Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/rme32.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4
*
5
* Copyright (c) 2002-2004 Martin Langer <[email protected]>,
6
* Pilo Chambert <[email protected]>
7
*
8
* Thanks to : Anders Torger <[email protected]>,
9
* Henk Hesselink <[email protected]>
10
* for writing the digi96-driver
11
* and RME for all informations.
12
*
13
* ****************************************************************************
14
*
15
* Note #1 "Sek'd models" ................................... martin 2002-12-07
16
*
17
* Identical soundcards by Sek'd were labeled:
18
* RME Digi 32 = Sek'd Prodif 32
19
* RME Digi 32 Pro = Sek'd Prodif 96
20
* RME Digi 32/8 = Sek'd Prodif Gold
21
*
22
* ****************************************************************************
23
*
24
* Note #2 "full duplex mode" ............................... martin 2002-12-07
25
*
26
* Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27
* in this mode. Rec data and play data are using the same buffer therefore. At
28
* first you have got the playing bits in the buffer and then (after playing
29
* them) they were overwitten by the captured sound of the CS8412/14. Both
30
* modes (play/record) are running harmonically hand in hand in the same buffer
31
* and you have only one start bit plus one interrupt bit to control this
32
* paired action.
33
* This is opposite to the latter rme96 where playing and capturing is totally
34
* separated and so their full duplex mode is supported by alsa (using two
35
* start bits and two interrupts for two different buffers).
36
* But due to the wrong sequence of playing and capturing ALSA shows no solved
37
* full duplex support for the rme32 at the moment. That's bad, but I'm not
38
* able to solve it. Are you motivated enough to solve this problem now? Your
39
* patch would be welcome!
40
*
41
* ****************************************************************************
42
*
43
* "The story after the long seeking" -- tiwai
44
*
45
* Ok, the situation regarding the full duplex is now improved a bit.
46
* In the fullduplex mode (given by the module parameter), the hardware buffer
47
* is split to halves for read and write directions at the DMA pointer.
48
* That is, the half above the current DMA pointer is used for write, and
49
* the half below is used for read. To mangle this strange behavior, an
50
* software intermediate buffer is introduced. This is, of course, not good
51
* from the viewpoint of the data transfer efficiency. However, this allows
52
* you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53
*
54
* ****************************************************************************
55
*/
56
57
58
#include <linux/delay.h>
59
#include <linux/gfp.h>
60
#include <linux/init.h>
61
#include <linux/interrupt.h>
62
#include <linux/pci.h>
63
#include <linux/module.h>
64
#include <linux/io.h>
65
66
#include <sound/core.h>
67
#include <sound/info.h>
68
#include <sound/control.h>
69
#include <sound/pcm.h>
70
#include <sound/pcm_params.h>
71
#include <sound/pcm-indirect.h>
72
#include <sound/asoundef.h>
73
#include <sound/initval.h>
74
75
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
76
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
77
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
78
static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79
80
module_param_array(index, int, NULL, 0444);
81
MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82
module_param_array(id, charp, NULL, 0444);
83
MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84
module_param_array(enable, bool, NULL, 0444);
85
MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86
module_param_array(fullduplex, bool, NULL, 0444);
87
MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88
MODULE_AUTHOR("Martin Langer <[email protected]>, Pilo Chambert <[email protected]>");
89
MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90
MODULE_LICENSE("GPL");
91
92
/* Defines for RME Digi32 series */
93
#define RME32_SPDIF_NCHANNELS 2
94
95
/* Playback and capture buffer size */
96
#define RME32_BUFFER_SIZE 0x20000
97
98
/* IO area size */
99
#define RME32_IO_SIZE 0x30000
100
101
/* IO area offsets */
102
#define RME32_IO_DATA_BUFFER 0x0
103
#define RME32_IO_CONTROL_REGISTER 0x20000
104
#define RME32_IO_GET_POS 0x20000
105
#define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106
#define RME32_IO_RESET_POS 0x20100
107
108
/* Write control register bits */
109
#define RME32_WCR_START (1 << 0) /* startbit */
110
#define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
111
Setting the whole card to mono
112
doesn't seem to be very useful.
113
A software-solution can handle
114
full-duplex with one direction in
115
stereo and the other way in mono.
116
So, the hardware should work all
117
the time in stereo! */
118
#define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
119
#define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
120
#define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
121
#define RME32_WCR_FREQ_1 (1 << 5)
122
#define RME32_WCR_INP_0 (1 << 6) /* input switch */
123
#define RME32_WCR_INP_1 (1 << 7)
124
#define RME32_WCR_RESET (1 << 8) /* Reset address */
125
#define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
126
#define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
127
#define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128
#define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
129
#define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
130
#define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
131
#define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
132
133
#define RME32_WCR_BITPOS_FREQ_0 4
134
#define RME32_WCR_BITPOS_FREQ_1 5
135
#define RME32_WCR_BITPOS_INP_0 6
136
#define RME32_WCR_BITPOS_INP_1 7
137
138
/* Read control register bits */
139
#define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140
#define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
141
#define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
142
#define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
143
#define RME32_RCR_FREQ_1 (1 << 28)
144
#define RME32_RCR_FREQ_2 (1 << 29)
145
#define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
146
#define RME32_RCR_IRQ (1 << 31) /* interrupt */
147
148
#define RME32_RCR_BITPOS_F0 27
149
#define RME32_RCR_BITPOS_F1 28
150
#define RME32_RCR_BITPOS_F2 29
151
152
/* Input types */
153
#define RME32_INPUT_OPTICAL 0
154
#define RME32_INPUT_COAXIAL 1
155
#define RME32_INPUT_INTERNAL 2
156
#define RME32_INPUT_XLR 3
157
158
/* Clock modes */
159
#define RME32_CLOCKMODE_SLAVE 0
160
#define RME32_CLOCKMODE_MASTER_32 1
161
#define RME32_CLOCKMODE_MASTER_44 2
162
#define RME32_CLOCKMODE_MASTER_48 3
163
164
/* Block sizes in bytes */
165
#define RME32_BLOCK_SIZE 8192
166
167
/* Software intermediate buffer (max) size */
168
#define RME32_MID_BUFFER_SIZE (1024*1024)
169
170
/* Hardware revisions */
171
#define RME32_32_REVISION 192
172
#define RME32_328_REVISION_OLD 100
173
#define RME32_328_REVISION_NEW 101
174
#define RME32_PRO_REVISION_WITH_8412 192
175
#define RME32_PRO_REVISION_WITH_8414 150
176
177
178
struct rme32 {
179
spinlock_t lock;
