Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/relo_core.c
29278 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
/* Copyright (c) 2019 Facebook */
3
4
#ifdef __KERNEL__
5
#include <linux/bpf.h>
6
#include <linux/btf.h>
7
#include <linux/string.h>
8
#include <linux/bpf_verifier.h>
9
#include "relo_core.h"
10
11
static const char *btf_kind_str(const struct btf_type *t)
12
{
13
return btf_type_str(t);
14
}
15
16
static bool is_ldimm64_insn(struct bpf_insn *insn)
17
{
18
return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19
}
20
21
static const struct btf_type *
22
skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23
{
24
return btf_type_skip_modifiers(btf, id, res_id);
25
}
26
27
static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28
{
29
return btf_name_by_offset(btf, offset);
30
}
31
32
static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33
{
34
const struct btf_type *t;
35
int size;
36
37
t = btf_type_by_id(btf, type_id);
38
t = btf_resolve_size(btf, t, &size);
39
if (IS_ERR(t))
40
return PTR_ERR(t);
41
return size;
42
}
43
44
enum libbpf_print_level {
45
LIBBPF_WARN,
46
LIBBPF_INFO,
47
LIBBPF_DEBUG,
48
};
49
50
#undef pr_warn
51
#undef pr_info
52
#undef pr_debug
53
#define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54
#define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55
#define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56
#define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57
#else
58
#include <stdio.h>
59
#include <string.h>
60
#include <errno.h>
61
#include <ctype.h>
62
#include <linux/err.h>
63
64
#include "libbpf.h"
65
#include "bpf.h"
66
#include "btf.h"
67
#include "libbpf_internal.h"
68
#endif
69
70
static bool is_flex_arr(const struct btf *btf,
71
const struct bpf_core_accessor *acc,
72
const struct btf_array *arr)
73
{
74
const struct btf_type *t;
75
76
/* not a flexible array, if not inside a struct or has non-zero size */
77
if (!acc->name || arr->nelems > 0)
78
return false;
79
80
/* has to be the last member of enclosing struct */
81
t = btf_type_by_id(btf, acc->type_id);
82
return acc->idx == btf_vlen(t) - 1;
83
}
84
85
static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
86
{
87
switch (kind) {
88
case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
89
case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
90
case BPF_CORE_FIELD_EXISTS: return "field_exists";
91
case BPF_CORE_FIELD_SIGNED: return "signed";
92
case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
93
case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
94
case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
95
case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
96
case BPF_CORE_TYPE_EXISTS: return "type_exists";
97
case BPF_CORE_TYPE_MATCHES: return "type_matches";
98
case BPF_CORE_TYPE_SIZE: return "type_size";
99
case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
100
case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
101
default: return "unknown";
102
}
103
}
104
105
static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
106
{
107
switch (kind) {
108
case BPF_CORE_FIELD_BYTE_OFFSET:
109
case BPF_CORE_FIELD_BYTE_SIZE:
110
case BPF_CORE_FIELD_EXISTS:
111
case BPF_CORE_FIELD_SIGNED:
112
case BPF_CORE_FIELD_LSHIFT_U64:
113
case BPF_CORE_FIELD_RSHIFT_U64:
114
return true;
115
default:
116
return false;
117
}
118
}
119
120
static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
121
{
122
switch (kind) {
123
case BPF_CORE_TYPE_ID_LOCAL:
124
case BPF_CORE_TYPE_ID_TARGET:
125
case BPF_CORE_TYPE_EXISTS:
126
case BPF_CORE_TYPE_MATCHES:
127
case BPF_CORE_TYPE_SIZE:
128
return true;
129
default:
130
return false;
131
}
132
}
133
134
static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
135
{
136
switch (kind) {
137
case BPF_CORE_ENUMVAL_EXISTS:
138
case BPF_CORE_ENUMVAL_VALUE:
139
return true;
140
default:
141
return false;
142
}
143
}
144
145
int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
146
const struct btf *targ_btf, __u32 targ_id, int level)
147
{
148
const struct btf_type *local_type, *targ_type;
149
int depth = 32; /* max recursion depth */
150
151
/* caller made sure that names match (ignoring flavor suffix) */
152
local_type = btf_type_by_id(local_btf, local_id);
153
targ_type = btf_type_by_id(targ_btf, targ_id);
154
if (!btf_kind_core_compat(local_type, targ_type))
155
return 0;
156
157
recur:
158
depth--;
159
if (depth < 0)
160
return -EINVAL;
161
162
local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
163
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
164
if (!local_type || !targ_type)
165
return -EINVAL;
166
167
if (!btf_kind_core_compat(local_type, targ_type))
168
return 0;
169
170
switch (btf_kind(local_type)) {
171
case BTF_KIND_UNKN:
172
case BTF_KIND_STRUCT:
173
case BTF_KIND_UNION:
174
case BTF_KIND_ENUM:
175
case BTF_KIND_FWD:
176
case BTF_KIND_ENUM64:
177
return 1;
178
case BTF_KIND_INT:
179
/* just reject deprecated bitfield-like integers; all other
180
* integers are by default compatible between each other
181
*/
182
return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
183
case BTF_KIND_PTR:
184
local_id = local_type->type;
185
targ_id = targ_type->type;
186
goto recur;
187
case BTF_KIND_ARRAY:
188
local_id = btf_array(local_type)->type;
189
targ_id = btf_array(targ_type)->type;
190
goto recur;
191
case BTF_KIND_FUNC_PROTO: {
192
struct btf_param *local_p = btf_params(local_type);
193
struct btf_param *targ_p = btf_params(targ_type);
194
__u16 local_vlen = btf_vlen(local_type);
195
__u16 targ_vlen = btf_vlen(targ_type);
196
int i, err;
197
198
if (local_vlen != targ_vlen)
199
return 0;
200
201
for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
202
if (level <= 0)
203
return -EINVAL;
204
205
skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
206
skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
207
err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
208
level - 1);
209
if (err <= 0)
210
return err;
211
}
212
213
/* tail recurse for return type check */
214
skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
215
skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
216
goto recur;
217
}
218
default:
219
pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
220
btf_kind_str(local_type), local_id, targ_id);
221
return 0;
222
}
223
}
224
225
/*
226
* Turn bpf_core_relo into a low- and high-level spec representation,
227
* validating correctness along the way, as well as calculating resulting
228
* field bit offset, specified by accessor string. Low-level spec captures
229
* every single level of nestedness, including traversing anonymous
230
* struct/union members. High-level one only captures semantically meaningful
231
* "turning points": named fields and array indicies.
