3346
EXPORT_SYMBOL(security_cred_getsecid);
3347
3348
/**
3349
* security_cred_getlsmprop() - Get the LSM data from a set of credentials
3350
* @c: credentials
3351
* @prop: destination for the LSM data
3352
*
3353
* Retrieve the security data of the cred structure @c. In case of
3354
* failure, @prop will be cleared.
3355
*/
3356
void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3357
{
3358
lsmprop_init(prop);
3359
call_void_hook(cred_getlsmprop, c, prop);
3360
}
3361
EXPORT_SYMBOL(security_cred_getlsmprop);
3362
3363
/**
3364
* security_kernel_act_as() - Set the kernel credentials to act as secid
3365
* @new: credentials
3366
* @secid: secid
3367
*
3368
* Set the credentials for a kernel service to act as (subjective context).
3369
* The current task must be the one that nominated @secid.
3370
*
3371
* Return: Returns 0 if successful.
3372
*/
3373
int security_kernel_act_as(struct cred *new, u32 secid)
3374
{
3375
return call_int_hook(kernel_act_as, new, secid);
3376
}
3377
3378
/**
3379
* security_kernel_create_files_as() - Set file creation context using an inode
3380
* @new: target credentials
3381
* @inode: reference inode
3382
*
3383
* Set the file creation context in a set of credentials to be the same as the
3384
* objective context of the specified inode. The current task must be the one
3385
* that nominated @inode.
3386
*
3387
* Return: Returns 0 if successful.
3388
*/
3389
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3390
{
3391
return call_int_hook(kernel_create_files_as, new, inode);
3392
}
3393
3394
/**
3395
* security_kernel_module_request() - Check if loading a module is allowed
3396
* @kmod_name: module name
3397
*
3398
* Ability to trigger the kernel to automatically upcall to userspace for
3399
* userspace to load a kernel module with the given name.
3400
*
3401
* Return: Returns 0 if successful.
3402
*/
3403
int security_kernel_module_request(char *kmod_name)
3404
{
3405
return call_int_hook(kernel_module_request, kmod_name);
3406
}
3407
3408
/**
3409
* security_kernel_read_file() - Read a file specified by userspace
3410
* @file: file
3411
* @id: file identifier
3412
* @contents: trust if security_kernel_post_read_file() will be called
3413
*
3414
* Read a file specified by userspace.
3415
*
3416
* Return: Returns 0 if permission is granted.
3417
*/
3418
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3419
bool contents)
3420
{
3421
return call_int_hook(kernel_read_file, file, id, contents);
3422
}
3423
EXPORT_SYMBOL_GPL(security_kernel_read_file);
3424
3425
/**
3426
* security_kernel_post_read_file() - Read a file specified by userspace
3427
* @file: file
3428
* @buf: file contents
3429
* @size: size of file contents
3430
* @id: file identifier
3431
*
3432
* Read a file specified by userspace. This must be paired with a prior call
3433
* to security_kernel_read_file() call that indicated this hook would also be
3434
* called, see security_kernel_read_file() for more information.
3435
*
3436
* Return: Returns 0 if permission is granted.
3437
*/
3438
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3439
enum kernel_read_file_id id)
3440
{
3441
return call_int_hook(kernel_post_read_file, file, buf, size, id);
3442
}
3443
EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3444
3445
/**
3446
* security_kernel_load_data() - Load data provided by userspace
3447
* @id: data identifier
3448
* @contents: true if security_kernel_post_load_data() will be called
3449
*
3450
* Load data provided by userspace.
3451
*
3452
* Return: Returns 0 if permission is granted.
3453
*/
3454
int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3455
{
3456
return call_int_hook(kernel_load_data, id, contents);
3457
}
3458
EXPORT_SYMBOL_GPL(security_kernel_load_data);
3459
3460
/**
3461
* security_kernel_post_load_data() - Load userspace data from a non-file source
3462
* @buf: data
3463
* @size: size of data
3464
* @id: data identifier
3465
* @description: text description of data, specific to the id value
3466
*
3467
* Load data provided by a non-file source (usually userspace buffer). This
3468
* must be paired with a prior security_kernel_load_data() call that indicated
3469
* this hook would also be called, see security_kernel_load_data() for more
3470
* information.
3471
*
3472
* Return: Returns 0 if permission is granted.
3473
*/
3474
int security_kernel_post_load_data(char *buf, loff_t size,
3475
enum kernel_load_data_id id,
3476
char *description)
3477
{
3478
return call_int_hook(kernel_post_load_data, buf, size, id, description);
3479
}
3480
EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3481
3482
/**
3483
* security_task_fix_setuid() - Update LSM with new user id attributes
3484
* @new: updated credentials
3485
* @old: credentials being replaced
3486
* @flags: LSM_SETID_* flag values
3487
*
3488
* Update the module's state after setting one or more of the user identity
3489
* attributes of the current process. The @flags parameter indicates which of
3490
* the set*uid system calls invoked this hook. If @new is the set of
3491
* credentials that will be installed. Modifications should be made to this
3492
* rather than to @current->cred.
3493
*
3494
* Return: Returns 0 on success.
3495
*/
3496
int security_task_fix_setuid(struct cred *new, const struct cred *old,
3497
int flags)
3498
{
3499
return call_int_hook(task_fix_setuid, new, old, flags);
3500
}
3501
3502
/**
3503
* security_task_fix_setgid() - Update LSM with new group id attributes
3504
* @new: updated credentials
3505
* @old: credentials being replaced
3506
* @flags: LSM_SETID_* flag value
3507
*
3508
* Update the module's state after setting one or more of the group identity
3509
* attributes of the current process. The @flags parameter indicates which of
3510
* the set*gid system calls invoked this hook. @new is the set of credentials
3511
* that will be installed. Modifications should be made to this rather than to
3512
* @current->cred.
3513
*
3514
* Return: Returns 0 on success.
3515
*/
3516
int security_task_fix_setgid(struct cred *new, const struct cred *old,
3517
int flags)
3518
{
3519
return call_int_hook(task_fix_setgid, new, old, flags);
3520
}
3521
3522
/**
3523
* security_task_fix_setgroups() - Update LSM with new supplementary groups
3524
* @new: updated credentials
3525
* @old: credentials being replaced
3526
*
3527
* Update the module's state after setting the supplementary group identity
3528
* attributes of the current process. @new is the set of credentials that will
3529
* be installed. Modifications should be made to this rather than to
3530
* @current->cred.
3531
*
3532
* Return: Returns 0 on success.
3533
*/
3534
int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3535
{
3536
return call_int_hook(task_fix_setgroups, new, old);
3537
}
3538
3539
/**
3540
* security_task_setpgid() - Check if setting the pgid is allowed
3541
* @p: task being modified
3542
* @pgid: new pgid
3543
*
3544
* Check permission before setting the process group identifier of the process
3545
* @p to @pgid.
3546
*
3547
* Return: Returns 0 if permission is granted.
3548
*/
3549
int security_task_setpgid(struct task_struct *p, pid_t pgid)
3550
{
3551
return call_int_hook(task_setpgid, p, pgid);
3552
}
3553
3554
/**
3555
* security_task_getpgid() - Check if getting the pgid is allowed
3556
* @p: task
3557
*
3558
* Check permission before getting the process group identifier of the process
3559
* @p.
3560
*
3561
* Return: Returns 0 if permission is granted.
3562
*/
3563
int security_task_getpgid(struct task_struct *p)
3564
{
3565
return call_int_hook(task_getpgid, p);
3566
}
3567
3568
/**
3569
* security_task_getsid() - Check if getting the session id is allowed
3570
* @p: task
3571
*
3572
* Check permission before getting the session identifier of the process @p.
3573
*
3574
* Return: Returns 0 if permission is granted.
3575
*/
3576
int security_task_getsid(struct task_struct *p)
3577
{
3578
return call_int_hook(task_getsid, p);
3579
}
3580
3581
/**
3582
* security_current_getlsmprop_subj() - Current task's subjective LSM data
3583
* @prop: lsm specific information
3584
*
3585
* Retrieve the subjective security identifier of the current task and return
3586
* it in @prop.
3587
*/
3588
void security_current_getlsmprop_subj(struct lsm_prop *prop)
3589
{
3590
lsmprop_init(prop);
3591
call_void_hook(current_getlsmprop_subj, prop);
3592
}
3593
EXPORT_SYMBOL(security_current_getlsmprop_subj);
3594
3595
/**
3596
* security_task_getlsmprop_obj() - Get a task's objective LSM data
3597
* @p: target task
3598
* @prop: lsm specific information
3599
*
3600
* Retrieve the objective security identifier of the task_struct in @p and
3601
* return it in @prop.
3602
*/
3603
void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3604
{
3605
lsmprop_init(prop);
3606
call_void_hook(task_getlsmprop_obj, p, prop);
3607
}
3608
EXPORT_SYMBOL(security_task_getlsmprop_obj);
3609
3610
/**
3611
* security_task_setnice() - Check if setting a task's nice value is allowed
3612
* @p: target task
3613
* @nice: nice value
3614
*
3615
* Check permission before setting the nice value of @p to @nice.
3616
*
3617
* Return: Returns 0 if permission is granted.
3618
*/
3619
int security_task_setnice(struct task_struct *p, int nice)
3620
{
3621
return call_int_hook(task_setnice, p, nice);
3622
}
3623
3624
/**
3625
* security_task_setioprio() - Check if setting a task's ioprio is allowed
3626
* @p: target task
3627
* @ioprio: ioprio value
3628
*
3629
* Check permission before setting the ioprio value of @p to @ioprio.
3630
*
3631
* Return: Returns 0 if permission is granted.
3632
*/
3633
int security_task_setioprio(struct task_struct *p, int ioprio)
3634
{
3635
return call_int_hook(task_setioprio, p, ioprio);
3636
}
3637
3638
/**
3639
* security_task_getioprio() - Check if getting a task's ioprio is allowed
3640
* @p: task
3641
*
3642
* Check permission before getting the ioprio value of @p.
3643
*
3644
* Return: Returns 0 if permission is granted.
3645
*/
3646
int security_task_getioprio(struct task_struct *p)
3647
{
3648
return call_int_hook(task_getioprio, p);
3649
}
3650
3651
/**
3652
* security_task_prlimit() - Check if get/setting resources limits is allowed
3653
* @cred: current task credentials
3654
* @tcred: target task credentials
3655
* @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3656
*
3657
* Check permission before getting and/or setting the resource limits of
3658
* another task.
3659
*
3660
* Return: Returns 0 if permission is granted.
3661
*/
3662
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3663
unsigned int flags)
3664
{
3665
return call_int_hook(task_prlimit, cred, tcred, flags);
3666
}
3667
3668
/**
3669
* security_task_setrlimit() - Check if setting a new rlimit value is allowed
3670
* @p: target task's group leader
3671
* @resource: resource whose limit is being set
3672
* @new_rlim: new resource limit
3673
*
3674
* Check permission before setting the resource limits of process @p for
3675
* @resource to @new_rlim. The old resource limit values can be examined by
3676
* dereferencing (p->signal->rlim + resource).
3677
*
3678
* Return: Returns 0 if permission is granted.
3679
*/
3680
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3681
struct rlimit *new_rlim)
3682
{
3683
return call_int_hook(task_setrlimit, p, resource, new_rlim);
3684
}
3685
3686
/**
3687
* security_task_setscheduler() - Check if setting sched policy/param is allowed
3688
* @p: target task
3689
*
3690
* Check permission before setting scheduling policy and/or parameters of
3691
* process @p.
