Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/mips/snd-n64.c
29268 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Sound driver for Nintendo 64.
4
*
5
* Copyright 2021 Lauri Kasanen
6
*/
7
8
#include <linux/dma-mapping.h>
9
#include <linux/init.h>
10
#include <linux/interrupt.h>
11
#include <linux/io.h>
12
#include <linux/log2.h>
13
#include <linux/module.h>
14
#include <linux/platform_device.h>
15
#include <linux/spinlock.h>
16
#include <linux/string.h>
17
18
#include <sound/control.h>
19
#include <sound/core.h>
20
#include <sound/initval.h>
21
#include <sound/pcm.h>
22
#include <sound/pcm_params.h>
23
24
MODULE_AUTHOR("Lauri Kasanen <[email protected]>");
25
MODULE_DESCRIPTION("N64 Audio");
26
MODULE_LICENSE("GPL");
27
28
#define AI_NTSC_DACRATE 48681812
29
#define AI_STATUS_BUSY (1 << 30)
30
#define AI_STATUS_FULL (1 << 31)
31
32
#define AI_ADDR_REG 0
33
#define AI_LEN_REG 1
34
#define AI_CONTROL_REG 2
35
#define AI_STATUS_REG 3
36
#define AI_RATE_REG 4
37
#define AI_BITCLOCK_REG 5
38
39
#define MI_INTR_REG 2
40
#define MI_MASK_REG 3
41
42
#define MI_INTR_AI 0x04
43
44
#define MI_MASK_CLR_AI 0x0010
45
#define MI_MASK_SET_AI 0x0020
46
47
48
struct n64audio {
49
u32 __iomem *ai_reg_base;
50
u32 __iomem *mi_reg_base;
51
52
void *ring_base;
53
dma_addr_t ring_base_dma;
54
55
struct snd_card *card;
56
57
struct {
58
struct snd_pcm_substream *substream;
59
int pos, nextpos;
60
u32 writesize;
61
u32 bufsize;
62
spinlock_t lock;
63
} chan;
64
};
65
66
static void n64audio_write_reg(struct n64audio *priv, const u8 reg, const u32 value)
67
{
68
writel(value, priv->ai_reg_base + reg);
69
}
70
71
static void n64mi_write_reg(struct n64audio *priv, const u8 reg, const u32 value)
72
{
73
writel(value, priv->mi_reg_base + reg);
74
}
75
76
static u32 n64mi_read_reg(struct n64audio *priv, const u8 reg)
77
{
78
return readl(priv->mi_reg_base + reg);
79
}
80
81
static void n64audio_push(struct n64audio *priv)
82
{
83
struct snd_pcm_runtime *runtime = priv->chan.substream->runtime;
84
u32 count;
85
86
guard(spinlock_irqsave)(&priv->chan.lock);
87
88
count = priv->chan.writesize;
89
90
memcpy(priv->ring_base + priv->chan.nextpos,
91
runtime->dma_area + priv->chan.nextpos, count);
92
93
/*
94
* The hw registers are double-buffered, and the IRQ fires essentially
95
* one period behind. The core only allows one period's distance, so we
96
* keep a private DMA buffer to afford two.
