Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/btf_dump.c
29278 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3
/*
4
* BTF-to-C type converter.
5
*
6
* Copyright (c) 2019 Facebook
7
*/
8
9
#include <stdbool.h>
10
#include <stddef.h>
11
#include <stdlib.h>
12
#include <string.h>
13
#include <ctype.h>
14
#include <endian.h>
15
#include <errno.h>
16
#include <limits.h>
17
#include <linux/err.h>
18
#include <linux/btf.h>
19
#include <linux/kernel.h>
20
#include "btf.h"
21
#include "hashmap.h"
22
#include "libbpf.h"
23
#include "libbpf_internal.h"
24
25
static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
26
static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
27
28
static const char *pfx(int lvl)
29
{
30
return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
31
}
32
33
enum btf_dump_type_order_state {
34
NOT_ORDERED,
35
ORDERING,
36
ORDERED,
37
};
38
39
enum btf_dump_type_emit_state {
40
NOT_EMITTED,
41
EMITTING,
42
EMITTED,
43
};
44
45
/* per-type auxiliary state */
46
struct btf_dump_type_aux_state {
47
/* topological sorting state */
48
enum btf_dump_type_order_state order_state: 2;
49
/* emitting state used to determine the need for forward declaration */
50
enum btf_dump_type_emit_state emit_state: 2;
51
/* whether forward declaration was already emitted */
52
__u8 fwd_emitted: 1;
53
/* whether unique non-duplicate name was already assigned */
54
__u8 name_resolved: 1;
55
/* whether type is referenced from any other type */
56
__u8 referenced: 1;
57
};
58
59
/* indent string length; one indent string is added for each indent level */
60
#define BTF_DATA_INDENT_STR_LEN 32
61
62
/*
63
* Common internal data for BTF type data dump operations.
64
*/
65
struct btf_dump_data {
66
const void *data_end; /* end of valid data to show */
67
bool compact;
68
bool skip_names;
69
bool emit_zeroes;
70
bool emit_strings;
71
__u8 indent_lvl; /* base indent level */
72
char indent_str[BTF_DATA_INDENT_STR_LEN];
73
/* below are used during iteration */
74
int depth;
75
bool is_array_member;
76
bool is_array_terminated;
77
bool is_array_char;
78
};
79
80
struct btf_dump {
81
const struct btf *btf;
82
btf_dump_printf_fn_t printf_fn;
83
void *cb_ctx;
84
int ptr_sz;
85
bool strip_mods;
86
bool skip_anon_defs;
87
int last_id;
88
89
/* per-type auxiliary state */
90
struct btf_dump_type_aux_state *type_states;
91
size_t type_states_cap;
92
/* per-type optional cached unique name, must be freed, if present */
93
const char **cached_names;
94
size_t cached_names_cap;
95
96
/* topo-sorted list of dependent type definitions */
97
__u32 *emit_queue;
98
int emit_queue_cap;
99
int emit_queue_cnt;
100
101
/*
102
* stack of type declarations (e.g., chain of modifiers, arrays,
103
* funcs, etc)
104
*/
105
__u32 *decl_stack;
106
int decl_stack_cap;
107
int decl_stack_cnt;
108
109
/* maps struct/union/enum name to a number of name occurrences */
110
struct hashmap *type_names;
111
/*
112
* maps typedef identifiers and enum value names to a number of such
113
* name occurrences
114
*/
115
struct hashmap *ident_names;
116
/*
117
* data for typed display; allocated if needed.
118
*/
119
struct btf_dump_data *typed_dump;
120
};
121
122
static size_t str_hash_fn(long key, void *ctx)
123
{
124
return str_hash((void *)key);
125
}
126
127
static bool str_equal_fn(long a, long b, void *ctx)
128
{
129
return strcmp((void *)a, (void *)b) == 0;
130
}
131
132
static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
133
{
134
return btf__name_by_offset(d->btf, name_off);
135
}
136
137
static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
138
{
139
va_list args;
140
141
va_start(args, fmt);
142
d->printf_fn(d->cb_ctx, fmt, args);
143
va_end(args);
144
}
145
146
static int btf_dump_mark_referenced(struct btf_dump *d);
147
static int btf_dump_resize(struct btf_dump *d);
148
149
struct btf_dump *btf_dump__new(const struct btf *btf,
150
btf_dump_printf_fn_t printf_fn,
151
void *ctx,
152
const struct btf_dump_opts *opts)
153
{
154
struct btf_dump *d;
155
int err;
156
157
if (!OPTS_VALID(opts, btf_dump_opts))
158
return libbpf_err_ptr(-EINVAL);
159
160
if (!printf_fn)
161
return libbpf_err_ptr(-EINVAL);
162
163
d = calloc(1, sizeof(struct btf_dump));
164
if (!d)
165
return libbpf_err_ptr(-ENOMEM);
166
167
d->btf = btf;
168
d->printf_fn = printf_fn;
169
d->cb_ctx = ctx;
170
d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
171
172
d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173
if (IS_ERR(d->type_names)) {
174
err = PTR_ERR(d->type_names);
175
d->type_names = NULL;
176
goto err;
177
}
178
d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
179
if (IS_ERR(d->ident_names)) {
180
err = PTR_ERR(d->ident_names);
181
d->ident_names = NULL;
182
goto err;
183
}
184
185
err = btf_dump_resize(d);
186
if (err)
187
goto err;
188
189
return d;
190
err:
191
btf_dump__free(d);
192
return libbpf_err_ptr(err);
193
}
194
195
static int btf_dump_resize(struct btf_dump *d)
196
{
197
int err, last_id = btf__type_cnt(d->btf) - 1;
198
199
if (last_id <= d->last_id)
200
return 0;
201
202
if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
203
sizeof(*d->type_states), last_id + 1))
204
return -ENOMEM;
205
if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
206
sizeof(*d->cached_names), last_id + 1))
207
return -ENOMEM;
208
209
if (d->last_id == 0) {
210
/* VOID is special */
211
d->type_states[0].order_state = ORDERED;
212
d->type_states[0].emit_state = EMITTED;
213
}
214
215
/* eagerly determine referenced types for anon enums */
216
err = btf_dump_mark_referenced(d);
217
if (err)
218
return err;
219
220
d->last_id = last_id;
221
return 0;
222
}
223
224
static void btf_dump_free_names(struct hashmap *map)
225
{
226
size_t bkt;
227
struct hashmap_entry *cur;
228
229
if (!map)
230
return;
231
232
hashmap__for_each_entry(map, cur, bkt)
233
free((void *)cur->pkey);
234
235
hashmap__free(map);
236
}
237
238
void btf_dump__free(struct btf_dump *d)
239
{
240
int i;
241
242
if (IS_ERR_OR_NULL(d))
243
return;
244
245
free(d->type_states);
246
if (d->cached_names) {
247
/* any set cached name is owned by us and should be freed */
248
for (i = 0; i <= d->last_id; i++) {
249
if (d->cached_names[i])
250
free((void *)d->cached_names[i]);
251
}
252
}
253
free(d->cached_names);
254
free(d->emit_queue);
255
free(d->decl_stack);
256
btf_dump_free_names(d->type_names);
257
btf_dump_free_names(d->ident_names);
258
259
free(d);
260
}
261
262
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
263
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
264
265
/*
266
* Dump BTF type in a compilable C syntax, including all the necessary
267
* dependent types, necessary for compilation. If some of the dependent types
268
* were already emitted as part of previous btf_dump__dump_type() invocation
269
* for another type, they won't be emitted again. This API allows callers to
270
* filter out BTF types according to user-defined criterias and emitted only
271
* minimal subset of types, necessary to compile everything. Full struct/union
272
* definitions will still be emitted, even if the only usage is through
273
* pointer and could be satisfied with just a forward declaration.
274
*
275
* Dumping is done in two high-level passes:
276
* 1. Topologically sort type definitions to satisfy C rules of compilation.
277
* 2. Emit type definitions in C syntax.
278
*
279
* Returns 0 on success; <0, otherwise.
280
*/
281
int btf_dump__dump_type(struct btf_dump *d, __u32 id)
282
{
283
int err, i;
284
285
if (id >= btf__type_cnt(d->btf))
286
return libbpf_err(-EINVAL);
287
288
err = btf_dump_resize(d);
289
if (err)
290
return libbpf_err(err);
291
292
d->emit_queue_cnt = 0;
293
err = btf_dump_order_type(d, id, false);
294
if (err < 0)
295
return libbpf_err(err);
296
297
for (i = 0; i < d->emit_queue_cnt; i++)
298
btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
299
300
return 0;
301
}
302
303
/*
304
* Mark all types that are referenced from any other type. This is used to
305
* determine top-level anonymous enums that need to be emitted as an
306
* independent type declarations.
307
* Anonymous enums come in two flavors: either embedded in a struct's field
308
* definition, in which case they have to be declared inline as part of field
309
* type declaration; or as a top-level anonymous enum, typically used for
310
* declaring global constants. It's impossible to distinguish between two
311
* without knowing whether given enum type was referenced from other type:
312
* top-level anonymous enum won't be referenced by anything, while embedded
313
* one will.