3692
*
3693
* Return: Returns 0 if permission is granted.
3694
*/
3695
int security_task_setscheduler(struct task_struct *p)
3696
{
3697
return call_int_hook(task_setscheduler, p);
3698
}
3699
3700
/**
3701
* security_task_getscheduler() - Check if getting scheduling info is allowed
3702
* @p: target task
3703
*
3704
* Check permission before obtaining scheduling information for process @p.
3705
*
3706
* Return: Returns 0 if permission is granted.
3707
*/
3708
int security_task_getscheduler(struct task_struct *p)
3709
{
3710
return call_int_hook(task_getscheduler, p);
3711
}
3712
3713
/**
3714
* security_task_movememory() - Check if moving memory is allowed
3715
* @p: task
3716
*
3717
* Check permission before moving memory owned by process @p.
3718
*
3719
* Return: Returns 0 if permission is granted.
3720
*/
3721
int security_task_movememory(struct task_struct *p)
3722
{
3723
return call_int_hook(task_movememory, p);
3724
}
3725
3726
/**
3727
* security_task_kill() - Check if sending a signal is allowed
3728
* @p: target process
3729
* @info: signal information
3730
* @sig: signal value
3731
* @cred: credentials of the signal sender, NULL if @current
3732
*
3733
* Check permission before sending signal @sig to @p. @info can be NULL, the
3734
* constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3735
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3736
* the kernel and should typically be permitted. SIGIO signals are handled
3737
* separately by the send_sigiotask hook in file_security_ops.
3738
*
3739
* Return: Returns 0 if permission is granted.
3740
*/
3741
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3742
int sig, const struct cred *cred)
3743
{
3744
return call_int_hook(task_kill, p, info, sig, cred);
3745
}
3746
3747
/**
3748
* security_task_prctl() - Check if a prctl op is allowed
3749
* @option: operation
3750
* @arg2: argument
3751
* @arg3: argument
3752
* @arg4: argument
3753
* @arg5: argument
3754
*
3755
* Check permission before performing a process control operation on the
3756
* current process.
3757
*
3758
* Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3759
* to cause prctl() to return immediately with that value.
3760
*/
3761
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3762
unsigned long arg4, unsigned long arg5)
3763
{
3764
int thisrc;
3765
int rc = LSM_RET_DEFAULT(task_prctl);
3766
struct lsm_static_call *scall;
3767
3768
lsm_for_each_hook(scall, task_prctl) {
3769
thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3770
if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3771
rc = thisrc;
3772
if (thisrc != 0)
3773
break;
3774
}
3775
}
3776
return rc;
3777
}
3778
3779
/**
3780
* security_task_to_inode() - Set the security attributes of a task's inode
3781
* @p: task
3782
* @inode: inode
3783
*
3784
* Set the security attributes for an inode based on an associated task's
3785
* security attributes, e.g. for /proc/pid inodes.
3786
*/
3787
void security_task_to_inode(struct task_struct *p, struct inode *inode)
3788
{
3789
call_void_hook(task_to_inode, p, inode);
3790
}
3791
3792
/**
3793
* security_create_user_ns() - Check if creating a new userns is allowed
3794
* @cred: prepared creds
3795
*
3796
* Check permission prior to creating a new user namespace.
3797
*
3798
* Return: Returns 0 if successful, otherwise < 0 error code.
3799
*/
3800
int security_create_user_ns(const struct cred *cred)
3801
{
3802
return call_int_hook(userns_create, cred);
3803
}
3804
3805
/**
3806
* security_ipc_permission() - Check if sysv ipc access is allowed
3807
* @ipcp: ipc permission structure
3808
* @flag: requested permissions
3809
*
3810
* Check permissions for access to IPC.
3811
*
3812
* Return: Returns 0 if permission is granted.
3813
*/
3814
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3815
{
3816
return call_int_hook(ipc_permission, ipcp, flag);
3817
}
3818
3819
/**
3820
* security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3821
* @ipcp: ipc permission structure
3822
* @prop: pointer to lsm information
3823
*
3824
* Get the lsm information associated with the ipc object.
3825
*/
3826
3827
void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3828
{
3829
lsmprop_init(prop);
3830
call_void_hook(ipc_getlsmprop, ipcp, prop);
3831
}
3832
3833
/**
3834
* security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3835
* @msg: message structure
3836
*
3837
* Allocate and attach a security structure to the msg->security field. The
3838
* security field is initialized to NULL when the structure is first created.
3839
*
3840
* Return: Return 0 if operation was successful and permission is granted.
3841
*/
3842
int security_msg_msg_alloc(struct msg_msg *msg)
3843
{
3844
int rc = lsm_msg_msg_alloc(msg);
3845
3846
if (unlikely(rc))
3847
return rc;
3848
rc = call_int_hook(msg_msg_alloc_security, msg);
3849
if (unlikely(rc))
3850
security_msg_msg_free(msg);
3851
return rc;
3852
}
3853
3854
/**
3855
* security_msg_msg_free() - Free a sysv ipc message LSM blob
3856
* @msg: message structure
3857
*
3858
* Deallocate the security structure for this message.
3859
*/
3860
void security_msg_msg_free(struct msg_msg *msg)
3861
{
3862
call_void_hook(msg_msg_free_security, msg);
3863
kfree(msg->security);
3864
msg->security = NULL;
3865
}
3866
3867
/**
3868
* security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3869
* @msq: sysv ipc permission structure
3870
*
3871
* Allocate and attach a security structure to @msg. The security field is
3872
* initialized to NULL when the structure is first created.
3873
*
3874
* Return: Returns 0 if operation was successful and permission is granted.
3875
*/
3876
int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3877
{
3878
int rc = lsm_ipc_alloc(msq);
3879
3880
if (unlikely(rc))
3881
return rc;
3882
rc = call_int_hook(msg_queue_alloc_security, msq);
3883
if (unlikely(rc))
3884
security_msg_queue_free(msq);
3885
return rc;
3886
}
3887
3888
/**
3889
* security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3890
* @msq: sysv ipc permission structure
3891
*
3892
* Deallocate security field @perm->security for the message queue.
3893
*/
3894
void security_msg_queue_free(struct kern_ipc_perm *msq)
3895
{
3896
call_void_hook(msg_queue_free_security, msq);
3897
kfree(msq->security);
3898
msq->security = NULL;
3899
}
3900
3901
/**
3902
* security_msg_queue_associate() - Check if a msg queue operation is allowed
3903
* @msq: sysv ipc permission structure
3904
* @msqflg: operation flags
3905
*
3906
* Check permission when a message queue is requested through the msgget system
3907
* call. This hook is only called when returning the message queue identifier
3908
* for an existing message queue, not when a new message queue is created.
3909
*
3910
* Return: Return 0 if permission is granted.
3911
*/
3912
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3913
{
3914
return call_int_hook(msg_queue_associate, msq, msqflg);
3915
}
3916
3917
/**
3918
* security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3919
* @msq: sysv ipc permission structure
3920
* @cmd: operation
3921
*
3922
* Check permission when a message control operation specified by @cmd is to be
3923
* performed on the message queue with permissions.
3924
*
3925
* Return: Returns 0 if permission is granted.
3926
*/
3927
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3928
{
3929
return call_int_hook(msg_queue_msgctl, msq, cmd);
3930
}
3931
3932
/**
3933
* security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3934
* @msq: sysv ipc permission structure
3935
* @msg: message
3936
* @msqflg: operation flags
3937
*
3938
* Check permission before a message, @msg, is enqueued on the message queue
3939
* with permissions specified in @msq.
3940
*
3941
* Return: Returns 0 if permission is granted.
3942
*/
3943
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3944
struct msg_msg *msg, int msqflg)
3945
{
3946
return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3947
}
3948
3949
/**
3950
* security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3951
* @msq: sysv ipc permission structure
3952
* @msg: message
3953
* @target: target task
3954
* @type: type of message requested
3955
* @mode: operation flags
3956
*
3957
* Check permission before a message, @msg, is removed from the message queue.
3958
* The @target task structure contains a pointer to the process that will be
3959
* receiving the message (not equal to the current process when inline receives
3960
* are being performed).
3961
*
3962
* Return: Returns 0 if permission is granted.
3963
*/
3964
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3965
struct task_struct *target, long type, int mode)
3966
{
3967
return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3968
}
3969
3970
/**
3971
* security_shm_alloc() - Allocate a sysv shm LSM blob
3972
* @shp: sysv ipc permission structure
3973
*
3974
* Allocate and attach a security structure to the @shp security field. The
3975
* security field is initialized to NULL when the structure is first created.
3976
*
3977
* Return: Returns 0 if operation was successful and permission is granted.
3978
*/
3979
int security_shm_alloc(struct kern_ipc_perm *shp)
3980
{
3981
int rc = lsm_ipc_alloc(shp);
3982
3983
if (unlikely(rc))
3984
return rc;
3985
rc = call_int_hook(shm_alloc_security, shp);
3986
if (unlikely(rc))
3987
security_shm_free(shp);
3988
return rc;
3989
}
3990
3991
/**
3992
* security_shm_free() - Free a sysv shm LSM blob
3993
* @shp: sysv ipc permission structure
3994
*
3995
* Deallocate the security structure @perm->security for the memory segment.
3996
*/
3997
void security_shm_free(struct kern_ipc_perm *shp)
3998
{
3999
call_void_hook(shm_free_security, shp);
4000
kfree(shp->security);
4001
shp->security = NULL;
4002
}
4003
4004
/**
4005
* security_shm_associate() - Check if a sysv shm operation is allowed
4006
* @shp: sysv ipc permission structure
4007
* @shmflg: operation flags
4008
*
4009
* Check permission when a shared memory region is requested through the shmget
4010
* system call. This hook is only called when returning the shared memory
4011
* region identifier for an existing region, not when a new shared memory
4012
* region is created.
4013
*
4014
* Return: Returns 0 if permission is granted.
4015
*/
4016
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
4017
{
4018
return call_int_hook(shm_associate, shp, shmflg);
4019
}
4020
4021
/**
4022
* security_shm_shmctl() - Check if a sysv shm operation is allowed
4023
* @shp: sysv ipc permission structure
4024
* @cmd: operation
4025
*
4026
* Check permission when a shared memory control operation specified by @cmd is
4027
* to be performed on the shared memory region with permissions in @shp.
4028
*
4029
* Return: Return 0 if permission is granted.
4030
*/
4031
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
4032
{
4033
return call_int_hook(shm_shmctl, shp, cmd);
4034
}
4035
4036
/**
4037
* security_shm_shmat() - Check if a sysv shm attach operation is allowed
4038
* @shp: sysv ipc permission structure
4039
* @shmaddr: address of memory region to attach
4040
* @shmflg: operation flags
4041
*
4042
* Check permissions prior to allowing the shmat system call to attach the
4043
* shared memory segment with permissions @shp to the data segment of the
4044
* calling process. The attaching address is specified by @shmaddr.
4045
*
4046
* Return: Returns 0 if permission is granted.
4047
*/
4048
int security_shm_shmat(struct kern_ipc_perm *shp,
4049
char __user *shmaddr, int shmflg)
4050
{
4051
return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
4052
}
4053
4054
/**
4055
* security_sem_alloc() - Allocate a sysv semaphore LSM blob
4056
* @sma: sysv ipc permission structure
4057
*
4058
* Allocate and attach a security structure to the @sma security field. The
4059
* security field is initialized to NULL when the structure is first created.
