Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/sis7019.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Driver for SiS7019 Audio Accelerator
4
*
5
* Copyright (C) 2004-2007, David Dillow
6
* Written by David Dillow <[email protected]>
7
* Inspired by the Trident 4D-WaveDX/NX driver.
8
*
9
* All rights reserved.
10
*/
11
12
#include <linux/init.h>
13
#include <linux/pci.h>
14
#include <linux/time.h>
15
#include <linux/slab.h>
16
#include <linux/module.h>
17
#include <linux/interrupt.h>
18
#include <linux/delay.h>
19
#include <sound/core.h>
20
#include <sound/ac97_codec.h>
21
#include <sound/initval.h>
22
#include "sis7019.h"
23
24
MODULE_AUTHOR("David Dillow <[email protected]>");
25
MODULE_DESCRIPTION("SiS7019");
26
MODULE_LICENSE("GPL");
27
28
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
29
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
30
static bool enable = 1;
31
static int codecs = 1;
32
33
module_param(index, int, 0444);
34
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35
module_param(id, charp, 0444);
36
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37
module_param(enable, bool, 0444);
38
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39
module_param(codecs, int, 0444);
40
MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42
static const struct pci_device_id snd_sis7019_ids[] = {
43
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44
{ 0, }
45
};
46
47
MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49
/* There are three timing modes for the voices.
50
*
51
* For both playback and capture, when the buffer is one or two periods long,
52
* we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53
* to let us know when the periods have ended.
54
*
55
* When performing playback with more than two periods per buffer, we set
56
* the "Stop Sample Offset" and tell the hardware to interrupt us when we
57
* reach it. We then update the offset and continue on until we are
58
* interrupted for the next period.
59
*
60
* Capture channels do not have a SSO, so we allocate a playback channel to
61
* use as a timer for the capture periods. We use the SSO on the playback
62
* channel to clock out virtual periods, and adjust the virtual period length
63
* to maintain synchronization. This algorithm came from the Trident driver.
64
*
65
* FIXME: It'd be nice to make use of some of the synth features in the
66
* hardware, but a woeful lack of documentation is a significant roadblock.
67
*/
68
struct voice {
69
u16 flags;
70
#define VOICE_IN_USE 1
71
#define VOICE_CAPTURE 2
72
#define VOICE_SSO_TIMING 4
73
#define VOICE_SYNC_TIMING 8
74
u16 sync_cso;
75
u16 period_size;
76
u16 buffer_size;
77
u16 sync_period_size;
78
u16 sync_buffer_size;
79
u32 sso;
80
u32 vperiod;
81
struct snd_pcm_substream *substream;
82
struct voice *timing;
83
void __iomem *ctrl_base;
84
void __iomem *wave_base;
85
void __iomem *sync_base;
86
int num;
87
};
88
89
/* We need four pages to store our wave parameters during a suspend. If
90
* we're not doing power management, we still need to allocate a page
91
* for the silence buffer.
92
*/
93
#define SIS_SUSPEND_PAGES 4
94
95
struct sis7019 {
96
unsigned long ioport;
97
void __iomem *ioaddr;
98
int irq;
99
int codecs_present;
100
101
struct pci_dev *pci;
102
struct snd_pcm *pcm;
103
struct snd_card *card;
104
struct snd_ac97 *ac97[3];
105
106
/* Protect against more than one thread hitting the AC97
107
* registers (in a more polite manner than pounding the hardware
108
* semaphore)
109
*/
110
struct mutex ac97_mutex;
111
112
/* voice_lock protects allocation/freeing of the voice descriptions
113
*/
114
spinlock_t voice_lock;
115
116
struct voice voices[64];
117
struct voice capture_voice;
118
119
/* Allocate pages to store the internal wave state during
120
* suspends. When we're operating, this can be used as a silence
121
* buffer for a timing channel.
122
*/
123
void *suspend_state[SIS_SUSPEND_PAGES];
124
125
int silence_users;
126
dma_addr_t silence_dma_addr;
127
};
128
129
/* These values are also used by the module param 'codecs' to indicate
130
* which codecs should be present.
131
*/
132
#define SIS_PRIMARY_CODEC_PRESENT 0x0001
133
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
134
#define SIS_TERTIARY_CODEC_PRESENT 0x0004
135
136
/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137
* documented range of 8-0xfff8 samples. Given that they are 0-based,
138
* that places our period/buffer range at 9-0xfff9 samples. That makes the
139
* max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140
* max samples / min samples gives us the max periods in a buffer.
141
*
142
* We'll add a constraint upon open that limits the period and buffer sample
143
* size to values that are legal for the hardware.