232
* E.g., for this case:
233
*
234
* struct sample {
235
* int __unimportant;
236
* struct {
237
* int __1;
238
* int __2;
239
* int a[7];
240
* };
241
* };
242
*
243
* struct sample *s = ...;
244
*
245
* int x = &s->a[3]; // access string = '0:1:2:3'
246
*
247
* Low-level spec has 1:1 mapping with each element of access string (it's
248
* just a parsed access string representation): [0, 1, 2, 3].
249
*
250
* High-level spec will capture only 3 points:
251
* - initial zero-index access by pointer (&s->... is the same as &s[0]...);
252
* - field 'a' access (corresponds to '2' in low-level spec);
253
* - array element #3 access (corresponds to '3' in low-level spec).
254
*
255
* Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
256
* TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
257
* spec and raw_spec are kept empty.
258
*
259
* Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
260
* string to specify enumerator's value index that need to be relocated.
261
*/
262
int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
263
const struct bpf_core_relo *relo,
264
struct bpf_core_spec *spec)
265
{
266
int access_idx, parsed_len, i;
267
struct bpf_core_accessor *acc;
268
const struct btf_type *t;
269
const char *name, *spec_str;
270
__u32 id, name_off;
271
__s64 sz;
272
273
spec_str = btf__name_by_offset(btf, relo->access_str_off);
274
if (str_is_empty(spec_str) || *spec_str == ':')
275
return -EINVAL;
276
277
memset(spec, 0, sizeof(*spec));
278
spec->btf = btf;
279
spec->root_type_id = relo->type_id;
280
spec->relo_kind = relo->kind;
281
282
/* type-based relocations don't have a field access string */
283
if (core_relo_is_type_based(relo->kind)) {
284
if (strcmp(spec_str, "0"))
285
return -EINVAL;
286
return 0;
287
}
288
289
/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
290
while (*spec_str) {
291
if (*spec_str == ':')
292
++spec_str;
293
if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
294
return -EINVAL;
295
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
296
return -E2BIG;
297
spec_str += parsed_len;
298
spec->raw_spec[spec->raw_len++] = access_idx;
299
}
300
301
if (spec->raw_len == 0)
302
return -EINVAL;
303
304
t = skip_mods_and_typedefs(btf, relo->type_id, &id);
305
if (!t)
306
return -EINVAL;
307
308
access_idx = spec->raw_spec[0];
309
acc = &spec->spec[0];
310
acc->type_id = id;
311
acc->idx = access_idx;
312
spec->len++;
313
314
if (core_relo_is_enumval_based(relo->kind)) {
315
if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
316
return -EINVAL;
317
318
/* record enumerator name in a first accessor */
319
name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
320
: btf_enum64(t)[access_idx].name_off;
321
acc->name = btf__name_by_offset(btf, name_off);
322
return 0;
323
}
324
325
if (!core_relo_is_field_based(relo->kind))
326
return -EINVAL;
327
328
sz = btf__resolve_size(btf, id);
329
if (sz < 0)
330
return sz;
331
spec->bit_offset = access_idx * sz * 8;
332
333
for (i = 1; i < spec->raw_len; i++) {
334
t = skip_mods_and_typedefs(btf, id, &id);
335
if (!t)
336
return -EINVAL;
337
338
access_idx = spec->raw_spec[i];
339
acc = &spec->spec[spec->len];
340
341
if (btf_is_composite(t)) {
342
const struct btf_member *m;
343
__u32 bit_offset;
344
345
if (access_idx >= btf_vlen(t))
346
return -EINVAL;
347
348
bit_offset = btf_member_bit_offset(t, access_idx);
349
spec->bit_offset += bit_offset;
350
351
m = btf_members(t) + access_idx;
352
if (m->name_off) {
353
name = btf__name_by_offset(btf, m->name_off);
354
if (str_is_empty(name))
355
return -EINVAL;
356
357
acc->type_id = id;
358
acc->idx = access_idx;
359
acc->name = name;
360
spec->len++;
361
}
362
363
id = m->type;
364
} else if (btf_is_array(t)) {
365
const struct btf_array *a = btf_array(t);
366
bool flex;
367
368
t = skip_mods_and_typedefs(btf, a->type, &id);
369
if (!t)
370
return -EINVAL;
371
372
flex = is_flex_arr(btf, acc - 1, a);
373
if (!flex && access_idx >= a->nelems)
374
return -EINVAL;
375
376
spec->spec[spec->len].type_id = id;
377
spec->spec[spec->len].idx = access_idx;
378
spec->len++;
379
380
sz = btf__resolve_size(btf, id);
381
if (sz < 0)
382
return sz;
383
spec->bit_offset += access_idx * sz * 8;
384
} else {
385
pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
386
prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
387
return -EINVAL;
388
}
389
}
390
391
return 0;
392
}
393
394
/* Check two types for compatibility for the purpose of field access
395
* relocation. const/volatile/restrict and typedefs are skipped to ensure we
396
* are relocating semantically compatible entities:
397
* - any two STRUCTs/UNIONs are compatible and can be mixed;
398
* - any two FWDs are compatible, if their names match (modulo flavor suffix);
399
* - any two PTRs are always compatible;
400
* - for ENUMs, names should be the same (ignoring flavor suffix) or at
401
* least one of enums should be anonymous;
402
* - for ENUMs, check sizes, names are ignored;
403
* - for INT, size and signedness are ignored;
404
* - any two FLOATs are always compatible;
405
* - for ARRAY, dimensionality is ignored, element types are checked for
406
* compatibility recursively;
407
* - everything else shouldn't be ever a target of relocation.
408
* These rules are not set in stone and probably will be adjusted as we get
409
* more experience with using BPF CO-RE relocations.
410
*/
411
static int bpf_core_fields_are_compat(const struct btf *local_btf,
412
__u32 local_id,
413
const struct btf *targ_btf,
414
__u32 targ_id)
415
{
416
const struct btf_type *local_type, *targ_type;
417
418
recur:
419
local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
420
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
421
if (!local_type || !targ_type)
422
return -EINVAL;
423
424
if (btf_is_composite(local_type) && btf_is_composite(targ_type))
425
return 1;
426
if (!btf_kind_core_compat(local_type, targ_type))
427
return 0;
428
429
switch (btf_kind(local_type)) {
430
case BTF_KIND_PTR:
431
case BTF_KIND_FLOAT:
432
return 1;
433
case BTF_KIND_FWD:
434
case BTF_KIND_ENUM64:
435
case BTF_KIND_ENUM: {
436
const char *local_name, *targ_name;
437
size_t local_len, targ_len;
438
439
local_name = btf__name_by_offset(local_btf,
440
local_type->name_off);
441
targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
442
local_len = bpf_core_essential_name_len(local_name);
443
targ_len = bpf_core_essential_name_len(targ_name);
444
/* one of them is anonymous or both w/ same flavor-less names */
445
return local_len == 0 || targ_len == 0 ||
446
(local_len == targ_len &&
447
strncmp(local_name, targ_name, local_len) == 0);
448
}
449
case BTF_KIND_INT:
450
/* just reject deprecated bitfield-like integers; all other
451
* integers are by default compatible between each other
452
*/
453
return btf_int_offset(local_type) == 0 &&
454
btf_int_offset(targ_type) == 0;
455
case BTF_KIND_ARRAY:
456
local_id = btf_array(local_type)->type;
457
targ_id = btf_array(targ_type)->type;
458
goto recur;
459
default:
460
return 0;
461
}
462
}
463
464
/*
465
* Given single high-level named field accessor in local type, find
466
* corresponding high-level accessor for a target type. Along the way,
467
* maintain low-level spec for target as well. Also keep updating target
468
* bit offset.