4060
*
4061
* Return: Returns 0 if operation was successful and permission is granted.
4062
*/
4063
int security_sem_alloc(struct kern_ipc_perm *sma)
4064
{
4065
int rc = lsm_ipc_alloc(sma);
4066
4067
if (unlikely(rc))
4068
return rc;
4069
rc = call_int_hook(sem_alloc_security, sma);
4070
if (unlikely(rc))
4071
security_sem_free(sma);
4072
return rc;
4073
}
4074
4075
/**
4076
* security_sem_free() - Free a sysv semaphore LSM blob
4077
* @sma: sysv ipc permission structure
4078
*
4079
* Deallocate security structure @sma->security for the semaphore.
4080
*/
4081
void security_sem_free(struct kern_ipc_perm *sma)
4082
{
4083
call_void_hook(sem_free_security, sma);
4084
kfree(sma->security);
4085
sma->security = NULL;
4086
}
4087
4088
/**
4089
* security_sem_associate() - Check if a sysv semaphore operation is allowed
4090
* @sma: sysv ipc permission structure
4091
* @semflg: operation flags
4092
*
4093
* Check permission when a semaphore is requested through the semget system
4094
* call. This hook is only called when returning the semaphore identifier for
4095
* an existing semaphore, not when a new one must be created.
4096
*
4097
* Return: Returns 0 if permission is granted.
4098
*/
4099
int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4100
{
4101
return call_int_hook(sem_associate, sma, semflg);
4102
}
4103
4104
/**
4105
* security_sem_semctl() - Check if a sysv semaphore operation is allowed
4106
* @sma: sysv ipc permission structure
4107
* @cmd: operation
4108
*
4109
* Check permission when a semaphore operation specified by @cmd is to be
4110
* performed on the semaphore.
4111
*
4112
* Return: Returns 0 if permission is granted.
4113
*/
4114
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4115
{
4116
return call_int_hook(sem_semctl, sma, cmd);
4117
}
4118
4119
/**
4120
* security_sem_semop() - Check if a sysv semaphore operation is allowed
4121
* @sma: sysv ipc permission structure
4122
* @sops: operations to perform
4123
* @nsops: number of operations
4124
* @alter: flag indicating changes will be made
4125
*
4126
* Check permissions before performing operations on members of the semaphore
4127
* set. If the @alter flag is nonzero, the semaphore set may be modified.
4128
*
4129
* Return: Returns 0 if permission is granted.
4130
*/
4131
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4132
unsigned nsops, int alter)
4133
{
4134
return call_int_hook(sem_semop, sma, sops, nsops, alter);
4135
}
4136
4137
/**
4138
* security_d_instantiate() - Populate an inode's LSM state based on a dentry
4139
* @dentry: dentry
4140
* @inode: inode
4141
*
4142
* Fill in @inode security information for a @dentry if allowed.
4143
*/
4144
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4145
{
4146
if (unlikely(inode && IS_PRIVATE(inode)))
4147
return;
4148
call_void_hook(d_instantiate, dentry, inode);
4149
}
4150
EXPORT_SYMBOL(security_d_instantiate);
4151
4152
/*
4153
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4154
*/
4155
4156
/**
4157
* security_getselfattr - Read an LSM attribute of the current process.
4158
* @attr: which attribute to return
4159
* @uctx: the user-space destination for the information, or NULL
4160
* @size: pointer to the size of space available to receive the data
4161
* @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4162
* attributes associated with the LSM identified in the passed @ctx be
4163
* reported.
4164
*
4165
* A NULL value for @uctx can be used to get both the number of attributes
4166
* and the size of the data.
4167
*
4168
* Returns the number of attributes found on success, negative value
4169
* on error. @size is reset to the total size of the data.
4170
* If @size is insufficient to contain the data -E2BIG is returned.
4171
*/
4172
int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4173
u32 __user *size, u32 flags)
4174
{
4175
struct lsm_static_call *scall;
4176
struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4177
u8 __user *base = (u8 __user *)uctx;
4178
u32 entrysize;
4179
u32 total = 0;
4180
u32 left;
4181
bool toobig = false;
4182
bool single = false;
4183
int count = 0;
4184
int rc;
4185
4186
if (attr == LSM_ATTR_UNDEF)
4187
return -EINVAL;
4188
if (size == NULL)
4189
return -EINVAL;
4190
if (get_user(left, size))
4191
return -EFAULT;
4192
4193
if (flags) {
4194
/*
4195
* Only flag supported is LSM_FLAG_SINGLE
4196
*/
4197
if (flags != LSM_FLAG_SINGLE || !uctx)
4198
return -EINVAL;
4199
if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4200
return -EFAULT;
4201
/*
4202
* If the LSM ID isn't specified it is an error.
4203
*/
4204
if (lctx.id == LSM_ID_UNDEF)
4205
return -EINVAL;
4206
single = true;
4207
}
4208
4209
/*
4210
* In the usual case gather all the data from the LSMs.
4211
* In the single case only get the data from the LSM specified.
4212
*/
4213
lsm_for_each_hook(scall, getselfattr) {
4214
if (single && lctx.id != scall->hl->lsmid->id)
4215
continue;
4216
entrysize = left;
4217
if (base)
4218
uctx = (struct lsm_ctx __user *)(base + total);
4219
rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4220
if (rc == -EOPNOTSUPP)
4221
continue;
4222
if (rc == -E2BIG) {
4223
rc = 0;
4224
left = 0;
4225
toobig = true;
4226
} else if (rc < 0)
4227
return rc;
4228
else
4229
left -= entrysize;
4230
4231
total += entrysize;
4232
count += rc;
4233
if (single)
4234
break;
4235
}
4236
if (put_user(total, size))
4237
return -EFAULT;
4238
if (toobig)
4239
return -E2BIG;
4240
if (count == 0)
4241
return LSM_RET_DEFAULT(getselfattr);
4242
return count;
4243
}
4244
4245
/*
4246
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4247
*/
4248
4249
/**
4250
* security_setselfattr - Set an LSM attribute on the current process.
4251
* @attr: which attribute to set
4252
* @uctx: the user-space source for the information
4253
* @size: the size of the data
4254
* @flags: reserved for future use, must be 0
4255
*
4256
* Set an LSM attribute for the current process. The LSM, attribute
4257
* and new value are included in @uctx.
4258
*
4259
* Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4260
* if the user buffer is inaccessible, E2BIG if size is too big, or an
4261
* LSM specific failure.
4262
*/
4263
int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4264
u32 size, u32 flags)
4265
{
4266
struct lsm_static_call *scall;
4267
struct lsm_ctx *lctx;
4268
int rc = LSM_RET_DEFAULT(setselfattr);
4269
u64 required_len;
4270
4271
if (flags)
4272
return -EINVAL;
4273
if (size < sizeof(*lctx))
4274
return -EINVAL;
4275
if (size > PAGE_SIZE)
4276
return -E2BIG;
4277
4278
lctx = memdup_user(uctx, size);
4279
if (IS_ERR(lctx))
4280
return PTR_ERR(lctx);
4281
4282
if (size < lctx->len ||
4283
check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4284
lctx->len < required_len) {
4285
rc = -EINVAL;
4286
goto free_out;
4287
}
4288
4289
lsm_for_each_hook(scall, setselfattr)
4290
if ((scall->hl->lsmid->id) == lctx->id) {
4291
rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4292
break;
4293
}
4294
4295
free_out:
4296
kfree(lctx);
4297
return rc;
4298
}
4299
4300
/**
4301
* security_getprocattr() - Read an attribute for a task
4302
* @p: the task
4303
* @lsmid: LSM identification
4304
* @name: attribute name
4305
* @value: attribute value
4306
*
4307
* Read attribute @name for task @p and store it into @value if allowed.
4308
*
4309
* Return: Returns the length of @value on success, a negative value otherwise.
4310
*/
4311
int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4312
char **value)
4313
{
4314
struct lsm_static_call *scall;
4315
4316
lsm_for_each_hook(scall, getprocattr) {
4317
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4318
continue;
4319
return scall->hl->hook.getprocattr(p, name, value);
4320
}
4321
return LSM_RET_DEFAULT(getprocattr);
4322
}
4323
4324
/**
4325
* security_setprocattr() - Set an attribute for a task
4326
* @lsmid: LSM identification
4327
* @name: attribute name
4328
* @value: attribute value
4329
* @size: attribute value size
4330
*
4331
* Write (set) the current task's attribute @name to @value, size @size if
4332
* allowed.
4333
*
4334
* Return: Returns bytes written on success, a negative value otherwise.
4335
*/
4336
int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4337
{
4338
struct lsm_static_call *scall;
4339
4340
lsm_for_each_hook(scall, setprocattr) {
4341
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4342
continue;
4343
return scall->hl->hook.setprocattr(name, value, size);
4344
}
4345
return LSM_RET_DEFAULT(setprocattr);
4346
}
4347
4348
/**
4349
* security_ismaclabel() - Check if the named attribute is a MAC label
4350
* @name: full extended attribute name
4351
*
4352
* Check if the extended attribute specified by @name represents a MAC label.
4353
*
4354
* Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4355
*/
4356
int security_ismaclabel(const char *name)
4357
{
4358
return call_int_hook(ismaclabel, name);
4359
}
4360
EXPORT_SYMBOL(security_ismaclabel);
4361
4362
/**
4363
* security_secid_to_secctx() - Convert a secid to a secctx
4364
* @secid: secid
4365
* @cp: the LSM context
4366
*
4367
* Convert secid to security context. If @cp is NULL the length of the
4368
* result will be returned, but no data will be returned. This
4369
* does mean that the length could change between calls to check the length and
4370
* the next call which actually allocates and returns the data.
4371
*
4372
* Return: Return length of data on success, error on failure.
4373
*/
4374
int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4375
{
4376
return call_int_hook(secid_to_secctx, secid, cp);
4377
}
4378
EXPORT_SYMBOL(security_secid_to_secctx);
4379
4380
/**
4381
* security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4382
* @prop: lsm specific information
4383
* @cp: the LSM context
4384
* @lsmid: which security module to report
4385
*
4386
* Convert a @prop entry to security context. If @cp is NULL the
4387
* length of the result will be returned. This does mean that the
4388
* length could change between calls to check the length and the
4389
* next call which actually allocates and returns the @cp.
4390
*
4391
* @lsmid identifies which LSM should supply the context.
4392
* A value of LSM_ID_UNDEF indicates that the first LSM suppling
4393
* the hook should be used. This is used in cases where the
4394
* ID of the supplying LSM is unambiguous.
4395
*
4396
* Return: Return length of data on success, error on failure.
4397
*/
4398
int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp,
4399
int lsmid)
4400
{
4401
struct lsm_static_call *scall;
4402
4403
lsm_for_each_hook(scall, lsmprop_to_secctx) {
4404
if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id)
4405
continue;
4406
return scall->hl->hook.lsmprop_to_secctx(prop, cp);
4407
}
4408
return LSM_RET_DEFAULT(lsmprop_to_secctx);
4409
}
4410
EXPORT_SYMBOL(security_lsmprop_to_secctx);
4411
4412
/**
4413
* security_secctx_to_secid() - Convert a secctx to a secid
4414
* @secdata: secctx
4415
* @seclen: length of secctx
4416
* @secid: secid
4417
*
4418
* Convert security context to secid.