144
*/
145
static const struct snd_pcm_hardware sis_playback_hw_info = {
146
.info = (SNDRV_PCM_INFO_MMAP |
147
SNDRV_PCM_INFO_MMAP_VALID |
148
SNDRV_PCM_INFO_INTERLEAVED |
149
SNDRV_PCM_INFO_BLOCK_TRANSFER |
150
SNDRV_PCM_INFO_SYNC_START |
151
SNDRV_PCM_INFO_RESUME),
152
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
153
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
154
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
155
.rate_min = 4000,
156
.rate_max = 48000,
157
.channels_min = 1,
158
.channels_max = 2,
159
.buffer_bytes_max = (0xfff9 * 4),
160
.period_bytes_min = 9,
161
.period_bytes_max = (0xfff9 * 4),
162
.periods_min = 1,
163
.periods_max = (0xfff9 / 9),
164
};
165
166
static const struct snd_pcm_hardware sis_capture_hw_info = {
167
.info = (SNDRV_PCM_INFO_MMAP |
168
SNDRV_PCM_INFO_MMAP_VALID |
169
SNDRV_PCM_INFO_INTERLEAVED |
170
SNDRV_PCM_INFO_BLOCK_TRANSFER |
171
SNDRV_PCM_INFO_SYNC_START |
172
SNDRV_PCM_INFO_RESUME),
173
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
174
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
175
.rates = SNDRV_PCM_RATE_48000,
176
.rate_min = 4000,
177
.rate_max = 48000,
178
.channels_min = 1,
179
.channels_max = 2,
180
.buffer_bytes_max = (0xfff9 * 4),
181
.period_bytes_min = 9,
182
.period_bytes_max = (0xfff9 * 4),
183
.periods_min = 1,
184
.periods_max = (0xfff9 / 9),
185
};
186
187
static void sis_update_sso(struct voice *voice, u16 period)
188
{
189
void __iomem *base = voice->ctrl_base;
190
191
voice->sso += period;
192
if (voice->sso >= voice->buffer_size)
193
voice->sso -= voice->buffer_size;
194
195
/* Enforce the documented hardware minimum offset */
196
if (voice->sso < 8)
197
voice->sso = 8;
198
199
/* The SSO is in the upper 16 bits of the register. */
200
writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
201
}
202
203
static void sis_update_voice(struct voice *voice)
204
{
205
if (voice->flags & VOICE_SSO_TIMING) {
206
sis_update_sso(voice, voice->period_size);
207
} else if (voice->flags & VOICE_SYNC_TIMING) {
208
int sync;
209
210
/* If we've not hit the end of the virtual period, update
211
* our records and keep going.
212
*/
213
if (voice->vperiod > voice->period_size) {
214
voice->vperiod -= voice->period_size;
215
if (voice->vperiod < voice->period_size)
216
sis_update_sso(voice, voice->vperiod);
217
else
218
sis_update_sso(voice, voice->period_size);
219
return;
220
}
221
222
/* Calculate our relative offset between the target and
223
* the actual CSO value. Since we're operating in a loop,
224
* if the value is more than half way around, we can
225
* consider ourselves wrapped.
226
*/
227
sync = voice->sync_cso;
228
sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
229
if (sync > (voice->sync_buffer_size / 2))
230
sync -= voice->sync_buffer_size;
231
232
/* If sync is positive, then we interrupted too early, and
233
* we'll need to come back in a few samples and try again.
234
* There's a minimum wait, as it takes some time for the DMA
235
* engine to startup, etc...
236
*/
237
if (sync > 0) {
238
if (sync < 16)
239
sync = 16;
240
sis_update_sso(voice, sync);
241
return;
242
}
243
244
/* Ok, we interrupted right on time, or (hopefully) just
245
* a bit late. We'll adjst our next waiting period based
246
* on how close we got.
247
*
248
* We need to stay just behind the actual channel to ensure
249
* it really is past a period when we get our interrupt --
250
* otherwise we'll fall into the early code above and have
251
* a minimum wait time, which makes us quite late here,
252
* eating into the user's time to refresh the buffer, esp.
253
* if using small periods.
254
*
255
* If we're less than 9 samples behind, we're on target.
256
* Otherwise, shorten the next vperiod by the amount we've
257
* been delayed.
258
*/
259
if (sync > -9)
260
voice->vperiod = voice->sync_period_size + 1;
261
else
262
voice->vperiod = voice->sync_period_size + sync + 10;
263
264
if (voice->vperiod < voice->buffer_size) {
265
sis_update_sso(voice, voice->vperiod);
266
voice->vperiod = 0;
267
} else
268
sis_update_sso(voice, voice->period_size);
269
270
sync = voice->sync_cso + voice->sync_period_size;
271
if (sync >= voice->sync_buffer_size)
272
sync -= voice->sync_buffer_size;
273
voice->sync_cso = sync;
274
}
275
276
snd_pcm_period_elapsed(voice->substream);
277
}
278
279
static void sis_voice_irq(u32 status, struct voice *voice)
280
{
281
int bit;
282
283
while (status) {
284
bit = __ffs(status);
285
status >>= bit + 1;
286
voice += bit;
287
sis_update_voice(voice);
288
voice++;
289
}
290
}
291
292
static irqreturn_t sis_interrupt(int irq, void *dev)
293
{
294
struct sis7019 *sis = dev;
295
unsigned long io = sis->ioport;
296
struct voice *voice;
297
u32 intr, status;
298
299
/* We only use the DMA interrupts, and we don't enable any other
300
* source of interrupts. But, it is possible to see an interrupt
301
* status that didn't actually interrupt us, so eliminate anything
302
* we're not expecting to avoid falsely claiming an IRQ, and an
303
* ensuing endless loop.
