Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/x86/intel_hdmi_audio.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* intel_hdmi_audio.c - Intel HDMI audio driver
4
*
5
* Copyright (C) 2016 Intel Corp
6
* Authors: Sailaja Bandarupalli <[email protected]>
7
* Ramesh Babu K V <[email protected]>
8
* Vaibhav Agarwal <[email protected]>
9
* Jerome Anand <[email protected]>
10
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11
*
12
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13
* ALSA driver for Intel HDMI audio
14
*/
15
16
#include <linux/types.h>
17
#include <linux/platform_device.h>
18
#include <linux/io.h>
19
#include <linux/slab.h>
20
#include <linux/module.h>
21
#include <linux/interrupt.h>
22
#include <linux/pm_runtime.h>
23
#include <linux/dma-mapping.h>
24
#include <linux/delay.h>
25
#include <linux/string.h>
26
#include <sound/core.h>
27
#include <sound/asoundef.h>
28
#include <sound/pcm.h>
29
#include <sound/pcm_params.h>
30
#include <sound/initval.h>
31
#include <sound/control.h>
32
#include <sound/jack.h>
33
#include <drm/drm_edid.h>
34
#include <drm/drm_eld.h>
35
#include <drm/intel/intel_lpe_audio.h>
36
#include "intel_hdmi_audio.h"
37
38
#define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS 5000
39
40
#define for_each_pipe(card_ctx, pipe) \
41
for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
42
#define for_each_port(card_ctx, port) \
43
for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
44
45
/*standard module options for ALSA. This module supports only one card*/
46
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48
static bool single_port;
49
50
module_param_named(index, hdmi_card_index, int, 0444);
51
MODULE_PARM_DESC(index,
52
"Index value for INTEL Intel HDMI Audio controller.");
53
module_param_named(id, hdmi_card_id, charp, 0444);
54
MODULE_PARM_DESC(id,
55
"ID string for INTEL Intel HDMI Audio controller.");
56
module_param(single_port, bool, 0444);
57
MODULE_PARM_DESC(single_port,
58
"Single-port mode (for compatibility)");
59
60
/*
61
* ELD SA bits in the CEA Speaker Allocation data block
62
*/
63
static const int eld_speaker_allocation_bits[] = {
64
[0] = FL | FR,
65
[1] = LFE,
66
[2] = FC,
67
[3] = RL | RR,
68
[4] = RC,
69
[5] = FLC | FRC,
70
[6] = RLC | RRC,
71
/* the following are not defined in ELD yet */
72
[7] = 0,
73
};
74
75
/*
76
* This is an ordered list!
77
*
78
* The preceding ones have better chances to be selected by
79
* hdmi_channel_allocation().
80
*/
81
static struct cea_channel_speaker_allocation channel_allocations[] = {
82
/* channel: 7 6 5 4 3 2 1 0 */
83
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
84
/* 2.1 */
85
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
86
/* Dolby Surround */
87
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
88
/* surround40 */
89
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
90
/* surround41 */
91
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
92
/* surround50 */
93
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
94
/* surround51 */
95
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
96
/* 6.1 */
97
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
98
/* surround71 */
99
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
100
101
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
102
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
103
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
104
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
105
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
106
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
107
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
108
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
109
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
110
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
111
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
112
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
113
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
114
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
115
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
116
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
117
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
118
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
119
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
120
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
121
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
122
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
123
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
124
};
125
126
static const struct channel_map_table map_tables[] = {
127
{ SNDRV_CHMAP_FL, 0x00, FL },
128
{ SNDRV_CHMAP_FR, 0x01, FR },
129
{ SNDRV_CHMAP_RL, 0x04, RL },
130
{ SNDRV_CHMAP_RR, 0x05, RR },
131
{ SNDRV_CHMAP_LFE, 0x02, LFE },
132
{ SNDRV_CHMAP_FC, 0x03, FC },
133
{ SNDRV_CHMAP_RLC, 0x06, RLC },
134
{ SNDRV_CHMAP_RRC, 0x07, RRC },
135
{} /* terminator */
136
};
137
138
/* hardware capability structure */
139
static const struct snd_pcm_hardware had_pcm_hardware = {
140
.info = (SNDRV_PCM_INFO_INTERLEAVED |
141
SNDRV_PCM_INFO_MMAP |
142
SNDRV_PCM_INFO_MMAP_VALID |
143
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
144
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
145
SNDRV_PCM_FMTBIT_S24_LE |
146
SNDRV_PCM_FMTBIT_S32_LE),
147
.rates = SNDRV_PCM_RATE_32000 |
148
SNDRV_PCM_RATE_44100 |
149
SNDRV_PCM_RATE_48000 |
150
SNDRV_PCM_RATE_88200 |
151
SNDRV_PCM_RATE_96000 |
152
SNDRV_PCM_RATE_176400 |
153
SNDRV_PCM_RATE_192000,
154
.rate_min = HAD_MIN_RATE,
155
.rate_max = HAD_MAX_RATE,
156
.channels_min = HAD_MIN_CHANNEL,
157
.channels_max = HAD_MAX_CHANNEL,
158
.buffer_bytes_max = HAD_MAX_BUFFER,
159
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
160
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
161
.periods_min = HAD_MIN_PERIODS,
162
.periods_max = HAD_MAX_PERIODS,
163
.fifo_size = HAD_FIFO_SIZE,
164
};
165
166
/* Get the active PCM substream;
167
* Call had_substream_put() for unreferecing.
168
* Don't call this inside had_spinlock, as it takes by itself
169
*/
170
static struct snd_pcm_substream *
171
had_substream_get(struct snd_intelhad *intelhaddata)
172
{
173
struct snd_pcm_substream *substream;
174
175
guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
176
substream = intelhaddata->stream_info.substream;
177
if (substream)
178
intelhaddata->stream_info.substream_refcount++;
179
return substream;
180
}
181
182
/* Unref the active PCM substream;
183
* Don't call this inside had_spinlock, as it takes by itself
184
*/
185
static void had_substream_put(struct snd_intelhad *intelhaddata)
186
{
187
guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
188
intelhaddata->stream_info.substream_refcount--;
189
}
190
191
static u32 had_config_offset(int pipe)
192
{
193
switch (pipe) {
194
default:
195
case 0:
196
return AUDIO_HDMI_CONFIG_A;
197
case 1:
198
return AUDIO_HDMI_CONFIG_B;
199
case 2:
200
return AUDIO_HDMI_CONFIG_C;
201
}
202
}
203
204
/* Register access functions */
205
static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
206
int pipe, u32 reg)
207
{
208
return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
209
}
210
211
static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
212
int pipe, u32 reg, u32 val)
213
{
214
iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
215
}
216
217
static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
218
{
219
if (!ctx->connected)
220
*val = 0;
221
else
222
*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
223
}
224
225
static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
226
{
227
if (ctx->connected)
228
had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
229
}
230
231
/*
232
* enable / disable audio configuration
233
*
234
* The normal read/modify should not directly be used on VLV2 for
235
* updating AUD_CONFIG register.