469
*
470
* Searching is performed through recursive exhaustive enumeration of all
471
* fields of a struct/union. If there are any anonymous (embedded)
472
* structs/unions, they are recursively searched as well. If field with
473
* desired name is found, check compatibility between local and target types,
474
* before returning result.
475
*
476
* 1 is returned, if field is found.
477
* 0 is returned if no compatible field is found.
478
* <0 is returned on error.
479
*/
480
static int bpf_core_match_member(const struct btf *local_btf,
481
const struct bpf_core_accessor *local_acc,
482
const struct btf *targ_btf,
483
__u32 targ_id,
484
struct bpf_core_spec *spec,
485
__u32 *next_targ_id)
486
{
487
const struct btf_type *local_type, *targ_type;
488
const struct btf_member *local_member, *m;
489
const char *local_name, *targ_name;
490
__u32 local_id;
491
int i, n, found;
492
493
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
494
if (!targ_type)
495
return -EINVAL;
496
if (!btf_is_composite(targ_type))
497
return 0;
498
499
local_id = local_acc->type_id;
500
local_type = btf_type_by_id(local_btf, local_id);
501
local_member = btf_members(local_type) + local_acc->idx;
502
local_name = btf__name_by_offset(local_btf, local_member->name_off);
503
504
n = btf_vlen(targ_type);
505
m = btf_members(targ_type);
506
for (i = 0; i < n; i++, m++) {
507
__u32 bit_offset;
508
509
bit_offset = btf_member_bit_offset(targ_type, i);
510
511
/* too deep struct/union/array nesting */
512
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
513
return -E2BIG;
514
515
/* speculate this member will be the good one */
516
spec->bit_offset += bit_offset;
517
spec->raw_spec[spec->raw_len++] = i;
518
519
targ_name = btf__name_by_offset(targ_btf, m->name_off);
520
if (str_is_empty(targ_name)) {
521
/* embedded struct/union, we need to go deeper */
522
found = bpf_core_match_member(local_btf, local_acc,
523
targ_btf, m->type,
524
spec, next_targ_id);
525
if (found) /* either found or error */
526
return found;
527
} else if (strcmp(local_name, targ_name) == 0) {
528
/* matching named field */
529
struct bpf_core_accessor *targ_acc;
530
531
targ_acc = &spec->spec[spec->len++];
532
targ_acc->type_id = targ_id;
533
targ_acc->idx = i;
534
targ_acc->name = targ_name;
535
536
*next_targ_id = m->type;
537
found = bpf_core_fields_are_compat(local_btf,
538
local_member->type,
539
targ_btf, m->type);
540
if (!found)
541
spec->len--; /* pop accessor */
542
return found;
543
}
544
/* member turned out not to be what we looked for */
545
spec->bit_offset -= bit_offset;
546
spec->raw_len--;
547
}
548
549
return 0;
550
}
551
552
/*
553
* Try to match local spec to a target type and, if successful, produce full
554
* target spec (high-level, low-level + bit offset).
555
*/
556
static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
557
const struct btf *targ_btf, __u32 targ_id,
558
struct bpf_core_spec *targ_spec)
559
{
560
const struct btf_type *targ_type;
561
const struct bpf_core_accessor *local_acc;
562
struct bpf_core_accessor *targ_acc;
563
int i, sz, matched;
564
__u32 name_off;
565
566
memset(targ_spec, 0, sizeof(*targ_spec));
567
targ_spec->btf = targ_btf;
568
targ_spec->root_type_id = targ_id;
569
targ_spec->relo_kind = local_spec->relo_kind;
570
571
if (core_relo_is_type_based(local_spec->relo_kind)) {
572
if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
573
return bpf_core_types_match(local_spec->btf,
574
local_spec->root_type_id,
575
targ_btf, targ_id);
576
else
577
return bpf_core_types_are_compat(local_spec->btf,
578
local_spec->root_type_id,
579
targ_btf, targ_id);
580
}
581
582
local_acc = &local_spec->spec[0];
583
targ_acc = &targ_spec->spec[0];
584
585
if (core_relo_is_enumval_based(local_spec->relo_kind)) {
586
size_t local_essent_len, targ_essent_len;
587
const char *targ_name;
588
589
/* has to resolve to an enum */
590
targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
591
if (!btf_is_any_enum(targ_type))
592
return 0;
593
594
local_essent_len = bpf_core_essential_name_len(local_acc->name);
595
596
for (i = 0; i < btf_vlen(targ_type); i++) {
597
if (btf_is_enum(targ_type))
598
name_off = btf_enum(targ_type)[i].name_off;
599
else
600
name_off = btf_enum64(targ_type)[i].name_off;
601
602
targ_name = btf__name_by_offset(targ_spec->btf, name_off);
603
targ_essent_len = bpf_core_essential_name_len(targ_name);
604
if (targ_essent_len != local_essent_len)
605
continue;
606
if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
607
targ_acc->type_id = targ_id;
608
targ_acc->idx = i;
609
targ_acc->name = targ_name;
610
targ_spec->len++;
611
targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
612
targ_spec->raw_len++;
613
return 1;
614
}
615
}
616
return 0;
617
}
618
619
if (!core_relo_is_field_based(local_spec->relo_kind))
620
return -EINVAL;
621
622
for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
623
targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
624
&targ_id);
625
if (!targ_type)
626
return -EINVAL;
627
628
if (local_acc->name) {
629
matched = bpf_core_match_member(local_spec->btf,
630
local_acc,
631
targ_btf, targ_id,
632
targ_spec, &targ_id);
633
if (matched <= 0)
634
return matched;
635
} else {
636
/* for i=0, targ_id is already treated as array element
637
* type (because it's the original struct), for others
638
* we should find array element type first
639
*/
640
if (i > 0) {
641
const struct btf_array *a;
642
bool flex;
643
644
if (!btf_is_array(targ_type))
645
return 0;
646
647
a = btf_array(targ_type);
648
flex = is_flex_arr(targ_btf, targ_acc - 1, a);
649
if (!flex && local_acc->idx >= a->nelems)
650
return 0;
651
if (!skip_mods_and_typedefs(targ_btf, a->type,
652
&targ_id))
653
return -EINVAL;
654
}
655
656
/* too deep struct/union/array nesting */
657
if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
658
return -E2BIG;
659
660
targ_acc->type_id = targ_id;
661
targ_acc->idx = local_acc->idx;
662
targ_acc->name = NULL;
663
targ_spec->len++;
664
targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
665
targ_spec->raw_len++;
666
667
sz = btf__resolve_size(targ_btf, targ_id);
668
if (sz < 0)