314
*/
315
static int btf_dump_mark_referenced(struct btf_dump *d)
316
{
317
int i, j, n = btf__type_cnt(d->btf);
318
const struct btf_type *t;
319
__u16 vlen;
320
321
for (i = d->last_id + 1; i < n; i++) {
322
t = btf__type_by_id(d->btf, i);
323
vlen = btf_vlen(t);
324
325
switch (btf_kind(t)) {
326
case BTF_KIND_INT:
327
case BTF_KIND_ENUM:
328
case BTF_KIND_ENUM64:
329
case BTF_KIND_FWD:
330
case BTF_KIND_FLOAT:
331
break;
332
333
case BTF_KIND_VOLATILE:
334
case BTF_KIND_CONST:
335
case BTF_KIND_RESTRICT:
336
case BTF_KIND_PTR:
337
case BTF_KIND_TYPEDEF:
338
case BTF_KIND_FUNC:
339
case BTF_KIND_VAR:
340
case BTF_KIND_DECL_TAG:
341
case BTF_KIND_TYPE_TAG:
342
d->type_states[t->type].referenced = 1;
343
break;
344
345
case BTF_KIND_ARRAY: {
346
const struct btf_array *a = btf_array(t);
347
348
d->type_states[a->index_type].referenced = 1;
349
d->type_states[a->type].referenced = 1;
350
break;
351
}
352
case BTF_KIND_STRUCT:
353
case BTF_KIND_UNION: {
354
const struct btf_member *m = btf_members(t);
355
356
for (j = 0; j < vlen; j++, m++)
357
d->type_states[m->type].referenced = 1;
358
break;
359
}
360
case BTF_KIND_FUNC_PROTO: {
361
const struct btf_param *p = btf_params(t);
362
363
for (j = 0; j < vlen; j++, p++)
364
d->type_states[p->type].referenced = 1;
365
break;
366
}
367
case BTF_KIND_DATASEC: {
368
const struct btf_var_secinfo *v = btf_var_secinfos(t);
369
370
for (j = 0; j < vlen; j++, v++)
371
d->type_states[v->type].referenced = 1;
372
break;
373
}
374
default:
375
return -EINVAL;
376
}
377
}
378
return 0;
379
}
380
381
static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
382
{
383
__u32 *new_queue;
384
size_t new_cap;
385
386
if (d->emit_queue_cnt >= d->emit_queue_cap) {
387
new_cap = max(16, d->emit_queue_cap * 3 / 2);
388
new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
389
if (!new_queue)
390
return -ENOMEM;
391
d->emit_queue = new_queue;
392
d->emit_queue_cap = new_cap;
393
}
394
395
d->emit_queue[d->emit_queue_cnt++] = id;
396
return 0;
397
}
398
399
/*
400
* Determine order of emitting dependent types and specified type to satisfy
401
* C compilation rules. This is done through topological sorting with an
402
* additional complication which comes from C rules. The main idea for C is
403
* that if some type is "embedded" into a struct/union, it's size needs to be
404
* known at the time of definition of containing type. E.g., for:
405
*
406
* struct A {};
407
* struct B { struct A x; }
408
*
409
* struct A *HAS* to be defined before struct B, because it's "embedded",
410
* i.e., it is part of struct B layout. But in the following case:
411
*
412
* struct A;
413
* struct B { struct A *x; }
414
* struct A {};
415
*
416
* it's enough to just have a forward declaration of struct A at the time of
417
* struct B definition, as struct B has a pointer to struct A, so the size of
418
* field x is known without knowing struct A size: it's sizeof(void *).
419
*
420
* Unfortunately, there are some trickier cases we need to handle, e.g.:
421
*
422
* struct A {}; // if this was forward-declaration: compilation error
423
* struct B {
424
* struct { // anonymous struct
425
* struct A y;
426
* } *x;
427
* };
428
*
429
* In this case, struct B's field x is a pointer, so it's size is known
430
* regardless of the size of (anonymous) struct it points to. But because this
431
* struct is anonymous and thus defined inline inside struct B, *and* it
432
* embeds struct A, compiler requires full definition of struct A to be known
433
* before struct B can be defined. This creates a transitive dependency
434
* between struct A and struct B. If struct A was forward-declared before
435
* struct B definition and fully defined after struct B definition, that would
436
* trigger compilation error.
437
*
438
* All this means that while we are doing topological sorting on BTF type
439
* graph, we need to determine relationships between different types (graph
440
* nodes):
441
* - weak link (relationship) between X and Y, if Y *CAN* be
442
* forward-declared at the point of X definition;
443
* - strong link, if Y *HAS* to be fully-defined before X can be defined.
444
*
445
* The rule is as follows. Given a chain of BTF types from X to Y, if there is
446
* BTF_KIND_PTR type in the chain and at least one non-anonymous type
447
* Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
448
* Weak/strong relationship is determined recursively during DFS traversal and
449
* is returned as a result from btf_dump_order_type().
450
*
451
* btf_dump_order_type() is trying to avoid unnecessary forward declarations,
452
* but it is not guaranteeing that no extraneous forward declarations will be
453
* emitted.
454
*
455
* To avoid extra work, algorithm marks some of BTF types as ORDERED, when
456
* it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
457
* ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
458
* entire graph path, so depending where from one came to that BTF type, it
459
* might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
460
* once they are processed, there is no need to do it again, so they are
461
* marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
462
* weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
463
* in any case, once those are processed, no need to do it again, as the
464
* result won't change.
465
*
466
* Returns:
467
* - 1, if type is part of strong link (so there is strong topological
468
* ordering requirements);
469
* - 0, if type is part of weak link (so can be satisfied through forward
470
* declaration);
471
* - <0, on error (e.g., unsatisfiable type loop detected).
472
*/
473
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
474
{
475
/*
476
* Order state is used to detect strong link cycles, but only for BTF
477
* kinds that are or could be an independent definition (i.e.,
478
* stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
479
* func_protos, modifiers are just means to get to these definitions.
480
* Int/void don't need definitions, they are assumed to be always
481
* properly defined. We also ignore datasec, var, and funcs for now.
482
* So for all non-defining kinds, we never even set ordering state,
483
* for defining kinds we set ORDERING and subsequently ORDERED if it
484
* forms a strong link.
485
*/
486
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
487
const struct btf_type *t;
488
__u16 vlen;
489
int err, i;
490
491
/* return true, letting typedefs know that it's ok to be emitted */
492
if (tstate->order_state == ORDERED)
493
return 1;
494
495
t = btf__type_by_id(d->btf, id);
496
497
if (tstate->order_state == ORDERING) {
498
/* type loop, but resolvable through fwd declaration */
499
if (btf_is_composite(t) && through_ptr && t->name_off != 0)
500
return 0;
501
pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
502
return -ELOOP;
503
}
504
505
switch (btf_kind(t)) {
506
case BTF_KIND_INT:
507
case BTF_KIND_FLOAT:
508
tstate->order_state = ORDERED;
509
return 0;
510
511
case BTF_KIND_PTR:
512
err = btf_dump_order_type(d, t->type, true);
513
tstate->order_state = ORDERED;
514
return err;
515
516
case BTF_KIND_ARRAY:
517
return btf_dump_order_type(d, btf_array(t)->type, false);
518
519
case BTF_KIND_STRUCT:
520
case BTF_KIND_UNION: {
521
const struct btf_member *m = btf_members(t);
522
/*
523
* struct/union is part of strong link, only if it's embedded
524
* (so no ptr in a path) or it's anonymous (so has to be
525
* defined inline, even if declared through ptr)
526
*/
527
if (through_ptr && t->name_off != 0)
528
return 0;
529
530
tstate->order_state = ORDERING;
531
532
vlen = btf_vlen(t);
533
for (i = 0; i < vlen; i++, m++) {
534
err = btf_dump_order_type(d, m->type, false);
535
if (err < 0)
536
return err;
537
}
538
539
if (t->name_off != 0) {
540
err = btf_dump_add_emit_queue_id(d, id);
541
if (err < 0)
542
return err;
543
}
544
545
tstate->order_state = ORDERED;
546
return 1;
547
}
548
case BTF_KIND_ENUM:
549
case BTF_KIND_ENUM64:
550
case BTF_KIND_FWD:
551
/*
552
* non-anonymous or non-referenced enums are top-level
553
* declarations and should be emitted. Same logic can be
554
* applied to FWDs, it won't hurt anyways.
555
*/
556
if (t->name_off != 0 || !tstate->referenced) {
557
err = btf_dump_add_emit_queue_id(d, id);
558
if (err)
559
return err;
560
}
561
tstate->order_state = ORDERED;
562
return 1;
563
564
case BTF_KIND_TYPEDEF: {
565
int is_strong;
566
567
is_strong = btf_dump_order_type(d, t->type, through_ptr);
568
if (is_strong < 0)
569
return is_strong;
570
571
/* typedef is similar to struct/union w.r.t. fwd-decls */
572
if (through_ptr && !is_strong)
573
return 0;
574
575
/* typedef is always a named definition */
576
err = btf_dump_add_emit_queue_id(d, id);
577
if (err)
578
return err;
579
580
d->type_states[id].order_state = ORDERED;
581
return 1;
582
}
583
case BTF_KIND_VOLATILE:
584
case BTF_KIND_CONST:
585
case BTF_KIND_RESTRICT:
586
case BTF_KIND_TYPE_TAG:
587
return btf_dump_order_type(d, t->type, through_ptr);
588
589
case BTF_KIND_FUNC_PROTO: {
590
const struct btf_param *p = btf_params(t);
591
bool is_strong;
592
593
err = btf_dump_order_type(d, t->type, through_ptr);
594
if (err < 0)
595
return err;
596
is_strong = err > 0;
597
598
vlen = btf_vlen(t);
599
for (i = 0; i < vlen; i++, p++) {
600
err = btf_dump_order_type(d, p->type, through_ptr);
601
if (err < 0)
602
return err;
603
if (err > 0)
604
is_strong = true;
605
}
606
return is_strong;
607
}
608
case BTF_KIND_FUNC:
609
case BTF_KIND_VAR:
610
case BTF_KIND_DATASEC:
611
case BTF_KIND_DECL_TAG:
612
d->type_states[id].order_state = ORDERED;
613
return 0;
614
615
default:
616
return -EINVAL;
617
}
618
}
619
620
static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
621
const struct btf_type *t);
622
623
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
624
const struct btf_type *t);
625
static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
626
const struct btf_type *t, int lvl);
627
628
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
629
const struct btf_type *t);
630
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
631
const struct btf_type *t, int lvl);
632
633
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
634
const struct btf_type *t);
635
636
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
637
const struct btf_type *t, int lvl);
638
639
/* a local view into a shared stack */
640
struct id_stack {
641
const __u32 *ids;
642
int cnt;
643
};
644
645
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
646
const char *fname, int lvl);
647
static void btf_dump_emit_type_chain(struct btf_dump *d,
648
struct id_stack *decl_stack,
649
const char *fname, int lvl);
650
651
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
652
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
653
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
654
const char *orig_name);
655
656
static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
657
{
658
const struct btf_type *t = btf__type_by_id(d->btf, id);
659
660
/* __builtin_va_list is a compiler built-in, which causes compilation
661
* errors, when compiling w/ different compiler, then used to compile
662
* original code (e.g., GCC to compile kernel, Clang to use generated
663
* C header from BTF). As it is built-in, it should be already defined
664
* properly internally in compiler.
665
*/
666
if (t->name_off == 0)
667
return false;
668
return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
669
}
670
671
/*
672
* Emit C-syntax definitions of types from chains of BTF types.
673
*
674
* High-level handling of determining necessary forward declarations are handled
675
* by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
676
* declarations/definitions in C syntax are handled by a combo of
677
* btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
678
* corresponding btf_dump_emit_*_{def,fwd}() functions.