97
*/
98
n64audio_write_reg(priv, AI_ADDR_REG, priv->ring_base_dma + priv->chan.nextpos);
99
barrier();
100
n64audio_write_reg(priv, AI_LEN_REG, count);
101
102
priv->chan.nextpos += count;
103
priv->chan.nextpos %= priv->chan.bufsize;
104
105
runtime->delay = runtime->period_size;
106
}
107
108
static irqreturn_t n64audio_isr(int irq, void *dev_id)
109
{
110
struct n64audio *priv = dev_id;
111
const u32 intrs = n64mi_read_reg(priv, MI_INTR_REG);
112
113
// Check it's ours
114
if (!(intrs & MI_INTR_AI))
115
return IRQ_NONE;
116
117
n64audio_write_reg(priv, AI_STATUS_REG, 1);
118
119
if (priv->chan.substream && snd_pcm_running(priv->chan.substream)) {
120
scoped_guard(spinlock_irqsave, &priv->chan.lock) {
121
priv->chan.pos = priv->chan.nextpos;
122
}
123
124
snd_pcm_period_elapsed(priv->chan.substream);
125
if (priv->chan.substream && snd_pcm_running(priv->chan.substream))
126
n64audio_push(priv);
127
}
128
129
return IRQ_HANDLED;
130
}
131
132
static const struct snd_pcm_hardware n64audio_pcm_hw = {
133
.info = (SNDRV_PCM_INFO_MMAP |
134
SNDRV_PCM_INFO_MMAP_VALID |
135
SNDRV_PCM_INFO_INTERLEAVED |
136
SNDRV_PCM_INFO_BLOCK_TRANSFER),
137
.formats = SNDRV_PCM_FMTBIT_S16_BE,
138
.rates = SNDRV_PCM_RATE_8000_48000,
139
.rate_min = 8000,
140
.rate_max = 48000,
141
.channels_min = 2,
142
.channels_max = 2,
143
.buffer_bytes_max = 32768,
144
.period_bytes_min = 1024,
145
.period_bytes_max = 32768,
146
.periods_min = 3,
147
// 3 periods lets the double-buffering hw read one buffer behind safely
148
.periods_max = 128,
149
};
150
151
static int hw_rule_period_size(struct snd_pcm_hw_params *params,
152
struct snd_pcm_hw_rule *rule)
153
{
154
struct snd_interval *c = hw_param_interval(params,
155
SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
156
int changed = 0;
157
158
/*
159
* The DMA unit has errata on (start + len) & 0x3fff == 0x2000.
160
* This constraint makes sure that the period size is not a power of two,
161
* which combined with dma_alloc_coherent aligning the buffer to the largest
162
* PoT <= size guarantees it won't be hit.
163
*/
164
165
if (is_power_of_2(c->min)) {
166
c->min += 2;
167
changed = 1;
168
}
169
if (is_power_of_2(c->max)) {
170
c->max -= 2;
171
changed = 1;
172
}
173
if (snd_interval_checkempty(c)) {
174
c->empty = 1;
175
return -EINVAL;
176
}
177
178
return changed;
179
}
180
181
static int n64audio_pcm_open(struct snd_pcm_substream *substream)
182
{
183
struct snd_pcm_runtime *runtime = substream->runtime;
184
int err;
185
186
runtime->hw = n64audio_pcm_hw;
187
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
188
if (err < 0)
189
return err;
190
191
err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
192
if (err < 0)
193
return err;
194
195
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
196
hw_rule_period_size, NULL, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1);
197
if (err < 0)
198
return err;
199
200
return 0;
201
}
202
203
static int n64audio_pcm_prepare(struct snd_pcm_substream *substream)
204
{
205
struct snd_pcm_runtime *runtime = substream->runtime;
206
struct n64audio *priv = substream->pcm->private_data;
207
u32 rate;
208
209
rate = ((2 * AI_NTSC_DACRATE / runtime->rate) + 1) / 2 - 1;
210
211
n64audio_write_reg(priv, AI_RATE_REG, rate);
212
213
rate /= 66;
214
if (rate > 16)
215
rate = 16;
216
n64audio_write_reg(priv, AI_BITCLOCK_REG, rate - 1);
217
218
guard(spinlock_irq)(&priv->chan.lock);
219
220
/* Setup the pseudo-dma transfer pointers. */
221
priv->chan.pos = 0;
222
priv->chan.nextpos = 0;
223
priv->chan.substream = substream;
224
priv->chan.writesize = snd_pcm_lib_period_bytes(substream);
225
priv->chan.bufsize = snd_pcm_lib_buffer_bytes(substream);
226
227
return 0;
228
}
229
230
static int n64audio_pcm_trigger(struct snd_pcm_substream *substream,
231
int cmd)
232
{
233
struct n64audio *priv = substream->pcm->private_data;
234
235
switch (cmd) {
236
case SNDRV_PCM_TRIGGER_START:
237
n64audio_push(substream->pcm->private_data);
238
n64audio_write_reg(priv, AI_CONTROL_REG, 1);
239
n64mi_write_reg(priv, MI_MASK_REG, MI_MASK_SET_AI);
240
break;
241
case SNDRV_PCM_TRIGGER_STOP:
242
n64audio_write_reg(priv, AI_CONTROL_REG, 0);
243
n64mi_write_reg(priv, MI_MASK_REG, MI_MASK_CLR_AI);
244
break;
245
default:
246
return -EINVAL;
247
}
248
return 0;
249
}
250
251
static snd_pcm_uframes_t n64audio_pcm_pointer(struct snd_pcm_substream *substream)
252
{
253
struct n64audio *priv = substream->pcm->private_data;
254
255
return bytes_to_frames(substream->runtime,
256
priv->chan.pos);
257
}
258
259
static int n64audio_pcm_close(struct snd_pcm_substream *substream)
260
{
261
struct n64audio *priv = substream->pcm->private_data;
262
263
priv->chan.substream = NULL;
264
265
return 0;
266
}
267
268
static const struct snd_pcm_ops n64audio_pcm_ops = {
269
.open = n64audio_pcm_open,
270
.prepare = n64audio_pcm_prepare,
271
.trigger = n64audio_pcm_trigger,
272
.pointer = n64audio_pcm_pointer,
273
.close = n64audio_pcm_close,
274
};
275
276
/*
277
* The target device is embedded and RAM-constrained. We save RAM
278
* by initializing in __init code that gets dropped late in boot.