236
* This is because:
237
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
238
* HDMI IP. As a result a read-modify of AUD_CONFIG register will always
239
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
240
* register. This field should be 1xy binary for configuration with 6 or
241
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
242
* causes the "channels" field to be updated as 0xy binary resulting in
243
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
244
* appropriate value when doing read-modify of AUD_CONFIG register.
245
*/
246
static void had_enable_audio(struct snd_intelhad *intelhaddata,
247
bool enable)
248
{
249
/* update the cached value */
250
intelhaddata->aud_config.regx.aud_en = enable;
251
had_write_register(intelhaddata, AUD_CONFIG,
252
intelhaddata->aud_config.regval);
253
}
254
255
/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
256
static void had_ack_irqs(struct snd_intelhad *ctx)
257
{
258
u32 status_reg;
259
260
if (!ctx->connected)
261
return;
262
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
263
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
264
had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
265
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
266
}
267
268
/* Reset buffer pointers */
269
static void had_reset_audio(struct snd_intelhad *intelhaddata)
270
{
271
had_write_register(intelhaddata, AUD_HDMI_STATUS,
272
AUD_HDMI_STATUSG_MASK_FUNCRST);
273
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
274
}
275
276
/*
277
* initialize audio channel status registers
278
* This function is called in the prepare callback
279
*/
280
static int had_prog_status_reg(struct snd_pcm_substream *substream,
281
struct snd_intelhad *intelhaddata)
282
{
283
union aud_ch_status_0 ch_stat0 = {.regval = 0};
284
union aud_ch_status_1 ch_stat1 = {.regval = 0};
285
286
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
287
IEC958_AES0_NONAUDIO) >> 1;
288
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
289
IEC958_AES3_CON_CLOCK) >> 4;
290
291
switch (substream->runtime->rate) {
292
case AUD_SAMPLE_RATE_32:
293
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
294
break;
295
296
case AUD_SAMPLE_RATE_44_1:
297
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
298
break;
299
case AUD_SAMPLE_RATE_48:
300
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
301
break;
302
case AUD_SAMPLE_RATE_88_2:
303
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
304
break;
305
case AUD_SAMPLE_RATE_96:
306
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
307
break;
308
case AUD_SAMPLE_RATE_176_4:
309
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
310
break;
311
case AUD_SAMPLE_RATE_192:
312
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
313
break;
314
315
default:
316
/* control should never come here */
317
return -EINVAL;
318
}
319
320
had_write_register(intelhaddata,
321
AUD_CH_STATUS_0, ch_stat0.regval);
322
323
switch (substream->runtime->format) {
324
case SNDRV_PCM_FORMAT_S16_LE:
325
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
326
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
327
break;
328
case SNDRV_PCM_FORMAT_S24_LE:
329
case SNDRV_PCM_FORMAT_S32_LE:
330
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
331
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
332
break;
333
default:
334
return -EINVAL;
335
}
336
337
had_write_register(intelhaddata,
338
AUD_CH_STATUS_1, ch_stat1.regval);
339
return 0;
340
}
341
342
/*
343
* function to initialize audio
344
* registers and buffer configuration registers
345
* This function is called in the prepare callback
346
*/
347
static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
348
struct snd_intelhad *intelhaddata)
349
{
350
union aud_cfg cfg_val = {.regval = 0};
351
union aud_buf_config buf_cfg = {.regval = 0};
352
u8 channels;
353
354
had_prog_status_reg(substream, intelhaddata);
355
356
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
357
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
358
buf_cfg.regx.aud_delay = 0;
359
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
360
361
channels = substream->runtime->channels;
362
cfg_val.regx.num_ch = channels - 2;
363
if (channels <= 2)
364
cfg_val.regx.layout = LAYOUT0;
365
else
366
cfg_val.regx.layout = LAYOUT1;
367
368
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
369
cfg_val.regx.packet_mode = 1;
370
371
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
372
cfg_val.regx.left_align = 1;
373
374
cfg_val.regx.val_bit = 1;
375
376
/* fix up the DP bits */
377
if (intelhaddata->dp_output) {
378
cfg_val.regx.dp_modei = 1;
379
cfg_val.regx.set = 1;
380
}
381
382
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
383
intelhaddata->aud_config = cfg_val;
384
return 0;
385
}
386
387
/*
388
* Compute derived values in channel_allocations[].
389
*/
390
static void init_channel_allocations(void)
391
{
392
int i, j;
393
struct cea_channel_speaker_allocation *p;
394
395
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
396
p = channel_allocations + i;
397
p->channels = 0;
398
p->spk_mask = 0;
399
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
400
if (p->speakers[j]) {
401
p->channels++;
402
p->spk_mask |= p->speakers[j];
403
}
404
}
405
}
406
407
/*
408
* The transformation takes two steps:
409
*
410
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
411
* spk_mask => (channel_allocations[]) => ai->CA
412
*
413
* TODO: it could select the wrong CA from multiple candidates.
414
*/
415
static int had_channel_allocation(struct snd_intelhad *intelhaddata,
416
int channels)
417
{
418
int i;
419
int ca = 0;
420
int spk_mask = 0;
421
422
/*
423
* CA defaults to 0 for basic stereo audio
424
*/
425
if (channels <= 2)
426
return 0;
427
428
/*
429
* expand ELD's speaker allocation mask
430
*
431
* ELD tells the speaker mask in a compact(paired) form,
432
* expand ELD's notions to match the ones used by Audio InfoFrame.
433
*/
434
435
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
436
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
437
spk_mask |= eld_speaker_allocation_bits[i];
438
}
439
440
/* search for the first working match in the CA table */
441
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
442
if (channels == channel_allocations[i].channels &&
443
(spk_mask & channel_allocations[i].spk_mask) ==
444
channel_allocations[i].spk_mask) {
445
ca = channel_allocations[i].ca_index;
446
break;
447
}
448
}
449
450
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
451
452
return ca;
453
}
454
455
/* from speaker bit mask to ALSA API channel position */
456
static int spk_to_chmap(int spk)
457
{
458
const struct channel_map_table *t = map_tables;
459
460
for (; t->map; t++) {
461
if (t->spk_mask == spk)
462
return t->map;
463
}
464
return 0;
465
}
466
467
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
468
{
469
int i, c;
470
int spk_mask = 0;
471
struct snd_pcm_chmap_elem *chmap;
472
u8 eld_high, eld_high_mask = 0xF0;
473
u8 high_msb;
474
475
kfree(intelhaddata->chmap->chmap);
476
intelhaddata->chmap->chmap = NULL;
477
478
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
479
if (!chmap)
480
return;
481
482
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
483
intelhaddata->eld[DRM_ELD_SPEAKER]);
484
485
/* WA: Fix the max channel supported to 8 */
486
487
/*
488
* Sink may support more than 8 channels, if eld_high has more than
489
* one bit set. SOC supports max 8 channels.