304
*/
305
intr = inl(io + SIS_GISR);
306
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
307
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
308
if (!intr)
309
return IRQ_NONE;
310
311
do {
312
status = inl(io + SIS_PISR_A);
313
if (status) {
314
sis_voice_irq(status, sis->voices);
315
outl(status, io + SIS_PISR_A);
316
}
317
318
status = inl(io + SIS_PISR_B);
319
if (status) {
320
sis_voice_irq(status, &sis->voices[32]);
321
outl(status, io + SIS_PISR_B);
322
}
323
324
status = inl(io + SIS_RISR);
325
if (status) {
326
voice = &sis->capture_voice;
327
if (!voice->timing)
328
snd_pcm_period_elapsed(voice->substream);
329
330
outl(status, io + SIS_RISR);
331
}
332
333
outl(intr, io + SIS_GISR);
334
intr = inl(io + SIS_GISR);
335
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
336
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
337
} while (intr);
338
339
return IRQ_HANDLED;
340
}
341
342
static u32 sis_rate_to_delta(unsigned int rate)
343
{
344
u32 delta;
345
346
/* This was copied from the trident driver, but it seems its gotten
347
* around a bit... nevertheless, it works well.
348
*
349
* We special case 44100 and 8000 since rounding with the equation
350
* does not give us an accurate enough value. For 11025 and 22050
351
* the equation gives us the best answer. All other frequencies will
352
* also use the equation. JDW
353
*/
354
if (rate == 44100)
355
delta = 0xeb3;
356
else if (rate == 8000)
357
delta = 0x2ab;
358
else if (rate == 48000)
359
delta = 0x1000;
360
else
361
delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
362
return delta;
363
}
364
365
static void __sis_map_silence(struct sis7019 *sis)
366
{
367
/* Helper function: must hold sis->voice_lock on entry */
368
if (!sis->silence_users)
369
sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
370
sis->suspend_state[0],
371
4096, DMA_TO_DEVICE);
372
sis->silence_users++;
373
}
374
375
static void __sis_unmap_silence(struct sis7019 *sis)
376
{
377
/* Helper function: must hold sis->voice_lock on entry */
378
sis->silence_users--;
379
if (!sis->silence_users)
380
dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
381
DMA_TO_DEVICE);
382
}
383
384
static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
385
{
386
guard(spinlock_irqsave)(&sis->voice_lock);
387
if (voice->timing) {
388
__sis_unmap_silence(sis);
389
voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
390
VOICE_SYNC_TIMING);
391
voice->timing = NULL;
392
}
393
voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
394
}
395
396
static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
397
{
398
/* Must hold the voice_lock on entry */
399
struct voice *voice;
400
int i;
401
402
for (i = 0; i < 64; i++) {
403
voice = &sis->voices[i];
404
if (voice->flags & VOICE_IN_USE)
405
continue;
406
voice->flags |= VOICE_IN_USE;
407
goto found_one;
408
}
409
voice = NULL;
410
411
found_one:
412
return voice;
413
}
414
415
static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
416
{
417
guard(spinlock_irqsave)(&sis->voice_lock);
418
return __sis_alloc_playback_voice(sis);
419
}
420
421
static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
422
struct snd_pcm_hw_params *hw_params)
423
{
424
struct sis7019 *sis = snd_pcm_substream_chip(substream);
425
struct snd_pcm_runtime *runtime = substream->runtime;
426
struct voice *voice = runtime->private_data;
427
unsigned int period_size, buffer_size;
428
int needed;
429
430
/* If there are one or two periods per buffer, we don't need a
431
* timing voice, as we can use the capture channel's interrupts
432
* to clock out the periods.
433
*/
434
period_size = params_period_size(hw_params);
435
buffer_size = params_buffer_size(hw_params);
436
needed = (period_size != buffer_size &&
437
period_size != (buffer_size / 2));
438
439
if (needed && !voice->timing) {
440
scoped_guard(spinlock_irqsave, &sis->voice_lock) {
441
voice->timing = __sis_alloc_playback_voice(sis);
442
if (voice->timing)
443
__sis_map_silence(sis);
444
}
445
if (!voice->timing)
446
return -ENOMEM;
447
voice->timing->substream = substream;
448
} else if (!needed && voice->timing) {
449
sis_free_voice(sis, voice);
450
voice->timing = NULL;
451
}
452
453
return 0;
454
}
455
456
static int sis_playback_open(struct snd_pcm_substream *substream)
457
{
458
struct sis7019 *sis = snd_pcm_substream_chip(substream);
459
struct snd_pcm_runtime *runtime = substream->runtime;
460
struct voice *voice;
461
462
voice = sis_alloc_playback_voice(sis);
463
if (!voice)
464
return -EAGAIN;
465
466
voice->substream = substream;
467
runtime->private_data = voice;
468
runtime->hw = sis_playback_hw_info;
469
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
470
9, 0xfff9);
471
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
472
9, 0xfff9);
473
snd_pcm_set_sync(substream);
474
return 0;
475
}
476
477
static int sis_substream_close(struct snd_pcm_substream *substream)
478
{
479
struct sis7019 *sis = snd_pcm_substream_chip(substream);
480
struct snd_pcm_runtime *runtime = substream->runtime;
481
struct voice *voice = runtime->private_data;
482
483
sis_free_voice(sis, voice);
484
return 0;
485
}
486
487
static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
488
{
489
struct snd_pcm_runtime *runtime = substream->runtime;
490
struct voice *voice = runtime->private_data;
491
void __iomem *ctrl_base = voice->ctrl_base;
492
void __iomem *wave_base = voice->wave_base;
493
u32 format, dma_addr, control, sso_eso, delta, reg;
494
u16 leo;
495
496
/* We rely on the PCM core to ensure that the parameters for this
497
* substream do not change on us while we're programming the HW.