4419
*
4420
* Return: Returns 0 on success, error on failure.
4421
*/
4422
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4423
{
4424
*secid = 0;
4425
return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4426
}
4427
EXPORT_SYMBOL(security_secctx_to_secid);
4428
4429
/**
4430
* security_release_secctx() - Free a secctx buffer
4431
* @cp: the security context
4432
*
4433
* Release the security context.
4434
*/
4435
void security_release_secctx(struct lsm_context *cp)
4436
{
4437
call_void_hook(release_secctx, cp);
4438
memset(cp, 0, sizeof(*cp));
4439
}
4440
EXPORT_SYMBOL(security_release_secctx);
4441
4442
/**
4443
* security_inode_invalidate_secctx() - Invalidate an inode's security label
4444
* @inode: inode
4445
*
4446
* Notify the security module that it must revalidate the security context of
4447
* an inode.
4448
*/
4449
void security_inode_invalidate_secctx(struct inode *inode)
4450
{
4451
call_void_hook(inode_invalidate_secctx, inode);
4452
}
4453
EXPORT_SYMBOL(security_inode_invalidate_secctx);
4454
4455
/**
4456
* security_inode_notifysecctx() - Notify the LSM of an inode's security label
4457
* @inode: inode
4458
* @ctx: secctx
4459
* @ctxlen: length of secctx
4460
*
4461
* Notify the security module of what the security context of an inode should
4462
* be. Initializes the incore security context managed by the security module
4463
* for this inode. Example usage: NFS client invokes this hook to initialize
4464
* the security context in its incore inode to the value provided by the server
4465
* for the file when the server returned the file's attributes to the client.
4466
* Must be called with inode->i_mutex locked.
4467
*
4468
* Return: Returns 0 on success, error on failure.
4469
*/
4470
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4471
{
4472
return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4473
}
4474
EXPORT_SYMBOL(security_inode_notifysecctx);
4475
4476
/**
4477
* security_inode_setsecctx() - Change the security label of an inode
4478
* @dentry: inode
4479
* @ctx: secctx
4480
* @ctxlen: length of secctx
4481
*
4482
* Change the security context of an inode. Updates the incore security
4483
* context managed by the security module and invokes the fs code as needed
4484
* (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4485
* context. Example usage: NFS server invokes this hook to change the security
4486
* context in its incore inode and on the backing filesystem to a value
4487
* provided by the client on a SETATTR operation. Must be called with
4488
* inode->i_mutex locked.
4489
*
4490
* Return: Returns 0 on success, error on failure.
4491
*/
4492
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4493
{
4494
return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4495
}
4496
EXPORT_SYMBOL(security_inode_setsecctx);
4497
4498
/**
4499
* security_inode_getsecctx() - Get the security label of an inode
4500
* @inode: inode
4501
* @cp: security context
4502
*
4503
* On success, returns 0 and fills out @cp with the security context
4504
* for the given @inode.
4505
*
4506
* Return: Returns 0 on success, error on failure.
4507
*/
4508
int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4509
{
4510
memset(cp, 0, sizeof(*cp));
4511
return call_int_hook(inode_getsecctx, inode, cp);
4512
}
4513
EXPORT_SYMBOL(security_inode_getsecctx);
4514
4515
#ifdef CONFIG_WATCH_QUEUE
4516
/**
4517
* security_post_notification() - Check if a watch notification can be posted
4518
* @w_cred: credentials of the task that set the watch
4519
* @cred: credentials of the task which triggered the watch
4520
* @n: the notification
4521
*
4522
* Check to see if a watch notification can be posted to a particular queue.
4523
*
4524
* Return: Returns 0 if permission is granted.
4525
*/
4526
int security_post_notification(const struct cred *w_cred,
4527
const struct cred *cred,
4528
struct watch_notification *n)
4529
{
4530
return call_int_hook(post_notification, w_cred, cred, n);
4531
}
4532
#endif /* CONFIG_WATCH_QUEUE */
4533
4534
#ifdef CONFIG_KEY_NOTIFICATIONS
4535
/**
4536
* security_watch_key() - Check if a task is allowed to watch for key events
4537
* @key: the key to watch
4538
*
4539
* Check to see if a process is allowed to watch for event notifications from
4540
* a key or keyring.
4541
*
4542
* Return: Returns 0 if permission is granted.
4543
*/
4544
int security_watch_key(struct key *key)
4545
{
4546
return call_int_hook(watch_key, key);
4547
}
4548
#endif /* CONFIG_KEY_NOTIFICATIONS */
4549
4550
#ifdef CONFIG_SECURITY_NETWORK
4551
/**
4552
* security_netlink_send() - Save info and check if netlink sending is allowed
4553
* @sk: sending socket
4554
* @skb: netlink message
4555
*
4556
* Save security information for a netlink message so that permission checking
4557
* can be performed when the message is processed. The security information
4558
* can be saved using the eff_cap field of the netlink_skb_parms structure.
4559
* Also may be used to provide fine grained control over message transmission.
4560
*
4561
* Return: Returns 0 if the information was successfully saved and message is
4562
* allowed to be transmitted.
4563
*/
4564
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4565
{
4566
return call_int_hook(netlink_send, sk, skb);
4567
}
4568
4569
/**
4570
* security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4571
* @sock: originating sock
4572
* @other: peer sock
4573
* @newsk: new sock
4574
*
4575
* Check permissions before establishing a Unix domain stream connection
4576
* between @sock and @other.
4577
*
4578
* The @unix_stream_connect and @unix_may_send hooks were necessary because
4579
* Linux provides an alternative to the conventional file name space for Unix
4580
* domain sockets. Whereas binding and connecting to sockets in the file name
4581
* space is mediated by the typical file permissions (and caught by the mknod
4582
* and permission hooks in inode_security_ops), binding and connecting to
4583
* sockets in the abstract name space is completely unmediated. Sufficient
4584
* control of Unix domain sockets in the abstract name space isn't possible
4585
* using only the socket layer hooks, since we need to know the actual target
4586
* socket, which is not looked up until we are inside the af_unix code.
4587
*
4588
* Return: Returns 0 if permission is granted.
4589
*/
4590
int security_unix_stream_connect(struct sock *sock, struct sock *other,
4591
struct sock *newsk)
4592
{
4593
return call_int_hook(unix_stream_connect, sock, other, newsk);
4594
}
4595
EXPORT_SYMBOL(security_unix_stream_connect);
4596
4597
/**
4598
* security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4599
* @sock: originating sock
4600
* @other: peer sock
4601
*
4602
* Check permissions before connecting or sending datagrams from @sock to
4603
* @other.
4604
*
4605
* The @unix_stream_connect and @unix_may_send hooks were necessary because
4606
* Linux provides an alternative to the conventional file name space for Unix
4607
* domain sockets. Whereas binding and connecting to sockets in the file name
4608
* space is mediated by the typical file permissions (and caught by the mknod
4609
* and permission hooks in inode_security_ops), binding and connecting to
4610
* sockets in the abstract name space is completely unmediated. Sufficient
4611
* control of Unix domain sockets in the abstract name space isn't possible
4612
* using only the socket layer hooks, since we need to know the actual target
4613
* socket, which is not looked up until we are inside the af_unix code.
4614
*
4615
* Return: Returns 0 if permission is granted.
4616
*/
4617
int security_unix_may_send(struct socket *sock, struct socket *other)
4618
{
4619
return call_int_hook(unix_may_send, sock, other);
4620
}
4621
EXPORT_SYMBOL(security_unix_may_send);
4622
4623
/**
4624
* security_socket_create() - Check if creating a new socket is allowed
4625
* @family: protocol family
4626
* @type: communications type
4627
* @protocol: requested protocol
4628
* @kern: set to 1 if a kernel socket is requested
4629
*
4630
* Check permissions prior to creating a new socket.
4631
*
4632
* Return: Returns 0 if permission is granted.
4633
*/
4634
int security_socket_create(int family, int type, int protocol, int kern)
4635
{
4636
return call_int_hook(socket_create, family, type, protocol, kern);
4637
}
4638
4639
/**
4640
* security_socket_post_create() - Initialize a newly created socket
4641
* @sock: socket
4642
* @family: protocol family
4643
* @type: communications type
4644
* @protocol: requested protocol
4645
* @kern: set to 1 if a kernel socket is requested
4646
*
4647
* This hook allows a module to update or allocate a per-socket security
4648
* structure. Note that the security field was not added directly to the socket
4649
* structure, but rather, the socket security information is stored in the
4650
* associated inode. Typically, the inode alloc_security hook will allocate
4651
* and attach security information to SOCK_INODE(sock)->i_security. This hook
4652
* may be used to update the SOCK_INODE(sock)->i_security field with additional
4653
* information that wasn't available when the inode was allocated.
4654
*
4655
* Return: Returns 0 if permission is granted.
4656
*/
4657
int security_socket_post_create(struct socket *sock, int family,
4658
int type, int protocol, int kern)
4659
{
4660
return call_int_hook(socket_post_create, sock, family, type,
4661
protocol, kern);
4662
}
4663
4664
/**
4665
* security_socket_socketpair() - Check if creating a socketpair is allowed
4666
* @socka: first socket
4667
* @sockb: second socket
4668
*
4669
* Check permissions before creating a fresh pair of sockets.
4670
*
4671
* Return: Returns 0 if permission is granted and the connection was
4672
* established.
4673
*/
4674
int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4675
{
4676
return call_int_hook(socket_socketpair, socka, sockb);
4677
}
4678
EXPORT_SYMBOL(security_socket_socketpair);
4679
4680
/**
4681
* security_socket_bind() - Check if a socket bind operation is allowed
4682
* @sock: socket
4683
* @address: requested bind address
4684
* @addrlen: length of address
4685
*
4686
* Check permission before socket protocol layer bind operation is performed
4687
* and the socket @sock is bound to the address specified in the @address
4688
* parameter.
4689
*
4690
* Return: Returns 0 if permission is granted.
4691
*/
4692
int security_socket_bind(struct socket *sock,
4693
struct sockaddr *address, int addrlen)
4694
{
4695
return call_int_hook(socket_bind, sock, address, addrlen);
4696
}
4697
4698
/**
4699
* security_socket_connect() - Check if a socket connect operation is allowed
4700
* @sock: socket
4701
* @address: address of remote connection point
4702
* @addrlen: length of address
4703
*
4704
* Check permission before socket protocol layer connect operation attempts to
4705
* connect socket @sock to a remote address, @address.
4706
*
4707
* Return: Returns 0 if permission is granted.
4708
*/
4709
int security_socket_connect(struct socket *sock,
4710
struct sockaddr *address, int addrlen)
4711
{
4712
return call_int_hook(socket_connect, sock, address, addrlen);
4713
}
4714
4715
/**
4716
* security_socket_listen() - Check if a socket is allowed to listen
4717
* @sock: socket
4718
* @backlog: connection queue size
4719
*
4720
* Check permission before socket protocol layer listen operation.
4721
*
4722
* Return: Returns 0 if permission is granted.