679
*
680
* We also keep track of "containing struct/union type ID" to determine when
681
* we reference it from inside and thus can avoid emitting unnecessary forward
682
* declaration.
683
*
684
* This algorithm is designed in such a way, that even if some error occurs
685
* (either technical, e.g., out of memory, or logical, i.e., malformed BTF
686
* that doesn't comply to C rules completely), algorithm will try to proceed
687
* and produce as much meaningful output as possible.
688
*/
689
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
690
{
691
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
692
bool top_level_def = cont_id == 0;
693
const struct btf_type *t;
694
__u16 kind;
695
696
if (tstate->emit_state == EMITTED)
697
return;
698
699
t = btf__type_by_id(d->btf, id);
700
kind = btf_kind(t);
701
702
if (tstate->emit_state == EMITTING) {
703
if (tstate->fwd_emitted)
704
return;
705
706
switch (kind) {
707
case BTF_KIND_STRUCT:
708
case BTF_KIND_UNION:
709
/*
710
* if we are referencing a struct/union that we are
711
* part of - then no need for fwd declaration
712
*/
713
if (id == cont_id)
714
return;
715
if (t->name_off == 0) {
716
pr_warn("anonymous struct/union loop, id:[%u]\n",
717
id);
718
return;
719
}
720
btf_dump_emit_struct_fwd(d, id, t);
721
btf_dump_printf(d, ";\n\n");
722
tstate->fwd_emitted = 1;
723
break;
724
case BTF_KIND_TYPEDEF:
725
/*
726
* for typedef fwd_emitted means typedef definition
727
* was emitted, but it can be used only for "weak"
728
* references through pointer only, not for embedding
729
*/
730
if (!btf_dump_is_blacklisted(d, id)) {
731
btf_dump_emit_typedef_def(d, id, t, 0);
732
btf_dump_printf(d, ";\n\n");
733
}
734
tstate->fwd_emitted = 1;
735
break;
736
default:
737
break;
738
}
739
740
return;
741
}
742
743
switch (kind) {
744
case BTF_KIND_INT:
745
/* Emit type alias definitions if necessary */
746
btf_dump_emit_missing_aliases(d, id, t);
747
748
tstate->emit_state = EMITTED;
749
break;
750
case BTF_KIND_ENUM:
751
case BTF_KIND_ENUM64:
752
if (top_level_def) {
753
btf_dump_emit_enum_def(d, id, t, 0);
754
btf_dump_printf(d, ";\n\n");
755
}
756
tstate->emit_state = EMITTED;
757
break;
758
case BTF_KIND_PTR:
759
case BTF_KIND_VOLATILE:
760
case BTF_KIND_CONST:
761
case BTF_KIND_RESTRICT:
762
case BTF_KIND_TYPE_TAG:
763
btf_dump_emit_type(d, t->type, cont_id);
764
break;
765
case BTF_KIND_ARRAY:
766
btf_dump_emit_type(d, btf_array(t)->type, cont_id);
767
break;
768
case BTF_KIND_FWD:
769
btf_dump_emit_fwd_def(d, id, t);
770
btf_dump_printf(d, ";\n\n");
771
tstate->emit_state = EMITTED;
772
break;
773
case BTF_KIND_TYPEDEF:
774
tstate->emit_state = EMITTING;
775
btf_dump_emit_type(d, t->type, id);
776
/*
777
* typedef can server as both definition and forward
778
* declaration; at this stage someone depends on
779
* typedef as a forward declaration (refers to it
780
* through pointer), so unless we already did it,
781
* emit typedef as a forward declaration
782
*/
783
if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
784
btf_dump_emit_typedef_def(d, id, t, 0);
785
btf_dump_printf(d, ";\n\n");
786
}
787
tstate->emit_state = EMITTED;
788
break;
789
case BTF_KIND_STRUCT:
790
case BTF_KIND_UNION:
791
tstate->emit_state = EMITTING;
792
/* if it's a top-level struct/union definition or struct/union
793
* is anonymous, then in C we'll be emitting all fields and
794
* their types (as opposed to just `struct X`), so we need to
795
* make sure that all types, referenced from struct/union
796
* members have necessary forward-declarations, where
797
* applicable
798
*/
799
if (top_level_def || t->name_off == 0) {
800
const struct btf_member *m = btf_members(t);
801
__u16 vlen = btf_vlen(t);
802
int i, new_cont_id;
803
804
new_cont_id = t->name_off == 0 ? cont_id : id;
805
for (i = 0; i < vlen; i++, m++)
806
btf_dump_emit_type(d, m->type, new_cont_id);
807
} else if (!tstate->fwd_emitted && id != cont_id) {
808
btf_dump_emit_struct_fwd(d, id, t);
809
btf_dump_printf(d, ";\n\n");
810
tstate->fwd_emitted = 1;
811
}
812
813
if (top_level_def) {
814
btf_dump_emit_struct_def(d, id, t, 0);
815
btf_dump_printf(d, ";\n\n");
816
tstate->emit_state = EMITTED;
817
} else {
818
tstate->emit_state = NOT_EMITTED;
819
}
820
break;
821
case BTF_KIND_FUNC_PROTO: {
822
const struct btf_param *p = btf_params(t);
823
__u16 n = btf_vlen(t);
824
int i;
825
826
btf_dump_emit_type(d, t->type, cont_id);
827
for (i = 0; i < n; i++, p++)
828
btf_dump_emit_type(d, p->type, cont_id);
829
830
break;
831
}
832
default:
833
break;
834
}
835
}
836
837
static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
838
const struct btf_type *t)
839
{
840
const struct btf_member *m;
841
int max_align = 1, align, i, bit_sz;
842
__u16 vlen;
843
844
m = btf_members(t);
845
vlen = btf_vlen(t);
846
/* all non-bitfield fields have to be naturally aligned */
847
for (i = 0; i < vlen; i++, m++) {
848
align = btf__align_of(btf, m->type);
849
bit_sz = btf_member_bitfield_size(t, i);
850
if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
851
return true;
852
max_align = max(align, max_align);
853
}
854
/* size of a non-packed struct has to be a multiple of its alignment */
855
if (t->size % max_align != 0)
856
return true;
857
/*
858
* if original struct was marked as packed, but its layout is
859
* naturally aligned, we'll detect that it's not packed
860
*/
861
return false;
862
}
863
864
static void btf_dump_emit_bit_padding(const struct btf_dump *d,
865
int cur_off, int next_off, int next_align,
866
bool in_bitfield, int lvl)
867
{
868
const struct {
869
const char *name;
870
int bits;
871
} pads[] = {
872
{"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
873
};
874
int new_off = 0, pad_bits = 0, bits, i;
875
const char *pad_type = NULL;
876
877
if (cur_off >= next_off)
878
return; /* no gap */
879
880
/* For filling out padding we want to take advantage of
881
* natural alignment rules to minimize unnecessary explicit
882
* padding. First, we find the largest type (among long, int,
883
* short, or char) that can be used to force naturally aligned
884
* boundary. Once determined, we'll use such type to fill in
885
* the remaining padding gap. In some cases we can rely on
886
* compiler filling some gaps, but sometimes we need to force
887
* alignment to close natural alignment with markers like
888
* `long: 0` (this is always the case for bitfields). Note
889
* that even if struct itself has, let's say 4-byte alignment
890
* (i.e., it only uses up to int-aligned types), using `long:
891
* X;` explicit padding doesn't actually change struct's
892
* overall alignment requirements, but compiler does take into
893
* account that type's (long, in this example) natural
894
* alignment requirements when adding implicit padding. We use
895
* this fact heavily and don't worry about ruining correct
896
* struct alignment requirement.
897
*/
898
for (i = 0; i < ARRAY_SIZE(pads); i++) {
899
pad_bits = pads[i].bits;
900
pad_type = pads[i].name;
901
902
new_off = roundup(cur_off, pad_bits);
903
if (new_off <= next_off)
904
break;
905
}
906
907
if (new_off > cur_off && new_off <= next_off) {
908
/* We need explicit `<type>: 0` aligning mark if next
909
* field is right on alignment offset and its
910
* alignment requirement is less strict than <type>'s
911
* alignment (so compiler won't naturally align to the
912
* offset we expect), or if subsequent `<type>: X`,
913
* will actually completely fit in the remaining hole,
914
* making compiler basically ignore `<type>: X`
915
* completely.
916
*/
917
if (in_bitfield ||
918
(new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
919
(new_off != next_off && next_off - new_off <= new_off - cur_off))
920
/* but for bitfields we'll emit explicit bit count */
921
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
922
in_bitfield ? new_off - cur_off : 0);
923
cur_off = new_off;
924
}
925
926
/* Now we know we start at naturally aligned offset for a chosen
927
* padding type (long, int, short, or char), and so the rest is just
928
* a straightforward filling of remaining padding gap with full
929
* `<type>: sizeof(<type>);` markers, except for the last one, which
930
* might need smaller than sizeof(<type>) padding.
931
*/
932
while (cur_off != next_off) {
933
bits = min(next_off - cur_off, pad_bits);
934
if (bits == pad_bits) {
935
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
936
cur_off += bits;
937
continue;
938
}
939
/* For the remainder padding that doesn't cover entire
940
* pad_type bit length, we pick the smallest necessary type.
941
* This is pure aesthetics, we could have just used `long`,
942
* but having smallest necessary one communicates better the
943
* scale of the padding gap.
944
*/
945
for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
946
pad_type = pads[i].name;
947
pad_bits = pads[i].bits;
948
if (pad_bits < bits)
949
continue;
950
951
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
952
cur_off += bits;
953
break;
954
}
955
}
956
}
957
958
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
959
const struct btf_type *t)
960
{
961
btf_dump_printf(d, "%s%s%s",
962
btf_is_struct(t) ? "struct" : "union",
963
t->name_off ? " " : "",
964
btf_dump_type_name(d, id));
965
}
966
967
static void btf_dump_emit_struct_def(struct btf_dump *d,
968
__u32 id,
969
const struct btf_type *t,
970
int lvl)
971
{
972
const struct btf_member *m = btf_members(t);
973
bool is_struct = btf_is_struct(t);
974
bool packed, prev_bitfield = false;
975
int align, i, off = 0;
976
__u16 vlen = btf_vlen(t);
977
978
align = btf__align_of(d->btf, id);
979
packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
980
981
btf_dump_printf(d, "%s%s%s {",
982
is_struct ? "struct" : "union",
983
t->name_off ? " " : "",
984
btf_dump_type_name(d, id));
985
986
for (i = 0; i < vlen; i++, m++) {
987
const char *fname;
988
int m_off, m_sz, m_align;
989
bool in_bitfield;
990
991
fname = btf_name_of(d, m->name_off);
992
m_sz = btf_member_bitfield_size(t, i);
993
m_off = btf_member_bit_offset(t, i);
994
m_align = packed ? 1 : btf__align_of(d->btf, m->type);
995
996
in_bitfield = prev_bitfield && m_sz != 0;
997
998
btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
999
btf_dump_printf(d, "\n%s", pfx(lvl + 1));
1000
btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
1001
1002
if (m_sz) {
1003
btf_dump_printf(d, ": %d", m_sz);
1004
off = m_off + m_sz;
1005
prev_bitfield = true;
1006
} else {
1007
m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1008
off = m_off + m_sz * 8;
1009
prev_bitfield = false;
1010
}
1011
1012
btf_dump_printf(d, ";");
1013
}
1014
1015
/* pad at the end, if necessary */
1016
if (is_struct)
1017
btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1018
1019
/*
1020
* Keep `struct empty {}` on a single line,
1021
* only print newline when there are regular or padding fields.