490
* Refer eld_speaker_allocation_bits, for sink speaker allocation
491
*/
492
493
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
494
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
495
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
496
/* eld_high & (eld_high-1): if more than 1 bit set */
497
/* 0x1F: 7 channels */
498
for (i = 1; i < 4; i++) {
499
high_msb = eld_high & (0x80 >> i);
500
if (high_msb) {
501
intelhaddata->eld[DRM_ELD_SPEAKER] &=
502
high_msb | 0xF;
503
break;
504
}
505
}
506
}
507
508
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
509
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
510
spk_mask |= eld_speaker_allocation_bits[i];
511
}
512
513
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
514
if (spk_mask == channel_allocations[i].spk_mask) {
515
for (c = 0; c < channel_allocations[i].channels; c++) {
516
chmap->map[c] = spk_to_chmap(
517
channel_allocations[i].speakers[
518
(MAX_SPEAKERS - 1) - c]);
519
}
520
chmap->channels = channel_allocations[i].channels;
521
intelhaddata->chmap->chmap = chmap;
522
break;
523
}
524
}
525
if (i >= ARRAY_SIZE(channel_allocations))
526
kfree(chmap);
527
}
528
529
/*
530
* ALSA API channel-map control callbacks
531
*/
532
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
533
struct snd_ctl_elem_info *uinfo)
534
{
535
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
536
uinfo->count = HAD_MAX_CHANNEL;
537
uinfo->value.integer.min = 0;
538
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
539
return 0;
540
}
541
542
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
543
struct snd_ctl_elem_value *ucontrol)
544
{
545
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
546
struct snd_intelhad *intelhaddata = info->private_data;
547
int i;
548
const struct snd_pcm_chmap_elem *chmap;
549
550
memset(ucontrol->value.integer.value, 0,
551
sizeof(long) * HAD_MAX_CHANNEL);
552
guard(mutex)(&intelhaddata->mutex);
553
if (!intelhaddata->chmap->chmap)
554
return 0;
555
556
chmap = intelhaddata->chmap->chmap;
557
for (i = 0; i < chmap->channels; i++)
558
ucontrol->value.integer.value[i] = chmap->map[i];
559
560
return 0;
561
}
562
563
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
564
struct snd_pcm *pcm)
565
{
566
int err;
567
568
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
569
NULL, 0, (unsigned long)intelhaddata,
570
&intelhaddata->chmap);
571
if (err < 0)
572
return err;
573
574
intelhaddata->chmap->private_data = intelhaddata;
575
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
576
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
577
intelhaddata->chmap->chmap = NULL;
578
return 0;
579
}
580
581
/*
582
* Initialize Data Island Packets registers
583
* This function is called in the prepare callback
584
*/
585
static void had_prog_dip(struct snd_pcm_substream *substream,
586
struct snd_intelhad *intelhaddata)
587
{
588
int i;
589
union aud_ctrl_st ctrl_state = {.regval = 0};
590
union aud_info_frame2 frame2 = {.regval = 0};
591
union aud_info_frame3 frame3 = {.regval = 0};
592
u8 checksum = 0;
593
u32 info_frame;
594
int channels;
595
int ca;
596
597
channels = substream->runtime->channels;
598
599
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
600
601
ca = had_channel_allocation(intelhaddata, channels);
602
if (intelhaddata->dp_output) {
603
info_frame = DP_INFO_FRAME_WORD1;
604
frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
605
} else {
606
info_frame = HDMI_INFO_FRAME_WORD1;
607
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
608
frame3.regx.chnl_alloc = ca;
609
610
/* Calculte the byte wide checksum for all valid DIP words */
611
for (i = 0; i < BYTES_PER_WORD; i++)
612
checksum += (info_frame >> (i * 8)) & 0xff;
613
for (i = 0; i < BYTES_PER_WORD; i++)
614
checksum += (frame2.regval >> (i * 8)) & 0xff;
615
for (i = 0; i < BYTES_PER_WORD; i++)
616
checksum += (frame3.regval >> (i * 8)) & 0xff;
617
618
frame2.regx.chksum = -(checksum);
619
}
620
621
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
622
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
623
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
624
625
/* program remaining DIP words with zero */
626
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
627
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
628
629
ctrl_state.regx.dip_freq = 1;
630
ctrl_state.regx.dip_en_sta = 1;
631
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
632
}
633
634
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
635
{
636
u32 maud_val;
637
638
/* Select maud according to DP 1.2 spec */
639
if (link_rate == DP_2_7_GHZ) {
640
switch (aud_samp_freq) {
641
case AUD_SAMPLE_RATE_32:
642
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
643
break;
644
645
case AUD_SAMPLE_RATE_44_1:
646
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
647
break;
648
649
case AUD_SAMPLE_RATE_48:
650
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
651
break;
652
653
case AUD_SAMPLE_RATE_88_2:
654
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
655
break;
656
657
case AUD_SAMPLE_RATE_96:
658
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
659
break;
660
661
case AUD_SAMPLE_RATE_176_4:
662
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
663
break;
664
665
case HAD_MAX_RATE:
666
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
667
break;
668
669
default:
670
maud_val = -EINVAL;
671
break;
672
}
673
} else if (link_rate == DP_1_62_GHZ) {
674
switch (aud_samp_freq) {
675
case AUD_SAMPLE_RATE_32:
676
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
677
break;
678
679
case AUD_SAMPLE_RATE_44_1:
680
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
681
break;
682
683
case AUD_SAMPLE_RATE_48:
684
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
685
break;
686
687
case AUD_SAMPLE_RATE_88_2:
688
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
689
break;
690
691
case AUD_SAMPLE_RATE_96:
692
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
693
break;
694
695
case AUD_SAMPLE_RATE_176_4:
696
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
697
break;
698
699
case HAD_MAX_RATE:
700
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
701
break;
702
703
default:
704
maud_val = -EINVAL;
705
break;
706
}
707
} else
708
maud_val = -EINVAL;
709
710
return maud_val;
711
}
712
713
/*
714
* Program HDMI audio CTS value
715
*
716
* @aud_samp_freq: sampling frequency of audio data
717
* @tmds: sampling frequency of the display data
718
* @link_rate: DP link rate
719
* @n_param: N value, depends on aud_samp_freq
720
* @intelhaddata: substream private data
721
*
722
* Program CTS register based on the audio and display sampling frequency
723
*/
724
static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
725
u32 n_param, struct snd_intelhad *intelhaddata)
726
{
727
u32 cts_val;
728
u64 dividend, divisor;
729
730
if (intelhaddata->dp_output) {
731
/* Substitute cts_val with Maud according to DP 1.2 spec*/
732
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
733
} else {
734
/* Calculate CTS according to HDMI 1.3a spec*/
735
dividend = (u64)tmds * n_param*1000;
736
divisor = 128 * aud_samp_freq;
737
cts_val = div64_u64(dividend, divisor);
738
}
739
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
740
tmds, n_param, cts_val);
741
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
742
}
743
744
static int had_calculate_n_value(u32 aud_samp_freq)
745
{
746
int n_val;
747
748
/* Select N according to HDMI 1.3a spec*/
749
switch (aud_samp_freq) {
750
case AUD_SAMPLE_RATE_32:
751
n_val = 4096;
752
break;
753
754
case AUD_SAMPLE_RATE_44_1:
755
n_val = 6272;
756
break;
757
758
case AUD_SAMPLE_RATE_48:
759
n_val = 6144;
760
break;
761
762
case AUD_SAMPLE_RATE_88_2:
763
n_val = 12544;
764
break;
765
766
case AUD_SAMPLE_RATE_96:
767
n_val = 12288;
768
break;
769
770
case AUD_SAMPLE_RATE_176_4:
771
n_val = 25088;
772
break;
773
774
case HAD_MAX_RATE:
775
n_val = 24576;
776
break;
777
778
default:
779
n_val = -EINVAL;
780
break;
781
}
782
return n_val;
783
}
784
785
/*
786
* Program HDMI audio N value
787
*
788
* @aud_samp_freq: sampling frequency of audio data
789
* @n_param: N value, depends on aud_samp_freq
790
* @intelhaddata: substream private data
791
*
792
* This function is called in the prepare callback.