4723
*/
4724
int security_socket_listen(struct socket *sock, int backlog)
4725
{
4726
return call_int_hook(socket_listen, sock, backlog);
4727
}
4728
4729
/**
4730
* security_socket_accept() - Check if a socket is allowed to accept connections
4731
* @sock: listening socket
4732
* @newsock: newly creation connection socket
4733
*
4734
* Check permission before accepting a new connection. Note that the new
4735
* socket, @newsock, has been created and some information copied to it, but
4736
* the accept operation has not actually been performed.
4737
*
4738
* Return: Returns 0 if permission is granted.
4739
*/
4740
int security_socket_accept(struct socket *sock, struct socket *newsock)
4741
{
4742
return call_int_hook(socket_accept, sock, newsock);
4743
}
4744
4745
/**
4746
* security_socket_sendmsg() - Check if sending a message is allowed
4747
* @sock: sending socket
4748
* @msg: message to send
4749
* @size: size of message
4750
*
4751
* Check permission before transmitting a message to another socket.
4752
*
4753
* Return: Returns 0 if permission is granted.
4754
*/
4755
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4756
{
4757
return call_int_hook(socket_sendmsg, sock, msg, size);
4758
}
4759
4760
/**
4761
* security_socket_recvmsg() - Check if receiving a message is allowed
4762
* @sock: receiving socket
4763
* @msg: message to receive
4764
* @size: size of message
4765
* @flags: operational flags
4766
*
4767
* Check permission before receiving a message from a socket.
4768
*
4769
* Return: Returns 0 if permission is granted.
4770
*/
4771
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4772
int size, int flags)
4773
{
4774
return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4775
}
4776
4777
/**
4778
* security_socket_getsockname() - Check if reading the socket addr is allowed
4779
* @sock: socket
4780
*
4781
* Check permission before reading the local address (name) of the socket
4782
* object.
4783
*
4784
* Return: Returns 0 if permission is granted.
4785
*/
4786
int security_socket_getsockname(struct socket *sock)
4787
{
4788
return call_int_hook(socket_getsockname, sock);
4789
}
4790
4791
/**
4792
* security_socket_getpeername() - Check if reading the peer's addr is allowed
4793
* @sock: socket
4794
*
4795
* Check permission before the remote address (name) of a socket object.
4796
*
4797
* Return: Returns 0 if permission is granted.
4798
*/
4799
int security_socket_getpeername(struct socket *sock)
4800
{
4801
return call_int_hook(socket_getpeername, sock);
4802
}
4803
4804
/**
4805
* security_socket_getsockopt() - Check if reading a socket option is allowed
4806
* @sock: socket
4807
* @level: option's protocol level
4808
* @optname: option name
4809
*
4810
* Check permissions before retrieving the options associated with socket
4811
* @sock.
4812
*
4813
* Return: Returns 0 if permission is granted.
4814
*/
4815
int security_socket_getsockopt(struct socket *sock, int level, int optname)
4816
{
4817
return call_int_hook(socket_getsockopt, sock, level, optname);
4818
}
4819
4820
/**
4821
* security_socket_setsockopt() - Check if setting a socket option is allowed
4822
* @sock: socket
4823
* @level: option's protocol level
4824
* @optname: option name
4825
*
4826
* Check permissions before setting the options associated with socket @sock.
4827
*
4828
* Return: Returns 0 if permission is granted.
4829
*/
4830
int security_socket_setsockopt(struct socket *sock, int level, int optname)
4831
{
4832
return call_int_hook(socket_setsockopt, sock, level, optname);
4833
}
4834
4835
/**
4836
* security_socket_shutdown() - Checks if shutting down the socket is allowed
4837
* @sock: socket
4838
* @how: flag indicating how sends and receives are handled
4839
*
4840
* Checks permission before all or part of a connection on the socket @sock is
4841
* shut down.
4842
*
4843
* Return: Returns 0 if permission is granted.
4844
*/
4845
int security_socket_shutdown(struct socket *sock, int how)
4846
{
4847
return call_int_hook(socket_shutdown, sock, how);
4848
}
4849
4850
/**
4851
* security_sock_rcv_skb() - Check if an incoming network packet is allowed
4852
* @sk: destination sock
4853
* @skb: incoming packet
4854
*
4855
* Check permissions on incoming network packets. This hook is distinct from
4856
* Netfilter's IP input hooks since it is the first time that the incoming
4857
* sk_buff @skb has been associated with a particular socket, @sk. Must not
4858
* sleep inside this hook because some callers hold spinlocks.
4859
*
4860
* Return: Returns 0 if permission is granted.
4861
*/
4862
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4863
{
4864
return call_int_hook(socket_sock_rcv_skb, sk, skb);
4865
}
4866
EXPORT_SYMBOL(security_sock_rcv_skb);
4867
4868
/**
4869
* security_socket_getpeersec_stream() - Get the remote peer label
4870
* @sock: socket
4871
* @optval: destination buffer
4872
* @optlen: size of peer label copied into the buffer
4873
* @len: maximum size of the destination buffer
4874
*
4875
* This hook allows the security module to provide peer socket security state
4876
* for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4877
* For tcp sockets this can be meaningful if the socket is associated with an
4878
* ipsec SA.
4879
*
4880
* Return: Returns 0 if all is well, otherwise, typical getsockopt return
4881
* values.
4882
*/
4883
int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4884
sockptr_t optlen, unsigned int len)
4885
{
4886
return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4887
len);
4888
}
4889
4890
/**
4891
* security_socket_getpeersec_dgram() - Get the remote peer label
4892
* @sock: socket
4893
* @skb: datagram packet
4894
* @secid: remote peer label secid
4895
*
4896
* This hook allows the security module to provide peer socket security state
4897
* for udp sockets on a per-packet basis to userspace via getsockopt
4898
* SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4899
* option via getsockopt. It can then retrieve the security state returned by
4900
* this hook for a packet via the SCM_SECURITY ancillary message type.
4901
*
4902
* Return: Returns 0 on success, error on failure.
4903
*/
4904
int security_socket_getpeersec_dgram(struct socket *sock,
4905
struct sk_buff *skb, u32 *secid)
4906
{
4907
return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4908
}
4909
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4910
4911
/**
4912
* lsm_sock_alloc - allocate a composite sock blob
4913
* @sock: the sock that needs a blob
4914
* @gfp: allocation mode
4915
*
4916
* Allocate the sock blob for all the modules
4917
*
4918
* Returns 0, or -ENOMEM if memory can't be allocated.
4919
*/
4920
static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4921
{
4922
return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4923
}
4924
4925
/**
4926
* security_sk_alloc() - Allocate and initialize a sock's LSM blob
4927
* @sk: sock
4928
* @family: protocol family
4929
* @priority: gfp flags
4930
*
4931
* Allocate and attach a security structure to the sk->sk_security field, which
4932
* is used to copy security attributes between local stream sockets.
4933
*
4934
* Return: Returns 0 on success, error on failure.
4935
*/
4936
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4937
{
4938
int rc = lsm_sock_alloc(sk, priority);
4939
4940
if (unlikely(rc))
4941
return rc;
4942
rc = call_int_hook(sk_alloc_security, sk, family, priority);
4943
if (unlikely(rc))
4944
security_sk_free(sk);
4945
return rc;
4946
}
4947
4948
/**
4949
* security_sk_free() - Free the sock's LSM blob
4950
* @sk: sock
4951
*
4952
* Deallocate security structure.
4953
*/
4954
void security_sk_free(struct sock *sk)
4955
{
4956
call_void_hook(sk_free_security, sk);
4957
kfree(sk->sk_security);
4958
sk->sk_security = NULL;
4959
}
4960
4961
/**
4962
* security_sk_clone() - Clone a sock's LSM state
4963
* @sk: original sock
4964
* @newsk: target sock
4965
*
4966
* Clone/copy security structure.
4967
*/
4968
void security_sk_clone(const struct sock *sk, struct sock *newsk)
4969
{
4970
call_void_hook(sk_clone_security, sk, newsk);
4971
}
4972
EXPORT_SYMBOL(security_sk_clone);
4973
4974
/**
4975
* security_sk_classify_flow() - Set a flow's secid based on socket
4976
* @sk: original socket
4977
* @flic: target flow
4978
*
4979
* Set the target flow's secid to socket's secid.
4980
*/
4981
void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4982
{
4983
call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4984
}
4985
EXPORT_SYMBOL(security_sk_classify_flow);
4986
4987
/**
4988
* security_req_classify_flow() - Set a flow's secid based on request_sock
4989
* @req: request_sock
4990
* @flic: target flow
4991
*
4992
* Sets @flic's secid to @req's secid.
4993
*/
4994
void security_req_classify_flow(const struct request_sock *req,
4995
struct flowi_common *flic)
4996
{
4997
call_void_hook(req_classify_flow, req, flic);
4998
}
4999
EXPORT_SYMBOL(security_req_classify_flow);
5000
5001
/**
5002
* security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
5003
* @sk: sock being grafted
5004
* @parent: target parent socket
5005
*
5006
* Sets @parent's inode secid to @sk's secid and update @sk with any necessary
5007
* LSM state from @parent.
5008
*/
5009
void security_sock_graft(struct sock *sk, struct socket *parent)
5010
{
5011
call_void_hook(sock_graft, sk, parent);
5012
}
5013
EXPORT_SYMBOL(security_sock_graft);
5014
5015
/**
5016
* security_inet_conn_request() - Set request_sock state using incoming connect
5017
* @sk: parent listening sock
5018
* @skb: incoming connection
5019
* @req: new request_sock
5020
*
5021
* Initialize the @req LSM state based on @sk and the incoming connect in @skb.
5022
*
5023
* Return: Returns 0 if permission is granted.
5024
*/
5025
int security_inet_conn_request(const struct sock *sk,
5026
struct sk_buff *skb, struct request_sock *req)
5027
{
5028
return call_int_hook(inet_conn_request, sk, skb, req);
5029
}
5030
EXPORT_SYMBOL(security_inet_conn_request);
5031
5032
/**
5033
* security_inet_csk_clone() - Set new sock LSM state based on request_sock
5034
* @newsk: new sock
5035
* @req: connection request_sock
5036
*
5037
* Set that LSM state of @sock using the LSM state from @req.
5038
*/
5039
void security_inet_csk_clone(struct sock *newsk,
5040
const struct request_sock *req)
5041
{
5042
call_void_hook(inet_csk_clone, newsk, req);
5043
}
5044
5045
/**
5046
* security_inet_conn_established() - Update sock's LSM state with connection
5047
* @sk: sock
5048
* @skb: connection packet
5049
*
5050
* Update @sock's LSM state to represent a new connection from @skb.
5051
*/
5052
void security_inet_conn_established(struct sock *sk,
5053
struct sk_buff *skb)
5054
{
5055
call_void_hook(inet_conn_established, sk, skb);
5056
}
5057
EXPORT_SYMBOL(security_inet_conn_established);
5058
5059
/**
5060
* security_secmark_relabel_packet() - Check if setting a secmark is allowed
5061
* @secid: new secmark value
5062
*
5063
* Check if the process should be allowed to relabel packets to @secid.
5064
*
5065
* Return: Returns 0 if permission is granted.
5066
*/
5067
int security_secmark_relabel_packet(u32 secid)
5068
{
5069
return call_int_hook(secmark_relabel_packet, secid);
5070
}
5071
EXPORT_SYMBOL(security_secmark_relabel_packet);
5072
5073
/**
5074
* security_secmark_refcount_inc() - Increment the secmark labeling rule count
5075
*
5076
* Tells the LSM to increment the number of secmark labeling rules loaded.