498
*/
499
format = 0;
500
if (snd_pcm_format_width(runtime->format) == 8)
501
format |= SIS_PLAY_DMA_FORMAT_8BIT;
502
if (!snd_pcm_format_signed(runtime->format))
503
format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
504
if (runtime->channels == 1)
505
format |= SIS_PLAY_DMA_FORMAT_MONO;
506
507
/* The baseline setup is for a single period per buffer, and
508
* we add bells and whistles as needed from there.
509
*/
510
dma_addr = runtime->dma_addr;
511
leo = runtime->buffer_size - 1;
512
control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
513
sso_eso = leo;
514
515
if (runtime->period_size == (runtime->buffer_size / 2)) {
516
control |= SIS_PLAY_DMA_INTR_AT_MLP;
517
} else if (runtime->period_size != runtime->buffer_size) {
518
voice->flags |= VOICE_SSO_TIMING;
519
voice->sso = runtime->period_size - 1;
520
voice->period_size = runtime->period_size;
521
voice->buffer_size = runtime->buffer_size;
522
523
control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
524
control |= SIS_PLAY_DMA_INTR_AT_SSO;
525
sso_eso |= (runtime->period_size - 1) << 16;
526
}
527
528
delta = sis_rate_to_delta(runtime->rate);
529
530
/* Ok, we're ready to go, set up the channel.
531
*/
532
writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
533
writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
534
writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
535
writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
536
537
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
538
writel(0, wave_base + reg);
539
540
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
541
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
542
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
543
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
544
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
545
wave_base + SIS_WAVE_CHANNEL_CONTROL);
546
547
/* Force PCI writes to post. */
548
readl(ctrl_base);
549
550
return 0;
551
}
552
553
static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
554
{
555
struct sis7019 *sis = snd_pcm_substream_chip(substream);
556
unsigned long io = sis->ioport;
557
struct snd_pcm_substream *s;
558
struct voice *voice;
559
void *chip;
560
int starting;
561
u32 record = 0;
562
u32 play[2] = { 0, 0 };
563
564
/* No locks needed, as the PCM core will hold the locks on the
565
* substreams, and the HW will only start/stop the indicated voices
566
* without changing the state of the others.
567
*/
568
switch (cmd) {
569
case SNDRV_PCM_TRIGGER_START:
570
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
571
case SNDRV_PCM_TRIGGER_RESUME:
572
starting = 1;
573
break;
574
case SNDRV_PCM_TRIGGER_STOP:
575
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
576
case SNDRV_PCM_TRIGGER_SUSPEND:
577
starting = 0;
578
break;
579
default:
580
return -EINVAL;
581
}
582
583
snd_pcm_group_for_each_entry(s, substream) {
584
/* Make sure it is for us... */
585
chip = snd_pcm_substream_chip(s);
586
if (chip != sis)
587
continue;
588
589
voice = s->runtime->private_data;
590
if (voice->flags & VOICE_CAPTURE) {
591
record |= 1 << voice->num;
592
voice = voice->timing;
593
}
594
595
/* voice could be NULL if this a recording stream, and it
596
* doesn't have an external timing channel.
597
*/
598
if (voice)
599
play[voice->num / 32] |= 1 << (voice->num & 0x1f);
600
601
snd_pcm_trigger_done(s, substream);
602
}
603
604
if (starting) {
605
if (record)
606
outl(record, io + SIS_RECORD_START_REG);
607
if (play[0])
608
outl(play[0], io + SIS_PLAY_START_A_REG);
609
if (play[1])
610
outl(play[1], io + SIS_PLAY_START_B_REG);
611
} else {
612
if (record)
613
outl(record, io + SIS_RECORD_STOP_REG);
614
if (play[0])
615
outl(play[0], io + SIS_PLAY_STOP_A_REG);
616
if (play[1])
617
outl(play[1], io + SIS_PLAY_STOP_B_REG);
618
}
619
return 0;
620
}
621
622
static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
623
{
624
struct snd_pcm_runtime *runtime = substream->runtime;
625
struct voice *voice = runtime->private_data;
626
u32 cso;
627
628
cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
629
cso &= 0xffff;
630
return cso;
631
}
632
633
static int sis_capture_open(struct snd_pcm_substream *substream)
634
{
635
struct sis7019 *sis = snd_pcm_substream_chip(substream);
636
struct snd_pcm_runtime *runtime = substream->runtime;
637
struct voice *voice = &sis->capture_voice;
638
639
/* FIXME: The driver only supports recording from one channel
640
* at the moment, but it could support more.