793
* It programs based on the audio and display sampling frequency
794
*/
795
static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
796
struct snd_intelhad *intelhaddata)
797
{
798
int n_val;
799
800
if (intelhaddata->dp_output) {
801
/*
802
* According to DP specs, Maud and Naud values hold
803
* a relationship, which is stated as:
804
* Maud/Naud = 512 * fs / f_LS_Clk
805
* where, fs is the sampling frequency of the audio stream
806
* and Naud is 32768 for Async clock.
807
*/
808
809
n_val = DP_NAUD_VAL;
810
} else
811
n_val = had_calculate_n_value(aud_samp_freq);
812
813
if (n_val < 0)
814
return n_val;
815
816
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
817
*n_param = n_val;
818
return 0;
819
}
820
821
/*
822
* PCM ring buffer handling
823
*
824
* The hardware provides a ring buffer with the fixed 4 buffer descriptors
825
* (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
826
* moves at each period elapsed. The below illustrates how it works:
827
*
828
* At time=0
829
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
830
* BD | 0 | 1 | 2 | 3 |
831
*
832
* At time=1 (period elapsed)
833
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834
* BD | 1 | 2 | 3 | 0 |
835
*
836
* At time=2 (second period elapsed)
837
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838
* BD | 2 | 3 | 0 | 1 |
839
*
840
* The bd_head field points to the index of the BD to be read. It's also the
841
* position to be filled at next. The pcm_head and the pcm_filled fields
842
* point to the indices of the current position and of the next position to
843
* be filled, respectively. For PCM buffer there are both _head and _filled
844
* because they may be difference when nperiods > 4. For example, in the
845
* example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
846
*
847
* pcm_head (=1) --v v-- pcm_filled (=5)
848
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849
* BD | 1 | 2 | 3 | 0 |
850
* bd_head (=1) --^ ^-- next to fill (= bd_head)
851
*
852
* For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
853
* the hardware skips those BDs in the loop.
854
*
855
* An exceptional setup is the case with nperiods=1. Since we have to update
856
* BDs after finishing one BD processing, we'd need at least two BDs, where
857
* both BDs point to the same content, the same address, the same size of the
858
* whole PCM buffer.
859
*/
860
861
#define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
862
#define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
863
864
/* Set up a buffer descriptor at the "filled" position */
865
static void had_prog_bd(struct snd_pcm_substream *substream,
866
struct snd_intelhad *intelhaddata)
867
{
868
int idx = intelhaddata->bd_head;
869
int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
870
u32 addr = substream->runtime->dma_addr + ofs;
871
872
addr |= AUD_BUF_VALID;
873
if (!substream->runtime->no_period_wakeup)
874
addr |= AUD_BUF_INTR_EN;
875
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
876
had_write_register(intelhaddata, AUD_BUF_LEN(idx),
877
intelhaddata->period_bytes);
878
879
/* advance the indices to the next */
880
intelhaddata->bd_head++;
881
intelhaddata->bd_head %= intelhaddata->num_bds;
882
intelhaddata->pcmbuf_filled++;
883
intelhaddata->pcmbuf_filled %= substream->runtime->periods;
884
}
885
886
/* invalidate a buffer descriptor with the given index */
887
static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
888
int idx)
889
{
890
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
891
had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
892
}
893
894
/* Initial programming of ring buffer */
895
static void had_init_ringbuf(struct snd_pcm_substream *substream,
896
struct snd_intelhad *intelhaddata)
897
{
898
struct snd_pcm_runtime *runtime = substream->runtime;
899
int i, num_periods;
900
901
num_periods = runtime->periods;
902
intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
903
/* set the minimum 2 BDs for num_periods=1 */
904
intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
905
intelhaddata->period_bytes =
906
frames_to_bytes(runtime, runtime->period_size);
907
WARN_ON(intelhaddata->period_bytes & 0x3f);
908
909
intelhaddata->bd_head = 0;
910
intelhaddata->pcmbuf_head = 0;
911
intelhaddata->pcmbuf_filled = 0;
912
913
for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
914
if (i < intelhaddata->num_bds)
915
had_prog_bd(substream, intelhaddata);
916
else /* invalidate the rest */
917
had_invalidate_bd(intelhaddata, i);
918
}
919
920
intelhaddata->bd_head = 0; /* reset at head again before starting */
921
}
922
923
/* process a bd, advance to the next */
924
static void had_advance_ringbuf(struct snd_pcm_substream *substream,
925
struct snd_intelhad *intelhaddata)
926
{
927
int num_periods = substream->runtime->periods;
928
929
/* reprogram the next buffer */
930
had_prog_bd(substream, intelhaddata);
931
932
/* proceed to next */
933
intelhaddata->pcmbuf_head++;
934
intelhaddata->pcmbuf_head %= num_periods;
935
}
936
937
/* process the current BD(s);
938
* returns the current PCM buffer byte position, or -EPIPE for underrun.