5077
*/
5078
void security_secmark_refcount_inc(void)
5079
{
5080
call_void_hook(secmark_refcount_inc);
5081
}
5082
EXPORT_SYMBOL(security_secmark_refcount_inc);
5083
5084
/**
5085
* security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5086
*
5087
* Tells the LSM to decrement the number of secmark labeling rules loaded.
5088
*/
5089
void security_secmark_refcount_dec(void)
5090
{
5091
call_void_hook(secmark_refcount_dec);
5092
}
5093
EXPORT_SYMBOL(security_secmark_refcount_dec);
5094
5095
/**
5096
* security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5097
* @security: pointer to the LSM blob
5098
*
5099
* This hook allows a module to allocate a security structure for a TUN device,
5100
* returning the pointer in @security.
5101
*
5102
* Return: Returns a zero on success, negative values on failure.
5103
*/
5104
int security_tun_dev_alloc_security(void **security)
5105
{
5106
int rc;
5107
5108
rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5109
if (rc)
5110
return rc;
5111
5112
rc = call_int_hook(tun_dev_alloc_security, *security);
5113
if (rc) {
5114
kfree(*security);
5115
*security = NULL;
5116
}
5117
return rc;
5118
}
5119
EXPORT_SYMBOL(security_tun_dev_alloc_security);
5120
5121
/**
5122
* security_tun_dev_free_security() - Free a TUN device LSM blob
5123
* @security: LSM blob
5124
*
5125
* This hook allows a module to free the security structure for a TUN device.
5126
*/
5127
void security_tun_dev_free_security(void *security)
5128
{
5129
kfree(security);
5130
}
5131
EXPORT_SYMBOL(security_tun_dev_free_security);
5132
5133
/**
5134
* security_tun_dev_create() - Check if creating a TUN device is allowed
5135
*
5136
* Check permissions prior to creating a new TUN device.
5137
*
5138
* Return: Returns 0 if permission is granted.
5139
*/
5140
int security_tun_dev_create(void)
5141
{
5142
return call_int_hook(tun_dev_create);
5143
}
5144
EXPORT_SYMBOL(security_tun_dev_create);
5145
5146
/**
5147
* security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5148
* @security: TUN device LSM blob
5149
*
5150
* Check permissions prior to attaching to a TUN device queue.
5151
*
5152
* Return: Returns 0 if permission is granted.
5153
*/
5154
int security_tun_dev_attach_queue(void *security)
5155
{
5156
return call_int_hook(tun_dev_attach_queue, security);
5157
}
5158
EXPORT_SYMBOL(security_tun_dev_attach_queue);
5159
5160
/**
5161
* security_tun_dev_attach() - Update TUN device LSM state on attach
5162
* @sk: associated sock
5163
* @security: TUN device LSM blob
5164
*
5165
* This hook can be used by the module to update any security state associated
5166
* with the TUN device's sock structure.
5167
*
5168
* Return: Returns 0 if permission is granted.
5169
*/
5170
int security_tun_dev_attach(struct sock *sk, void *security)
5171
{
5172
return call_int_hook(tun_dev_attach, sk, security);
5173
}
5174
EXPORT_SYMBOL(security_tun_dev_attach);
5175
5176
/**
5177
* security_tun_dev_open() - Update TUN device LSM state on open
5178
* @security: TUN device LSM blob
5179
*
5180
* This hook can be used by the module to update any security state associated
5181
* with the TUN device's security structure.
5182
*
5183
* Return: Returns 0 if permission is granted.
5184
*/
5185
int security_tun_dev_open(void *security)
5186
{
5187
return call_int_hook(tun_dev_open, security);
5188
}
5189
EXPORT_SYMBOL(security_tun_dev_open);
5190
5191
/**
5192
* security_sctp_assoc_request() - Update the LSM on a SCTP association req
5193
* @asoc: SCTP association
5194
* @skb: packet requesting the association
5195
*
5196
* Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5197
*
5198
* Return: Returns 0 on success, error on failure.
5199
*/
5200
int security_sctp_assoc_request(struct sctp_association *asoc,
5201
struct sk_buff *skb)
5202
{
5203
return call_int_hook(sctp_assoc_request, asoc, skb);
5204
}
5205
EXPORT_SYMBOL(security_sctp_assoc_request);
5206
5207
/**
5208
* security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5209
* @sk: socket
5210
* @optname: SCTP option to validate
5211
* @address: list of IP addresses to validate
5212
* @addrlen: length of the address list
5213
*
5214
* Validiate permissions required for each address associated with sock @sk.
5215
* Depending on @optname, the addresses will be treated as either a connect or
5216
* bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5217
* sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5218
*
5219
* Return: Returns 0 on success, error on failure.
5220
*/
5221
int security_sctp_bind_connect(struct sock *sk, int optname,
5222
struct sockaddr *address, int addrlen)
5223
{
5224
return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5225
}
5226
EXPORT_SYMBOL(security_sctp_bind_connect);
5227
5228
/**
5229
* security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5230
* @asoc: SCTP association
5231
* @sk: original sock
5232
* @newsk: target sock
5233
*
5234
* Called whenever a new socket is created by accept(2) (i.e. a TCP style
5235
* socket) or when a socket is 'peeled off' e.g userspace calls
5236
* sctp_peeloff(3).
5237
*/
5238
void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5239
struct sock *newsk)
5240
{
5241
call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5242
}
5243
EXPORT_SYMBOL(security_sctp_sk_clone);
5244
5245
/**
5246
* security_sctp_assoc_established() - Update LSM state when assoc established
5247
* @asoc: SCTP association
5248
* @skb: packet establishing the association
5249
*
5250
* Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5251
* security module.
5252
*
5253
* Return: Returns 0 if permission is granted.
5254
*/
5255
int security_sctp_assoc_established(struct sctp_association *asoc,
5256
struct sk_buff *skb)
5257
{
5258
return call_int_hook(sctp_assoc_established, asoc, skb);
5259
}
5260
EXPORT_SYMBOL(security_sctp_assoc_established);
5261
5262
/**
5263
* security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5264
* @sk: the owning MPTCP socket
5265
* @ssk: the new subflow
5266
*
5267
* Update the labeling for the given MPTCP subflow, to match the one of the
5268
* owning MPTCP socket. This hook has to be called after the socket creation and
5269
* initialization via the security_socket_create() and
5270
* security_socket_post_create() LSM hooks.
5271
*
5272
* Return: Returns 0 on success or a negative error code on failure.
5273
*/
5274
int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5275
{
5276
return call_int_hook(mptcp_add_subflow, sk, ssk);
5277
}
5278
5279
#endif /* CONFIG_SECURITY_NETWORK */
5280
5281
#ifdef CONFIG_SECURITY_INFINIBAND
5282
/**
5283
* security_ib_pkey_access() - Check if access to an IB pkey is allowed
5284
* @sec: LSM blob
5285
* @subnet_prefix: subnet prefix of the port
5286
* @pkey: IB pkey
5287
*
5288
* Check permission to access a pkey when modifying a QP.
5289
*
5290
* Return: Returns 0 if permission is granted.
5291
*/
5292
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5293
{
5294
return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5295
}
5296
EXPORT_SYMBOL(security_ib_pkey_access);
5297
5298
/**
5299
* security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5300
* @sec: LSM blob
5301
* @dev_name: IB device name
5302
* @port_num: port number
5303
*
5304
* Check permissions to send and receive SMPs on a end port.
5305
*
5306
* Return: Returns 0 if permission is granted.
5307
*/
5308
int security_ib_endport_manage_subnet(void *sec,
5309
const char *dev_name, u8 port_num)
5310
{
5311
return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5312
}
5313
EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5314
5315
/**
5316
* security_ib_alloc_security() - Allocate an Infiniband LSM blob
5317
* @sec: LSM blob
5318
*
5319
* Allocate a security structure for Infiniband objects.
5320
*
5321
* Return: Returns 0 on success, non-zero on failure.
5322
*/
5323
int security_ib_alloc_security(void **sec)
5324
{
5325
int rc;
5326
5327
rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5328
if (rc)
5329
return rc;
5330
5331
rc = call_int_hook(ib_alloc_security, *sec);
5332
if (rc) {
5333
kfree(*sec);
5334
*sec = NULL;
5335
}
5336
return rc;
5337
}
5338
EXPORT_SYMBOL(security_ib_alloc_security);
5339
5340
/**
5341
* security_ib_free_security() - Free an Infiniband LSM blob
5342
* @sec: LSM blob
5343
*
5344
* Deallocate an Infiniband security structure.
5345
*/
5346
void security_ib_free_security(void *sec)
5347
{
5348
kfree(sec);
5349
}
5350
EXPORT_SYMBOL(security_ib_free_security);
5351
#endif /* CONFIG_SECURITY_INFINIBAND */
5352
5353
#ifdef CONFIG_SECURITY_NETWORK_XFRM
5354
/**
5355
* security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5356
* @ctxp: xfrm security context being added to the SPD
5357
* @sec_ctx: security label provided by userspace
5358
* @gfp: gfp flags
5359
*
5360
* Allocate a security structure to the xp->security field; the security field
5361
* is initialized to NULL when the xfrm_policy is allocated.
5362
*
5363
* Return: Return 0 if operation was successful.
5364
*/
5365
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5366
struct xfrm_user_sec_ctx *sec_ctx,
5367
gfp_t gfp)
5368
{
5369
return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5370
}
5371
EXPORT_SYMBOL(security_xfrm_policy_alloc);
5372
5373
/**
5374
* security_xfrm_policy_clone() - Clone xfrm policy LSM state
5375
* @old_ctx: xfrm security context
5376
* @new_ctxp: target xfrm security context
5377
*
5378
* Allocate a security structure in new_ctxp that contains the information from
5379
* the old_ctx structure.
5380
*
5381
* Return: Return 0 if operation was successful.
5382
*/
5383
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5384
struct xfrm_sec_ctx **new_ctxp)
5385
{
5386
return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5387
}
5388
5389
/**
5390
* security_xfrm_policy_free() - Free a xfrm security context
5391
* @ctx: xfrm security context
5392
*
5393
* Free LSM resources associated with @ctx.
5394
*/
5395
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5396
{
5397
call_void_hook(xfrm_policy_free_security, ctx);
5398
}
5399
EXPORT_SYMBOL(security_xfrm_policy_free);
5400
5401
/**
5402
* security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5403
* @ctx: xfrm security context
5404
*
5405
* Authorize deletion of a SPD entry.
5406
*
5407
* Return: Returns 0 if permission is granted.
5408
*/
5409
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5410
{
5411
return call_int_hook(xfrm_policy_delete_security, ctx);
5412
}
5413
5414
/**
5415
* security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5416
* @x: xfrm state being added to the SAD
5417
* @sec_ctx: security label provided by userspace
5418
*
5419
* Allocate a security structure to the @x->security field; the security field
5420
* is initialized to NULL when the xfrm_state is allocated. Set the context to
5421
* correspond to @sec_ctx.
5422
*
5423
* Return: Return 0 if operation was successful.
5424
*/
5425
int security_xfrm_state_alloc(struct xfrm_state *x,
5426
struct xfrm_user_sec_ctx *sec_ctx)
5427
{
5428
return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5429
}
5430
EXPORT_SYMBOL(security_xfrm_state_alloc);
5431
5432
/**
5433
* security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5434
* @x: xfrm state being added to the SAD
5435
* @polsec: associated policy's security context
5436
* @secid: secid from the flow
5437
*
5438
* Allocate a security structure to the x->security field; the security field
5439
* is initialized to NULL when the xfrm_state is allocated. Set the context to
5440
* correspond to secid.