180
int irq;
181
unsigned long port;
182
void __iomem *iobase;
183
184
u32 wcreg; /* cached write control register value */
185
u32 wcreg_spdif; /* S/PDIF setup */
186
u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
187
u32 rcreg; /* cached read control register value */
188
189
u8 rev; /* card revision number */
190
191
struct snd_pcm_substream *playback_substream;
192
struct snd_pcm_substream *capture_substream;
193
194
int playback_frlog; /* log2 of framesize */
195
int capture_frlog;
196
197
size_t playback_periodsize; /* in bytes, zero if not used */
198
size_t capture_periodsize; /* in bytes, zero if not used */
199
200
unsigned int fullduplex_mode;
201
int running;
202
203
struct snd_pcm_indirect playback_pcm;
204
struct snd_pcm_indirect capture_pcm;
205
206
struct snd_card *card;
207
struct snd_pcm *spdif_pcm;
208
struct snd_pcm *adat_pcm;
209
struct pci_dev *pci;
210
struct snd_kcontrol *spdif_ctl;
211
};
212
213
static const struct pci_device_id snd_rme32_ids[] = {
214
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217
{0,}
218
};
219
220
MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221
222
#define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223
#define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224
225
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226
227
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228
229
static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230
231
static void snd_rme32_proc_init(struct rme32 * rme32);
232
233
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234
235
static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236
{
237
return (readl(rme32->iobase + RME32_IO_GET_POS)
238
& RME32_RCR_AUDIO_ADDR_MASK);
239
}
240
241
/* silence callback for halfduplex mode */
242
static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243
int channel, unsigned long pos,
244
unsigned long count)
245
{
246
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247
248
memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249
return 0;
250
}
251
252
/* copy callback for halfduplex mode */
253
static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254
int channel, unsigned long pos,
255
struct iov_iter *src, unsigned long count)
256
{
257
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258
259
if (copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260
count, src) != count)
261
return -EFAULT;
262
return 0;
263
}
264
265
/* copy callback for halfduplex mode */
266
static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
267
int channel, unsigned long pos,
268
struct iov_iter *dst, unsigned long count)
269
{
270
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
271
272
if (copy_to_iter_fromio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
273
count, dst) != count)
274
return -EFAULT;
275
return 0;
276
}
277
278
/*
279
* SPDIF I/O capabilities (half-duplex mode)
280
*/
281
static const struct snd_pcm_hardware snd_rme32_spdif_info = {
282
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
283
SNDRV_PCM_INFO_MMAP_VALID |
284
SNDRV_PCM_INFO_INTERLEAVED |
285
SNDRV_PCM_INFO_PAUSE |
286
SNDRV_PCM_INFO_SYNC_START |
287
SNDRV_PCM_INFO_SYNC_APPLPTR),
288
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
289
SNDRV_PCM_FMTBIT_S32_LE),
290
.rates = (SNDRV_PCM_RATE_32000 |
291
SNDRV_PCM_RATE_44100 |
292
SNDRV_PCM_RATE_48000),
293
.rate_min = 32000,
294
.rate_max = 48000,
295
.channels_min = 2,
296
.channels_max = 2,
297
.buffer_bytes_max = RME32_BUFFER_SIZE,
298
.period_bytes_min = RME32_BLOCK_SIZE,
299
.period_bytes_max = RME32_BLOCK_SIZE,
300
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
301
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
302
.fifo_size = 0,
303
};
304
305
/*
306
* ADAT I/O capabilities (half-duplex mode)
307
*/
308
static const struct snd_pcm_hardware snd_rme32_adat_info =
309
{
310
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
311
SNDRV_PCM_INFO_MMAP_VALID |
312
SNDRV_PCM_INFO_INTERLEAVED |
313
SNDRV_PCM_INFO_PAUSE |
314
SNDRV_PCM_INFO_SYNC_START |
315
SNDRV_PCM_INFO_SYNC_APPLPTR),
316
.formats= SNDRV_PCM_FMTBIT_S16_LE,
317
.rates = (SNDRV_PCM_RATE_44100 |
318
SNDRV_PCM_RATE_48000),
319
.rate_min = 44100,
320
.rate_max = 48000,
321
.channels_min = 8,
322
.channels_max = 8,
323
.buffer_bytes_max = RME32_BUFFER_SIZE,
324
.period_bytes_min = RME32_BLOCK_SIZE,
325
.period_bytes_max = RME32_BLOCK_SIZE,
326
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
327
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
328
.fifo_size = 0,
329
};
330
331
/*
332
* SPDIF I/O capabilities (full-duplex mode)
333
*/
334
static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
335
.info = (SNDRV_PCM_INFO_MMAP |
336
SNDRV_PCM_INFO_MMAP_VALID |
337
SNDRV_PCM_INFO_INTERLEAVED |
338
SNDRV_PCM_INFO_PAUSE |
339
SNDRV_PCM_INFO_SYNC_START |
340
SNDRV_PCM_INFO_SYNC_APPLPTR),
341
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
342
SNDRV_PCM_FMTBIT_S32_LE),
343
.rates = (SNDRV_PCM_RATE_32000 |
344
SNDRV_PCM_RATE_44100 |
345
SNDRV_PCM_RATE_48000),
346
.rate_min = 32000,
347
.rate_max = 48000,
348
.channels_min = 2,
349
.channels_max = 2,
350
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
351
.period_bytes_min = RME32_BLOCK_SIZE,
352
.period_bytes_max = RME32_BLOCK_SIZE,
353
.periods_min = 2,
354
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
355
.fifo_size = 0,
356
};
357
358
/*
359
* ADAT I/O capabilities (full-duplex mode)
360
*/
361
static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
362
{
363
.info = (SNDRV_PCM_INFO_MMAP |
364
SNDRV_PCM_INFO_MMAP_VALID |
365
SNDRV_PCM_INFO_INTERLEAVED |
366
SNDRV_PCM_INFO_PAUSE |
367
SNDRV_PCM_INFO_SYNC_START |
368
SNDRV_PCM_INFO_SYNC_APPLPTR),
369
.formats= SNDRV_PCM_FMTBIT_S16_LE,
370
.rates = (SNDRV_PCM_RATE_44100 |
371
SNDRV_PCM_RATE_48000),
372
.rate_min = 44100,
373
.rate_max = 48000,
374
.channels_min = 8,
375
.channels_max = 8,
376
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
377
.period_bytes_min = RME32_BLOCK_SIZE,
378
.period_bytes_max = RME32_BLOCK_SIZE,
379
.periods_min = 2,
380
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
381
.fifo_size = 0,
382
};
383
384
static void snd_rme32_reset_dac(struct rme32 *rme32)
385
{
386
writel(rme32->wcreg | RME32_WCR_PD,
387
rme32->iobase + RME32_IO_CONTROL_REGISTER);
388
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
389
}
390
391
static int snd_rme32_playback_getrate(struct rme32 * rme32)
392
{
393
int rate;
394
395
rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
396
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
397
switch (rate) {
398
case 1:
399
rate = 32000;
400
break;
401
case 2:
402
rate = 44100;
403
break;
404
case 3:
405
rate = 48000;
406
break;
407
default:
408
return -1;
409
}
410
return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
411
}
412
413
static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
414
{
415
int n;
416
417
*is_adat = 0;
418
if (rme32->rcreg & RME32_RCR_LOCK) {
419
/* ADAT rate */
420
*is_adat = 1;
421
}
422
if (rme32->rcreg & RME32_RCR_ERF) {
423
return -1;
424
}
425
426
/* S/PDIF rate */
427
n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
428
(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