641
*/
642
scoped_guard(spinlock_irqsave, &sis->voice_lock) {
643
if (voice->flags & VOICE_IN_USE)
644
voice = NULL;
645
else
646
voice->flags |= VOICE_IN_USE;
647
}
648
649
if (!voice)
650
return -EAGAIN;
651
652
voice->substream = substream;
653
runtime->private_data = voice;
654
runtime->hw = sis_capture_hw_info;
655
runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
656
snd_pcm_limit_hw_rates(runtime);
657
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
658
9, 0xfff9);
659
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
660
9, 0xfff9);
661
snd_pcm_set_sync(substream);
662
return 0;
663
}
664
665
static int sis_capture_hw_params(struct snd_pcm_substream *substream,
666
struct snd_pcm_hw_params *hw_params)
667
{
668
struct sis7019 *sis = snd_pcm_substream_chip(substream);
669
int rc;
670
671
rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
672
params_rate(hw_params));
673
if (rc)
674
goto out;
675
676
rc = sis_alloc_timing_voice(substream, hw_params);
677
678
out:
679
return rc;
680
}
681
682
static void sis_prepare_timing_voice(struct voice *voice,
683
struct snd_pcm_substream *substream)
684
{
685
struct sis7019 *sis = snd_pcm_substream_chip(substream);
686
struct snd_pcm_runtime *runtime = substream->runtime;
687
struct voice *timing = voice->timing;
688
void __iomem *play_base = timing->ctrl_base;
689
void __iomem *wave_base = timing->wave_base;
690
u16 buffer_size, period_size;
691
u32 format, control, sso_eso, delta;
692
u32 vperiod, sso, reg;
693
694
/* Set our initial buffer and period as large as we can given a
695
* single page of silence.
696
*/
697
buffer_size = 4096 / runtime->channels;
698
buffer_size /= snd_pcm_format_size(runtime->format, 1);
699
period_size = buffer_size;
700
701
/* Initially, we want to interrupt just a bit behind the end of
702
* the period we're clocking out. 12 samples seems to give a good
703
* delay.
704
*
705
* We want to spread our interrupts throughout the virtual period,
706
* so that we don't end up with two interrupts back to back at the
707
* end -- this helps minimize the effects of any jitter. Adjust our
708
* clocking period size so that the last period is at least a fourth
709
* of a full period.
710
*
711
* This is all moot if we don't need to use virtual periods.
712
*/
713
vperiod = runtime->period_size + 12;
714
if (vperiod > period_size) {
715
u16 tail = vperiod % period_size;
716
u16 quarter_period = period_size / 4;
717
718
if (tail && tail < quarter_period) {
719
u16 loops = vperiod / period_size;
720
721
tail = quarter_period - tail;
722
tail += loops - 1;
723
tail /= loops;
724
period_size -= tail;
725
}
726
727
sso = period_size - 1;
728
} else {
729
/* The initial period will fit inside the buffer, so we
730
* don't need to use virtual periods -- disable them.
731
*/
732
period_size = runtime->period_size;
733
sso = vperiod - 1;
734
vperiod = 0;
735
}
736
737
/* The interrupt handler implements the timing synchronization, so
738
* setup its state.
739
*/
740
timing->flags |= VOICE_SYNC_TIMING;
741
timing->sync_base = voice->ctrl_base;
742
timing->sync_cso = runtime->period_size;
743
timing->sync_period_size = runtime->period_size;
744
timing->sync_buffer_size = runtime->buffer_size;
745
timing->period_size = period_size;
746
timing->buffer_size = buffer_size;
747
timing->sso = sso;
748
timing->vperiod = vperiod;
749
750
/* Using unsigned samples with the all-zero silence buffer
751
* forces the output to the lower rail, killing playback.
752
* So ignore unsigned vs signed -- it doesn't change the timing.
753
*/
754
format = 0;
755
if (snd_pcm_format_width(runtime->format) == 8)
756
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
757
if (runtime->channels == 1)
758
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
759
760
control = timing->buffer_size - 1;
761
control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
762
sso_eso = timing->buffer_size - 1;
763
sso_eso |= timing->sso << 16;
764
765
delta = sis_rate_to_delta(runtime->rate);
766
767
/* We've done the math, now configure the channel.
768
*/
769
writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
770
writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
771
writel(control, play_base + SIS_PLAY_DMA_CONTROL);
772
writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
773
774
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
775
writel(0, wave_base + reg);
776
777
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
778
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
779
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
780
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
781
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
782
wave_base + SIS_WAVE_CHANNEL_CONTROL);
783
}
784
785
static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
786
{
787
struct snd_pcm_runtime *runtime = substream->runtime;
788
struct voice *voice = runtime->private_data;
789
void __iomem *rec_base = voice->ctrl_base;
790
u32 format, dma_addr, control;
791
u16 leo;
792
793
/* We rely on the PCM core to ensure that the parameters for this
794
* substream do not change on us while we're programming the HW.
795
*/
796
format = 0;
797
if (snd_pcm_format_width(runtime->format) == 8)
798
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
799
if (!snd_pcm_format_signed(runtime->format))
800
format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
801
if (runtime->channels == 1)
802
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
803
804
dma_addr = runtime->dma_addr;
805
leo = runtime->buffer_size - 1;
806
control = leo | SIS_CAPTURE_DMA_LOOP;
807
808
/* If we've got more than two periods per buffer, then we have
809
* use a timing voice to clock out the periods. Otherwise, we can
810
* use the capture channel's interrupts.