669
return sz;
670
targ_spec->bit_offset += local_acc->idx * sz * 8;
671
}
672
}
673
674
return 1;
675
}
676
677
static int bpf_core_calc_field_relo(const char *prog_name,
678
const struct bpf_core_relo *relo,
679
const struct bpf_core_spec *spec,
680
__u64 *val, __u32 *field_sz, __u32 *type_id,
681
bool *validate)
682
{
683
const struct bpf_core_accessor *acc;
684
const struct btf_type *t;
685
__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id;
686
const struct btf_member *m;
687
const struct btf_type *mt;
688
bool bitfield;
689
__s64 sz;
690
691
*field_sz = 0;
692
693
if (relo->kind == BPF_CORE_FIELD_EXISTS) {
694
*val = spec ? 1 : 0;
695
return 0;
696
}
697
698
if (!spec)
699
return -EUCLEAN; /* request instruction poisoning */
700
701
acc = &spec->spec[spec->len - 1];
702
t = btf_type_by_id(spec->btf, acc->type_id);
703
704
/* a[n] accessor needs special handling */
705
if (!acc->name) {
706
if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
707
*val = spec->bit_offset / 8;
708
/* remember field size for load/store mem size;
709
* note, for arrays we care about individual element
710
* sizes, not the overall array size
711
*/
712
t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id);
713
while (btf_is_array(t))
714
t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
715
sz = btf__resolve_size(spec->btf, elem_id);
716
if (sz < 0)
717
return -EINVAL;
718
*field_sz = sz;
719
*type_id = acc->type_id;
720
} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
721
sz = btf__resolve_size(spec->btf, acc->type_id);
722
if (sz < 0)
723
return -EINVAL;
724
*val = sz;
725
} else {
726
pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
727
prog_name, relo->kind, relo->insn_off / 8);
728
return -EINVAL;
729
}
730
if (validate)
731
*validate = true;
732
return 0;
733
}
734
735
m = btf_members(t) + acc->idx;
736
mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
737
bit_off = spec->bit_offset;
738
bit_sz = btf_member_bitfield_size(t, acc->idx);
739
740
bitfield = bit_sz > 0;
741
if (bitfield) {
742
byte_sz = mt->size;
743
byte_off = bit_off / 8 / byte_sz * byte_sz;
744
/* figure out smallest int size necessary for bitfield load */
745
while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
746
if (byte_sz >= 8) {
747
/* bitfield can't be read with 64-bit read */
748
pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
749
prog_name, relo->kind, relo->insn_off / 8);
750
return -E2BIG;
751
}
752
byte_sz *= 2;
753
byte_off = bit_off / 8 / byte_sz * byte_sz;
754
}
755
} else {
756
sz = btf__resolve_size(spec->btf, field_type_id);
757
if (sz < 0)
758
return -EINVAL;
759
byte_sz = sz;
760
byte_off = spec->bit_offset / 8;
761
bit_sz = byte_sz * 8;
762
}
763
764
/* for bitfields, all the relocatable aspects are ambiguous and we
765
* might disagree with compiler, so turn off validation of expected
766
* value, except for signedness
767
*/
768
if (validate)
769
*validate = !bitfield;
770
771
switch (relo->kind) {
772
case BPF_CORE_FIELD_BYTE_OFFSET:
773
*val = byte_off;
774
if (!bitfield) {
775
/* remember field size for load/store mem size;
776
* note, for arrays we care about individual element
777
* sizes, not the overall array size
778
*/
779
t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id);
780
while (btf_is_array(t))
781
t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
782
sz = btf__resolve_size(spec->btf, elem_id);
783
if (sz < 0)
784
return -EINVAL;
785
*field_sz = sz;
786
*type_id = field_type_id;
787
}
788
break;
789
case BPF_CORE_FIELD_BYTE_SIZE:
790
*val = byte_sz;
791
break;
792
case BPF_CORE_FIELD_SIGNED:
793
*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
794
(btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
795
if (validate)
796
*validate = true; /* signedness is never ambiguous */
797
break;
798
case BPF_CORE_FIELD_LSHIFT_U64:
799
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
800
*val = 64 - (bit_off + bit_sz - byte_off * 8);
801
#else
802
*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
803
#endif
804
break;
805
case BPF_CORE_FIELD_RSHIFT_U64:
806
*val = 64 - bit_sz;
807
if (validate)
808
*validate = true; /* right shift is never ambiguous */
809
break;
810
case BPF_CORE_FIELD_EXISTS:
811
default:
812
return -EOPNOTSUPP;
813
}
814
815
return 0;
816
}
817
818
static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
819
const struct bpf_core_spec *spec,
820
__u64 *val, bool *validate)
821
{
822
__s64 sz;
823
824
/* by default, always check expected value in bpf_insn */
825
if (validate)
826
*validate = true;
827
828
/* type-based relos return zero when target type is not found */
829
if (!spec) {
830
*val = 0;
831
return 0;
832
}
833
834
switch (relo->kind) {
835
case BPF_CORE_TYPE_ID_TARGET:
836
*val = spec->root_type_id;
837
/* type ID, embedded in bpf_insn, might change during linking,
838
* so enforcing it is pointless
839
*/
840
if (validate)
841
*validate = false;
842
break;
843
case BPF_CORE_TYPE_EXISTS:
844
case BPF_CORE_TYPE_MATCHES:
845
*val = 1;
846
break;
847
case BPF_CORE_TYPE_SIZE:
848
sz = btf__resolve_size(spec->btf, spec->root_type_id);
849
if (sz < 0)
850
return -EINVAL;
851
*val = sz;
852
break;
853
case BPF_CORE_TYPE_ID_LOCAL:
854
/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
855
default:
856
return -EOPNOTSUPP;
857
}
858
859
return 0;
860
}
861
862
static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
863
const struct bpf_core_spec *spec,
864
__u64 *val)
865
{
866
const struct btf_type *t;
867
868
switch (relo->kind) {
869
case BPF_CORE_ENUMVAL_EXISTS:
870
*val = spec ? 1 : 0;
871
break;
872
case BPF_CORE_ENUMVAL_VALUE:
873
if (!spec)
874
return -EUCLEAN; /* request instruction poisoning */
875
t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
876
if (btf_is_enum(t))
877
*val = btf_enum(t)[spec->spec[0].idx].val;
878
else
879
*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
880
break;
881
default:
882
return -EOPNOTSUPP;
883
}
884
885
return 0;
886
}
887
888
/* Calculate original and target relocation values, given local and target
889
* specs and relocation kind. These values are calculated for each candidate.