939
*/
940
static int had_process_ringbuf(struct snd_pcm_substream *substream,
941
struct snd_intelhad *intelhaddata)
942
{
943
int len, processed;
944
945
processed = 0;
946
guard(spinlock_irqsave)(&intelhaddata->had_spinlock);
947
for (;;) {
948
/* get the remaining bytes on the buffer */
949
had_read_register(intelhaddata,
950
AUD_BUF_LEN(intelhaddata->bd_head),
951
&len);
952
if (len < 0 || len > intelhaddata->period_bytes) {
953
dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
954
len);
955
return -EPIPE;
956
}
957
958
if (len > 0) /* OK, this is the current buffer */
959
break;
960
961
/* len=0 => already empty, check the next buffer */
962
if (++processed >= intelhaddata->num_bds)
963
return -EPIPE; /* all empty? - report underrun */
964
had_advance_ringbuf(substream, intelhaddata);
965
}
966
967
len = intelhaddata->period_bytes - len;
968
len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
969
return len;
970
}
971
972
/* called from irq handler */
973
static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
974
{
975
struct snd_pcm_substream *substream;
976
977
substream = had_substream_get(intelhaddata);
978
if (!substream)
979
return; /* no stream? - bail out */
980
981
if (!intelhaddata->connected) {
982
snd_pcm_stop_xrun(substream);
983
goto out; /* disconnected? - bail out */
984
}
985
986
/* process or stop the stream */
987
if (had_process_ringbuf(substream, intelhaddata) < 0)
988
snd_pcm_stop_xrun(substream);
989
else
990
snd_pcm_period_elapsed(substream);
991
992
out:
993
had_substream_put(intelhaddata);
994
}
995
996
/*
997
* The interrupt status 'sticky' bits might not be cleared by
998
* setting '1' to that bit once...
999
*/
1000
static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1001
{
1002
int i;
1003
u32 val;
1004
1005
for (i = 0; i < 100; i++) {
1006
/* clear bit30, 31 AUD_HDMI_STATUS */
1007
had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1008
if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1009
return;
1010
udelay(100);
1011
cond_resched();
1012
had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1013
}
1014
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1015
}
1016
1017
/* Perform some reset procedure after stopping the stream;
1018
* this is called from prepare or hw_free callbacks once after trigger STOP
1019
* or underrun has been processed in order to settle down the h/w state.
1020
*/
1021
static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1022
{
1023
struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1024
1025
if (!intelhaddata->connected)
1026
return 0;
1027
1028
/* Reset buffer pointers */
1029
had_reset_audio(intelhaddata);
1030
wait_clear_underrun_bit(intelhaddata);
1031
return 0;
1032
}
1033
1034
/* called from irq handler */
1035
static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1036
{
1037
struct snd_pcm_substream *substream;
1038
1039
/* Report UNDERRUN error to above layers */
1040
substream = had_substream_get(intelhaddata);
1041
if (substream) {
1042
snd_pcm_stop_xrun(substream);
1043
had_substream_put(intelhaddata);
1044
}
1045
}
1046
1047
/*
1048
* ALSA PCM open callback
1049
*/
1050
static int had_pcm_open(struct snd_pcm_substream *substream)
1051
{
1052
struct snd_intelhad *intelhaddata;
1053
struct snd_pcm_runtime *runtime;
1054
int retval;
1055
1056
intelhaddata = snd_pcm_substream_chip(substream);
1057
runtime = substream->runtime;
1058
1059
retval = pm_runtime_resume_and_get(intelhaddata->dev);
1060
if (retval < 0)
1061
return retval;
1062
1063
/* set the runtime hw parameter with local snd_pcm_hardware struct */
1064
runtime->hw = had_pcm_hardware;
1065
1066
retval = snd_pcm_hw_constraint_integer(runtime,
1067
SNDRV_PCM_HW_PARAM_PERIODS);
1068
if (retval < 0)
1069
goto error;
1070
1071
/* Make sure, that the period size is always aligned
1072
* 64byte boundary
1073
*/
1074
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1075
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1076
if (retval < 0)
1077
goto error;
1078
1079
retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1080
if (retval < 0)
1081
goto error;
1082
1083
/* expose PCM substream */
1084
scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1085
intelhaddata->stream_info.substream = substream;
1086
intelhaddata->stream_info.substream_refcount++;
1087
}
1088
1089
return retval;
1090
error:
1091
pm_runtime_put_autosuspend(intelhaddata->dev);
1092
return retval;
1093
}
1094
1095
/*
1096
* ALSA PCM close callback
1097
*/
1098
static int had_pcm_close(struct snd_pcm_substream *substream)
1099
{
1100
struct snd_intelhad *intelhaddata;
1101
1102
intelhaddata = snd_pcm_substream_chip(substream);
1103
1104
/* unreference and sync with the pending PCM accesses */
1105
spin_lock_irq(&intelhaddata->had_spinlock);
1106
intelhaddata->stream_info.substream = NULL;
1107
intelhaddata->stream_info.substream_refcount--;
1108
while (intelhaddata->stream_info.substream_refcount > 0) {
1109
spin_unlock_irq(&intelhaddata->had_spinlock);
1110
cpu_relax();
1111
spin_lock_irq(&intelhaddata->had_spinlock);
1112
}
1113
spin_unlock_irq(&intelhaddata->had_spinlock);
1114
1115
pm_runtime_put_autosuspend(intelhaddata->dev);
1116
return 0;
1117
}
1118
1119
/*
1120
* ALSA PCM hw_params callback
1121
*/
1122
static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1123
struct snd_pcm_hw_params *hw_params)
1124
{
1125
struct snd_intelhad *intelhaddata;
1126
int buf_size;
1127
1128
intelhaddata = snd_pcm_substream_chip(substream);
1129
buf_size = params_buffer_bytes(hw_params);
1130
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1131
__func__, buf_size);
1132
return 0;
1133
}
1134
1135
/*
1136
* ALSA PCM trigger callback
1137
*/
1138
static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1139
{
1140
int retval = 0;
1141
struct snd_intelhad *intelhaddata;
1142
1143
intelhaddata = snd_pcm_substream_chip(substream);
1144
1145
guard(spinlock)(&intelhaddata->had_spinlock);
1146
switch (cmd) {
1147
case SNDRV_PCM_TRIGGER_START:
1148
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1149
case SNDRV_PCM_TRIGGER_RESUME:
1150
/* Enable Audio */
1151
had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1152
had_enable_audio(intelhaddata, true);
1153
break;
1154
1155
case SNDRV_PCM_TRIGGER_STOP:
1156
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1157
/* Disable Audio */
1158
had_enable_audio(intelhaddata, false);
1159
break;
1160
1161
default:
1162
retval = -EINVAL;
1163
}
1164
return retval;
1165
}
1166
1167
/*
1168
* ALSA PCM prepare callback
1169
*/
1170
