Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/echoaudio/midi.c
29266 views
1
/****************************************************************************
2
3
Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4
All rights reserved
5
www.echoaudio.com
6
7
This file is part of Echo Digital Audio's generic driver library.
8
9
Echo Digital Audio's generic driver library is free software;
10
you can redistribute it and/or modify it under the terms of
11
the GNU General Public License as published by the Free Software
12
Foundation.
13
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
GNU General Public License for more details.
18
19
You should have received a copy of the GNU General Public License
20
along with this program; if not, write to the Free Software
21
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22
MA 02111-1307, USA.
23
24
*************************************************************************
25
26
Translation from C++ and adaptation for use in ALSA-Driver
27
were made by Giuliano Pochini <[email protected]>
28
29
****************************************************************************/
30
31
32
/******************************************************************************
33
MIDI lowlevel code
34
******************************************************************************/
35
36
/* Start and stop Midi input */
37
static int enable_midi_input(struct echoaudio *chip, char enable)
38
{
39
dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
40
41
if (wait_handshake(chip))
42
return -EIO;
43
44
if (enable) {
45
chip->mtc_state = MIDI_IN_STATE_NORMAL;
46
chip->comm_page->flags |=
47
cpu_to_le32(DSP_FLAG_MIDI_INPUT);
48
} else
49
chip->comm_page->flags &=
50
~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
51
52
clear_handshake(chip);
53
return send_vector(chip, DSP_VC_UPDATE_FLAGS);
54
}
55
56
57
58
/* Send a buffer full of MIDI data to the DSP
59
Returns how many actually written or < 0 on error */
60
static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
61
{
62
if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
63
return -EINVAL;
64
65
if (wait_handshake(chip))
66
return -EIO;
67
68
/* HF4 indicates that it is safe to write MIDI output data */
69
if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
70
return 0;
71
72
chip->comm_page->midi_output[0] = bytes;
73
memcpy(&chip->comm_page->midi_output[1], data, bytes);
74
chip->comm_page->midi_out_free_count = 0;
75
clear_handshake(chip);
76
send_vector(chip, DSP_VC_MIDI_WRITE);
77
dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
78
return bytes;
79
}
80
81
82
83
/* Run the state machine for MIDI input data
84
MIDI time code sync isn't supported by this code right now, but you still need
85
this state machine to parse the incoming MIDI data stream. Every time the DSP
86
sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
87
stream. The DSP sample position is represented as a 32 bit unsigned value,
88
with the high 16 bits first, followed by the low 16 bits. Since these aren't
89
real MIDI bytes, the following logic is needed to skip them. */
90
static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
91
{
92
switch (chip->mtc_state) {
93
case MIDI_IN_STATE_NORMAL:
94
if (midi_byte == 0xF1)
95
chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
96
break;
97
case MIDI_IN_STATE_TS_HIGH:
98
chip->mtc_state = MIDI_IN_STATE_TS_LOW;
99
return MIDI_IN_SKIP_DATA;
100
break;
101
case MIDI_IN_STATE_TS_LOW:
102
chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103
return MIDI_IN_SKIP_DATA;
104
break;
105
case MIDI_IN_STATE_F1_DATA:
106
chip->mtc_state = MIDI_IN_STATE_NORMAL;
107
break;
108
}
109
return 0;
110
}
111
112
113
114
/* This function is called from the IRQ handler and it reads the midi data
115
from the DSP's buffer. It returns the number of bytes received. */
116
static int midi_service_irq(struct echoaudio *chip)
117
{
118
short int count, midi_byte, i, received;
119
120
/* The count is at index 0, followed by actual data */
121
count = le16_to_cpu(chip->comm_page->midi_input[0]);
122
123
if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124
return 0;
125
126
/* Get the MIDI data from the comm page */
127
received = 0;
128
for (i = 1; i <= count; i++) {
129
/* Get the MIDI byte */
130
midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
131
132
/* Parse the incoming MIDI stream. The incoming MIDI data
133
consists of MIDI bytes and timestamps for the MIDI time code
134
0xF1 bytes. mtc_process_data() is a little state machine that
135
parses the stream. If you get MIDI_IN_SKIP_DATA back, then
136
this is a timestamp byte, not a MIDI byte, so don't store it
137
in the MIDI input buffer. */
138
if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
139
continue;
140
141
chip->midi_buffer[received++] = (u8)midi_byte;
142
}