890
* If there are multiple candidates, resulting values should all be consistent
891
* with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
892
* If instruction has to be poisoned, *poison will be set to true.
893
*/
894
static int bpf_core_calc_relo(const char *prog_name,
895
const struct bpf_core_relo *relo,
896
int relo_idx,
897
const struct bpf_core_spec *local_spec,
898
const struct bpf_core_spec *targ_spec,
899
struct bpf_core_relo_res *res)
900
{
901
int err = -EOPNOTSUPP;
902
903
res->orig_val = 0;
904
res->new_val = 0;
905
res->poison = false;
906
res->validate = true;
907
res->fail_memsz_adjust = false;
908
res->orig_sz = res->new_sz = 0;
909
res->orig_type_id = res->new_type_id = 0;
910
911
if (core_relo_is_field_based(relo->kind)) {
912
err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
913
&res->orig_val, &res->orig_sz,
914
&res->orig_type_id, &res->validate);
915
err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
916
&res->new_val, &res->new_sz,
917
&res->new_type_id, NULL);
918
if (err)
919
goto done;
920
/* Validate if it's safe to adjust load/store memory size.
921
* Adjustments are performed only if original and new memory
922
* sizes differ.
923
*/
924
res->fail_memsz_adjust = false;
925
if (res->orig_sz != res->new_sz) {
926
const struct btf_type *orig_t, *new_t;
927
928
orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
929
new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
930
931
/* There are two use cases in which it's safe to
932
* adjust load/store's mem size:
933
* - reading a 32-bit kernel pointer, while on BPF
934
* size pointers are always 64-bit; in this case
935
* it's safe to "downsize" instruction size due to
936
* pointer being treated as unsigned integer with
937
* zero-extended upper 32-bits;
938
* - reading unsigned integers, again due to
939
* zero-extension is preserving the value correctly.
940
*
941
* In all other cases it's incorrect to attempt to
942
* load/store field because read value will be
943
* incorrect, so we poison relocated instruction.
944
*/
945
if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
946
goto done;
947
if (btf_is_int(orig_t) && btf_is_int(new_t) &&
948
btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
949
btf_int_encoding(new_t) != BTF_INT_SIGNED)
950
goto done;
951
952
/* mark as invalid mem size adjustment, but this will
953
* only be checked for LDX/STX/ST insns
954
*/
955
res->fail_memsz_adjust = true;
956
}
957
} else if (core_relo_is_type_based(relo->kind)) {
958
err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
959
err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
960
} else if (core_relo_is_enumval_based(relo->kind)) {
961
err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
962
err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
963
}
964
965
done:
966
if (err == -EUCLEAN) {
967
/* EUCLEAN is used to signal instruction poisoning request */
968
res->poison = true;
969
err = 0;
970
} else if (err == -EOPNOTSUPP) {
971
/* EOPNOTSUPP means unknown/unsupported relocation */
972
pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
973
prog_name, relo_idx, core_relo_kind_str(relo->kind),
974
relo->kind, relo->insn_off / 8);
975
}
976
977
return err;
978
}
979
980
/*
981
* Turn instruction for which CO_RE relocation failed into invalid one with
982
* distinct signature.
983
*/
984
static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
985
int insn_idx, struct bpf_insn *insn)
986
{
987
pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
988
prog_name, relo_idx, insn_idx);
989
insn->code = BPF_JMP | BPF_CALL;
990
insn->dst_reg = 0;
991
insn->src_reg = 0;
992
insn->off = 0;
993
/* if this instruction is reachable (not a dead code),
994
* verifier will complain with the following message:
995
* invalid func unknown#195896080
996
*/
997
insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
998
}
999
1000
static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
1001
{
1002
switch (BPF_SIZE(insn->code)) {
1003
case BPF_DW: return 8;
1004
case BPF_W: return 4;
1005
case BPF_H: return 2;
1006
case BPF_B: return 1;
1007
default: return -1;
1008
}
1009
}
1010
1011
static int insn_bytes_to_bpf_size(__u32 sz)
1012
{
1013
switch (sz) {
1014
case 8: return BPF_DW;
1015
case 4: return BPF_W;
1016
case 2: return BPF_H;
1017
case 1: return BPF_B;
1018
default: return -1;
1019
}
1020
}
1021
1022
/*
1023
* Patch relocatable BPF instruction.
1024
*
1025
* Patched value is determined by relocation kind and target specification.
1026
* For existence relocations target spec will be NULL if field/type is not found.
1027
* Expected insn->imm value is determined using relocation kind and local
1028
* spec, and is checked before patching instruction. If actual insn->imm value
1029
* is wrong, bail out with error.