1022
*/
1023
if (vlen || t->size) {
1024
btf_dump_printf(d, "\n");
1025
btf_dump_printf(d, "%s}", pfx(lvl));
1026
} else {
1027
btf_dump_printf(d, "}");
1028
}
1029
if (packed)
1030
btf_dump_printf(d, " __attribute__((packed))");
1031
}
1032
1033
static const char *missing_base_types[][2] = {
1034
/*
1035
* GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1036
* SIMD intrinsics. Alias them to standard base types.
1037
*/
1038
{ "__Poly8_t", "unsigned char" },
1039
{ "__Poly16_t", "unsigned short" },
1040
{ "__Poly64_t", "unsigned long long" },
1041
{ "__Poly128_t", "unsigned __int128" },
1042
};
1043
1044
static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1045
const struct btf_type *t)
1046
{
1047
const char *name = btf_dump_type_name(d, id);
1048
int i;
1049
1050
for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1051
if (strcmp(name, missing_base_types[i][0]) == 0) {
1052
btf_dump_printf(d, "typedef %s %s;\n\n",
1053
missing_base_types[i][1], name);
1054
break;
1055
}
1056
}
1057
}
1058
1059
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1060
const struct btf_type *t)
1061
{
1062
btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1063
}
1064
1065
static void btf_dump_emit_enum32_val(struct btf_dump *d,
1066
const struct btf_type *t,
1067
int lvl, __u16 vlen)
1068
{
1069
const struct btf_enum *v = btf_enum(t);
1070
bool is_signed = btf_kflag(t);
1071
const char *fmt_str;
1072
const char *name;
1073
size_t dup_cnt;
1074
int i;
1075
1076
for (i = 0; i < vlen; i++, v++) {
1077
name = btf_name_of(d, v->name_off);
1078
/* enumerators share namespace with typedef idents */
1079
dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1080
if (dup_cnt > 1) {
1081
fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1082
btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1083
} else {
1084
fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1085
btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1086
}
1087
}
1088
}
1089
1090
static void btf_dump_emit_enum64_val(struct btf_dump *d,
1091
const struct btf_type *t,
1092
int lvl, __u16 vlen)
1093
{
1094
const struct btf_enum64 *v = btf_enum64(t);
1095
bool is_signed = btf_kflag(t);
1096
const char *fmt_str;
1097
const char *name;
1098
size_t dup_cnt;
1099
__u64 val;
1100
int i;
1101
1102
for (i = 0; i < vlen; i++, v++) {
1103
name = btf_name_of(d, v->name_off);
1104
dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1105
val = btf_enum64_value(v);
1106
if (dup_cnt > 1) {
1107
fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1108
: "\n%s%s___%zd = %lluULL,";
1109
btf_dump_printf(d, fmt_str,
1110
pfx(lvl + 1), name, dup_cnt,
1111
(unsigned long long)val);
1112
} else {
1113
fmt_str = is_signed ? "\n%s%s = %lldLL,"
1114
: "\n%s%s = %lluULL,";
1115
btf_dump_printf(d, fmt_str,
1116
pfx(lvl + 1), name,
1117
(unsigned long long)val);
1118
}
1119
}
1120
}
1121
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1122
const struct btf_type *t,
1123
int lvl)
1124
{
1125
__u16 vlen = btf_vlen(t);
1126
1127
btf_dump_printf(d, "enum%s%s",
1128
t->name_off ? " " : "",
1129
btf_dump_type_name(d, id));
1130
1131
if (!vlen)
1132
return;
1133
1134
btf_dump_printf(d, " {");
1135
if (btf_is_enum(t))
1136
btf_dump_emit_enum32_val(d, t, lvl, vlen);
1137
else
1138
btf_dump_emit_enum64_val(d, t, lvl, vlen);
1139
btf_dump_printf(d, "\n%s}", pfx(lvl));
1140
1141
/* special case enums with special sizes */
1142
if (t->size == 1) {
1143
/* one-byte enums can be forced with mode(byte) attribute */
1144
btf_dump_printf(d, " __attribute__((mode(byte)))");
1145
} else if (t->size == 8 && d->ptr_sz == 8) {
1146
/* enum can be 8-byte sized if one of the enumerator values
1147
* doesn't fit in 32-bit integer, or by adding mode(word)
1148
* attribute (but probably only on 64-bit architectures); do
1149
* our best here to try to satisfy the contract without adding
1150
* unnecessary attributes
1151
*/
1152
bool needs_word_mode;
1153
1154
if (btf_is_enum(t)) {
1155
/* enum can't represent 64-bit values, so we need word mode */
1156
needs_word_mode = true;
1157
} else {
1158
/* enum64 needs mode(word) if none of its values has
1159
* non-zero upper 32-bits (which means that all values
1160
* fit in 32-bit integers and won't cause compiler to
1161
* bump enum to be 64-bit naturally
1162
*/
1163
int i;
1164
1165
needs_word_mode = true;
1166
for (i = 0; i < vlen; i++) {
1167
if (btf_enum64(t)[i].val_hi32 != 0) {
1168
needs_word_mode = false;
1169
break;
1170
}
1171
}
1172
}
1173
if (needs_word_mode)
1174
btf_dump_printf(d, " __attribute__((mode(word)))");
1175
}
1176
1177
}
1178
1179
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1180
const struct btf_type *t)
1181
{
1182
const char *name = btf_dump_type_name(d, id);
1183
1184
if (btf_kflag(t))
1185
btf_dump_printf(d, "union %s", name);
1186
else
1187
btf_dump_printf(d, "struct %s", name);
1188
}
1189
1190
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1191
const struct btf_type *t, int lvl)
1192
{
1193
const char *name = btf_dump_ident_name(d, id);
1194
1195
/*
1196
* Old GCC versions are emitting invalid typedef for __gnuc_va_list
1197
* pointing to VOID. This generates warnings from btf_dump() and
1198
* results in uncompilable header file, so we are fixing it up here
1199
* with valid typedef into __builtin_va_list.
1200
*/
1201
if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1202
btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1203
return;
1204
}
1205
1206
btf_dump_printf(d, "typedef ");
1207
btf_dump_emit_type_decl(d, t->type, name, lvl);
1208
}
1209
1210
static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1211
{
1212
__u32 *new_stack;
1213
size_t new_cap;
1214
1215
if (d->decl_stack_cnt >= d->decl_stack_cap) {
1216
new_cap = max(16, d->decl_stack_cap * 3 / 2);
1217
new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1218
if (!new_stack)
1219
return -ENOMEM;
1220
d->decl_stack = new_stack;
1221
d->decl_stack_cap = new_cap;
1222
}
1223
1224
d->decl_stack[d->decl_stack_cnt++] = id;
1225
1226
return 0;
1227
}
1228
1229
/*
1230
* Emit type declaration (e.g., field type declaration in a struct or argument
1231
* declaration in function prototype) in correct C syntax.
1232
*
1233
* For most types it's trivial, but there are few quirky type declaration
1234
* cases worth mentioning:
1235
* - function prototypes (especially nesting of function prototypes);
1236
* - arrays;
1237
* - const/volatile/restrict for pointers vs other types.
1238
*
1239
* For a good discussion of *PARSING* C syntax (as a human), see
1240
* Peter van der Linden's "Expert C Programming: Deep C Secrets",
1241
* Ch.3 "Unscrambling Declarations in C".
1242
*
1243
* It won't help with BTF to C conversion much, though, as it's an opposite
1244
* problem. So we came up with this algorithm in reverse to van der Linden's
1245
* parsing algorithm. It goes from structured BTF representation of type
1246
* declaration to a valid compilable C syntax.
1247
*
1248
* For instance, consider this C typedef:
1249
* typedef const int * const * arr[10] arr_t;
1250
* It will be represented in BTF with this chain of BTF types:
1251
* [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1252
*
1253
* Notice how [const] modifier always goes before type it modifies in BTF type
1254
* graph, but in C syntax, const/volatile/restrict modifiers are written to
1255
* the right of pointers, but to the left of other types. There are also other
1256
* quirks, like function pointers, arrays of them, functions returning other
1257
* functions, etc.
1258
*
1259
* We handle that by pushing all the types to a stack, until we hit "terminal"
1260
* type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1261
* top of a stack, modifiers are handled differently. Array/function pointers
1262
* have also wildly different syntax and how nesting of them are done. See
1263
* code for authoritative definition.
1264
*
1265
* To avoid allocating new stack for each independent chain of BTF types, we
1266
* share one bigger stack, with each chain working only on its own local view
1267
* of a stack frame. Some care is required to "pop" stack frames after
1268
* processing type declaration chain.