429
(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
430
431
if (RME32_PRO_WITH_8414(rme32))
432
switch (n) { /* supporting the CS8414 */
433
case 0:
434
case 1:
435
case 2:
436
return -1;
437
case 3:
438
return 96000;
439
case 4:
440
return 88200;
441
case 5:
442
return 48000;
443
case 6:
444
return 44100;
445
case 7:
446
return 32000;
447
default:
448
return -1;
449
}
450
else
451
switch (n) { /* supporting the CS8412 */
452
case 0:
453
return -1;
454
case 1:
455
return 48000;
456
case 2:
457
return 44100;
458
case 3:
459
return 32000;
460
case 4:
461
return 48000;
462
case 5:
463
return 44100;
464
case 6:
465
return 44056;
466
case 7:
467
return 32000;
468
default:
469
break;
470
}
471
return -1;
472
}
473
474
static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
475
{
476
int ds;
477
478
ds = rme32->wcreg & RME32_WCR_DS_BM;
479
switch (rate) {
480
case 32000:
481
rme32->wcreg &= ~RME32_WCR_DS_BM;
482
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
483
~RME32_WCR_FREQ_1;
484
break;
485
case 44100:
486
rme32->wcreg &= ~RME32_WCR_DS_BM;
487
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
488
~RME32_WCR_FREQ_0;
489
break;
490
case 48000:
491
rme32->wcreg &= ~RME32_WCR_DS_BM;
492
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
493
RME32_WCR_FREQ_1;
494
break;
495
case 64000:
496
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
497
return -EINVAL;
498
rme32->wcreg |= RME32_WCR_DS_BM;
499
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
500
~RME32_WCR_FREQ_1;
501
break;
502
case 88200:
503
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
504
return -EINVAL;
505
rme32->wcreg |= RME32_WCR_DS_BM;
506
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
507
~RME32_WCR_FREQ_0;
508
break;
509
case 96000:
510
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
511
return -EINVAL;
512
rme32->wcreg |= RME32_WCR_DS_BM;
513
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
514
RME32_WCR_FREQ_1;
515
break;
516
default:
517
return -EINVAL;
518
}
519
if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
520
(ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
521
{
522
/* change to/from double-speed: reset the DAC (if available) */
523
snd_rme32_reset_dac(rme32);
524
} else {
525
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
526
}
527
return 0;
528
}
529
530
static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
531
{
532
switch (mode) {
533
case RME32_CLOCKMODE_SLAVE:
534
/* AutoSync */
535
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
536
~RME32_WCR_FREQ_1;
537
break;
538
case RME32_CLOCKMODE_MASTER_32:
539
/* Internal 32.0kHz */
540
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
541
~RME32_WCR_FREQ_1;
542
break;
543
case RME32_CLOCKMODE_MASTER_44:
544
/* Internal 44.1kHz */
545
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
546
RME32_WCR_FREQ_1;
547
break;
548
case RME32_CLOCKMODE_MASTER_48:
549
/* Internal 48.0kHz */
550
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
551
RME32_WCR_FREQ_1;
552
break;
553
default:
554
return -EINVAL;
555
}
556
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
557
return 0;
558
}
559
560
static int snd_rme32_getclockmode(struct rme32 * rme32)
561
{
562
return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
563
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
564
}
565
566
static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
567
{
568
switch (type) {
569
case RME32_INPUT_OPTICAL:
570
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
571
~RME32_WCR_INP_1;
572
break;
573
case RME32_INPUT_COAXIAL:
574
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
575
~RME32_WCR_INP_1;
576
break;
577
case RME32_INPUT_INTERNAL:
578
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
579
RME32_WCR_INP_1;
580
break;
581
case RME32_INPUT_XLR:
582
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
583
RME32_WCR_INP_1;
584
break;
585
default:
586
return -EINVAL;
587
}
588
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
589
return 0;
590
}
591
592
static int snd_rme32_getinputtype(struct rme32 * rme32)
593
{
594
return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
595
(((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
596
}
597
598
static void
599
snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
600
{
601
int frlog;
602
603
if (n_channels == 2) {
604
frlog = 1;
605
} else {
606
/* assume 8 channels */
607
frlog = 3;
608
}
609
if (is_playback) {
610
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
611
rme32->playback_frlog = frlog;
612
} else {
613
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
614
rme32->capture_frlog = frlog;
615
}
616
}
617
618
static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
619
{
620
switch (format) {
621
case SNDRV_PCM_FORMAT_S16_LE:
622
rme32->wcreg &= ~RME32_WCR_MODE24;
623
break;
624
case SNDRV_PCM_FORMAT_S32_LE:
625
rme32->wcreg |= RME32_WCR_MODE24;
626
break;
627
default:
628
return -EINVAL;
629
}
630
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
631
return 0;
632
}
633
634
static int
635
snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
636
struct snd_pcm_hw_params *params)
637
{
638
int err, rate, dummy;
639
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
640
struct snd_pcm_runtime *runtime = substream->runtime;
641
642
if (!rme32->fullduplex_mode) {
643
runtime->dma_area = (void __force *)(rme32->iobase +
644
RME32_IO_DATA_BUFFER);
645
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
646
runtime->dma_bytes = RME32_BUFFER_SIZE;
647
}
648
649
guard(spinlock_irq)(&rme32->lock);
650
rate = 0;
651
if (rme32->rcreg & RME32_RCR_KMODE)
652
rate = snd_rme32_capture_getrate(rme32, &dummy);
653
if (rate > 0) {
654
/* AutoSync */
655
if ((int)params_rate(params) != rate)
656
return -EIO;
657
} else {
658
err = snd_rme32_playback_setrate(rme32, params_rate(params));
659
if (err < 0)
660
return err;
661
}
662
err = snd_rme32_setformat(rme32, params_format(params));
663
if (err < 0)
664
return err;
665
666
snd_rme32_setframelog(rme32, params_channels(params), 1);
667
if (rme32->capture_periodsize != 0) {
668
if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize)
669
return -EBUSY;
670
}
671
rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
672
/* S/PDIF setup */
673
if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
674
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
675
rme32->wcreg |= rme32->wcreg_spdif_stream;
676
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
677
}
678
679
return 0;
680
}
681
682
static int
683
snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
684
struct snd_pcm_hw_params *params)
685
{
686
int err, isadat, rate;
687
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
688
struct snd_pcm_runtime *runtime = substream->runtime;
689
690
if (!rme32->fullduplex_mode) {
691
runtime->dma_area = (void __force *)rme32->iobase +
692
RME32_IO_DATA_BUFFER;
693
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
694
runtime->dma_bytes = RME32_BUFFER_SIZE;
695
}
696
697
guard(spinlock_irq)(&rme32->lock);
698
/* enable AutoSync for record-preparing */
699
rme32->wcreg |= RME32_WCR_AUTOSYNC;
700
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