143
144
return received;
145
}
146
147
148
149
150
/******************************************************************************
151
MIDI interface
152
******************************************************************************/
153
154
static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
155
{
156
struct echoaudio *chip = substream->rmidi->private_data;
157
158
chip->midi_in = substream;
159
return 0;
160
}
161
162
163
164
static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
165
int up)
166
{
167
struct echoaudio *chip = substream->rmidi->private_data;
168
169
if (up != chip->midi_input_enabled) {
170
guard(spinlock_irq)(&chip->lock);
171
enable_midi_input(chip, up);
172
chip->midi_input_enabled = up;
173
}
174
}
175
176
177
178
static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
179
{
180
struct echoaudio *chip = substream->rmidi->private_data;
181
182
chip->midi_in = NULL;
183
return 0;
184
}
185
186
187
188
static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
189
{
190
struct echoaudio *chip = substream->rmidi->private_data;
191
192
chip->tinuse = 0;
193
chip->midi_full = 0;
194
chip->midi_out = substream;
195
return 0;
196
}
197
198
199
200
static void snd_echo_midi_output_write(struct timer_list *t)
201
{
202
struct echoaudio *chip = timer_container_of(chip, t, timer);
203
int bytes, sent, time;
204
unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
205
206
/* No interrupts are involved: we have to check at regular intervals
207
if the card's output buffer has room for new data. */
208
sent = 0;
209
guard(spinlock_irqsave)(&chip->lock);
210
chip->midi_full = 0;
211
if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
212
bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
213
MIDI_OUT_BUFFER_SIZE - 1);
214
dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
215
sent = write_midi(chip, buf, bytes);
216
if (sent < 0) {
217
dev_err(chip->card->dev,
218
"write_midi() error %d\n", sent);
219
/* retry later */
220
sent = 9000;
221
chip->midi_full = 1;
222
} else if (sent > 0) {
223
dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
224
snd_rawmidi_transmit_ack(chip->midi_out, sent);
225
} else {
226
/* Buffer is full. DSP's internal buffer is 64 (128 ?)
227
bytes long. Let's wait until half of them are sent */
228
dev_dbg(chip->card->dev, "Full\n");
229
sent = 32;
230
chip->midi_full = 1;
231
}
232
}
233
234
/* We restart the timer only if there is some data left to send */
235
if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
236
/* The timer will expire slightly after the data has been
237
sent */
238
time = (sent << 3) / 25 + 1; /* 8/25=0.32ms to send a byte */
239
mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
240
dev_dbg(chip->card->dev,
241
"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
242
}
243
}
244
245
246
247
static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
248
int up)
249
{
250
struct echoaudio *chip = substream->rmidi->private_data;
251
bool remove_timer = false;
252
253
dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
254
scoped_guard(spinlock_irq, &chip->lock) {
255
if (up) {
256
if (!chip->tinuse) {
257
timer_setup(&chip->timer, snd_echo_midi_output_write,
258
0);
259
chip->tinuse = 1;
260
}
261
} else {
262
if (chip->tinuse) {
263
chip->tinuse = 0;
264
remove_timer = true;
265
}
266
}
267
}
268
269
if (remove_timer) {
270
timer_delete_sync(&chip->timer);
271
dev_dbg(chip->card->dev, "Timer removed\n");
272
return;
273
}
274
275
if (up && !chip->midi_full)
276
snd_echo_midi_output_write(&chip->timer);
277
}
278
279
280
281
static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
282
{
283
struct echoaudio *chip = substream->rmidi->private_data;
284
285
chip->midi_out = NULL;
286
return 0;
287
}
288
289
290
291
static const struct snd_rawmidi_ops snd_echo_midi_input = {
292
.open = snd_echo_midi_input_open,
293
.close = snd_echo_midi_input_close,
294
.trigger = snd_echo_midi_input_trigger,
295
};
296
297
static const struct snd_rawmidi_ops snd_echo_midi_output = {
298
.open = snd_echo_midi_output_open,
299
.close = snd_echo_midi_output_close,
300
.trigger = snd_echo_midi_output_trigger,
301
};
302
303
304
305
/* <--snd_echo_probe() */
306
static int snd_echo_midi_create(struct snd_card *card,
307
struct echoaudio *chip)
308
{
309
int err;
310
311
err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi);
312
if (err < 0)
313
return err;
314
315
strscpy(chip->rmidi->name, card->shortname);
316
chip->rmidi->private_data = chip;
317
318
snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
319
&snd_echo_midi_input);
320
snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
321
&snd_echo_midi_output);
322
323
chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
324
SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
325
return 0;
326
}
327
328