5441
*
5442
* Return: Returns 0 if operation was successful.
5443
*/
5444
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5445
struct xfrm_sec_ctx *polsec, u32 secid)
5446
{
5447
return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5448
}
5449
5450
/**
5451
* security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5452
* @x: xfrm state
5453
*
5454
* Authorize deletion of x->security.
5455
*
5456
* Return: Returns 0 if permission is granted.
5457
*/
5458
int security_xfrm_state_delete(struct xfrm_state *x)
5459
{
5460
return call_int_hook(xfrm_state_delete_security, x);
5461
}
5462
EXPORT_SYMBOL(security_xfrm_state_delete);
5463
5464
/**
5465
* security_xfrm_state_free() - Free a xfrm state
5466
* @x: xfrm state
5467
*
5468
* Deallocate x->security.
5469
*/
5470
void security_xfrm_state_free(struct xfrm_state *x)
5471
{
5472
call_void_hook(xfrm_state_free_security, x);
5473
}
5474
5475
/**
5476
* security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5477
* @ctx: target xfrm security context
5478
* @fl_secid: flow secid used to authorize access
5479
*
5480
* Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5481
* packet. The hook is called when selecting either a per-socket policy or a
5482
* generic xfrm policy.
5483
*
5484
* Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5485
* other errors.
5486
*/
5487
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5488
{
5489
return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5490
}
5491
5492
/**
5493
* security_xfrm_state_pol_flow_match() - Check for a xfrm match
5494
* @x: xfrm state to match
5495
* @xp: xfrm policy to check for a match
5496
* @flic: flow to check for a match.
5497
*
5498
* Check @xp and @flic for a match with @x.
5499
*
5500
* Return: Returns 1 if there is a match.
5501
*/
5502
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5503
struct xfrm_policy *xp,
5504
const struct flowi_common *flic)
5505
{
5506
struct lsm_static_call *scall;
5507
int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5508
5509
/*
5510
* Since this function is expected to return 0 or 1, the judgment
5511
* becomes difficult if multiple LSMs supply this call. Fortunately,
5512
* we can use the first LSM's judgment because currently only SELinux
5513
* supplies this call.
5514
*
5515
* For speed optimization, we explicitly break the loop rather than
5516
* using the macro
5517
*/
5518
lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5519
rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5520
break;
5521
}
5522
return rc;
5523
}
5524
5525
/**
5526
* security_xfrm_decode_session() - Determine the xfrm secid for a packet
5527
* @skb: xfrm packet
5528
* @secid: secid
5529
*
5530
* Decode the packet in @skb and return the security label in @secid.
5531
*
5532
* Return: Return 0 if all xfrms used have the same secid.
5533
*/
5534
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5535
{
5536
return call_int_hook(xfrm_decode_session, skb, secid, 1);
5537
}
5538
5539
void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5540
{
5541
int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5542
0);
5543
5544
BUG_ON(rc);
5545
}
5546
EXPORT_SYMBOL(security_skb_classify_flow);
5547
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5548
5549
#ifdef CONFIG_KEYS
5550
/**
5551
* security_key_alloc() - Allocate and initialize a kernel key LSM blob
5552
* @key: key
5553
* @cred: credentials
5554
* @flags: allocation flags
5555
*
5556
* Permit allocation of a key and assign security data. Note that key does not
5557
* have a serial number assigned at this point.
5558
*
5559
* Return: Return 0 if permission is granted, -ve error otherwise.
5560
*/
5561
int security_key_alloc(struct key *key, const struct cred *cred,
5562
unsigned long flags)
5563
{
5564
int rc = lsm_key_alloc(key);
5565
5566
if (unlikely(rc))
5567
return rc;
5568
rc = call_int_hook(key_alloc, key, cred, flags);
5569
if (unlikely(rc))
5570
security_key_free(key);
5571
return rc;
5572
}
5573
5574
/**
5575
* security_key_free() - Free a kernel key LSM blob
5576
* @key: key
5577
*
5578
* Notification of destruction; free security data.
5579
*/
5580
void security_key_free(struct key *key)
5581
{
5582
kfree(key->security);
5583
key->security = NULL;
5584
}
5585
5586
/**
5587
* security_key_permission() - Check if a kernel key operation is allowed
5588
* @key_ref: key reference
5589
* @cred: credentials of actor requesting access
5590
* @need_perm: requested permissions
5591
*
5592
* See whether a specific operational right is granted to a process on a key.
5593
*
5594
* Return: Return 0 if permission is granted, -ve error otherwise.
5595
*/
5596
int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5597
enum key_need_perm need_perm)
5598
{
5599
return call_int_hook(key_permission, key_ref, cred, need_perm);
5600
}
5601
5602
/**
5603
* security_key_getsecurity() - Get the key's security label
5604
* @key: key
5605
* @buffer: security label buffer
5606
*
5607
* Get a textual representation of the security context attached to a key for
5608
* the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5609
* storage for the NUL-terminated string and the caller should free it.
5610
*
5611
* Return: Returns the length of @buffer (including terminating NUL) or -ve if
5612
* an error occurs. May also return 0 (and a NULL buffer pointer) if
5613
* there is no security label assigned to the key.
5614
*/
5615
int security_key_getsecurity(struct key *key, char **buffer)
5616
{
5617
*buffer = NULL;
5618
return call_int_hook(key_getsecurity, key, buffer);
5619
}
5620
5621
/**
5622
* security_key_post_create_or_update() - Notification of key create or update
5623
* @keyring: keyring to which the key is linked to
5624
* @key: created or updated key
5625
* @payload: data used to instantiate or update the key
5626
* @payload_len: length of payload
5627
* @flags: key flags
5628
* @create: flag indicating whether the key was created or updated
5629
*
5630
* Notify the caller of a key creation or update.
5631
*/
5632
void security_key_post_create_or_update(struct key *keyring, struct key *key,
5633
const void *payload, size_t payload_len,
5634
unsigned long flags, bool create)
5635
{
5636
call_void_hook(key_post_create_or_update, keyring, key, payload,
5637
payload_len, flags, create);
5638
}
5639
#endif /* CONFIG_KEYS */
5640
5641
#ifdef CONFIG_AUDIT
5642
/**
5643
* security_audit_rule_init() - Allocate and init an LSM audit rule struct
5644
* @field: audit action
5645
* @op: rule operator
5646
* @rulestr: rule context
5647
* @lsmrule: receive buffer for audit rule struct
5648
* @gfp: GFP flag used for kmalloc
5649
*
5650
* Allocate and initialize an LSM audit rule structure.
5651
*
5652
* Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5653
* an invalid rule.
5654
*/
5655
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5656
gfp_t gfp)
5657
{
5658
return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5659
}
5660
5661
/**
5662
* security_audit_rule_known() - Check if an audit rule contains LSM fields
5663
* @krule: audit rule
5664
*
5665
* Specifies whether given @krule contains any fields related to the current
5666
* LSM.
5667
*
5668
* Return: Returns 1 in case of relation found, 0 otherwise.
5669
*/
5670
int security_audit_rule_known(struct audit_krule *krule)
5671
{
5672
return call_int_hook(audit_rule_known, krule);
5673
}
5674
5675
/**
5676
* security_audit_rule_free() - Free an LSM audit rule struct
5677
* @lsmrule: audit rule struct
5678
*
5679
* Deallocate the LSM audit rule structure previously allocated by
5680
* audit_rule_init().
5681
*/
5682
void security_audit_rule_free(void *lsmrule)
5683
{
5684
call_void_hook(audit_rule_free, lsmrule);
5685
}
5686
5687
/**
5688
* security_audit_rule_match() - Check if a label matches an audit rule
5689
* @prop: security label
5690
* @field: LSM audit field
5691
* @op: matching operator
5692
* @lsmrule: audit rule
5693
*
5694
* Determine if given @secid matches a rule previously approved by
5695
* security_audit_rule_known().
5696
*
5697
* Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5698
* failure.
5699
*/
5700
int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5701
void *lsmrule)
5702
{
5703
return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5704
}
5705
#endif /* CONFIG_AUDIT */
5706
5707
#ifdef CONFIG_BPF_SYSCALL
5708
/**
5709
* security_bpf() - Check if the bpf syscall operation is allowed
5710
* @cmd: command
5711
* @attr: bpf attribute
5712
* @size: size
5713
* @kernel: whether or not call originated from kernel
5714
*
5715
* Do a initial check for all bpf syscalls after the attribute is copied into
5716
* the kernel. The actual security module can implement their own rules to
5717
* check the specific cmd they need.
5718
*
5719
* Return: Returns 0 if permission is granted.
5720
*/
5721
int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5722
{
5723
return call_int_hook(bpf, cmd, attr, size, kernel);
5724
}
5725
5726
/**
5727
* security_bpf_map() - Check if access to a bpf map is allowed
5728
* @map: bpf map
5729
* @fmode: mode
5730
*
5731
* Do a check when the kernel generates and returns a file descriptor for eBPF
5732
* maps.
5733
*
5734
* Return: Returns 0 if permission is granted.
5735
*/
5736
int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5737
{
5738
return call_int_hook(bpf_map, map, fmode);
5739
}
5740
5741
/**
5742
* security_bpf_prog() - Check if access to a bpf program is allowed
5743
* @prog: bpf program
5744
*
5745
* Do a check when the kernel generates and returns a file descriptor for eBPF
5746
* programs.
5747
*
5748
* Return: Returns 0 if permission is granted.
5749
*/
5750
int security_bpf_prog(struct bpf_prog *prog)
5751
{
5752
return call_int_hook(bpf_prog, prog);
5753
}
5754
5755
/**
5756
* security_bpf_map_create() - Check if BPF map creation is allowed
5757
* @map: BPF map object
5758
* @attr: BPF syscall attributes used to create BPF map
5759
* @token: BPF token used to grant user access
5760
* @kernel: whether or not call originated from kernel
5761
*
5762
* Do a check when the kernel creates a new BPF map. This is also the
5763
* point where LSM blob is allocated for LSMs that need them.
5764
*
5765
* Return: Returns 0 on success, error on failure.
5766
*/
5767
int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5768
struct bpf_token *token, bool kernel)
5769
{
5770
int rc;
5771
5772
rc = lsm_bpf_map_alloc(map);
5773
if (unlikely(rc))
5774
return rc;
5775
5776
rc = call_int_hook(bpf_map_create, map, attr, token, kernel);
5777
if (unlikely(rc))
5778
security_bpf_map_free(map);
5779
return rc;
5780
}
5781
5782
/**
5783
* security_bpf_prog_load() - Check if loading of BPF program is allowed
5784
* @prog: BPF program object
5785
* @attr: BPF syscall attributes used to create BPF program
5786
* @token: BPF token used to grant user access to BPF subsystem
5787
* @kernel: whether or not call originated from kernel
5788
*
5789
* Perform an access control check when the kernel loads a BPF program and
5790
* allocates associated BPF program object. This hook is also responsible for
5791
* allocating any required LSM state for the BPF program.
5792
*
5793
* Return: Returns 0 on success, error on failure.