701
702
err = snd_rme32_setformat(rme32, params_format(params));
703
if (err < 0)
704
return err;
705
err = snd_rme32_playback_setrate(rme32, params_rate(params));
706
if (err < 0)
707
return err;
708
rate = snd_rme32_capture_getrate(rme32, &isadat);
709
if (rate > 0) {
710
if ((int)params_rate(params) != rate)
711
return -EIO;
712
if ((isadat && runtime->hw.channels_min == 2) ||
713
(!isadat && runtime->hw.channels_min == 8))
714
return -EIO;
715
}
716
/* AutoSync off for recording */
717
rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
718
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
719
720
snd_rme32_setframelog(rme32, params_channels(params), 0);
721
if (rme32->playback_periodsize != 0) {
722
if (params_period_size(params) << rme32->capture_frlog !=
723
rme32->playback_periodsize)
724
return -EBUSY;
725
}
726
rme32->capture_periodsize =
727
params_period_size(params) << rme32->capture_frlog;
728
729
return 0;
730
}
731
732
static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
733
{
734
if (!from_pause) {
735
writel(0, rme32->iobase + RME32_IO_RESET_POS);
736
}
737
738
rme32->wcreg |= RME32_WCR_START;
739
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
740
}
741
742
static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
743
{
744
/*
745
* Check if there is an unconfirmed IRQ, if so confirm it, or else
746
* the hardware will not stop generating interrupts
747
*/
748
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
749
if (rme32->rcreg & RME32_RCR_IRQ) {
750
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
751
}
752
rme32->wcreg &= ~RME32_WCR_START;
753
if (rme32->wcreg & RME32_WCR_SEL)
754
rme32->wcreg |= RME32_WCR_MUTE;
755
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
756
if (! to_pause)
757
writel(0, rme32->iobase + RME32_IO_RESET_POS);
758
}
759
760
static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
761
{
762
struct rme32 *rme32 = (struct rme32 *) dev_id;
763
764
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
765
if (!(rme32->rcreg & RME32_RCR_IRQ)) {
766
return IRQ_NONE;
767
} else {
768
if (rme32->capture_substream) {
769
snd_pcm_period_elapsed(rme32->capture_substream);
770
}
771
if (rme32->playback_substream) {
772
snd_pcm_period_elapsed(rme32->playback_substream);
773
}
774
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
775
}
776
return IRQ_HANDLED;
777
}
778
779
static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
780
781
static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
782
.count = ARRAY_SIZE(period_bytes),
783
.list = period_bytes,
784
.mask = 0
785
};
786
787
static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
788
{
789
if (! rme32->fullduplex_mode) {
790
snd_pcm_hw_constraint_single(runtime,
791
SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
792
RME32_BUFFER_SIZE);
793
snd_pcm_hw_constraint_list(runtime, 0,
794
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
795
&hw_constraints_period_bytes);
796
}
797
}
798
799
static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
800
{
801
int rate, dummy;
802
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
803
struct snd_pcm_runtime *runtime = substream->runtime;
804
805
snd_pcm_set_sync(substream);
806
807
scoped_guard(spinlock_irq, &rme32->lock) {
808
if (rme32->playback_substream != NULL)
809
return -EBUSY;
810
rme32->wcreg &= ~RME32_WCR_ADAT;
811
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
812
rme32->playback_substream = substream;
813
}
814
815
if (rme32->fullduplex_mode)
816
runtime->hw = snd_rme32_spdif_fd_info;
817
else
818
runtime->hw = snd_rme32_spdif_info;
819
if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
820
runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
821
runtime->hw.rate_max = 96000;
822
}
823
rate = 0;
824
if (rme32->rcreg & RME32_RCR_KMODE)
825
rate = snd_rme32_capture_getrate(rme32, &dummy);
826
if (rate > 0) {
827
/* AutoSync */
828
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
829
runtime->hw.rate_min = rate;
830
runtime->hw.rate_max = rate;
831
}
832
833
snd_rme32_set_buffer_constraint(rme32, runtime);
834
835
rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
836
rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
837
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
838
SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
839
return 0;
840
}
841
842
static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
843
{
844
int isadat, rate;
845
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
846
struct snd_pcm_runtime *runtime = substream->runtime;
847
848
snd_pcm_set_sync(substream);
849
850
scoped_guard(spinlock_irq, &rme32->lock) {
851
if (rme32->capture_substream != NULL)
852
return -EBUSY;
853
rme32->capture_substream = substream;
854
}
855
856
if (rme32->fullduplex_mode)
857
runtime->hw = snd_rme32_spdif_fd_info;
858
else
859
runtime->hw = snd_rme32_spdif_info;
860
if (RME32_PRO_WITH_8414(rme32)) {
861
runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
862
runtime->hw.rate_max = 96000;
863
}
864
rate = snd_rme32_capture_getrate(rme32, &isadat);
865
if (rate > 0) {
866
if (isadat) {
867
return -EIO;
868
}
869
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
870
runtime->hw.rate_min = rate;
871
runtime->hw.rate_max = rate;
872
}
873
874
snd_rme32_set_buffer_constraint(rme32, runtime);
875
876
return 0;
877
}
878
879
static int
880
snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
881
{
882
int rate, dummy;
883
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
884
struct snd_pcm_runtime *runtime = substream->runtime;
885
886
snd_pcm_set_sync(substream);
887
888
scoped_guard(spinlock_irq, &rme32->lock) {
889
if (rme32->playback_substream != NULL)
890
return -EBUSY;
891
rme32->wcreg |= RME32_WCR_ADAT;
892
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
893
rme32->playback_substream = substream;
894
}
895
896
if (rme32->fullduplex_mode)
897
runtime->hw = snd_rme32_adat_fd_info;
898
else
899
runtime->hw = snd_rme32_adat_info;
900
rate = 0;
901
if (rme32->rcreg & RME32_RCR_KMODE)
902
rate = snd_rme32_capture_getrate(rme32, &dummy);
903
if (rate > 0) {
904
/* AutoSync */
905
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
906
runtime->hw.rate_min = rate;
907
runtime->hw.rate_max = rate;
908
}
909
910
snd_rme32_set_buffer_constraint(rme32, runtime);
911
return 0;
912
}
913
914
static int
915
snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
916
{
917
int isadat, rate;
918
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
919
struct snd_pcm_runtime *runtime = substream->runtime;
920
921
if (rme32->fullduplex_mode)
922
runtime->hw = snd_rme32_adat_fd_info;
923
else
924
runtime->hw = snd_rme32_adat_info;
925
rate = snd_rme32_capture_getrate(rme32, &isadat);
926
if (rate > 0) {
927
if (!isadat) {
928
return -EIO;
929
}
930
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
931
runtime->hw.rate_min = rate;
932
runtime->hw.rate_max = rate;
933
}
934
935
snd_pcm_set_sync(substream);
936
937
scoped_guard(spinlock_irq, &rme32->lock) {
938
if (rme32->capture_substream != NULL)
939
return -EBUSY;
940
rme32->capture_substream = substream;
941
}
942
943
snd_rme32_set_buffer_constraint(rme32, runtime);