1030
*
1031
* Currently supported classes of BPF instruction are:
1032
* 1. rX = <imm> (assignment with immediate operand);
1033
* 2. rX += <imm> (arithmetic operations with immediate operand);
1034
* 3. rX = <imm64> (load with 64-bit immediate value);
1035
* 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1036
* 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1037
* 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1038
*/
1039
int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1040
int insn_idx, const struct bpf_core_relo *relo,
1041
int relo_idx, const struct bpf_core_relo_res *res)
1042
{
1043
__u64 orig_val, new_val;
1044
__u8 class;
1045
1046
class = BPF_CLASS(insn->code);
1047
1048
if (res->poison) {
1049
poison:
1050
/* poison second part of ldimm64 to avoid confusing error from
1051
* verifier about "unknown opcode 00"
1052
*/
1053
if (is_ldimm64_insn(insn))
1054
bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1055
bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1056
return 0;
1057
}
1058
1059
orig_val = res->orig_val;
1060
new_val = res->new_val;
1061
1062
switch (class) {
1063
case BPF_ALU:
1064
case BPF_ALU64:
1065
if (BPF_SRC(insn->code) != BPF_K)
1066
return -EINVAL;
1067
if (res->validate && insn->imm != orig_val) {
1068
pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1069
prog_name, relo_idx,
1070
insn_idx, insn->imm, (unsigned long long)orig_val,
1071
(unsigned long long)new_val);
1072
return -EINVAL;
1073
}
1074
orig_val = insn->imm;
1075
insn->imm = new_val;
1076
pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1077
prog_name, relo_idx, insn_idx,
1078
(unsigned long long)orig_val, (unsigned long long)new_val);
1079
break;
1080
case BPF_LDX:
1081
case BPF_ST:
1082
case BPF_STX:
1083
if (res->validate && insn->off != orig_val) {
1084
pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1085
prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1086
(unsigned long long)new_val);
1087
return -EINVAL;
1088
}
1089
if (new_val > SHRT_MAX) {
1090
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1091
prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1092
return -ERANGE;
1093
}
1094
if (res->fail_memsz_adjust) {
1095
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1096
"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1097
prog_name, relo_idx, insn_idx);
1098
goto poison;
1099
}
1100
1101
orig_val = insn->off;
1102
insn->off = new_val;
1103
pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1104
prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1105
(unsigned long long)new_val);
1106
1107
if (res->new_sz != res->orig_sz) {
1108
int insn_bytes_sz, insn_bpf_sz;
1109
1110
insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1111
if (insn_bytes_sz != res->orig_sz) {
1112
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1113
prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1114
return -EINVAL;
1115
}
1116
1117
insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1118
if (insn_bpf_sz < 0) {
1119
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1120
prog_name, relo_idx, insn_idx, res->new_sz);
1121
return -EINVAL;
1122
}
1123
1124
insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1125
pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1126
prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1127
}
1128
break;
1129
case BPF_LD: {
1130
__u64 imm;
1131
1132
if (!is_ldimm64_insn(insn) ||
1133
insn[0].src_reg != 0 || insn[0].off != 0 ||
1134
insn[1].code != 0 || insn[1].dst_reg != 0 ||
1135
insn[1].src_reg != 0 || insn[1].off != 0) {
1136
pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1137
prog_name, relo_idx, insn_idx);
1138
return -EINVAL;
1139
}
1140
1141
imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1142
if (res->validate && imm != orig_val) {
1143
pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1144
prog_name, relo_idx,
1145
insn_idx, (unsigned long long)imm,
1146
(unsigned long long)orig_val, (unsigned long long)new_val);
1147
return -EINVAL;
1148
}
1149
1150
insn[0].imm = new_val;
1151
insn[1].imm = new_val >> 32;
1152
pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1153
prog_name, relo_idx, insn_idx,
1154
(unsigned long long)imm, (unsigned long long)new_val);
1155
break;
1156
}
1157
default:
1158
pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1159
prog_name, relo_idx, insn_idx, insn->code,
1160
insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1161
return -EINVAL;
1162
}
1163
1164
return 0;
1165
}
1166
1167
/* Output spec definition in the format:
1168
* [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1169
* where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1170
*/
1171
int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1172
{
1173
const struct btf_type *t;
1174
const char *s;
1175
__u32 type_id;
1176
int i, len = 0;
1177
1178
#define append_buf(fmt, args...) \
1179
({ \
1180
int r; \
1181
r = snprintf(buf, buf_sz, fmt, ##args); \
1182
len += r; \
1183
if (r >= buf_sz) \
1184
r = buf_sz; \
1185
buf += r; \
1186
buf_sz -= r; \
1187
})
1188
1189
type_id = spec->root_type_id;
1190
t = btf_type_by_id(spec->btf, type_id);
1191
s = btf__name_by_offset(spec->btf, t->name_off);
1192
1193
append_buf("<%s> [%u] %s %s",
1194
core_relo_kind_str(spec->relo_kind),
1195
type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1196
1197
if (core_relo_is_type_based(spec->relo_kind))
1198
return len;
1199
1200
if (core_relo_is_enumval_based(spec->relo_kind)) {
1201
t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1202
if (btf_is_enum(t)) {
1203
const struct btf_enum *e;
1204
const char *fmt_str;
1205
1206
e = btf_enum(t) + spec->raw_spec[0];
1207
s = btf__name_by_offset(spec->btf, e->name_off);
1208
fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1209
append_buf(fmt_str, s, e->val);
1210
} else {
1211
const struct btf_enum64 *e;
1212
const char *fmt_str;
1213
1214
e = btf_enum64(t) + spec->raw_spec[0];
1215
s = btf__name_by_offset(spec->btf, e->name_off);
1216
fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1217
append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1218
}
1219
return len;
1220
}
1221
1222
if (core_relo_is_field_based(spec->relo_kind)) {
1223
for (i = 0; i < spec->len; i++) {
1224
if (spec->spec[i].name)
1225
append_buf(".%s", spec->spec[i].name);
1226
else if (i > 0 || spec->spec[i].idx > 0)
1227
append_buf("[%u]", spec->spec[i].idx);
1228
}
1229
1230
append_buf(" (");
1231
for (i = 0; i < spec->raw_len; i++)
1232
append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1233
1234
if (spec->bit_offset % 8)
1235
append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1236
else
1237
append_buf(" @ offset %u)", spec->bit_offset / 8);
1238
return len;
1239
}
1240
1241
return len;
1242
#undef append_buf
1243
}
1244
1245
/*
1246
* Calculate CO-RE relocation target result.
1247
*
1248
* The outline and important points of the algorithm:
1249
* 1. For given local type, find corresponding candidate target types.
1250
* Candidate type is a type with the same "essential" name, ignoring
1251
* everything after last triple underscore (___). E.g., `sample`,
1252
* `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1253
* for each other. Names with triple underscore are referred to as
1254
* "flavors" and are useful, among other things, to allow to
1255
* specify/support incompatible variations of the same kernel struct, which
1256
* might differ between different kernel versions and/or build
1257
* configurations.
1258
*
1259
* N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1260
* converter, when deduplicated BTF of a kernel still contains more than
1261
* one different types with the same name. In that case, ___2, ___3, etc
1262
* are appended starting from second name conflict. But start flavors are
1263
* also useful to be defined "locally", in BPF program, to extract same
1264
* data from incompatible changes between different kernel
1265
* versions/configurations. For instance, to handle field renames between
1266
* kernel versions, one can use two flavors of the struct name with the
1267
* same common name and use conditional relocations to extract that field,
1268
* depending on target kernel version.
1269
* 2. For each candidate type, try to match local specification to this
1270
* candidate target type. Matching involves finding corresponding
1271
* high-level spec accessors, meaning that all named fields should match,
1272
* as well as all array accesses should be within the actual bounds. Also,
1273
* types should be compatible (see bpf_core_fields_are_compat for details).
1274
* 3. It is supported and expected that there might be multiple flavors
1275
* matching the spec. As long as all the specs resolve to the same set of
1276
* offsets across all candidates, there is no error. If there is any
1277
* ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1278
* imperfection of BTF deduplication, which can cause slight duplication of
1279
* the same BTF type, if some directly or indirectly referenced (by
1280
* pointer) type gets resolved to different actual types in different
1281
* object files. If such a situation occurs, deduplicated BTF will end up
1282
* with two (or more) structurally identical types, which differ only in
1283
* types they refer to through pointer. This should be OK in most cases and
1284
* is not an error.