279
* For the same reason there is no module or unloading support.
280
*/
281
static int __init n64audio_probe(struct platform_device *pdev)
282
{
283
struct snd_card *card;
284
struct snd_pcm *pcm;
285
struct n64audio *priv;
286
int err, irq;
287
288
err = snd_card_new(&pdev->dev, SNDRV_DEFAULT_IDX1,
289
SNDRV_DEFAULT_STR1,
290
THIS_MODULE, sizeof(*priv), &card);
291
if (err < 0)
292
return err;
293
294
priv = card->private_data;
295
296
spin_lock_init(&priv->chan.lock);
297
298
priv->card = card;
299
300
priv->ring_base = dma_alloc_coherent(card->dev, 32 * 1024, &priv->ring_base_dma,
301
GFP_DMA|GFP_KERNEL);
302
if (!priv->ring_base) {
303
err = -ENOMEM;
304
goto fail_card;
305
}
306
307
priv->mi_reg_base = devm_platform_ioremap_resource(pdev, 0);
308
if (IS_ERR(priv->mi_reg_base)) {
309
err = PTR_ERR(priv->mi_reg_base);
310
goto fail_dma_alloc;
311
}
312
313
priv->ai_reg_base = devm_platform_ioremap_resource(pdev, 1);
314
if (IS_ERR(priv->ai_reg_base)) {
315
err = PTR_ERR(priv->ai_reg_base);
316
goto fail_dma_alloc;
317
}
318
319
err = snd_pcm_new(card, "N64 Audio", 0, 1, 0, &pcm);
320
if (err < 0)
321
goto fail_dma_alloc;
322
323
pcm->private_data = priv;
324
strscpy(pcm->name, "N64 Audio");
325
326
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &n64audio_pcm_ops);
327
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, card->dev, 0, 0);
328
329
strscpy(card->driver, "N64 Audio");
330
strscpy(card->shortname, "N64 Audio");
331
strscpy(card->longname, "N64 Audio");
332
333
irq = platform_get_irq(pdev, 0);
334
if (irq < 0) {
335
err = -EINVAL;
336
goto fail_dma_alloc;
337
}
338
if (devm_request_irq(&pdev->dev, irq, n64audio_isr,
339
IRQF_SHARED, "N64 Audio", priv)) {
340
err = -EBUSY;
341
goto fail_dma_alloc;
342
}
343
344
err = snd_card_register(card);
345
if (err < 0)
346
goto fail_dma_alloc;
347
348
return 0;
349
350
fail_dma_alloc:
351
dma_free_coherent(card->dev, 32 * 1024, priv->ring_base, priv->ring_base_dma);
352
353
fail_card:
354
snd_card_free(card);
355
return err;
356
}
357
358
static struct platform_driver n64audio_driver = {
359
.driver = {
360
.name = "n64audio",
361
},
362
};
363
364
static int __init n64audio_init(void)
365
{
366
return platform_driver_probe(&n64audio_driver, n64audio_probe);
367
}
368
369
module_init(n64audio_init);
370
371