944
return 0;
945
}
946
947
static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
948
{
949
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
950
int spdif = 0;
951
952
scoped_guard(spinlock_irq, &rme32->lock) {
953
rme32->playback_substream = NULL;
954
rme32->playback_periodsize = 0;
955
spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
956
}
957
if (spdif) {
958
rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
959
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
960
SNDRV_CTL_EVENT_MASK_INFO,
961
&rme32->spdif_ctl->id);
962
}
963
return 0;
964
}
965
966
static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
967
{
968
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
969
970
guard(spinlock_irq)(&rme32->lock);
971
rme32->capture_substream = NULL;
972
rme32->capture_periodsize = 0;
973
return 0;
974
}
975
976
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
977
{
978
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
979
980
guard(spinlock_irq)(&rme32->lock);
981
if (rme32->fullduplex_mode) {
982
memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
983
rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
984
rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
985
} else {
986
writel(0, rme32->iobase + RME32_IO_RESET_POS);
987
}
988
if (rme32->wcreg & RME32_WCR_SEL)
989
rme32->wcreg &= ~RME32_WCR_MUTE;
990
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
991
return 0;
992
}
993
994
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
995
{
996
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
997
998
guard(spinlock_irq)(&rme32->lock);
999
if (rme32->fullduplex_mode) {
1000
memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1001
rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1002
rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1003
rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1004
} else {
1005
writel(0, rme32->iobase + RME32_IO_RESET_POS);
1006
}
1007
return 0;
1008
}
1009
1010
static int
1011
snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1012
{
1013
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1014
struct snd_pcm_substream *s;
1015
1016
guard(spinlock)(&rme32->lock);
1017
snd_pcm_group_for_each_entry(s, substream) {
1018
if (s != rme32->playback_substream &&
1019
s != rme32->capture_substream)
1020
continue;
1021
switch (cmd) {
1022
case SNDRV_PCM_TRIGGER_START:
1023
rme32->running |= (1 << s->stream);
1024
if (rme32->fullduplex_mode) {
1025
/* remember the current DMA position */
1026
if (s == rme32->playback_substream) {
1027
rme32->playback_pcm.hw_io =
1028
rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1029
} else {
1030
rme32->capture_pcm.hw_io =
1031
rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1032
}
1033
}
1034
break;
1035
case SNDRV_PCM_TRIGGER_STOP:
1036
rme32->running &= ~(1 << s->stream);
1037
break;
1038
}
1039
snd_pcm_trigger_done(s, substream);
1040
}
1041
1042
switch (cmd) {
1043
case SNDRV_PCM_TRIGGER_START:
1044
if (rme32->running && ! RME32_ISWORKING(rme32))
1045
snd_rme32_pcm_start(rme32, 0);
1046
break;
1047
case SNDRV_PCM_TRIGGER_STOP:
1048
if (! rme32->running && RME32_ISWORKING(rme32))
1049
snd_rme32_pcm_stop(rme32, 0);
1050
break;
1051
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1052
if (rme32->running && RME32_ISWORKING(rme32))
1053
snd_rme32_pcm_stop(rme32, 1);
1054
break;
1055
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1056
if (rme32->running && ! RME32_ISWORKING(rme32))
1057
snd_rme32_pcm_start(rme32, 1);
1058
break;
1059
}
1060
return 0;
1061
}
1062
1063
/* pointer callback for halfduplex mode */
1064
static snd_pcm_uframes_t
1065
snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1066
{
1067
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1068
return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1069
}
1070
1071
static snd_pcm_uframes_t
1072
snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1073
{
1074
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1075
return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1076
}
1077
1078
1079
/* ack and pointer callbacks for fullduplex mode */
1080
static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1081
struct snd_pcm_indirect *rec, size_t bytes)
1082
{
1083
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1084
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1085
substream->runtime->dma_area + rec->sw_data, bytes);
1086
}
1087
1088
static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1089
{
1090
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1091
struct snd_pcm_indirect *rec, *cprec;
1092
1093
rec = &rme32->playback_pcm;
1094
cprec = &rme32->capture_pcm;
1095
scoped_guard(spinlock, &rme32->lock) {
1096
rec->hw_queue_size = RME32_BUFFER_SIZE;
1097
if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1098
rec->hw_queue_size -= cprec->hw_ready;
1099
}
1100
return snd_pcm_indirect_playback_transfer(substream, rec,
1101
snd_rme32_pb_trans_copy);
1102
}
1103
1104
static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1105
struct snd_pcm_indirect *rec, size_t bytes)
1106
{
1107
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1108
memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1109
rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1110
bytes);
1111
}
1112
1113
static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1114
{
1115
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1116
return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1117
snd_rme32_cp_trans_copy);
1118
}
1119
1120
static snd_pcm_uframes_t
1121
snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1122
{
1123
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1124
return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1125
snd_rme32_pcm_byteptr(rme32));
1126
}
1127
1128
static snd_pcm_uframes_t
1129
snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1130
{
1131
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1132
return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1133
snd_rme32_pcm_byteptr(rme32));
1134
}
1135
1136
/* for halfduplex mode */
1137
static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1138
.open = snd_rme32_playback_spdif_open,
1139
.close = snd_rme32_playback_close,
1140
.hw_params = snd_rme32_playback_hw_params,
1141
.prepare = snd_rme32_playback_prepare,
1142
.trigger = snd_rme32_pcm_trigger,
1143
.pointer = snd_rme32_playback_pointer,
1144
.copy = snd_rme32_playback_copy,
1145
.fill_silence = snd_rme32_playback_silence,
1146
.mmap = snd_pcm_lib_mmap_iomem,
1147
};
1148
1149
static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1150
.open = snd_rme32_capture_spdif_open,
1151
.close = snd_rme32_capture_close,
1152
.hw_params = snd_rme32_capture_hw_params,
1153
.prepare = snd_rme32_capture_prepare,
1154
.trigger = snd_rme32_pcm_trigger,
1155
.pointer = snd_rme32_capture_pointer,
1156
.copy = snd_rme32_capture_copy,
1157
.mmap = snd_pcm_lib_mmap_iomem,
1158
};
1159
1160
static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1161
.open = snd_rme32_playback_adat_open,
1162
.close = snd_rme32_playback_close,
1163
.hw_params = snd_rme32_playback_hw_params,
1164
.prepare = snd_rme32_playback_prepare,