1285
* 4. Candidate types search is performed by linearly scanning through all
1286
* types in target BTF. It is anticipated that this is overall more
1287
* efficient memory-wise and not significantly worse (if not better)
1288
* CPU-wise compared to prebuilding a map from all local type names to
1289
* a list of candidate type names. It's also sped up by caching resolved
1290
* list of matching candidates per each local "root" type ID, that has at
1291
* least one bpf_core_relo associated with it. This list is shared
1292
* between multiple relocations for the same type ID and is updated as some
1293
* of the candidates are pruned due to structural incompatibility.
1294
*/
1295
int bpf_core_calc_relo_insn(const char *prog_name,
1296
const struct bpf_core_relo *relo,
1297
int relo_idx,
1298
const struct btf *local_btf,
1299
struct bpf_core_cand_list *cands,
1300
struct bpf_core_spec *specs_scratch,
1301
struct bpf_core_relo_res *targ_res)
1302
{
1303
struct bpf_core_spec *local_spec = &specs_scratch[0];
1304
struct bpf_core_spec *cand_spec = &specs_scratch[1];
1305
struct bpf_core_spec *targ_spec = &specs_scratch[2];
1306
struct bpf_core_relo_res cand_res;
1307
const struct btf_type *local_type;
1308
const char *local_name;
1309
__u32 local_id;
1310
char spec_buf[256];
1311
int i, j, err;
1312
1313
local_id = relo->type_id;
1314
local_type = btf_type_by_id(local_btf, local_id);
1315
local_name = btf__name_by_offset(local_btf, local_type->name_off);
1316
if (!local_name)
1317
return -EINVAL;
1318
1319
err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1320
if (err) {
1321
const char *spec_str;
1322
1323
spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1324
pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1325
prog_name, relo_idx, local_id, btf_kind_str(local_type),
1326
str_is_empty(local_name) ? "<anon>" : local_name,
1327
spec_str ?: "<?>", err);
1328
return -EINVAL;
1329
}
1330
1331
bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1332
pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1333
1334
/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1335
if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1336
/* bpf_insn's imm value could get out of sync during linking */
1337
memset(targ_res, 0, sizeof(*targ_res));
1338
targ_res->validate = false;
1339
targ_res->poison = false;
1340
targ_res->orig_val = local_spec->root_type_id;
1341
targ_res->new_val = local_spec->root_type_id;
1342
return 0;
1343
}
1344
1345
/* libbpf doesn't support candidate search for anonymous types */
1346
if (str_is_empty(local_name)) {
1347
pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1348
prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1349
return -EOPNOTSUPP;
1350
}
1351
1352
for (i = 0, j = 0; i < cands->len; i++) {
1353
err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1354
cands->cands[i].id, cand_spec);
1355
if (err < 0) {
1356
bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1357
pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n",
1358
prog_name, relo_idx, i, spec_buf, err);
1359
return err;
1360
}
1361
1362
bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1363
pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1364
relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1365
1366
if (err == 0)
1367
continue;
1368
1369
err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1370
if (err)
1371
return err;
1372
1373
if (j == 0) {
1374
*targ_res = cand_res;
1375
*targ_spec = *cand_spec;
1376
} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1377
/* if there are many field relo candidates, they
1378
* should all resolve to the same bit offset
1379
*/
1380
pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1381
prog_name, relo_idx, cand_spec->bit_offset,
1382
targ_spec->bit_offset);
1383
return -EINVAL;
1384
} else if (cand_res.poison != targ_res->poison ||
1385
cand_res.new_val != targ_res->new_val) {
1386
/* all candidates should result in the same relocation
1387
* decision and value, otherwise it's dangerous to
1388
* proceed due to ambiguity
1389
*/
1390
pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1391
prog_name, relo_idx,
1392
cand_res.poison ? "failure" : "success",
1393
(unsigned long long)cand_res.new_val,
1394
targ_res->poison ? "failure" : "success",
1395
(unsigned long long)targ_res->new_val);
1396
return -EINVAL;
1397
}
1398
1399
cands->cands[j++] = cands->cands[i];
1400
}
1401
1402
/*
1403
* For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1404
* existence checks or kernel version/config checks, it's expected
1405
* that we might not find any candidates. In this case, if field
1406
* wasn't found in any candidate, the list of candidates shouldn't
1407
* change at all, we'll just handle relocating appropriately,
1408
* depending on relo's kind.
1409
*/
1410
if (j > 0)
1411
cands->len = j;
1412
1413
/*
1414
* If no candidates were found, it might be both a programmer error,
1415
* as well as expected case, depending whether instruction w/
1416
* relocation is guarded in some way that makes it unreachable (dead
1417
* code) if relocation can't be resolved. This is handled in
1418
* bpf_core_patch_insn() uniformly by replacing that instruction with
1419
* BPF helper call insn (using invalid helper ID). If that instruction
1420
* is indeed unreachable, then it will be ignored and eliminated by
1421
* verifier. If it was an error, then verifier will complain and point
1422
* to a specific instruction number in its log.
1423
*/
1424
if (j == 0) {
1425
pr_debug("prog '%s': relo #%d: no matching targets found\n",
1426
prog_name, relo_idx);
1427
1428
/* calculate single target relo result explicitly */
1429
err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1430
if (err)
1431
return err;
1432
}
1433
1434
return 0;
1435
}
1436
1437
static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1438
const struct btf *targ_btf, size_t targ_name_off)
1439
{
1440
const char *local_n, *targ_n;
1441
size_t local_len, targ_len;
1442
1443
local_n = btf__name_by_offset(local_btf, local_name_off);
1444
targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1445
1446
if (str_is_empty(targ_n))
1447
return str_is_empty(local_n);
1448
1449
targ_len = bpf_core_essential_name_len(targ_n);
1450
local_len = bpf_core_essential_name_len(local_n);
1451
1452
return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1453
}
1454
1455
static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1456
const struct btf *targ_btf, const struct btf_type *targ_t)
1457
{
1458
__u16 local_vlen = btf_vlen(local_t);
1459
__u16 targ_vlen = btf_vlen(targ_t);
1460
int i, j;
1461
1462
if (local_t->size != targ_t->size)
1463
return 0;
1464
1465
if (local_vlen > targ_vlen)
1466
return 0;
1467
1468
/* iterate over the local enum's variants and make sure each has
1469
* a symbolic name correspondent in the target
1470
*/
1471
for (i = 0; i < local_vlen; i++) {
1472
bool matched = false;
1473
__u32 local_n_off, targ_n_off;
1474
1475
local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1476
btf_enum64(local_t)[i].name_off;
1477
1478
for (j = 0; j < targ_vlen; j++) {
1479
targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1480
btf_enum64(targ_t)[j].name_off;
1481
1482
if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1483
matched = true;
1484
break;
1485
}
1486
}
1487
1488
if (!matched)
1489
return 0;
1490
}
1491
return 1;
1492
}
1493
1494
static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1495
const struct btf *targ_btf, const struct btf_type *targ_t,
1496
bool behind_ptr, int level)
1497
{
1498
const struct btf_member *local_m = btf_members(local_t);
1499
__u16 local_vlen = btf_vlen(local_t);
1500
__u16 targ_vlen = btf_vlen(targ_t);
1501
int i, j, err;
1502
1503
if (local_vlen > targ_vlen)
1504
return 0;
1505
1506
/* check that all local members have a match in the target */
1507
for (i = 0; i < local_vlen; i++, local_m++) {
1508
const struct btf_member *targ_m = btf_members(targ_t);
1509
bool matched = false;
1510
1511
for (j = 0; j < targ_vlen; j++, targ_m++) {
1512
if (!bpf_core_names_match(local_btf, local_m->name_off,
1513
targ_btf, targ_m->name_off))
1514
continue;
1515
1516
err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1517
targ_m->type, behind_ptr, level - 1);
1518
if (err < 0)
1519
return err;
1520
if (err > 0) {
1521
matched = true;
1522
break;
1523
}
1524
}
1525
1526
if (!matched)
1527
return 0;
1528
}
1529
return 1;
1530
}
1531
1532
/* Check that two types "match". This function assumes that root types were
1533
* already checked for name match.