1269
*/
1270
int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1271
const struct btf_dump_emit_type_decl_opts *opts)
1272
{
1273
const char *fname;
1274
int lvl, err;
1275
1276
if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1277
return libbpf_err(-EINVAL);
1278
1279
err = btf_dump_resize(d);
1280
if (err)
1281
return libbpf_err(err);
1282
1283
fname = OPTS_GET(opts, field_name, "");
1284
lvl = OPTS_GET(opts, indent_level, 0);
1285
d->strip_mods = OPTS_GET(opts, strip_mods, false);
1286
btf_dump_emit_type_decl(d, id, fname, lvl);
1287
d->strip_mods = false;
1288
return 0;
1289
}
1290
1291
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1292
const char *fname, int lvl)
1293
{
1294
struct id_stack decl_stack;
1295
const struct btf_type *t;
1296
int err, stack_start;
1297
1298
stack_start = d->decl_stack_cnt;
1299
for (;;) {
1300
t = btf__type_by_id(d->btf, id);
1301
if (d->strip_mods && btf_is_mod(t))
1302
goto skip_mod;
1303
1304
err = btf_dump_push_decl_stack_id(d, id);
1305
if (err < 0) {
1306
/*
1307
* if we don't have enough memory for entire type decl
1308
* chain, restore stack, emit warning, and try to
1309
* proceed nevertheless
1310
*/
1311
pr_warn("not enough memory for decl stack: %s\n", errstr(err));
1312
d->decl_stack_cnt = stack_start;
1313
return;
1314
}
1315
skip_mod:
1316
/* VOID */
1317
if (id == 0)
1318
break;
1319
1320
switch (btf_kind(t)) {
1321
case BTF_KIND_PTR:
1322
case BTF_KIND_VOLATILE:
1323
case BTF_KIND_CONST:
1324
case BTF_KIND_RESTRICT:
1325
case BTF_KIND_FUNC_PROTO:
1326
case BTF_KIND_TYPE_TAG:
1327
id = t->type;
1328
break;
1329
case BTF_KIND_ARRAY:
1330
id = btf_array(t)->type;
1331
break;
1332
case BTF_KIND_INT:
1333
case BTF_KIND_ENUM:
1334
case BTF_KIND_ENUM64:
1335
case BTF_KIND_FWD:
1336
case BTF_KIND_STRUCT:
1337
case BTF_KIND_UNION:
1338
case BTF_KIND_TYPEDEF:
1339
case BTF_KIND_FLOAT:
1340
goto done;
1341
default:
1342
pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1343
btf_kind(t), id);
1344
goto done;
1345
}
1346
}
1347
done:
1348
/*
1349
* We might be inside a chain of declarations (e.g., array of function
1350
* pointers returning anonymous (so inlined) structs, having another
1351
* array field). Each of those needs its own "stack frame" to handle
1352
* emitting of declarations. Those stack frames are non-overlapping
1353
* portions of shared btf_dump->decl_stack. To make it a bit nicer to
1354
* handle this set of nested stacks, we create a view corresponding to
1355
* our own "stack frame" and work with it as an independent stack.
1356
* We'll need to clean up after emit_type_chain() returns, though.
1357
*/
1358
decl_stack.ids = d->decl_stack + stack_start;
1359
decl_stack.cnt = d->decl_stack_cnt - stack_start;
1360
btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1361
/*
1362
* emit_type_chain() guarantees that it will pop its entire decl_stack
1363
* frame before returning. But it works with a read-only view into
1364
* decl_stack, so it doesn't actually pop anything from the
1365
* perspective of shared btf_dump->decl_stack, per se. We need to
1366
* reset decl_stack state to how it was before us to avoid it growing
1367
* all the time.
1368
*/
1369
d->decl_stack_cnt = stack_start;
1370
}
1371
1372
static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1373
{
1374
const struct btf_type *t;
1375
__u32 id;
1376
1377
while (decl_stack->cnt) {
1378
id = decl_stack->ids[decl_stack->cnt - 1];
1379
t = btf__type_by_id(d->btf, id);
1380
1381
switch (btf_kind(t)) {
1382
case BTF_KIND_VOLATILE:
1383
btf_dump_printf(d, "volatile ");
1384
break;
1385
case BTF_KIND_CONST:
1386
btf_dump_printf(d, "const ");
1387
break;
1388
case BTF_KIND_RESTRICT:
1389
btf_dump_printf(d, "restrict ");
1390
break;
1391
default:
1392
return;
1393
}
1394
decl_stack->cnt--;
1395
}
1396
}
1397
1398
static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1399
{
1400
const struct btf_type *t;
1401
__u32 id;
1402
1403
while (decl_stack->cnt) {
1404
id = decl_stack->ids[decl_stack->cnt - 1];
1405
t = btf__type_by_id(d->btf, id);
1406
if (!btf_is_mod(t))
1407
return;
1408
decl_stack->cnt--;
1409
}
1410
}
1411
1412
static void btf_dump_emit_name(const struct btf_dump *d,
1413
const char *name, bool last_was_ptr)
1414
{
1415
bool separate = name[0] && !last_was_ptr;
1416
1417
btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1418
}
1419
1420
static void btf_dump_emit_type_chain(struct btf_dump *d,
1421
struct id_stack *decls,
1422
const char *fname, int lvl)
1423
{
1424
/*
1425
* last_was_ptr is used to determine if we need to separate pointer
1426
* asterisk (*) from previous part of type signature with space, so
1427
* that we get `int ***`, instead of `int * * *`. We default to true
1428
* for cases where we have single pointer in a chain. E.g., in ptr ->
1429
* func_proto case. func_proto will start a new emit_type_chain call
1430
* with just ptr, which should be emitted as (*) or (*<fname>), so we
1431
* don't want to prepend space for that last pointer.
1432
*/
1433
bool last_was_ptr = true;
1434
const struct btf_type *t;
1435
const char *name;
1436
__u16 kind;
1437
__u32 id;
1438
1439
while (decls->cnt) {
1440
id = decls->ids[--decls->cnt];
1441
if (id == 0) {
1442
/* VOID is a special snowflake */
1443
btf_dump_emit_mods(d, decls);
1444
btf_dump_printf(d, "void");
1445
last_was_ptr = false;
1446
continue;
1447
}
1448
1449
t = btf__type_by_id(d->btf, id);
1450
kind = btf_kind(t);
1451
1452
switch (kind) {
1453
case BTF_KIND_INT:
1454
case BTF_KIND_FLOAT:
1455
btf_dump_emit_mods(d, decls);
1456
name = btf_name_of(d, t->name_off);
1457
btf_dump_printf(d, "%s", name);
1458
break;
1459
case BTF_KIND_STRUCT:
1460
case BTF_KIND_UNION:
1461
btf_dump_emit_mods(d, decls);
1462
/* inline anonymous struct/union */
1463
if (t->name_off == 0 && !d->skip_anon_defs)
1464
btf_dump_emit_struct_def(d, id, t, lvl);
1465
else
1466
btf_dump_emit_struct_fwd(d, id, t);
1467
break;
1468
case BTF_KIND_ENUM:
1469
case BTF_KIND_ENUM64:
1470
btf_dump_emit_mods(d, decls);
1471
/* inline anonymous enum */
1472
if (t->name_off == 0 && !d->skip_anon_defs)
1473
btf_dump_emit_enum_def(d, id, t, lvl);
1474
else
1475
btf_dump_emit_enum_fwd(d, id, t);
1476
break;
1477
case BTF_KIND_FWD:
1478
btf_dump_emit_mods(d, decls);
1479
btf_dump_emit_fwd_def(d, id, t);
1480
break;
1481
case BTF_KIND_TYPEDEF:
1482
btf_dump_emit_mods(d, decls);
1483
btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1484
break;
1485
case BTF_KIND_PTR:
1486
btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1487
break;
1488
case BTF_KIND_VOLATILE:
1489
btf_dump_printf(d, " volatile");
1490
break;
1491
case BTF_KIND_CONST:
1492
btf_dump_printf(d, " const");
1493
break;
1494
case BTF_KIND_RESTRICT:
1495
btf_dump_printf(d, " restrict");
1496
break;
1497
case BTF_KIND_TYPE_TAG:
1498
btf_dump_emit_mods(d, decls);
1499
name = btf_name_of(d, t->name_off);
1500
if (btf_kflag(t))
1501
btf_dump_printf(d, " __attribute__((%s))", name);
1502
else
1503
btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1504
break;
1505
case BTF_KIND_ARRAY: {
1506
const struct btf_array *a = btf_array(t);
1507
const struct btf_type *next_t;
1508
__u32 next_id;
1509
bool multidim;
1510
/*
1511
* GCC has a bug
1512
* (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1513
* which causes it to emit extra const/volatile
1514
* modifiers for an array, if array's element type has
1515
* const/volatile modifiers. Clang doesn't do that.
1516
* In general, it doesn't seem very meaningful to have
1517
* a const/volatile modifier for array, so we are
1518
* going to silently skip them here.
1519
*/
1520
btf_dump_drop_mods(d, decls);
1521
1522
if (decls->cnt == 0) {
1523
btf_dump_emit_name(d, fname, last_was_ptr);
1524
btf_dump_printf(d, "[%u]", a->nelems);
1525
return;
1526
}
1527
1528
next_id = decls->ids[decls->cnt - 1];
1529
next_t = btf__type_by_id(d->btf, next_id);
1530
multidim = btf_is_array(next_t);
1531
/* we need space if we have named non-pointer */
1532
if (fname[0] && !last_was_ptr)
1533
btf_dump_printf(d, " ");
1534
/* no parentheses for multi-dimensional array */
1535
if (!multidim)
1536
btf_dump_printf(d, "(");
1537
btf_dump_emit_type_chain(d, decls, fname, lvl);
1538
if (!multidim)
1539
btf_dump_printf(d, ")");
1540
btf_dump_printf(d, "[%u]", a->nelems);
1541
return;
1542
}
1543
case BTF_KIND_FUNC_PROTO: {
1544
const struct btf_param *p = btf_params(t);
1545
__u16 vlen = btf_vlen(t);
1546
int i;
1547
1548
/*
1549
* GCC emits extra volatile qualifier for
1550
* __attribute__((noreturn)) function pointers. Clang
1551
* doesn't do it. It's a GCC quirk for backwards
1552
* compatibility with code written for GCC <2.5. So,
1553
* similarly to extra qualifiers for array, just drop
1554
* them, instead of handling them.
1555
*/
1556
btf_dump_drop_mods(d, decls);
1557
if (decls->cnt) {
1558
btf_dump_printf(d, " (");
1559
btf_dump_emit_type_chain(d, decls, fname, lvl);
1560
btf_dump_printf(d, ")");
1561
} else {
1562
btf_dump_emit_name(d, fname, last_was_ptr);
1563
}
1564
btf_dump_printf(d, "(");
1565
/*
1566
* Clang for BPF target generates func_proto with no
1567
* args as a func_proto with a single void arg (e.g.,
1568
* `int (*f)(void)` vs just `int (*f)()`). We are
1569
* going to emit valid empty args (void) syntax for
1570
* such case. Similarly and conveniently, valid
1571
* no args case can be special-cased here as well.