1165
.trigger = snd_rme32_pcm_trigger,
1166
.pointer = snd_rme32_playback_pointer,
1167
.copy = snd_rme32_playback_copy,
1168
.fill_silence = snd_rme32_playback_silence,
1169
.mmap = snd_pcm_lib_mmap_iomem,
1170
};
1171
1172
static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1173
.open = snd_rme32_capture_adat_open,
1174
.close = snd_rme32_capture_close,
1175
.hw_params = snd_rme32_capture_hw_params,
1176
.prepare = snd_rme32_capture_prepare,
1177
.trigger = snd_rme32_pcm_trigger,
1178
.pointer = snd_rme32_capture_pointer,
1179
.copy = snd_rme32_capture_copy,
1180
.mmap = snd_pcm_lib_mmap_iomem,
1181
};
1182
1183
/* for fullduplex mode */
1184
static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1185
.open = snd_rme32_playback_spdif_open,
1186
.close = snd_rme32_playback_close,
1187
.hw_params = snd_rme32_playback_hw_params,
1188
.prepare = snd_rme32_playback_prepare,
1189
.trigger = snd_rme32_pcm_trigger,
1190
.pointer = snd_rme32_playback_fd_pointer,
1191
.ack = snd_rme32_playback_fd_ack,
1192
};
1193
1194
static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1195
.open = snd_rme32_capture_spdif_open,
1196
.close = snd_rme32_capture_close,
1197
.hw_params = snd_rme32_capture_hw_params,
1198
.prepare = snd_rme32_capture_prepare,
1199
.trigger = snd_rme32_pcm_trigger,
1200
.pointer = snd_rme32_capture_fd_pointer,
1201
.ack = snd_rme32_capture_fd_ack,
1202
};
1203
1204
static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1205
.open = snd_rme32_playback_adat_open,
1206
.close = snd_rme32_playback_close,
1207
.hw_params = snd_rme32_playback_hw_params,
1208
.prepare = snd_rme32_playback_prepare,
1209
.trigger = snd_rme32_pcm_trigger,
1210
.pointer = snd_rme32_playback_fd_pointer,
1211
.ack = snd_rme32_playback_fd_ack,
1212
};
1213
1214
static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1215
.open = snd_rme32_capture_adat_open,
1216
.close = snd_rme32_capture_close,
1217
.hw_params = snd_rme32_capture_hw_params,
1218
.prepare = snd_rme32_capture_prepare,
1219
.trigger = snd_rme32_pcm_trigger,
1220
.pointer = snd_rme32_capture_fd_pointer,
1221
.ack = snd_rme32_capture_fd_ack,
1222
};
1223
1224
static void snd_rme32_free(struct rme32 *rme32)
1225
{
1226
if (rme32->irq >= 0)
1227
snd_rme32_pcm_stop(rme32, 0);
1228
}
1229
1230
static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1231
{
1232
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1233
rme32->spdif_pcm = NULL;
1234
}
1235
1236
static void
1237
snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1238
{
1239
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1240
rme32->adat_pcm = NULL;
1241
}
1242
1243
static int snd_rme32_create(struct rme32 *rme32)
1244
{
1245
struct pci_dev *pci = rme32->pci;
1246
int err;
1247
1248
rme32->irq = -1;
1249
spin_lock_init(&rme32->lock);
1250
1251
err = pcim_enable_device(pci);
1252
if (err < 0)
1253
return err;
1254
1255
err = pcim_request_all_regions(pci, "RME32");
1256
if (err < 0)
1257
return err;
1258
rme32->port = pci_resource_start(rme32->pci, 0);
1259
1260
rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1261
if (!rme32->iobase) {
1262
dev_err(rme32->card->dev,
1263
"unable to remap memory region 0x%lx-0x%lx\n",
1264
rme32->port, rme32->port + RME32_IO_SIZE - 1);
1265
return -ENOMEM;
1266
}
1267
1268
if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1269
IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1270
dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1271
return -EBUSY;
1272
}
1273
rme32->irq = pci->irq;
1274
rme32->card->sync_irq = rme32->irq;
1275
1276
/* read the card's revision number */
1277
pci_read_config_byte(pci, 8, &rme32->rev);
1278
1279
/* set up ALSA pcm device for S/PDIF */
1280
err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1281
if (err < 0)
1282
return err;
1283
rme32->spdif_pcm->private_data = rme32;
1284
rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1285
strscpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1286
if (rme32->fullduplex_mode) {
1287
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1288
&snd_rme32_playback_spdif_fd_ops);
1289
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1290
&snd_rme32_capture_spdif_fd_ops);
1291
snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1292
NULL, 0, RME32_MID_BUFFER_SIZE);
1293
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1294
} else {
1295
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1296
&snd_rme32_playback_spdif_ops);
1297
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1298
&snd_rme32_capture_spdif_ops);
1299
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1300
}
1301
1302
/* set up ALSA pcm device for ADAT */
1303
if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1304
(pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1305
/* ADAT is not available on DIGI32 and DIGI32 Pro */
1306
rme32->adat_pcm = NULL;
1307
}
1308
else {
1309
err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1310
1, 1, &rme32->adat_pcm);
1311
if (err < 0)
1312
return err;
1313
rme32->adat_pcm->private_data = rme32;
1314
rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1315
strscpy(rme32->adat_pcm->name, "Digi32 ADAT");
1316
if (rme32->fullduplex_mode) {
1317
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1318
&snd_rme32_playback_adat_fd_ops);
1319
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1320
&snd_rme32_capture_adat_fd_ops);
1321
snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1322
NULL,
1323
0, RME32_MID_BUFFER_SIZE);
1324
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1325
} else {
1326
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1327
&snd_rme32_playback_adat_ops);
1328
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1329
&snd_rme32_capture_adat_ops);
1330
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1331
}
1332
}
1333
1334
1335
rme32->playback_periodsize = 0;
1336
rme32->capture_periodsize = 0;
1337
1338
/* make sure playback/capture is stopped, if by some reason active */
1339
snd_rme32_pcm_stop(rme32, 0);
1340
1341
/* reset DAC */
1342
snd_rme32_reset_dac(rme32);
1343
1344
/* reset buffer pointer */
1345
writel(0, rme32->iobase + RME32_IO_RESET_POS);
1346
1347
/* set default values in registers */
1348
rme32->wcreg = RME32_WCR_SEL | /* normal playback */
1349
RME32_WCR_INP_0 | /* input select */
1350
RME32_WCR_MUTE; /* muting on */
1351
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1352
1353
1354
/* init switch interface */
1355
err = snd_rme32_create_switches(rme32->card, rme32);
1356
if (err < 0)
1357
return err;
1358
1359
/* init proc interface */
1360
snd_rme32_proc_init(rme32);
1361
1362
rme32->capture_substream = NULL;
1363
rme32->playback_substream = NULL;
1364
1365
return 0;
1366
}
1367
1368
/*
1369
* proc interface
1370
*/
1371
1372
static void
1373
snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1374
{
1375
int n;
1376
struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1377
1378
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1379
1380
snd_iprintf(buffer, rme32->card->longname);
1381
snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1382
1383
snd_iprintf(buffer, "\nGeneral settings\n");
1384
if (rme32->fullduplex_mode)
1385