static int had_pcm_prepare(struct snd_pcm_substream *substream)
1171
{
1172
int retval;
1173
u32 disp_samp_freq, n_param;
1174
u32 link_rate = 0;
1175
struct snd_intelhad *intelhaddata;
1176
struct snd_pcm_runtime *runtime;
1177
1178
intelhaddata = snd_pcm_substream_chip(substream);
1179
runtime = substream->runtime;
1180
1181
dev_dbg(intelhaddata->dev, "period_size=%d\n",
1182
(int)frames_to_bytes(runtime, runtime->period_size));
1183
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1184
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1185
(int)snd_pcm_lib_buffer_bytes(substream));
1186
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1187
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1188
1189
/* Get N value in KHz */
1190
disp_samp_freq = intelhaddata->tmds_clock_speed;
1191
1192
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1193
if (retval) {
1194
dev_err(intelhaddata->dev,
1195
"programming N value failed %#x\n", retval);
1196
goto prep_end;
1197
}
1198
1199
if (intelhaddata->dp_output)
1200
link_rate = intelhaddata->link_rate;
1201
1202
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1203
n_param, intelhaddata);
1204
1205
had_prog_dip(substream, intelhaddata);
1206
1207
retval = had_init_audio_ctrl(substream, intelhaddata);
1208
1209
/* Prog buffer address */
1210
had_init_ringbuf(substream, intelhaddata);
1211
1212
/*
1213
* Program channel mapping in following order:
1214
* FL, FR, C, LFE, RL, RR
1215
*/
1216
1217
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1218
1219
prep_end:
1220
return retval;
1221
}
1222
1223
/*
1224
* ALSA PCM pointer callback
1225
*/
1226
static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1227
{
1228
struct snd_intelhad *intelhaddata;
1229
int len;
1230
1231
intelhaddata = snd_pcm_substream_chip(substream);
1232
1233
if (!intelhaddata->connected)
1234
return SNDRV_PCM_POS_XRUN;
1235
1236
len = had_process_ringbuf(substream, intelhaddata);
1237
if (len < 0)
1238
return SNDRV_PCM_POS_XRUN;
1239
len = bytes_to_frames(substream->runtime, len);
1240
/* wrapping may happen when periods=1 */
1241
len %= substream->runtime->buffer_size;
1242
return len;
1243
}
1244
1245
/*
1246
* ALSA PCM ops
1247
*/
1248
static const struct snd_pcm_ops had_pcm_ops = {
1249
.open = had_pcm_open,
1250
.close = had_pcm_close,
1251
.hw_params = had_pcm_hw_params,
1252
.prepare = had_pcm_prepare,
1253
.trigger = had_pcm_trigger,
1254
.sync_stop = had_pcm_sync_stop,
1255
.pointer = had_pcm_pointer,
1256
};
1257
1258
/* process mode change of the running stream; called in mutex */
1259
static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1260
{
1261
struct snd_pcm_substream *substream;
1262
int retval = 0;
1263
u32 disp_samp_freq, n_param;
1264
u32 link_rate = 0;
1265
1266
substream = had_substream_get(intelhaddata);
1267
if (!substream)
1268
return 0;
1269
1270
/* Disable Audio */
1271
had_enable_audio(intelhaddata, false);
1272
1273
/* Update CTS value */
1274
disp_samp_freq = intelhaddata->tmds_clock_speed;
1275
1276
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1277
if (retval) {
1278
dev_err(intelhaddata->dev,
1279
"programming N value failed %#x\n", retval);
1280
goto out;
1281
}
1282
1283
if (intelhaddata->dp_output)
1284
link_rate = intelhaddata->link_rate;
1285
1286
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1287
n_param, intelhaddata);
1288
1289
/* Enable Audio */
1290
had_enable_audio(intelhaddata, true);
1291
1292
out:
1293
had_substream_put(intelhaddata);
1294
return retval;
1295
}
1296
1297
/* process hot plug, called from wq with mutex locked */
1298
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1299
{
1300
struct snd_pcm_substream *substream;
1301
1302
scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1303
if (intelhaddata->connected) {
1304
dev_dbg(intelhaddata->dev, "Device already connected\n");
1305
return;
1306
}
1307
1308
/* Disable Audio */
1309
had_enable_audio(intelhaddata, false);
1310
1311
intelhaddata->connected = true;
1312
dev_dbg(intelhaddata->dev,
1313
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1314
__func__, __LINE__);
1315
}
1316
1317
had_build_channel_allocation_map(intelhaddata);
1318
1319
/* Report to above ALSA layer */
1320
substream = had_substream_get(intelhaddata);
1321
if (substream) {
1322
snd_pcm_stop_xrun(substream);
1323
had_substream_put(intelhaddata);
1324
}
1325
1326
snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1327
}
1328
1329
/* process hot unplug, called from wq with mutex locked */
1330
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1331
{
1332
struct snd_pcm_substream *substream;
1333
1334
scoped_guard(spinlock_irq, &intelhaddata->had_spinlock) {
1335
if (!intelhaddata->connected) {
1336
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1337
return;
1338
}
1339
1340
/* Disable Audio */
1341
had_enable_audio(intelhaddata, false);
1342
1343
intelhaddata->connected = false;
1344
dev_dbg(intelhaddata->dev,
1345
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1346
__func__, __LINE__);
1347
}
1348
1349
kfree(intelhaddata->chmap->chmap);
1350
intelhaddata->chmap->chmap = NULL;
1351
1352
/* Report to above ALSA layer */
1353
substream = had_substream_get(intelhaddata);
1354
if (substream) {
1355
snd_pcm_stop_xrun(substream);
1356
had_substream_put(intelhaddata);
1357
}
1358
1359
snd_jack_report(intelhaddata->jack, 0);
1360
}
1361
1362
/*
1363
* ALSA iec958 and ELD controls
1364
*/
1365
1366
static int had_iec958_info(struct snd_kcontrol *kcontrol,
1367
struct snd_ctl_elem_info *uinfo)
1368
{
1369
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1370
uinfo->count = 1;
1371
return 0;
1372
}
1373
1374
static int had_iec958_get(struct snd_kcontrol *kcontrol,
1375
struct snd_ctl_elem_value *ucontrol)
1376
{
1377
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1378
1379
guard(mutex)(&intelhaddata->mutex);
1380
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1381
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1382
ucontrol->value.iec958.status[2] =
1383
(intelhaddata->aes_bits >> 16) & 0xff;
1384
ucontrol->value.iec958.status[3] =
1385
(intelhaddata->aes_bits >> 24) & 0xff;
1386
return 0;
1387
}
1388
1389
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1390
struct snd_ctl_elem_value *ucontrol)
1391
{
1392
ucontrol->value.iec958.status[0] = 0xff;
1393
ucontrol->value.iec958.status[1] = 0xff;
1394
ucontrol->value.iec958.status[2] = 0xff;
1395
ucontrol->value.iec958.status[3] = 0xff;
1396
return 0;
1397
}
1398
1399
static int had_iec958_put(struct snd_kcontrol *kcontrol,
1400
struct snd_ctl_elem_value *ucontrol)
1401