1572
*/
1573
if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1574
btf_dump_printf(d, "void)");
1575
return;
1576
}
1577
1578
for (i = 0; i < vlen; i++, p++) {
1579
if (i > 0)
1580
btf_dump_printf(d, ", ");
1581
1582
/* last arg of type void is vararg */
1583
if (i == vlen - 1 && p->type == 0) {
1584
btf_dump_printf(d, "...");
1585
break;
1586
}
1587
1588
name = btf_name_of(d, p->name_off);
1589
btf_dump_emit_type_decl(d, p->type, name, lvl);
1590
}
1591
1592
btf_dump_printf(d, ")");
1593
return;
1594
}
1595
default:
1596
pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1597
kind, id);
1598
return;
1599
}
1600
1601
last_was_ptr = kind == BTF_KIND_PTR;
1602
}
1603
1604
btf_dump_emit_name(d, fname, last_was_ptr);
1605
}
1606
1607
/* show type name as (type_name) */
1608
static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1609
bool top_level)
1610
{
1611
const struct btf_type *t;
1612
1613
/* for array members, we don't bother emitting type name for each
1614
* member to avoid the redundancy of
1615
* .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1616
*/
1617
if (d->typed_dump->is_array_member)
1618
return;
1619
1620
/* avoid type name specification for variable/section; it will be done
1621
* for the associated variable value(s).
1622
*/
1623
t = btf__type_by_id(d->btf, id);
1624
if (btf_is_var(t) || btf_is_datasec(t))
1625
return;
1626
1627
if (top_level)
1628
btf_dump_printf(d, "(");
1629
1630
d->skip_anon_defs = true;
1631
d->strip_mods = true;
1632
btf_dump_emit_type_decl(d, id, "", 0);
1633
d->strip_mods = false;
1634
d->skip_anon_defs = false;
1635
1636
if (top_level)
1637
btf_dump_printf(d, ")");
1638
}
1639
1640
/* return number of duplicates (occurrences) of a given name */
1641
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1642
const char *orig_name)
1643
{
1644
char *old_name, *new_name;
1645
size_t dup_cnt = 0;
1646
int err;
1647
1648
new_name = strdup(orig_name);
1649
if (!new_name)
1650
return 1;
1651
1652
(void)hashmap__find(name_map, orig_name, &dup_cnt);
1653
dup_cnt++;
1654
1655
err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1656
if (err)
1657
free(new_name);
1658
1659
free(old_name);
1660
1661
return dup_cnt;
1662
}
1663
1664
static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1665
struct hashmap *name_map)
1666
{
1667
struct btf_dump_type_aux_state *s = &d->type_states[id];
1668
const struct btf_type *t = btf__type_by_id(d->btf, id);
1669
const char *orig_name = btf_name_of(d, t->name_off);
1670
const char **cached_name = &d->cached_names[id];
1671
size_t dup_cnt;
1672
1673
if (t->name_off == 0)
1674
return "";
1675
1676
if (s->name_resolved)
1677
return *cached_name ? *cached_name : orig_name;
1678
1679
if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1680
s->name_resolved = 1;
1681
return orig_name;
1682
}
1683
1684
dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1685
if (dup_cnt > 1) {
1686
const size_t max_len = 256;
1687
char new_name[max_len];
1688
1689
snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1690
*cached_name = strdup(new_name);
1691
}
1692
1693
s->name_resolved = 1;
1694
return *cached_name ? *cached_name : orig_name;
1695
}
1696
1697
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1698
{
1699
return btf_dump_resolve_name(d, id, d->type_names);
1700
}
1701
1702
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1703
{
1704
return btf_dump_resolve_name(d, id, d->ident_names);
1705
}
1706
1707
static int btf_dump_dump_type_data(struct btf_dump *d,
1708
const char *fname,
1709
const struct btf_type *t,
1710
__u32 id,
1711
const void *data,
1712
__u8 bits_offset,
1713
__u8 bit_sz);
1714
1715
static const char *btf_dump_data_newline(struct btf_dump *d)
1716
{
1717
return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1718
}
1719
1720
static const char *btf_dump_data_delim(struct btf_dump *d)
1721
{
1722
return d->typed_dump->depth == 0 ? "" : ",";
1723
}
1724
1725
static void btf_dump_data_pfx(struct btf_dump *d)
1726
{
1727
int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1728
1729
if (d->typed_dump->compact)
1730
return;
1731
1732
for (i = 0; i < lvl; i++)
1733
btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1734
}
1735
1736
/* A macro is used here as btf_type_value[s]() appends format specifiers
1737
* to the format specifier passed in; these do the work of appending
1738
* delimiters etc while the caller simply has to specify the type values
1739
* in the format specifier + value(s).
1740
*/
1741
#define btf_dump_type_values(d, fmt, ...) \
1742
btf_dump_printf(d, fmt "%s%s", \
1743
##__VA_ARGS__, \
1744
btf_dump_data_delim(d), \
1745
btf_dump_data_newline(d))
1746
1747
static int btf_dump_unsupported_data(struct btf_dump *d,
1748
const struct btf_type *t,
1749
__u32 id)
1750
{
1751
btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1752
return -ENOTSUP;
1753
}
1754
1755
static int btf_dump_get_bitfield_value(struct btf_dump *d,
1756
const struct btf_type *t,
1757
const void *data,
1758
__u8 bits_offset,
1759
__u8 bit_sz,
1760
__u64 *value)
1761
{
1762
__u16 left_shift_bits, right_shift_bits;
1763
const __u8 *bytes = data;
1764
__u8 nr_copy_bits;
1765
__u64 num = 0;
1766
int i;
1767
1768
/* Maximum supported bitfield size is 64 bits */
1769
if (t->size > 8) {
1770
pr_warn("unexpected bitfield size %d\n", t->size);
1771
return -EINVAL;
1772
}
1773
1774
/* Bitfield value retrieval is done in two steps; first relevant bytes are
1775
* stored in num, then we left/right shift num to eliminate irrelevant bits.
1776
*/
1777
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1778
for (i = t->size - 1; i >= 0; i--)
1779
num = num * 256 + bytes[i];
1780
nr_copy_bits = bit_sz + bits_offset;
1781
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1782
for (i = 0; i < t->size; i++)
1783
num = num * 256 + bytes[i];
1784
nr_copy_bits = t->size * 8 - bits_offset;
1785
#else
1786
# error "Unrecognized __BYTE_ORDER__"
1787
#endif
1788
left_shift_bits = 64 - nr_copy_bits;
1789
right_shift_bits = 64 - bit_sz;
1790
1791
*value = (num << left_shift_bits) >> right_shift_bits;
1792
1793
return 0;
1794
}
1795
1796
static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1797
const struct btf_type *t,
1798
const void *data,
1799
__u8 bits_offset,
1800
__u8 bit_sz)
1801
{
1802
__u64 check_num;
1803
int err;
1804
1805
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1806
if (err)
1807
return err;
1808
if (check_num == 0)
1809
return -ENODATA;
1810
return 0;
1811
}
1812
1813
static int btf_dump_bitfield_data(struct btf_dump *d,
1814
const struct btf_type *t,
1815
const void *data,
1816
__u8 bits_offset,
1817
__u8 bit_sz)
1818
{
1819
__u64 print_num;
1820
int err;
1821
1822
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1823
if (err)
1824
return err;
1825
1826
btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1827
1828
return 0;
1829
}
1830
1831
/* ints, floats and ptrs */
1832
static int btf_dump_base_type_check_zero(struct btf_dump *d,
1833
const struct btf_type *t,
1834
__u32 id,
1835
const void *data)
1836
{
1837
static __u8 bytecmp[16] = {};
1838
int nr_bytes;
1839
1840
/* For pointer types, pointer size is not defined on a per-type basis.
1841
* On dump creation however, we store the pointer size.
1842
*/
1843
if (btf_kind(t) == BTF_KIND_PTR)
1844
nr_bytes = d->ptr_sz;
1845
else
1846
nr_bytes = t->size;
1847
1848
if (nr_bytes < 1 || nr_bytes > 16) {
1849
pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1850
return -EINVAL;
1851
}
1852
1853
if (memcmp(data, bytecmp, nr_bytes) == 0)
1854
return -ENODATA;
1855
return 0;
1856
}
1857
1858
static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1859
const void *data)
1860
{
1861
int alignment = btf__align_of(btf, type_id);
1862
1863
if (alignment == 0)
1864
return false;
1865
1866
return ((uintptr_t)data) % alignment == 0;
1867
}
1868
1869
static int btf_dump_int_data(struct btf_dump *d,
1870
const struct btf_type *t,
1871
__u32 type_id,
1872
const void *data,
1873
__u8 bits_offset)
1874
{
1875
__u8 encoding = btf_int_encoding(t);
1876
bool sign = encoding & BTF_INT_SIGNED;
1877
char buf[16] __attribute__((aligned(16)));
1878
int sz = t->size;
1879
1880
if (sz == 0 || sz > sizeof(buf)) {
1881
pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1882
return -EINVAL;
1883
}
1884
1885
/* handle packed int data - accesses of integers not aligned on
1886
* int boundaries can cause problems on some platforms.
1887
*/
1888
if (!ptr_is_aligned(d->btf, type_id, data)) {
1889
memcpy(buf, data, sz);
1890
data = buf;
1891
}
1892
1893
switch (sz) {
1894
case 16: {
1895
const __u64 *ints = data;
1896
__u64 lsi, msi;
1897
1898
/* avoid use of __int128 as some 32-bit platforms do not
1899
* support it.
