Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/firewire/fireface/ff-transaction.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* ff-transaction.c - a part of driver for RME Fireface series
4
*
5
* Copyright (c) 2015-2017 Takashi Sakamoto
6
*/
7
8
#include "ff.h"
9
10
static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
11
int rcode)
12
{
13
struct snd_rawmidi_substream *substream =
14
READ_ONCE(ff->rx_midi_substreams[port]);
15
16
if (rcode_is_permanent_error(rcode)) {
17
ff->rx_midi_error[port] = true;
18
return;
19
}
20
21
if (rcode != RCODE_COMPLETE) {
22
/* Transfer the message again, immediately. */
23
ff->next_ktime[port] = 0;
24
schedule_work(&ff->rx_midi_work[port]);
25
return;
26
}
27
28
snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
29
ff->rx_bytes[port] = 0;
30
31
if (!snd_rawmidi_transmit_empty(substream))
32
schedule_work(&ff->rx_midi_work[port]);
33
}
34
35
static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
36
void *data, size_t length,
37
void *callback_data)
38
{
39
struct snd_ff *ff =
40
container_of(callback_data, struct snd_ff, transactions[0]);
41
finish_transmit_midi_msg(ff, 0, rcode);
42
}
43
44
static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
45
void *data, size_t length,
46
void *callback_data)
47
{
48
struct snd_ff *ff =
49
container_of(callback_data, struct snd_ff, transactions[1]);
50
finish_transmit_midi_msg(ff, 1, rcode);
51
}
52
53
static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
54
{
55
struct snd_rawmidi_substream *substream =
56
READ_ONCE(ff->rx_midi_substreams[port]);
57
int quad_count;
58
59
struct fw_device *fw_dev = fw_parent_device(ff->unit);
60
unsigned long long addr;
61
int generation;
62
fw_transaction_callback_t callback;
63
int tcode;
64
65
if (substream == NULL || snd_rawmidi_transmit_empty(substream))
66
return;
67
68
if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
69
return;
70
71
/* Do it in next chance. */
72
if (ktime_after(ff->next_ktime[port], ktime_get())) {
73
schedule_work(&ff->rx_midi_work[port]);
74
return;
75
}
76
77
quad_count = ff->spec->protocol->fill_midi_msg(ff, substream, port);
78
if (quad_count <= 0)
79
return;
80
81
if (port == 0) {
82
addr = ff->spec->midi_rx_addrs[0];
83
callback = finish_transmit_midi0_msg;
84
} else {
85
addr = ff->spec->midi_rx_addrs[1];
86
callback = finish_transmit_midi1_msg;
87
}
88
89
/* Set interval to next transaction. */
90
ff->next_ktime[port] = ktime_add_ns(ktime_get(),
91
ff->rx_bytes[port] * 8 * (NSEC_PER_SEC / 31250));
92
93
if (quad_count == 1)
94
tcode = TCODE_WRITE_QUADLET_REQUEST;
95
else
96
tcode = TCODE_WRITE_BLOCK_REQUEST;
97
98
/*
99
* In Linux FireWire core, when generation is updated with memory
100
* barrier, node id has already been updated. In this module, After
101
* this smp_rmb(), load/store instructions to memory are completed.
102
* Thus, both of generation and node id are available with recent
103
* values. This is a light-serialization solution to handle bus reset
104
* events on IEEE 1394 bus.
105
*/
106
generation = fw_dev->generation;
107
smp_rmb();
108
fw_send_request(fw_dev->card, &ff->transactions[port], tcode,
109
fw_dev->node_id, generation, fw_dev->max_speed,
110
addr, &ff->msg_buf[port], quad_count * 4,
111
callback, &ff->transactions[port]);
112
}
113
114
static void transmit_midi0_msg(struct work_struct *work)
115
{
116
struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
117
118
transmit_midi_msg(ff, 0);
119
}
120
121
static void transmit_midi1_msg(struct work_struct *work)
122
{
123
struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
124
125
transmit_midi_msg(ff, 1);
126
}
127
128
static void handle_msg(struct fw_card *card, struct fw_request *request, int tcode,
129
int destination, int source, int generation, unsigned long long offset,
130
void *data, size_t length, void *callback_data)
131
{
132
struct snd_ff *ff = callback_data;
133
__le32 *buf = data;
134
u32 tstamp = fw_request_get_timestamp(request);
135
136
fw_send_response(card, request, RCODE_COMPLETE);
137
138
offset -= ff->async_handler.offset;
139
140
guard(spinlock_irqsave)(&ff->lock);
141
ff->spec->protocol->handle_msg(ff, (unsigned int)offset, buf, length, tstamp);
142
}
143
144
static int allocate_own_address(struct snd_ff *ff, int i)
145
{
146
struct fw_address_region midi_msg_region;
147
int err;
148
149
ff->async_handler.length = ff->spec->midi_addr_range;
150
ff->async_handler.address_callback = handle_msg;
151
ff->async_handler.callback_data = ff;
152
153
midi_msg_region.start = 0x000100000000ull * i;
154
midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
155
156
err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
157
if (err >= 0) {
158
/* Controllers are allowed to register this region. */
159
if (ff->async_handler.offset & 0x0000ffffffff) {
160
fw_core_remove_address_handler(&ff->async_handler);
161
err = -EAGAIN;
162
}
163
}
164
165
return err;
166
}
167
168
// Controllers are allowed to register higher 4 bytes of destination address to
169
// receive asynchronous transactions for MIDI messages, while the way to
170
// register lower 4 bytes of address is different depending on protocols. For
171
// details, please refer to comments in protocol implementations.
172
//
173
// This driver expects userspace applications to configure registers for the
174
// lower address because in most cases such registers has the other settings.
175
int snd_ff_transaction_reregister(struct snd_ff *ff)
176
{
177
struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
178
u32 addr;
179
__le32 reg;
180
181
/*
182
* Controllers are allowed to register its node ID and upper 2 byte of
183
* local address to listen asynchronous transactions.
184
*/
185
addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
186
reg = cpu_to_le32(addr);
187
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
188
ff->spec->midi_high_addr,
189
&reg, sizeof(reg), 0);
190
}
191
192
int snd_ff_transaction_register(struct snd_ff *ff)
193
{
194
int i, err;
195
196
/*
197
* Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
198
* be zero due to device specification.
199
*/
200
for (i = 0; i < 0xffff; i++) {
201
err = allocate_own_address(ff, i);
202
if (err != -EBUSY && err != -EAGAIN)
203
break;
204
}
205
if (err < 0)
206
return err;
207
208
err = snd_ff_transaction_reregister(ff);
209
if (err < 0)
210
return err;
211
212
INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
213
INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
214
215
return 0;
216
}
217
218
void snd_ff_transaction_unregister(struct snd_ff *ff)
219
{
220
__le32 reg;
221
222
if (ff->async_handler.callback_data == NULL)
223
return;
224
ff->async_handler.callback_data = NULL;
225
226
/* Release higher 4 bytes of address. */
227
reg = cpu_to_le32(0x00000000);
228
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
229
ff->spec->midi_high_addr,
230
&reg, sizeof(reg), 0);
231
232
fw_core_remove_address_handler(&ff->async_handler);
233
}
234
235