{
1402
unsigned int val;
1403
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1404
int changed = 0;
1405
1406
val = (ucontrol->value.iec958.status[0] << 0) |
1407
(ucontrol->value.iec958.status[1] << 8) |
1408
(ucontrol->value.iec958.status[2] << 16) |
1409
(ucontrol->value.iec958.status[3] << 24);
1410
guard(mutex)(&intelhaddata->mutex);
1411
if (intelhaddata->aes_bits != val) {
1412
intelhaddata->aes_bits = val;
1413
changed = 1;
1414
}
1415
return changed;
1416
}
1417
1418
static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1419
struct snd_ctl_elem_info *uinfo)
1420
{
1421
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1422
uinfo->count = HDMI_MAX_ELD_BYTES;
1423
return 0;
1424
}
1425
1426
static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1427
struct snd_ctl_elem_value *ucontrol)
1428
{
1429
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1430
1431
guard(mutex)(&intelhaddata->mutex);
1432
memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1433
HDMI_MAX_ELD_BYTES);
1434
return 0;
1435
}
1436
1437
static const struct snd_kcontrol_new had_controls[] = {
1438
{
1439
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1440
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1441
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1442
.info = had_iec958_info, /* shared */
1443
.get = had_iec958_mask_get,
1444
},
1445
{
1446
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1447
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1448
.info = had_iec958_info,
1449
.get = had_iec958_get,
1450
.put = had_iec958_put,
1451
},
1452
{
1453
.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1454
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1455
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1456
.name = "ELD",
1457
.info = had_ctl_eld_info,
1458
.get = had_ctl_eld_get,
1459
},
1460
};
1461
1462
/*
1463
* audio interrupt handler
1464
*/
1465
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1466
{
1467
struct snd_intelhad_card *card_ctx = dev_id;
1468
u32 audio_stat[3] = {};
1469
int pipe, port;
1470
1471
for_each_pipe(card_ctx, pipe) {
1472
/* use raw register access to ack IRQs even while disconnected */
1473
audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1474
AUD_HDMI_STATUS) &
1475
(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1476
1477
if (audio_stat[pipe])
1478
had_write_register_raw(card_ctx, pipe,
1479
AUD_HDMI_STATUS, audio_stat[pipe]);
1480
}
1481
1482
for_each_port(card_ctx, port) {
1483
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1484
int pipe = ctx->pipe;
1485
1486
if (pipe < 0)
1487
continue;
1488
1489
if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1490
had_process_buffer_done(ctx);
1491
if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1492
had_process_buffer_underrun(ctx);
1493
}
1494
1495
return IRQ_HANDLED;
1496
}
1497
1498
/*
1499
* monitor plug/unplug notification from i915; just kick off the work
1500
*/
1501
static void notify_audio_lpe(struct platform_device *pdev, int port)
1502
{
1503
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1504
struct snd_intelhad *ctx;
1505
1506
ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1507
if (single_port)
1508
ctx->port = port;
1509
1510
schedule_work(&ctx->hdmi_audio_wq);
1511
}
1512
1513
/* the work to handle monitor hot plug/unplug */
1514
static void had_audio_wq(struct work_struct *work)
1515
{
1516
struct snd_intelhad *ctx =
1517
container_of(work, struct snd_intelhad, hdmi_audio_wq);
1518
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1519
struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1520
int ret;
1521
1522
ret = pm_runtime_resume_and_get(ctx->dev);
1523
if (ret < 0)
1524
return;
1525
1526
mutex_lock(&ctx->mutex);
1527
if (ppdata->pipe < 0) {
1528
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1529
__func__, ctx->port);
1530
1531
memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1532
1533
ctx->dp_output = false;
1534
ctx->tmds_clock_speed = 0;
1535
ctx->link_rate = 0;
1536
1537
/* Shut down the stream */
1538
had_process_hot_unplug(ctx);
1539
1540
ctx->pipe = -1;
1541
} else {
1542
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1543
__func__, ctx->port, ppdata->ls_clock);
1544
1545
memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1546
1547
ctx->dp_output = ppdata->dp_output;
1548
if (ctx->dp_output) {
1549
ctx->tmds_clock_speed = 0;
1550
ctx->link_rate = ppdata->ls_clock;
1551
} else {
1552
ctx->tmds_clock_speed = ppdata->ls_clock;
1553
ctx->link_rate = 0;
1554
}
1555
1556
/*
1557
* Shut down the stream before we change
1558
* the pipe assignment for this pcm device
1559
*/
1560
had_process_hot_plug(ctx);
1561
1562
ctx->pipe = ppdata->pipe;
1563
1564
/* Restart the stream if necessary */
1565
had_process_mode_change(ctx);
1566
}
1567
1568
mutex_unlock(&ctx->mutex);
1569
pm_runtime_put_autosuspend(ctx->dev);
1570
}
1571
1572
/*
1573
* Jack interface
1574
*/
1575
static int had_create_jack(struct snd_intelhad *ctx,
1576
struct snd_pcm *pcm)
1577
{
1578
char hdmi_str[32];
1579
int err;
1580
1581
snprintf(hdmi_str, sizeof(hdmi_str),
1582
"HDMI/DP,pcm=%d", pcm->device);
1583
1584
err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1585
SND_JACK_AVOUT, &ctx->jack,
1586
true, false);
1587
if (err < 0)
1588
return err;
1589
ctx->jack->private_data = ctx;
1590
return 0;
1591
}
1592
1593
/*
1594
* PM callbacks
1595
*/
1596
1597
static int hdmi_lpe_audio_suspend(struct device *dev)
1598
{
1599
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1600
1601
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1602
1603
return 0;
1604
}
1605
1606
static int hdmi_lpe_audio_resume(struct device *dev)
1607
{
1608
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1609
1610
pm_runtime_mark_last_busy(dev);
1611
1612
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1613
1614
return 0;
1615
}
1616
1617
/* release resources */
1618
static void hdmi_lpe_audio_free(struct snd_card *card)
1619
{
1620
struct snd_intelhad_card *card_ctx = card->private_data;
1621
struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1622
int port;
1623
1624
scoped_guard(spinlock_irq, &pdata->lpe_audio_slock) {
1625
pdata->notify_audio_lpe = NULL;
1626
}
1627
1628
for_each_port(card_ctx, port) {
1629
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1630
1631
cancel_work_sync(&ctx->hdmi_audio_wq);
1632
}
1633
}
1634
1635
/*
1636
* hdmi_lpe_audio_probe - start bridge with i915
1637
*
1638
* This function is called when the i915 driver creates the
1639
* hdmi-lpe-audio platform device.