5794
*/
5795
int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5796
struct bpf_token *token, bool kernel)
5797
{
5798
int rc;
5799
5800
rc = lsm_bpf_prog_alloc(prog);
5801
if (unlikely(rc))
5802
return rc;
5803
5804
rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5805
if (unlikely(rc))
5806
security_bpf_prog_free(prog);
5807
return rc;
5808
}
5809
5810
/**
5811
* security_bpf_token_create() - Check if creating of BPF token is allowed
5812
* @token: BPF token object
5813
* @attr: BPF syscall attributes used to create BPF token
5814
* @path: path pointing to BPF FS mount point from which BPF token is created
5815
*
5816
* Do a check when the kernel instantiates a new BPF token object from BPF FS
5817
* instance. This is also the point where LSM blob can be allocated for LSMs.
5818
*
5819
* Return: Returns 0 on success, error on failure.
5820
*/
5821
int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5822
const struct path *path)
5823
{
5824
int rc;
5825
5826
rc = lsm_bpf_token_alloc(token);
5827
if (unlikely(rc))
5828
return rc;
5829
5830
rc = call_int_hook(bpf_token_create, token, attr, path);
5831
if (unlikely(rc))
5832
security_bpf_token_free(token);
5833
return rc;
5834
}
5835
5836
/**
5837
* security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5838
* requested BPF syscall command
5839
* @token: BPF token object
5840
* @cmd: BPF syscall command requested to be delegated by BPF token
5841
*
5842
* Do a check when the kernel decides whether provided BPF token should allow
5843
* delegation of requested BPF syscall command.
5844
*
5845
* Return: Returns 0 on success, error on failure.
5846
*/
5847
int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5848
{
5849
return call_int_hook(bpf_token_cmd, token, cmd);
5850
}
5851
5852
/**
5853
* security_bpf_token_capable() - Check if BPF token is allowed to delegate
5854
* requested BPF-related capability
5855
* @token: BPF token object
5856
* @cap: capabilities requested to be delegated by BPF token
5857
*
5858
* Do a check when the kernel decides whether provided BPF token should allow
5859
* delegation of requested BPF-related capabilities.
5860
*
5861
* Return: Returns 0 on success, error on failure.
5862
*/
5863
int security_bpf_token_capable(const struct bpf_token *token, int cap)
5864
{
5865
return call_int_hook(bpf_token_capable, token, cap);
5866
}
5867
5868
/**
5869
* security_bpf_map_free() - Free a bpf map's LSM blob
5870
* @map: bpf map
5871
*
5872
* Clean up the security information stored inside bpf map.
5873
*/
5874
void security_bpf_map_free(struct bpf_map *map)
5875
{
5876
call_void_hook(bpf_map_free, map);
5877
kfree(map->security);
5878
map->security = NULL;
5879
}
5880
5881
/**
5882
* security_bpf_prog_free() - Free a BPF program's LSM blob
5883
* @prog: BPF program struct
5884
*
5885
* Clean up the security information stored inside BPF program.
5886
*/
5887
void security_bpf_prog_free(struct bpf_prog *prog)
5888
{
5889
call_void_hook(bpf_prog_free, prog);
5890
kfree(prog->aux->security);
5891
prog->aux->security = NULL;
5892
}
5893
5894
/**
5895
* security_bpf_token_free() - Free a BPF token's LSM blob
5896
* @token: BPF token struct
5897
*
5898
* Clean up the security information stored inside BPF token.
5899
*/
5900
void security_bpf_token_free(struct bpf_token *token)
5901
{
5902
call_void_hook(bpf_token_free, token);
5903
kfree(token->security);
5904
token->security = NULL;
5905
}
5906
#endif /* CONFIG_BPF_SYSCALL */
5907
5908
/**
5909
* security_locked_down() - Check if a kernel feature is allowed
5910
* @what: requested kernel feature
5911
*
5912
* Determine whether a kernel feature that potentially enables arbitrary code
5913
* execution in kernel space should be permitted.
5914
*
5915
* Return: Returns 0 if permission is granted.
5916
*/
5917
int security_locked_down(enum lockdown_reason what)
5918
{
5919
return call_int_hook(locked_down, what);
5920
}
5921
EXPORT_SYMBOL(security_locked_down);
5922
5923
/**
5924
* security_bdev_alloc() - Allocate a block device LSM blob
5925
* @bdev: block device
5926
*
5927
* Allocate and attach a security structure to @bdev->bd_security. The
5928
* security field is initialized to NULL when the bdev structure is
5929
* allocated.
5930
*
5931
* Return: Return 0 if operation was successful.
5932
*/
5933
int security_bdev_alloc(struct block_device *bdev)
5934
{
5935
int rc = 0;
5936
5937
rc = lsm_bdev_alloc(bdev);
5938
if (unlikely(rc))
5939
return rc;
5940
5941
rc = call_int_hook(bdev_alloc_security, bdev);
5942
if (unlikely(rc))
5943
security_bdev_free(bdev);
5944
5945
return rc;
5946
}
5947
EXPORT_SYMBOL(security_bdev_alloc);
5948
5949
/**
5950
* security_bdev_free() - Free a block device's LSM blob
5951
* @bdev: block device
5952
*
5953
* Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5954
*/
5955
void security_bdev_free(struct block_device *bdev)
5956
{
5957
if (!bdev->bd_security)
5958
return;
5959
5960
call_void_hook(bdev_free_security, bdev);
5961
5962
kfree(bdev->bd_security);
5963
bdev->bd_security = NULL;
5964
}
5965
EXPORT_SYMBOL(security_bdev_free);
5966
5967
/**
5968
* security_bdev_setintegrity() - Set the device's integrity data
5969
* @bdev: block device
5970
* @type: type of integrity, e.g. hash digest, signature, etc
5971
* @value: the integrity value
5972
* @size: size of the integrity value
5973
*
5974
* Register a verified integrity measurement of a bdev with LSMs.
5975
* LSMs should free the previously saved data if @value is NULL.
5976
* Please note that the new hook should be invoked every time the security
5977
* information is updated to keep these data current. For example, in dm-verity,
5978
* if the mapping table is reloaded and configured to use a different dm-verity
5979
* target with a new roothash and signing information, the previously stored
5980
* data in the LSM blob will become obsolete. It is crucial to re-invoke the
5981
* hook to refresh these data and ensure they are up to date. This necessity
5982
* arises from the design of device-mapper, where a device-mapper device is
5983
* first created, and then targets are subsequently loaded into it. These
5984
* targets can be modified multiple times during the device's lifetime.
5985
* Therefore, while the LSM blob is allocated during the creation of the block
5986
* device, its actual contents are not initialized at this stage and can change
5987
* substantially over time. This includes alterations from data that the LSMs
5988
* 'trusts' to those they do not, making it essential to handle these changes
5989
* correctly. Failure to address this dynamic aspect could potentially allow
5990
* for bypassing LSM checks.
5991
*
5992
* Return: Returns 0 on success, negative values on failure.
5993
*/
5994
int security_bdev_setintegrity(struct block_device *bdev,
5995
enum lsm_integrity_type type, const void *value,
5996
size_t size)
5997
{
5998
return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5999
}
6000
EXPORT_SYMBOL(security_bdev_setintegrity);
6001
6002
#ifdef CONFIG_PERF_EVENTS
6003
/**
6004
* security_perf_event_open() - Check if a perf event open is allowed
6005
* @type: type of event
6006
*
6007
* Check whether the @type of perf_event_open syscall is allowed.
6008
*
6009
* Return: Returns 0 if permission is granted.
6010
*/
6011
int security_perf_event_open(int type)
6012
{
6013
return call_int_hook(perf_event_open, type);
6014
}
6015
6016
/**
6017
* security_perf_event_alloc() - Allocate a perf event LSM blob
6018
* @event: perf event
6019
*
6020
* Allocate and save perf_event security info.
6021
*
6022
* Return: Returns 0 on success, error on failure.
6023
*/
6024
int security_perf_event_alloc(struct perf_event *event)
6025
{
6026
int rc;
6027
6028
rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
6029
GFP_KERNEL);
6030
if (rc)
6031
return rc;
6032
6033
rc = call_int_hook(perf_event_alloc, event);
6034
if (rc) {
6035
kfree(event->security);
6036
event->security = NULL;
6037
}
6038
return rc;
6039
}
6040
6041
/**
6042
* security_perf_event_free() - Free a perf event LSM blob
6043
* @event: perf event
6044
*
6045
* Release (free) perf_event security info.
6046
*/
6047
void security_perf_event_free(struct perf_event *event)
6048
{
6049
kfree(event->security);
6050
event->security = NULL;
6051
}
6052
6053
/**
6054
* security_perf_event_read() - Check if reading a perf event label is allowed
6055
* @event: perf event
6056
*
6057
* Read perf_event security info if allowed.
6058
*
6059
* Return: Returns 0 if permission is granted.
6060
*/
6061
int security_perf_event_read(struct perf_event *event)
6062
{
6063
return call_int_hook(perf_event_read, event);
6064
}
6065
6066
/**
6067
* security_perf_event_write() - Check if writing a perf event label is allowed
6068
* @event: perf event
6069
*
6070
* Write perf_event security info if allowed.
6071
*
6072
* Return: Returns 0 if permission is granted.
6073
*/
6074
int security_perf_event_write(struct perf_event *event)
6075
{
6076
return call_int_hook(perf_event_write, event);
6077
}
6078
#endif /* CONFIG_PERF_EVENTS */
6079
6080
#ifdef CONFIG_IO_URING
6081
/**
6082
* security_uring_override_creds() - Check if overriding creds is allowed
6083
* @new: new credentials
6084
*
6085
* Check if the current task, executing an io_uring operation, is allowed to
6086
* override it's credentials with @new.
6087
*
6088
* Return: Returns 0 if permission is granted.
6089
*/
6090
int security_uring_override_creds(const struct cred *new)
6091
{
6092
return call_int_hook(uring_override_creds, new);
6093
}
6094
6095
/**
6096
* security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
6097
*
6098
* Check whether the current task is allowed to spawn a io_uring polling thread
6099
* (IORING_SETUP_SQPOLL).
6100
*
6101
* Return: Returns 0 if permission is granted.
6102
*/
6103
int security_uring_sqpoll(void)
6104
{
6105
return call_int_hook(uring_sqpoll);
6106
}
6107
6108
/**
6109
* security_uring_cmd() - Check if a io_uring passthrough command is allowed
6110
* @ioucmd: command
6111
*
6112
* Check whether the file_operations uring_cmd is allowed to run.
6113
*
6114
* Return: Returns 0 if permission is granted.
6115
*/
6116
int security_uring_cmd(struct io_uring_cmd *ioucmd)
6117
{
6118
return call_int_hook(uring_cmd, ioucmd);
6119
}
6120
6121
/**
6122
* security_uring_allowed() - Check if io_uring_setup() is allowed
6123
*
6124
* Check whether the current task is allowed to call io_uring_setup().
6125
*
6126
* Return: Returns 0 if permission is granted.
6127
*/
6128
int security_uring_allowed(void)
6129
{
6130
return call_int_hook(uring_allowed);
6131
}
6132
#endif /* CONFIG_IO_URING */
6133
6134
/**
6135
* security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6136
*
6137
* Tells the LSMs the initramfs has been unpacked into the rootfs.
6138
*/
6139
void security_initramfs_populated(void)
6140
{
6141
call_void_hook(initramfs_populated);
6142
}
6143
6144