1900
*/
1901
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1902
lsi = ints[0];
1903
msi = ints[1];
1904
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1905
lsi = ints[1];
1906
msi = ints[0];
1907
#else
1908
# error "Unrecognized __BYTE_ORDER__"
1909
#endif
1910
if (msi == 0)
1911
btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1912
else
1913
btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1914
(unsigned long long)lsi);
1915
break;
1916
}
1917
case 8:
1918
if (sign)
1919
btf_dump_type_values(d, "%lld", *(long long *)data);
1920
else
1921
btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1922
break;
1923
case 4:
1924
if (sign)
1925
btf_dump_type_values(d, "%d", *(__s32 *)data);
1926
else
1927
btf_dump_type_values(d, "%u", *(__u32 *)data);
1928
break;
1929
case 2:
1930
if (sign)
1931
btf_dump_type_values(d, "%d", *(__s16 *)data);
1932
else
1933
btf_dump_type_values(d, "%u", *(__u16 *)data);
1934
break;
1935
case 1:
1936
if (d->typed_dump->is_array_char) {
1937
/* check for null terminator */
1938
if (d->typed_dump->is_array_terminated)
1939
break;
1940
if (*(char *)data == '\0') {
1941
btf_dump_type_values(d, "'\\0'");
1942
d->typed_dump->is_array_terminated = true;
1943
break;
1944
}
1945
if (isprint(*(char *)data)) {
1946
btf_dump_type_values(d, "'%c'", *(char *)data);
1947
break;
1948
}
1949
}
1950
if (sign)
1951
btf_dump_type_values(d, "%d", *(__s8 *)data);
1952
else
1953
btf_dump_type_values(d, "%u", *(__u8 *)data);
1954
break;
1955
default:
1956
pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1957
return -EINVAL;
1958
}
1959
return 0;
1960
}
1961
1962
union float_data {
1963
long double ld;
1964
double d;
1965
float f;
1966
};
1967
1968
static int btf_dump_float_data(struct btf_dump *d,
1969
const struct btf_type *t,
1970
__u32 type_id,
1971
const void *data)
1972
{
1973
const union float_data *flp = data;
1974
union float_data fl;
1975
int sz = t->size;
1976
1977
/* handle unaligned data; copy to local union */
1978
if (!ptr_is_aligned(d->btf, type_id, data)) {
1979
memcpy(&fl, data, sz);
1980
flp = &fl;
1981
}
1982
1983
switch (sz) {
1984
case 16:
1985
btf_dump_type_values(d, "%Lf", flp->ld);
1986
break;
1987
case 8:
1988
btf_dump_type_values(d, "%lf", flp->d);
1989
break;
1990
case 4:
1991
btf_dump_type_values(d, "%f", flp->f);
1992
break;
1993
default:
1994
pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1995
return -EINVAL;
1996
}
1997
return 0;
1998
}
1999
2000
static int btf_dump_var_data(struct btf_dump *d,
2001
const struct btf_type *v,
2002
__u32 id,
2003
const void *data)
2004
{
2005
enum btf_func_linkage linkage = btf_var(v)->linkage;
2006
const struct btf_type *t;
2007
const char *l;
2008
__u32 type_id;
2009
2010
switch (linkage) {
2011
case BTF_FUNC_STATIC:
2012
l = "static ";
2013
break;
2014
case BTF_FUNC_EXTERN:
2015
l = "extern ";
2016
break;
2017
case BTF_FUNC_GLOBAL:
2018
default:
2019
l = "";
2020
break;
2021
}
2022
2023
/* format of output here is [linkage] [type] [varname] = (type)value,
2024
* for example "static int cpu_profile_flip = (int)1"
2025
*/
2026
btf_dump_printf(d, "%s", l);
2027
type_id = v->type;
2028
t = btf__type_by_id(d->btf, type_id);
2029
btf_dump_emit_type_cast(d, type_id, false);
2030
btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2031
return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2032
}
2033
2034
static int btf_dump_string_data(struct btf_dump *d,
2035
const struct btf_type *t,
2036
__u32 id,
2037
const void *data)
2038
{
2039
const struct btf_array *array = btf_array(t);
2040
const char *chars = data;
2041
__u32 i;
2042
2043
/* Make sure it is a NUL-terminated string. */
2044
for (i = 0; i < array->nelems; i++) {
2045
if ((void *)(chars + i) >= d->typed_dump->data_end)
2046
return -E2BIG;
2047
if (chars[i] == '\0')
2048
break;
2049
}
2050
if (i == array->nelems) {
2051
/* The caller will print this as a regular array. */
2052
return -EINVAL;
2053
}
2054
2055
btf_dump_data_pfx(d);
2056
btf_dump_printf(d, "\"");
2057
2058
for (i = 0; i < array->nelems; i++) {
2059
char c = chars[i];
2060
2061
if (c == '\0') {
2062
/*
2063
* When printing character arrays as strings, NUL bytes
2064
* are always treated as string terminators; they are
2065
* never printed.
2066
*/
2067
break;
2068
}
2069
if (isprint(c))
2070
btf_dump_printf(d, "%c", c);
2071
else
2072
btf_dump_printf(d, "\\x%02x", (__u8)c);
2073
}
2074
2075
btf_dump_printf(d, "\"");
2076
2077
return 0;
2078
}
2079
2080
static int btf_dump_array_data(struct btf_dump *d,
2081
const struct btf_type *t,
2082
__u32 id,
2083
const void *data)
2084
{
2085
const struct btf_array *array = btf_array(t);
2086
const struct btf_type *elem_type;
2087
__u32 i, elem_type_id;
2088
__s64 elem_size;
2089
bool is_array_member;
2090
bool is_array_terminated;
2091
2092
elem_type_id = array->type;
2093
elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2094
elem_size = btf__resolve_size(d->btf, elem_type_id);
2095
if (elem_size <= 0) {
2096
pr_warn("unexpected elem size %zd for array type [%u]\n",
2097
(ssize_t)elem_size, id);
2098
return -EINVAL;
2099
}
2100
2101
if (btf_is_int(elem_type)) {
2102
/*
2103
* BTF_INT_CHAR encoding never seems to be set for
2104
* char arrays, so if size is 1 and element is
2105
* printable as a char, we'll do that.
2106
*/
2107
if (elem_size == 1) {
2108
if (d->typed_dump->emit_strings &&
2109
btf_dump_string_data(d, t, id, data) == 0) {
2110
return 0;
2111
}
2112
d->typed_dump->is_array_char = true;
2113
}
2114
}
2115
2116
/* note that we increment depth before calling btf_dump_print() below;
2117
* this is intentional. btf_dump_data_newline() will not print a
2118
* newline for depth 0 (since this leaves us with trailing newlines
2119
* at the end of typed display), so depth is incremented first.
2120
* For similar reasons, we decrement depth before showing the closing
2121
* parenthesis.
2122
*/
2123
d->typed_dump->depth++;
2124
btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2125
2126
/* may be a multidimensional array, so store current "is array member"
2127
* status so we can restore it correctly later.
2128
*/
2129
is_array_member = d->typed_dump->is_array_member;
2130
d->typed_dump->is_array_member = true;
2131
is_array_terminated = d->typed_dump->is_array_terminated;
2132
d->typed_dump->is_array_terminated = false;
2133
for (i = 0; i < array->nelems; i++, data += elem_size) {
2134
if (d->typed_dump->is_array_terminated)
2135
break;
2136
btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2137
}
2138
d->typed_dump->is_array_member = is_array_member;
2139
d->typed_dump->is_array_terminated = is_array_terminated;
2140
d->typed_dump->depth--;
2141
btf_dump_data_pfx(d);
2142
btf_dump_type_values(d, "]");
2143
2144
return 0;
2145
}
2146
2147
static int btf_dump_struct_data(struct btf_dump *d,
2148
const struct btf_type *t,
2149
__u32 id,
2150
const void *data)
2151
{
2152
const struct btf_member *m = btf_members(t);
2153
__u16 n = btf_vlen(t);
2154
int i, err = 0;
2155
2156
/* note that we increment depth before calling btf_dump_print() below;
2157
* this is intentional. btf_dump_data_newline() will not print a
2158
* newline for depth 0 (since this leaves us with trailing newlines
2159
* at the end of typed display), so depth is incremented first.
2160
* For similar reasons, we decrement depth before showing the closing
2161
* parenthesis.
2162
*/
2163
d->typed_dump->depth++;
2164
btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2165
2166
for (i = 0; i < n; i++, m++) {
2167
const struct btf_type *mtype;
2168
const char *mname;
2169
__u32 moffset;
2170
__u8 bit_sz;
2171
2172
mtype = btf__type_by_id(d->btf, m->type);
2173
mname = btf_name_of(d, m->name_off);
2174
moffset = btf_member_bit_offset(t, i);
2175
2176
bit_sz = btf_member_bitfield_size(t, i);
2177
err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2178
moffset % 8, bit_sz);
2179
if (err < 0)
2180
return err;
2181
}
2182
d->typed_dump->depth--;
2183
btf_dump_data_pfx(d);
2184
btf_dump_type_values(d, "}");
2185
return err;
2186
}
2187
2188
union ptr_data {
2189
unsigned int p;
2190
unsigned long long lp;
2191
};
2192
2193
static int btf_dump_ptr_data(struct btf_dump *d,
2194
const struct btf_type *t,
2195
__u32 id,
2196
const void *data)
2197
{
2198
if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2199
btf_dump_type_values(d, "%p", *(void **)data);
2200
} else {
2201
union ptr_data pt;
2202
2203
memcpy(&pt, data, d->ptr_sz);
2204
if (d->ptr_sz == 4)
2205
btf_dump_type_values(d, "0x%x", pt.p);
2206
else
2207
btf_dump_type_values(d, "0x%llx", pt.lp);
2208
}
2209
return 0;
2210
}
2211
2212
static int btf_dump_get_enum_value(struct btf_dump *d,
2213
const struct btf_type *t,
2214
const void *data,
2215
__u32 id,
2216
__s64 *value)
2217
{
2218
bool is_signed = btf_kflag(t);
2219
2220
if (!ptr_is_aligned(d->btf, id, data)) {
2221
__u64 val;
2222
int err;
2223
2224
err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2225
if (err)
2226
return err;
2227
*value = (__s64)val;
2228
return 0;
2229
}
2230
2231
switch (t->size) {
2232
case 8:
2233
*value = *(__s64 *)data;
2234
return 0;
2235
case 4:
2236
*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2237
return 0;
2238
case 2:
2239
*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2240
return 0;
2241
case 1:
2242
*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2243
return 0;
2244
default:
2245
pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2246
return -EINVAL;
2247
}
2248
}
2249
2250
static int btf_dump_enum_data(struct btf_dump *d,
2251
const struct btf_type *t,
2252
__u32 id,
2253
const void *data)
2254
{
2255
bool is_signed;
2256
__s64 value;
2257
int i, err;
2258
2259
err = btf_dump_get_enum_value(d, t, data, id, &value);
2260
if (err)
2261
return err;
2262
2263
is_signed = btf_kflag(t);
2264
if (btf_is_enum(t)) {
2265
const struct btf_enum *e;
2266
2267
for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2268
if (value != e->val)
2269
continue;
2270
btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2271
return 0;
2272
}
2273
2274
btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2275
} else {
2276
const struct btf_enum64 *e;
2277
2278
for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2279
if (value != btf_enum64_value(e))
2280
continue;
2281
btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2282
return 0;
2283
}
2284
2285
btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2286
(unsigned long long)value);
2287
}
2288
return 0;
2289
}
2290
2291
static int btf_dump_datasec_data(struct btf_dump *d,
2292
const struct btf_type *t,
2293
__u32 id,
2294
const void *data)
2295
{
2296
const struct btf_var_secinfo *vsi;
2297
const struct btf_type *var;
2298
__u32 i;
2299
int err;
2300
2301
btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2302
2303
for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2304
var = btf__type_by_id(d->btf, vsi->type);
2305
err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2306
if (err < 0)
2307
return err;
2308
btf_dump_printf(d, ";");
2309
}
2310
return 0;
2311
}
2312
2313
/* return size of type, or if base type overflows, return -E2BIG. */
2314
static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2315
const struct btf_type *t,
2316
__u32 id,
2317
const void *data,
2318
__u8 bits_offset,
2319
__u8 bit_sz)
2320
{
2321
__s64 size;
2322
2323
if (bit_sz) {
2324
/* bits_offset is at most 7. bit_sz is at most 128. */
2325
__u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2326
2327
/* When bit_sz is non zero, it is called from
2328
* btf_dump_struct_data() where it only cares about
2329
* negative error value.