snd_iprintf(buffer, " Full-duplex mode\n");
1386
else
1387
snd_iprintf(buffer, " Half-duplex mode\n");
1388
if (RME32_PRO_WITH_8414(rme32)) {
1389
snd_iprintf(buffer, " receiver: CS8414\n");
1390
} else {
1391
snd_iprintf(buffer, " receiver: CS8412\n");
1392
}
1393
if (rme32->wcreg & RME32_WCR_MODE24) {
1394
snd_iprintf(buffer, " format: 24 bit");
1395
} else {
1396
snd_iprintf(buffer, " format: 16 bit");
1397
}
1398
if (rme32->wcreg & RME32_WCR_MONO) {
1399
snd_iprintf(buffer, ", Mono\n");
1400
} else {
1401
snd_iprintf(buffer, ", Stereo\n");
1402
}
1403
1404
snd_iprintf(buffer, "\nInput settings\n");
1405
switch (snd_rme32_getinputtype(rme32)) {
1406
case RME32_INPUT_OPTICAL:
1407
snd_iprintf(buffer, " input: optical");
1408
break;
1409
case RME32_INPUT_COAXIAL:
1410
snd_iprintf(buffer, " input: coaxial");
1411
break;
1412
case RME32_INPUT_INTERNAL:
1413
snd_iprintf(buffer, " input: internal");
1414
break;
1415
case RME32_INPUT_XLR:
1416
snd_iprintf(buffer, " input: XLR");
1417
break;
1418
}
1419
if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1420
snd_iprintf(buffer, "\n sample rate: no valid signal\n");
1421
} else {
1422
if (n) {
1423
snd_iprintf(buffer, " (8 channels)\n");
1424
} else {
1425
snd_iprintf(buffer, " (2 channels)\n");
1426
}
1427
snd_iprintf(buffer, " sample rate: %d Hz\n",
1428
snd_rme32_capture_getrate(rme32, &n));
1429
}
1430
1431
snd_iprintf(buffer, "\nOutput settings\n");
1432
if (rme32->wcreg & RME32_WCR_SEL) {
1433
snd_iprintf(buffer, " output signal: normal playback");
1434
} else {
1435
snd_iprintf(buffer, " output signal: same as input");
1436
}
1437
if (rme32->wcreg & RME32_WCR_MUTE) {
1438
snd_iprintf(buffer, " (muted)\n");
1439
} else {
1440
snd_iprintf(buffer, "\n");
1441
}
1442
1443
/* master output frequency */
1444
if (!
1445
((!(rme32->wcreg & RME32_WCR_FREQ_0))
1446
&& (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1447
snd_iprintf(buffer, " sample rate: %d Hz\n",
1448
snd_rme32_playback_getrate(rme32));
1449
}
1450
if (rme32->rcreg & RME32_RCR_KMODE) {
1451
snd_iprintf(buffer, " sample clock source: AutoSync\n");
1452
} else {
1453
snd_iprintf(buffer, " sample clock source: Internal\n");
1454
}
1455
if (rme32->wcreg & RME32_WCR_PRO) {
1456
snd_iprintf(buffer, " format: AES/EBU (professional)\n");
1457
} else {
1458
snd_iprintf(buffer, " format: IEC958 (consumer)\n");
1459
}
1460
if (rme32->wcreg & RME32_WCR_EMP) {
1461
snd_iprintf(buffer, " emphasis: on\n");
1462
} else {
1463
snd_iprintf(buffer, " emphasis: off\n");
1464
}
1465
}
1466
1467
static void snd_rme32_proc_init(struct rme32 *rme32)
1468
{
1469
snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1470
}
1471
1472
/*
1473
* control interface
1474
*/
1475
1476
#define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
1477
1478
static int
1479
snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1480
struct snd_ctl_elem_value *ucontrol)
1481
{
1482
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1483
1484
guard(spinlock_irq)(&rme32->lock);
1485
ucontrol->value.integer.value[0] =
1486
rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1487
return 0;
1488
}
1489
static int
1490
snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1491
struct snd_ctl_elem_value *ucontrol)
1492
{
1493
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1494
unsigned int val;
1495
int change;
1496
1497
val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1498
guard(spinlock_irq)(&rme32->lock);
1499
val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1500
change = val != rme32->wcreg;
1501
if (ucontrol->value.integer.value[0])
1502
val &= ~RME32_WCR_MUTE;
1503
else
1504
val |= RME32_WCR_MUTE;
1505
rme32->wcreg = val;
1506
writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1507
return change;
1508
}
1509
1510
static int
1511
snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1512
struct snd_ctl_elem_info *uinfo)
1513
{
1514
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1515
static const char * const texts[4] = {
1516
"Optical", "Coaxial", "Internal", "XLR"
1517
};
1518
int num_items;
1519
1520
switch (rme32->pci->device) {
1521
case PCI_DEVICE_ID_RME_DIGI32:
1522
case PCI_DEVICE_ID_RME_DIGI32_8:
1523
num_items = 3;
1524
break;
1525
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1526
num_items = 4;
1527
break;
1528
default:
1529
snd_BUG();
1530
return -EINVAL;
1531
}
1532
return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1533
}
1534
static int
1535
snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1536
struct snd_ctl_elem_value *ucontrol)
1537
{
1538
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1539
unsigned int items = 3;
1540
1541
guard(spinlock_irq)(&rme32->lock);
1542
ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1543
1544
switch (rme32->pci->device) {
1545
case PCI_DEVICE_ID_RME_DIGI32:
1546
case PCI_DEVICE_ID_RME_DIGI32_8:
1547
items = 3;
1548
break;
1549
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1550
items = 4;
1551
break;
1552
default:
1553
snd_BUG();
1554
break;
1555
}
1556
if (ucontrol->value.enumerated.item[0] >= items) {
1557
ucontrol->value.enumerated.item[0] = items - 1;
1558
}
1559
1560
return 0;
1561
}
1562
static int
1563
snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1564
struct snd_ctl_elem_value *ucontrol)
1565
{
1566
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1567
unsigned int val;
1568
int change, items = 3;
1569
1570
switch (rme32->pci->device) {
1571
case PCI_DEVICE_ID_RME_DIGI32:
1572
case PCI_DEVICE_ID_RME_DIGI32_8:
1573
items = 3;
1574
break;
1575
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1576
items = 4;
1577
break;
1578
default:
1579
snd_BUG();
1580
break;
1581
}
1582
val = ucontrol->value.enumerated.item[0] % items;
1583
1584
guard(spinlock_irq)(&rme32->lock);
1585
change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1586
snd_rme32_setinputtype(rme32, val);
1587
return change;
1588
}
1589
1590
static int
1591
snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1592
struct snd_ctl_elem_info *uinfo)
1593
{
1594
static const char * const texts[4] = { "AutoSync",
1595
"Internal 32.0kHz",
1596
"Internal 44.1kHz",
1597
"Internal 48.0kHz" };
1598
1599
return snd_ctl_enum_info(uinfo, 1, 4, texts);
1600
}
1601
static int
1602
snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1603
struct snd_ctl_elem_value *ucontrol)
1604
{
1605
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1606
1607
guard(spinlock_irq)(&rme32->lock);
1608
ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1609
return 0;
1610
}
1611
static int
1612
snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1613
struct snd_ctl_elem_value *ucontrol)
1614
{
1615
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1616
unsigned int val;
1617
int change;
1618
1619
val = ucontrol->value.enumerated.item[0] % 3;
1620
guard(spinlock_irq)(&rme32->lock);
1621
change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1622
snd_rme32_setclockmode(rme32, val);
1623
return change;
1624
}
1625
1626
static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1627
{
1628
u32 val = 0;
1629
val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1630
if (val & RME32_WCR_PRO)
1631
val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1632