811
*/
812
if (voice->timing) {
813
sis_prepare_timing_voice(voice, substream);
814
} else {
815
control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
816
if (runtime->period_size != runtime->buffer_size)
817
control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
818
}
819
820
writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
821
writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
822
writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
823
824
/* Force the writes to post. */
825
readl(rec_base);
826
827
return 0;
828
}
829
830
static const struct snd_pcm_ops sis_playback_ops = {
831
.open = sis_playback_open,
832
.close = sis_substream_close,
833
.prepare = sis_pcm_playback_prepare,
834
.trigger = sis_pcm_trigger,
835
.pointer = sis_pcm_pointer,
836
};
837
838
static const struct snd_pcm_ops sis_capture_ops = {
839
.open = sis_capture_open,
840
.close = sis_substream_close,
841
.hw_params = sis_capture_hw_params,
842
.prepare = sis_pcm_capture_prepare,
843
.trigger = sis_pcm_trigger,
844
.pointer = sis_pcm_pointer,
845
};
846
847
static int sis_pcm_create(struct sis7019 *sis)
848
{
849
struct snd_pcm *pcm;
850
int rc;
851
852
/* We have 64 voices, and the driver currently records from
853
* only one channel, though that could change in the future.
854
*/
855
rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
856
if (rc)
857
return rc;
858
859
pcm->private_data = sis;
860
strscpy(pcm->name, "SiS7019");
861
sis->pcm = pcm;
862
863
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
864
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
865
866
/* Try to preallocate some memory, but it's not the end of the
867
* world if this fails.
868
*/
869
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
870
&sis->pci->dev, 64*1024, 128*1024);
871
872
return 0;
873
}
874
875
static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
876
{
877
unsigned long io = sis->ioport;
878
unsigned short val = 0xffff;
879
u16 status;
880
u16 rdy;
881
int count;
882
static const u16 codec_ready[3] = {
883
SIS_AC97_STATUS_CODEC_READY,
884
SIS_AC97_STATUS_CODEC2_READY,
885
SIS_AC97_STATUS_CODEC3_READY,
886
};
887
888
rdy = codec_ready[codec];
889
890
891
/* Get the AC97 semaphore -- software first, so we don't spin
892
* pounding out IO reads on the hardware semaphore...
893
*/
894
guard(mutex)(&sis->ac97_mutex);
895
896
count = 0xffff;
897
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
898
udelay(1);
899
900
if (!count)
901
goto timeout;
902
903
/* ... and wait for any outstanding commands to complete ...
904
*/
905
count = 0xffff;
906
do {
907
status = inw(io + SIS_AC97_STATUS);
908
if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
909
break;
910
911
udelay(1);
912
} while (--count);
913
914
if (!count)
915
goto timeout_sema;
916
917
/* ... before sending our command and waiting for it to finish ...
918
*/
919
outl(cmd, io + SIS_AC97_CMD);
920
udelay(10);
921
922
count = 0xffff;
923
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
924
udelay(1);
925
926
/* ... and reading the results (if any).
927
*/
928
val = inl(io + SIS_AC97_CMD) >> 16;
929
930
timeout_sema:
931
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
932
timeout:
933
if (!count) {
934
dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
935
codec, cmd);
936
}
937
938
return val;
939
}
940
941
static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
942
unsigned short val)
943
{
944
static const u32 cmd[3] = {
945
SIS_AC97_CMD_CODEC_WRITE,
946
SIS_AC97_CMD_CODEC2_WRITE,
947
SIS_AC97_CMD_CODEC3_WRITE,
948
};
949
sis_ac97_rw(ac97->private_data, ac97->num,
950
(val << 16) | (reg << 8) | cmd[ac97->num]);
951
}
952
953
static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
954
{
955
static const u32 cmd[3] = {
956
SIS_AC97_CMD_CODEC_READ,
957
SIS_AC97_CMD_CODEC2_READ,
958
SIS_AC97_CMD_CODEC3_READ,
959
};
960
return sis_ac97_rw(ac97->private_data, ac97->num,
961
(reg << 8) | cmd[ac97->num]);
962
}
963
964
static int sis_mixer_create(struct sis7019 *sis)
965
{
966
struct snd_ac97_bus *bus;
967
struct snd_ac97_template ac97;
968
static const struct snd_ac97_bus_ops ops = {
969
.write = sis_ac97_write,
970
.read = sis_ac97_read,
971
};
972
int rc;
973
974
memset(&ac97, 0, sizeof(ac97));
975
ac97.private_data = sis;
976
977
rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
978
if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
979
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
980
ac97.num = 1;
981
if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
982
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
983
ac97.num = 2;
984
if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
985
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
986
987
/* If we return an error here, then snd_card_free() should
988
* free up any ac97 codecs that got created, as well as the bus.
989
*/
990
return rc;
991
}
992
993
static void sis_chip_free(struct snd_card *card)
994
{
995
struct sis7019 *sis = card->private_data;
996
997
/* Reset the chip, and disable all interrputs.
998
*/
999
outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1000
udelay(25);
1001
outl(0, sis->ioport + SIS_GCR);
1002
outl(0, sis->ioport + SIS_GIER);
1003
1004
/* Now, free everything we allocated.