2330
* Return nr_bytes in success case to make it
2331
* consistent as the regular integer case below.
2332
*/
2333
return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2334
}
2335
2336
size = btf__resolve_size(d->btf, id);
2337
2338
if (size < 0 || size >= INT_MAX) {
2339
pr_warn("unexpected size [%zu] for id [%u]\n",
2340
(size_t)size, id);
2341
return -EINVAL;
2342
}
2343
2344
/* Only do overflow checking for base types; we do not want to
2345
* avoid showing part of a struct, union or array, even if we
2346
* do not have enough data to show the full object. By
2347
* restricting overflow checking to base types we can ensure
2348
* that partial display succeeds, while avoiding overflowing
2349
* and using bogus data for display.
2350
*/
2351
t = skip_mods_and_typedefs(d->btf, id, NULL);
2352
if (!t) {
2353
pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2354
id);
2355
return -EINVAL;
2356
}
2357
2358
switch (btf_kind(t)) {
2359
case BTF_KIND_INT:
2360
case BTF_KIND_FLOAT:
2361
case BTF_KIND_PTR:
2362
case BTF_KIND_ENUM:
2363
case BTF_KIND_ENUM64:
2364
if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2365
return -E2BIG;
2366
break;
2367
default:
2368
break;
2369
}
2370
return (int)size;
2371
}
2372
2373
static int btf_dump_type_data_check_zero(struct btf_dump *d,
2374
const struct btf_type *t,
2375
__u32 id,
2376
const void *data,
2377
__u8 bits_offset,
2378
__u8 bit_sz)
2379
{
2380
__s64 value;
2381
int i, err;
2382
2383
/* toplevel exceptions; we show zero values if
2384
* - we ask for them (emit_zeros)
2385
* - if we are at top-level so we see "struct empty { }"
2386
* - or if we are an array member and the array is non-empty and
2387
* not a char array; we don't want to be in a situation where we
2388
* have an integer array 0, 1, 0, 1 and only show non-zero values.
2389
* If the array contains zeroes only, or is a char array starting
2390
* with a '\0', the array-level check_zero() will prevent showing it;
2391
* we are concerned with determining zero value at the array member
2392
* level here.
2393
*/
2394
if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2395
(d->typed_dump->is_array_member &&
2396
!d->typed_dump->is_array_char))
2397
return 0;
2398
2399
t = skip_mods_and_typedefs(d->btf, id, NULL);
2400
2401
switch (btf_kind(t)) {
2402
case BTF_KIND_INT:
2403
if (bit_sz)
2404
return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2405
return btf_dump_base_type_check_zero(d, t, id, data);
2406
case BTF_KIND_FLOAT:
2407
case BTF_KIND_PTR:
2408
return btf_dump_base_type_check_zero(d, t, id, data);
2409
case BTF_KIND_ARRAY: {
2410
const struct btf_array *array = btf_array(t);
2411
const struct btf_type *elem_type;
2412
__u32 elem_type_id, elem_size;
2413
bool ischar;
2414
2415
elem_type_id = array->type;
2416
elem_size = btf__resolve_size(d->btf, elem_type_id);
2417
elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2418
2419
ischar = btf_is_int(elem_type) && elem_size == 1;
2420
2421
/* check all elements; if _any_ element is nonzero, all
2422
* of array is displayed. We make an exception however
2423
* for char arrays where the first element is 0; these
2424
* are considered zeroed also, even if later elements are
2425
* non-zero because the string is terminated.
2426
*/
2427
for (i = 0; i < array->nelems; i++) {
2428
if (i == 0 && ischar && *(char *)data == 0)
2429
return -ENODATA;
2430
err = btf_dump_type_data_check_zero(d, elem_type,
2431
elem_type_id,
2432
data +
2433
(i * elem_size),
2434
bits_offset, 0);
2435
if (err != -ENODATA)
2436
return err;
2437
}
2438
return -ENODATA;
2439
}
2440
case BTF_KIND_STRUCT:
2441
case BTF_KIND_UNION: {
2442
const struct btf_member *m = btf_members(t);
2443
__u16 n = btf_vlen(t);
2444
2445
/* if any struct/union member is non-zero, the struct/union
2446
* is considered non-zero and dumped.
2447
*/
2448
for (i = 0; i < n; i++, m++) {
2449
const struct btf_type *mtype;
2450
__u32 moffset;
2451
2452
mtype = btf__type_by_id(d->btf, m->type);
2453
moffset = btf_member_bit_offset(t, i);
2454
2455
/* btf_int_bits() does not store member bitfield size;
2456
* bitfield size needs to be stored here so int display
2457
* of member can retrieve it.
2458
*/
2459
bit_sz = btf_member_bitfield_size(t, i);
2460
err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2461
moffset % 8, bit_sz);
2462
if (err != ENODATA)
2463
return err;
2464
}
2465
return -ENODATA;
2466
}
2467
case BTF_KIND_ENUM:
2468
case BTF_KIND_ENUM64:
2469
err = btf_dump_get_enum_value(d, t, data, id, &value);
2470
if (err)
2471
return err;
2472
if (value == 0)
2473
return -ENODATA;
2474
return 0;
2475
default:
2476
return 0;
2477
}
2478
}
2479
2480
/* returns size of data dumped, or error. */
2481
static int btf_dump_dump_type_data(struct btf_dump *d,
2482
const char *fname,
2483
const struct btf_type *t,
2484
__u32 id,
2485
const void *data,
2486
__u8 bits_offset,
2487
__u8 bit_sz)
2488
{
2489
int size, err = 0;
2490
2491
size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2492
if (size < 0)
2493
return size;
2494
err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2495
if (err) {
2496
/* zeroed data is expected and not an error, so simply skip
2497
* dumping such data. Record other errors however.
2498
*/
2499
if (err == -ENODATA)
2500
return size;
2501
return err;
2502
}
2503
btf_dump_data_pfx(d);
2504
2505
if (!d->typed_dump->skip_names) {
2506
if (fname && strlen(fname) > 0)
2507
btf_dump_printf(d, ".%s = ", fname);
2508
btf_dump_emit_type_cast(d, id, true);
2509
}
2510
2511
t = skip_mods_and_typedefs(d->btf, id, NULL);
2512
2513
switch (btf_kind(t)) {
2514
case BTF_KIND_UNKN:
2515
case BTF_KIND_FWD:
2516
case BTF_KIND_FUNC:
2517
case BTF_KIND_FUNC_PROTO:
2518
case BTF_KIND_DECL_TAG:
2519
err = btf_dump_unsupported_data(d, t, id);
2520
break;
2521
case BTF_KIND_INT:
2522
if (bit_sz)
2523
err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2524
else
2525
err = btf_dump_int_data(d, t, id, data, bits_offset);
2526
break;
2527
case BTF_KIND_FLOAT:
2528
err = btf_dump_float_data(d, t, id, data);
2529
break;
2530
case BTF_KIND_PTR:
2531
err = btf_dump_ptr_data(d, t, id, data);
2532
break;
2533
case BTF_KIND_ARRAY:
2534
err = btf_dump_array_data(d, t, id, data);
2535
break;
2536
case BTF_KIND_STRUCT:
2537
case BTF_KIND_UNION:
2538
err = btf_dump_struct_data(d, t, id, data);
2539
break;
2540
case BTF_KIND_ENUM:
2541
case BTF_KIND_ENUM64:
2542
/* handle bitfield and int enum values */
2543
if (bit_sz) {
2544
__u64 print_num;
2545
__s64 enum_val;
2546
2547
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2548
&print_num);
2549
if (err)
2550
break;
2551
enum_val = (__s64)print_num;
2552
err = btf_dump_enum_data(d, t, id, &enum_val);
2553
} else
2554
err = btf_dump_enum_data(d, t, id, data);
2555
break;
2556
case BTF_KIND_VAR:
2557
err = btf_dump_var_data(d, t, id, data);
2558
break;
2559
case BTF_KIND_DATASEC:
2560
err = btf_dump_datasec_data(d, t, id, data);
2561
break;
2562
default:
2563
pr_warn("unexpected kind [%u] for id [%u]\n",
2564
BTF_INFO_KIND(t->info), id);
2565
return -EINVAL;
2566
}
2567
if (err < 0)
2568
return err;
2569
return size;
2570
}
2571
2572
int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2573
const void *data, size_t data_sz,
2574
const struct btf_dump_type_data_opts *opts)
2575
{
2576
struct btf_dump_data typed_dump = {};
2577
const struct btf_type *t;
2578
int ret;
2579
2580
if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2581
return libbpf_err(-EINVAL);
2582
2583
t = btf__type_by_id(d->btf, id);
2584
if (!t)
2585
return libbpf_err(-ENOENT);
2586
2587
d->typed_dump = &typed_dump;
2588
d->typed_dump->data_end = data + data_sz;
2589
d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2590
2591
/* default indent string is a tab */
2592
if (!OPTS_GET(opts, indent_str, NULL))
2593
d->typed_dump->indent_str[0] = '\t';
2594
else
2595
libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2596
sizeof(d->typed_dump->indent_str));
2597
2598
d->typed_dump->compact = OPTS_GET(opts, compact, false);
2599
d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2600
d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2601
d->typed_dump->emit_strings = OPTS_GET(opts, emit_strings, false);
2602
2603
ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2604
2605
d->typed_dump = NULL;
2606
2607
return libbpf_err(ret);
2608
}
2609
2610