1534
*
1535
* The matching relation is defined as follows:
1536
* - modifiers and typedefs are stripped (and, hence, effectively ignored)
1537
* - generally speaking types need to be of same kind (struct vs. struct, union
1538
* vs. union, etc.)
1539
* - exceptions are struct/union behind a pointer which could also match a
1540
* forward declaration of a struct or union, respectively, and enum vs.
1541
* enum64 (see below)
1542
* Then, depending on type:
1543
* - integers:
1544
* - match if size and signedness match
1545
* - arrays & pointers:
1546
* - target types are recursively matched
1547
* - structs & unions:
1548
* - local members need to exist in target with the same name
1549
* - for each member we recursively check match unless it is already behind a
1550
* pointer, in which case we only check matching names and compatible kind
1551
* - enums:
1552
* - local variants have to have a match in target by symbolic name (but not
1553
* numeric value)
1554
* - size has to match (but enum may match enum64 and vice versa)
1555
* - function pointers:
1556
* - number and position of arguments in local type has to match target
1557
* - for each argument and the return value we recursively check match
1558
*/
1559
int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1560
__u32 targ_id, bool behind_ptr, int level)
1561
{
1562
const struct btf_type *local_t, *targ_t;
1563
int depth = 32; /* max recursion depth */
1564
__u16 local_k, targ_k;
1565
1566
if (level <= 0)
1567
return -EINVAL;
1568
1569
recur:
1570
depth--;
1571
if (depth < 0)
1572
return -EINVAL;
1573
1574
local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1575
targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1576
if (!local_t || !targ_t)
1577
return -EINVAL;
1578
1579
/* While the name check happens after typedefs are skipped, root-level
1580
* typedefs would still be name-matched as that's the contract with
1581
* callers.
1582
*/
1583
if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1584
return 0;
1585
1586
local_k = btf_kind(local_t);
1587
targ_k = btf_kind(targ_t);
1588
1589
switch (local_k) {
1590
case BTF_KIND_UNKN:
1591
return local_k == targ_k;
1592
case BTF_KIND_FWD: {
1593
bool local_f = BTF_INFO_KFLAG(local_t->info);
1594
1595
if (behind_ptr) {
1596
if (local_k == targ_k)
1597
return local_f == BTF_INFO_KFLAG(targ_t->info);
1598
1599
/* for forward declarations kflag dictates whether the
1600
* target is a struct (0) or union (1)
1601
*/
1602
return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1603
(targ_k == BTF_KIND_UNION && local_f);
1604
} else {
1605
if (local_k != targ_k)
1606
return 0;
1607
1608
/* match if the forward declaration is for the same kind */
1609
return local_f == BTF_INFO_KFLAG(targ_t->info);
1610
}
1611
}
1612
case BTF_KIND_ENUM:
1613
case BTF_KIND_ENUM64:
1614
if (!btf_is_any_enum(targ_t))
1615
return 0;
1616
1617
return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1618
case BTF_KIND_STRUCT:
1619
case BTF_KIND_UNION:
1620
if (behind_ptr) {
1621
bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1622
1623
if (local_k == targ_k)
1624
return 1;
1625
1626
if (targ_k != BTF_KIND_FWD)
1627
return 0;
1628
1629
return (local_k == BTF_KIND_UNION) == targ_f;
1630
} else {
1631
if (local_k != targ_k)
1632
return 0;
1633
1634
return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1635
behind_ptr, level);
1636
}
1637
case BTF_KIND_INT: {
1638
__u8 local_sgn;
1639
__u8 targ_sgn;
1640
1641
if (local_k != targ_k)
1642
return 0;
1643
1644
local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1645
targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1646
1647
return local_t->size == targ_t->size && local_sgn == targ_sgn;
1648
}
1649
case BTF_KIND_PTR:
1650
if (local_k != targ_k)
1651
return 0;
1652
1653
behind_ptr = true;
1654
1655
local_id = local_t->type;
1656
targ_id = targ_t->type;
1657
goto recur;
1658
case BTF_KIND_ARRAY: {
1659
const struct btf_array *local_array = btf_array(local_t);
1660
const struct btf_array *targ_array = btf_array(targ_t);
1661
1662
if (local_k != targ_k)
1663
return 0;
1664
1665
if (local_array->nelems != targ_array->nelems)
1666
return 0;
1667
1668
local_id = local_array->type;
1669
targ_id = targ_array->type;
1670
goto recur;
1671
}
1672
case BTF_KIND_FUNC_PROTO: {
1673
struct btf_param *local_p = btf_params(local_t);
1674
struct btf_param *targ_p = btf_params(targ_t);
1675
__u16 local_vlen = btf_vlen(local_t);
1676
__u16 targ_vlen = btf_vlen(targ_t);
1677
int i, err;
1678
1679
if (local_k != targ_k)
1680
return 0;
1681
1682
if (local_vlen != targ_vlen)
1683
return 0;
1684
1685
for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1686
err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1687
targ_p->type, behind_ptr, level - 1);
1688
if (err <= 0)
1689
return err;
1690
}
1691
1692
/* tail recurse for return type check */
1693
local_id = local_t->type;
1694
targ_id = targ_t->type;
1695
goto recur;
1696
}
1697
default:
1698
pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1699
btf_kind_str(local_t), local_id, targ_id);
1700
return 0;
1701
}
1702
}
1703
1704