1640
*/
1641
static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1642
{
1643
struct snd_card *card;
1644
struct snd_intelhad_card *card_ctx;
1645
struct snd_intelhad *ctx;
1646
struct snd_pcm *pcm;
1647
struct intel_hdmi_lpe_audio_pdata *pdata;
1648
int irq;
1649
struct resource *res_mmio;
1650
int port, ret;
1651
1652
pdata = pdev->dev.platform_data;
1653
if (!pdata) {
1654
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1655
return -EINVAL;
1656
}
1657
1658
/* get resources */
1659
irq = platform_get_irq(pdev, 0);
1660
if (irq < 0)
1661
return irq;
1662
1663
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1664
if (!res_mmio) {
1665
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1666
return -ENXIO;
1667
}
1668
1669
/* create a card instance with ALSA framework */
1670
ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1671
THIS_MODULE, sizeof(*card_ctx), &card);
1672
if (ret)
1673
return ret;
1674
1675
card_ctx = card->private_data;
1676
card_ctx->dev = &pdev->dev;
1677
card_ctx->card = card;
1678
strscpy(card->driver, INTEL_HAD);
1679
strscpy(card->shortname, "Intel HDMI/DP LPE Audio");
1680
strscpy(card->longname, "Intel HDMI/DP LPE Audio");
1681
1682
card_ctx->irq = -1;
1683
1684
card->private_free = hdmi_lpe_audio_free;
1685
1686
platform_set_drvdata(pdev, card_ctx);
1687
1688
card_ctx->num_pipes = pdata->num_pipes;
1689
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1690
1691
for_each_port(card_ctx, port) {
1692
ctx = &card_ctx->pcm_ctx[port];
1693
ctx->card_ctx = card_ctx;
1694
ctx->dev = card_ctx->dev;
1695
ctx->port = single_port ? -1 : port;
1696
ctx->pipe = -1;
1697
1698
spin_lock_init(&ctx->had_spinlock);
1699
mutex_init(&ctx->mutex);
1700
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1701
}
1702
1703
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1704
__func__, (unsigned int)res_mmio->start,
1705
(unsigned int)res_mmio->end);
1706
1707
card_ctx->mmio_start =
1708
devm_ioremap(&pdev->dev, res_mmio->start,
1709
(size_t)(resource_size(res_mmio)));
1710
if (!card_ctx->mmio_start) {
1711
dev_err(&pdev->dev, "Could not get ioremap\n");
1712
return -EACCES;
1713
}
1714
1715
/* setup interrupt handler */
1716
ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1717
0, pdev->name, card_ctx);
1718
if (ret < 0) {
1719
dev_err(&pdev->dev, "request_irq failed\n");
1720
return ret;
1721
}
1722
1723
card_ctx->irq = irq;
1724
1725
/* only 32bit addressable */
1726
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1727
if (ret)
1728
return ret;
1729
1730
init_channel_allocations();
1731
1732
card_ctx->num_pipes = pdata->num_pipes;
1733
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1734
1735
for_each_port(card_ctx, port) {
1736
int i;
1737
1738
ctx = &card_ctx->pcm_ctx[port];
1739
ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1740
MAX_CAP_STREAMS, &pcm);
1741
if (ret)
1742
return ret;
1743
1744
/* setup private data which can be retrieved when required */
1745
pcm->private_data = ctx;
1746
pcm->info_flags = 0;
1747
strscpy(pcm->name, card->shortname, sizeof(pcm->name));
1748
/* setup the ops for playback */
1749
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1750
1751
/* allocate dma pages;
1752
* try to allocate 600k buffer as default which is large enough
1753
*/
1754
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1755
card->dev, HAD_DEFAULT_BUFFER,
1756
HAD_MAX_BUFFER);
1757
1758
/* create controls */
1759
for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1760
struct snd_kcontrol *kctl;
1761
1762
kctl = snd_ctl_new1(&had_controls[i], ctx);
1763
if (!kctl)
1764
return -ENOMEM;
1765
1766
kctl->id.device = pcm->device;
1767
1768
ret = snd_ctl_add(card, kctl);
1769
if (ret < 0)
1770
return ret;
1771
}
1772
1773
/* Register channel map controls */
1774
ret = had_register_chmap_ctls(ctx, pcm);
1775
if (ret < 0)
1776
return ret;
1777
1778
ret = had_create_jack(ctx, pcm);
1779
if (ret < 0)
1780
return ret;
1781
}
1782
1783
ret = snd_card_register(card);
1784
if (ret)
1785
return ret;
1786
1787
scoped_guard(spinlock_irq, &pdata->lpe_audio_slock) {
1788
pdata->notify_audio_lpe = notify_audio_lpe;
1789
}
1790
1791
pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1792
pm_runtime_use_autosuspend(&pdev->dev);
1793
pm_runtime_enable(&pdev->dev);
1794
pm_runtime_mark_last_busy(&pdev->dev);
1795
pm_runtime_idle(&pdev->dev);
1796
1797
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1798
for_each_port(card_ctx, port) {
1799
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1800
1801
schedule_work(&ctx->hdmi_audio_wq);
1802
}
1803
1804
return 0;
1805
}
1806
1807
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1808
{
1809
return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1810
}
1811
1812
static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1813
SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1814
};
1815
1816
static struct platform_driver hdmi_lpe_audio_driver = {
1817
.driver = {
1818
.name = "hdmi-lpe-audio",
1819
.pm = pm_ptr(&hdmi_lpe_audio_pm),
1820
},
1821
.probe = hdmi_lpe_audio_probe,
1822
};
1823
1824
module_platform_driver(hdmi_lpe_audio_driver);
1825
MODULE_ALIAS("platform:hdmi_lpe_audio");
1826
1827
MODULE_AUTHOR("Sailaja Bandarupalli <[email protected]>");
1828
MODULE_AUTHOR("Ramesh Babu K V <[email protected]>");
1829
MODULE_AUTHOR("Vaibhav Agarwal <[email protected]>");
1830
MODULE_AUTHOR("Jerome Anand <[email protected]>");
1831
MODULE_DESCRIPTION("Intel HDMI Audio driver");
1832
MODULE_LICENSE("GPL v2");
1833
1834