1005
*/
1006
if (sis->irq >= 0)
1007
free_irq(sis->irq, sis);
1008
}
1009
1010
static int sis_chip_init(struct sis7019 *sis)
1011
{
1012
unsigned long io = sis->ioport;
1013
void __iomem *ioaddr = sis->ioaddr;
1014
unsigned long timeout;
1015
u16 status;
1016
int count;
1017
int i;
1018
1019
/* Reset the audio controller
1020
*/
1021
outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1022
udelay(25);
1023
outl(0, io + SIS_GCR);
1024
1025
/* Get the AC-link semaphore, and reset the codecs
1026
*/
1027
count = 0xffff;
1028
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1029
udelay(1);
1030
1031
if (!count)
1032
return -EIO;
1033
1034
outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1035
udelay(250);
1036
1037
count = 0xffff;
1038
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1039
udelay(1);
1040
1041
/* Command complete, we can let go of the semaphore now.
1042
*/
1043
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1044
if (!count)
1045
return -EIO;
1046
1047
/* Now that we've finished the reset, find out what's attached.
1048
* There are some codec/board combinations that take an extremely
1049
* long time to come up. 350+ ms has been observed in the field,
1050
* so we'll give them up to 500ms.
1051
*/
1052
sis->codecs_present = 0;
1053
timeout = msecs_to_jiffies(500) + jiffies;
1054
while (time_before_eq(jiffies, timeout)) {
1055
status = inl(io + SIS_AC97_STATUS);
1056
if (status & SIS_AC97_STATUS_CODEC_READY)
1057
sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1058
if (status & SIS_AC97_STATUS_CODEC2_READY)
1059
sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1060
if (status & SIS_AC97_STATUS_CODEC3_READY)
1061
sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1062
1063
if (sis->codecs_present == codecs)
1064
break;
1065
1066
msleep(1);
1067
}
1068
1069
/* All done, check for errors.
1070
*/
1071
if (!sis->codecs_present) {
1072
dev_err(&sis->pci->dev, "could not find any codecs\n");
1073
return -EIO;
1074
}
1075
1076
if (sis->codecs_present != codecs) {
1077
dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1078
sis->codecs_present, codecs);
1079
}
1080
1081
/* Let the hardware know that the audio driver is alive,
1082
* and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1083
* record channels. We're going to want to use Variable Rate Audio
1084
* for recording, to avoid needlessly resampling from 48kHZ.
1085
*/
1086
outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1087
outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1088
SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1089
SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1090
SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1091
1092
/* All AC97 PCM slots should be sourced from sub-mixer 0.
1093
*/
1094
outl(0, io + SIS_AC97_PSR);
1095
1096
/* There is only one valid DMA setup for a PCI environment.
1097
*/
1098
outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1099
1100
/* Reset the synchronization groups for all of the channels
1101
* to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1102
* we'll need to change how we handle these. Until then, we just
1103
* assign sub-mixer 0 to all playback channels, and avoid any
1104
* attenuation on the audio.
1105
*/
1106
outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1107
outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1108
outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1109
outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1110
outl(0, io + SIS_MIXER_SYNC_GROUP);
1111
1112
for (i = 0; i < 64; i++) {
1113
writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1114
writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1115
SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1116
}
1117
1118
/* Don't attenuate any audio set for the wave amplifier.
1119
*
1120
* FIXME: Maximum attenuation is set for the music amp, which will
1121
* need to change if we start using the synth engine.
1122
*/
1123
outl(0xffff0000, io + SIS_WEVCR);
1124
1125
/* Ensure that the wave engine is in normal operating mode.
1126
*/
1127
outl(0, io + SIS_WECCR);
1128
1129
/* Go ahead and enable the DMA interrupts. They won't go live
1130
* until we start a channel.
1131
*/
1132
outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1133
SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1134
1135
return 0;
1136
}
1137
1138
static int sis_suspend(struct device *dev)
1139
{
1140
struct snd_card *card = dev_get_drvdata(dev);
1141
struct sis7019 *sis = card->private_data;
1142
void __iomem *ioaddr = sis->ioaddr;
1143
int i;
1144
1145
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1146
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1147
snd_ac97_suspend(sis->ac97[0]);
1148
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1149
snd_ac97_suspend(sis->ac97[1]);
1150
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1151
snd_ac97_suspend(sis->ac97[2]);
1152
1153
/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1154
*/
1155
if (sis->irq >= 0) {
1156
free_irq(sis->irq, sis);
1157
sis->irq = -1;
1158
}
1159
1160
/* Save the internal state away
1161
*/
1162
for (i = 0; i < 4; i++) {
1163
memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1164
ioaddr += 4096;
1165
}
1166
1167
return 0;
1168
}
1169
1170
static int sis_resume(struct device *dev)
1171
{
1172
struct pci_dev *pci = to_pci_dev(dev);
1173
struct snd_card *card = dev_get_drvdata(dev);
1174
struct sis7019 *sis = card->private_data;
1175
void __iomem *ioaddr = sis->ioaddr;
1176
int i;
1177
1178
if (sis_chip_init(sis)) {
1179
dev_err(&pci->dev, "unable to re-init controller\n");
1180
goto error;
1181
}
1182
1183
if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1184
KBUILD_MODNAME, sis)) {
1185
dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1186
goto error;
1187
}
1188
1189
/* Restore saved state, then clear out the page we use for the
1190
* silence buffer.