else
1633
val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1634
return val;
1635
}
1636
1637
static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1638
{
1639
aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1640
if (val & RME32_WCR_PRO)
1641
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1642
else
1643
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1644
}
1645
1646
static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1647
struct snd_ctl_elem_info *uinfo)
1648
{
1649
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1650
uinfo->count = 1;
1651
return 0;
1652
}
1653
1654
static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1655
struct snd_ctl_elem_value *ucontrol)
1656
{
1657
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1658
1659
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1660
rme32->wcreg_spdif);
1661
return 0;
1662
}
1663
1664
static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1665
struct snd_ctl_elem_value *ucontrol)
1666
{
1667
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1668
int change;
1669
u32 val;
1670
1671
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1672
guard(spinlock_irq)(&rme32->lock);
1673
change = val != rme32->wcreg_spdif;
1674
rme32->wcreg_spdif = val;
1675
return change;
1676
}
1677
1678
static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1679
struct snd_ctl_elem_info *uinfo)
1680
{
1681
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1682
uinfo->count = 1;
1683
return 0;
1684
}
1685
1686
static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1687
struct snd_ctl_elem_value *
1688
ucontrol)
1689
{
1690
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1691
1692
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1693
rme32->wcreg_spdif_stream);
1694
return 0;
1695
}
1696
1697
static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1698
struct snd_ctl_elem_value *
1699
ucontrol)
1700
{
1701
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1702
int change;
1703
u32 val;
1704
1705
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1706
guard(spinlock_irq)(&rme32->lock);
1707
change = val != rme32->wcreg_spdif_stream;
1708
rme32->wcreg_spdif_stream = val;
1709
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1710
rme32->wcreg |= val;
1711
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1712
return change;
1713
}
1714
1715
static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1716
struct snd_ctl_elem_info *uinfo)
1717
{
1718
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1719
uinfo->count = 1;
1720
return 0;
1721
}
1722
1723
static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1724
struct snd_ctl_elem_value *
1725
ucontrol)
1726
{
1727
ucontrol->value.iec958.status[0] = kcontrol->private_value;
1728
return 0;
1729
}
1730
1731
static const struct snd_kcontrol_new snd_rme32_controls[] = {
1732
{
1733
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1734
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1735
.info = snd_rme32_control_spdif_info,
1736
.get = snd_rme32_control_spdif_get,
1737
.put = snd_rme32_control_spdif_put
1738
},
1739
{
1740
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1741
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1742
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1743
.info = snd_rme32_control_spdif_stream_info,
1744
.get = snd_rme32_control_spdif_stream_get,
1745
.put = snd_rme32_control_spdif_stream_put
1746
},
1747
{
1748
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1749
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1750
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1751
.info = snd_rme32_control_spdif_mask_info,
1752
.get = snd_rme32_control_spdif_mask_get,
1753
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1754
},
1755
{
1756
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1757
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1758
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1759
.info = snd_rme32_control_spdif_mask_info,
1760
.get = snd_rme32_control_spdif_mask_get,
1761
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1762
},
1763
{
1764
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1765
.name = "Input Connector",
1766
.info = snd_rme32_info_inputtype_control,
1767
.get = snd_rme32_get_inputtype_control,
1768
.put = snd_rme32_put_inputtype_control
1769
},
1770
{
1771
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1772
.name = "Loopback Input",
1773
.info = snd_rme32_info_loopback_control,
1774
.get = snd_rme32_get_loopback_control,
1775
.put = snd_rme32_put_loopback_control
1776
},
1777
{
1778
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1779
.name = "Sample Clock Source",
1780
.info = snd_rme32_info_clockmode_control,
1781
.get = snd_rme32_get_clockmode_control,
1782
.put = snd_rme32_put_clockmode_control
1783
}
1784
};
1785
1786
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1787
{
1788
int idx, err;
1789
struct snd_kcontrol *kctl;
1790
1791
for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1792
kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1793
err = snd_ctl_add(card, kctl);
1794
if (err < 0)
1795
return err;
1796
if (idx == 1) /* IEC958 (S/PDIF) Stream */
1797
rme32->spdif_ctl = kctl;
1798
}
1799
1800
return 0;
1801
}
1802
1803
/*
1804
* Card initialisation
1805
*/
1806
1807
static void snd_rme32_card_free(struct snd_card *card)
1808
{
1809
snd_rme32_free(card->private_data);
1810
}
1811
1812
static int
1813
__snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1814
{
1815
static int dev;
1816
struct rme32 *rme32;
1817
struct snd_card *card;
1818
int err;
1819
1820
if (dev >= SNDRV_CARDS) {
1821
return -ENODEV;
1822
}
1823
if (!enable[dev]) {
1824
dev++;
1825
return -ENOENT;
1826
}
1827
1828
err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1829
sizeof(*rme32), &card);
1830
if (err < 0)
1831
return err;
1832
card->private_free = snd_rme32_card_free;
1833
rme32 = (struct rme32 *) card->private_data;
1834
rme32->card = card;
1835
rme32->pci = pci;
1836
if (fullduplex[dev])
1837
rme32->fullduplex_mode = 1;
1838
err = snd_rme32_create(rme32);
1839
if (err < 0)
1840
return err;
1841
1842
strscpy(card->driver, "Digi32");
1843
switch (rme32->pci->device) {
1844
case PCI_DEVICE_ID_RME_DIGI32:
1845
strscpy(card->shortname, "RME Digi32");
1846
break;
1847
case PCI_DEVICE_ID_RME_DIGI32_8:
1848
strscpy(card->shortname, "RME Digi32/8");
1849
break;
1850
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1851
strscpy(card->shortname, "RME Digi32 PRO");
1852
break;
1853
}
1854
sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1855
card->shortname, rme32->rev, rme32->port, rme32->irq);
1856
1857
err = snd_card_register(card);
1858
if (err < 0)
1859
return err;
1860
pci_set_drvdata(pci, card);
1861
dev++;
1862
return 0;
1863
}
1864
1865
static int
1866
snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1867
{
1868
return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
1869
}
1870
1871
static struct pci_driver rme32_driver = {
1872
.name = KBUILD_MODNAME,
1873
.id_table = snd_rme32_ids,
1874
.probe = snd_rme32_probe,
1875
};
1876
1877
module_pci_driver(rme32_driver);
1878
1879