1191
*/
1192
for (i = 0; i < 4; i++) {
1193
memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1194
ioaddr += 4096;
1195
}
1196
1197
memset(sis->suspend_state[0], 0, 4096);
1198
1199
sis->irq = pci->irq;
1200
1201
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1202
snd_ac97_resume(sis->ac97[0]);
1203
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1204
snd_ac97_resume(sis->ac97[1]);
1205
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1206
snd_ac97_resume(sis->ac97[2]);
1207
1208
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1209
return 0;
1210
1211
error:
1212
snd_card_disconnect(card);
1213
return -EIO;
1214
}
1215
1216
static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1217
1218
static int sis_alloc_suspend(struct sis7019 *sis)
1219
{
1220
int i;
1221
1222
/* We need 16K to store the internal wave engine state during a
1223
* suspend, but we don't need it to be contiguous, so play nice
1224
* with the memory system. We'll also use this area for a silence
1225
* buffer.
1226
*/
1227
for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1228
sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1229
GFP_KERNEL);
1230
if (!sis->suspend_state[i])
1231
return -ENOMEM;
1232
}
1233
memset(sis->suspend_state[0], 0, 4096);
1234
1235
return 0;
1236
}
1237
1238
static int sis_chip_create(struct snd_card *card,
1239
struct pci_dev *pci)
1240
{
1241
struct sis7019 *sis = card->private_data;
1242
struct voice *voice;
1243
int rc;
1244
int i;
1245
1246
rc = pcim_enable_device(pci);
1247
if (rc)
1248
return rc;
1249
1250
rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1251
if (rc < 0) {
1252
dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1253
return -ENXIO;
1254
}
1255
1256
mutex_init(&sis->ac97_mutex);
1257
spin_lock_init(&sis->voice_lock);
1258
sis->card = card;
1259
sis->pci = pci;
1260
sis->irq = -1;
1261
sis->ioport = pci_resource_start(pci, 0);
1262
1263
rc = pcim_request_all_regions(pci, "SiS7019");
1264
if (rc) {
1265
dev_err(&pci->dev, "unable request regions\n");
1266
return rc;
1267
}
1268
1269
sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1270
if (!sis->ioaddr) {
1271
dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1272
return -EIO;
1273
}
1274
1275
rc = sis_alloc_suspend(sis);
1276
if (rc < 0) {
1277
dev_err(&pci->dev, "unable to allocate state storage\n");
1278
return rc;
1279
}
1280
1281
rc = sis_chip_init(sis);
1282
if (rc)
1283
return rc;
1284
card->private_free = sis_chip_free;
1285
1286
rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1287
sis);
1288
if (rc) {
1289
dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1290
return rc;
1291
}
1292
1293
sis->irq = pci->irq;
1294
card->sync_irq = sis->irq;
1295
pci_set_master(pci);
1296
1297
for (i = 0; i < 64; i++) {
1298
voice = &sis->voices[i];
1299
voice->num = i;
1300
voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1301
voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1302
}
1303
1304
voice = &sis->capture_voice;
1305
voice->flags = VOICE_CAPTURE;
1306
voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1307
voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1308
1309
return 0;
1310
}
1311
1312
static int __snd_sis7019_probe(struct pci_dev *pci,
1313
const struct pci_device_id *pci_id)
1314
{
1315
struct snd_card *card;
1316
struct sis7019 *sis;
1317
int rc;
1318
1319
if (!enable)
1320
return -ENOENT;
1321
1322
/* The user can specify which codecs should be present so that we
1323
* can wait for them to show up if they are slow to recover from
1324
* the AC97 cold reset. We default to a single codec, the primary.
1325
*
1326
* We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1327
*/
1328
codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1329
SIS_TERTIARY_CODEC_PRESENT;
1330
if (!codecs)
1331
codecs = SIS_PRIMARY_CODEC_PRESENT;
1332
1333
rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1334
sizeof(*sis), &card);
1335
if (rc < 0)
1336
return rc;
1337
1338
strscpy(card->driver, "SiS7019");
1339
strscpy(card->shortname, "SiS7019");
1340
rc = sis_chip_create(card, pci);
1341
if (rc)
1342
return rc;
1343
1344
sis = card->private_data;
1345
1346
rc = sis_mixer_create(sis);
1347
if (rc)
1348
return rc;
1349
1350
rc = sis_pcm_create(sis);
1351
if (rc)
1352
return rc;
1353
1354
snprintf(card->longname, sizeof(card->longname),
1355
"%s Audio Accelerator with %s at 0x%lx, irq %d",
1356
card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1357
sis->ioport, sis->irq);
1358
1359
rc = snd_card_register(card);
1360
if (rc)
1361
return rc;
1362
1363
pci_set_drvdata(pci, card);
1364
return 0;
1365
}
1366
1367
static int snd_sis7019_probe(struct pci_dev *pci,
1368
const struct pci_device_id *pci_id)
1369
{
1370
return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1371
}
1372
1373
static struct pci_driver sis7019_driver = {
1374
.name = KBUILD_MODNAME,
1375
.id_table = snd_sis7019_ids,
1376
.probe = snd_sis7019_probe,
1377
.driver = {
1378
.pm = &sis_pm,
1379
},
1380
};
1381
1382
module_pci_driver(sis7019_driver);
1383
1384