Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/usdt.c
29278 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3
#include <ctype.h>
4
#include <stdio.h>
5
#include <stdlib.h>
6
#include <string.h>
7
#include <libelf.h>
8
#include <gelf.h>
9
#include <unistd.h>
10
#include <linux/ptrace.h>
11
#include <linux/kernel.h>
12
13
/* s8 will be marked as poison while it's a reg of riscv */
14
#if defined(__riscv)
15
#define rv_s8 s8
16
#endif
17
18
#include "bpf.h"
19
#include "libbpf.h"
20
#include "libbpf_common.h"
21
#include "libbpf_internal.h"
22
#include "hashmap.h"
23
24
/* libbpf's USDT support consists of BPF-side state/code and user-space
25
* state/code working together in concert. BPF-side parts are defined in
26
* usdt.bpf.h header library. User-space state is encapsulated by struct
27
* usdt_manager and all the supporting code centered around usdt_manager.
28
*
29
* usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
30
* and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
31
* don't support BPF cookie (see below). These two maps are implicitly
32
* embedded into user's end BPF object file when user's code included
33
* usdt.bpf.h. This means that libbpf doesn't do anything special to create
34
* these USDT support maps. They are created by normal libbpf logic of
35
* instantiating BPF maps when opening and loading BPF object.
36
*
37
* As such, libbpf is basically unaware of the need to do anything
38
* USDT-related until the very first call to bpf_program__attach_usdt(), which
39
* can be called by user explicitly or happen automatically during skeleton
40
* attach (or, equivalently, through generic bpf_program__attach() call). At
41
* this point, libbpf will instantiate and initialize struct usdt_manager and
42
* store it in bpf_object. USDT manager is per-BPF object construct, as each
43
* independent BPF object might or might not have USDT programs, and thus all
44
* the expected USDT-related state. There is no coordination between two
45
* bpf_object in parts of USDT attachment, they are oblivious of each other's
46
* existence and libbpf is just oblivious, dealing with bpf_object-specific
47
* USDT state.
48
*
49
* Quick crash course on USDTs.
50
*
51
* From user-space application's point of view, USDT is essentially just
52
* a slightly special function call that normally has zero overhead, unless it
53
* is being traced by some external entity (e.g, BPF-based tool). Here's how
54
* a typical application can trigger USDT probe:
55
*
56
* #include <sys/sdt.h> // provided by systemtap-sdt-devel package
57
* // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
58
*
59
* STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
60
*
61
* USDT is identified by its <provider-name>:<probe-name> pair of names. Each
62
* individual USDT has a fixed number of arguments (3 in the above example)
63
* and specifies values of each argument as if it was a function call.
64
*
65
* USDT call is actually not a function call, but is instead replaced by
66
* a single NOP instruction (thus zero overhead, effectively). But in addition
67
* to that, those USDT macros generate special SHT_NOTE ELF records in
68
* .note.stapsdt ELF section. Here's an example USDT definition as emitted by
69
* `readelf -n <binary>`:
70
*
71
* stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
72
* Provider: test
73
* Name: usdt12
74
* Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
75
* Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
76
*
77
* In this case we have USDT test:usdt12 with 12 arguments.
78
*
79
* Location and base are offsets used to calculate absolute IP address of that
80
* NOP instruction that kernel can replace with an interrupt instruction to
81
* trigger instrumentation code (BPF program for all that we care about).
82
*
83
* Semaphore above is an optional feature. It records an address of a 2-byte
84
* refcount variable (normally in '.probes' ELF section) used for signaling if
85
* there is anything that is attached to USDT. This is useful for user
86
* applications if, for example, they need to prepare some arguments that are
87
* passed only to USDTs and preparation is expensive. By checking if USDT is
88
* "activated", an application can avoid paying those costs unnecessarily.
89
* Recent enough kernel has built-in support for automatically managing this
90
* refcount, which libbpf expects and relies on. If USDT is defined without
91
* associated semaphore, this value will be zero. See selftests for semaphore
92
* examples.
93
*
94
* Arguments is the most interesting part. This USDT specification string is
95
* providing information about all the USDT arguments and their locations. The
96
* part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
97
* whether the argument is signed or unsigned (negative size means signed).
98
* The part after @ sign is assembly-like definition of argument location
99
* (see [0] for more details). Technically, assembler can provide some pretty
100
* advanced definitions, but libbpf is currently supporting three most common
101
* cases:
102
* 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
103
* 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
104
* whose value is in register %rdx";
105
* 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
106
* specifies signed 32-bit integer stored at offset -1204 bytes from
107
* memory address stored in %rbp.
108
*
109
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
110
*
111
* During attachment, libbpf parses all the relevant USDT specifications and
112
* prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
113
* code through spec map. This allows BPF applications to quickly fetch the
114
* actual value at runtime using a simple BPF-side code.
115
*
116
* With basics out of the way, let's go over less immediately obvious aspects
117
* of supporting USDTs.
118
*
119
* First, there is no special USDT BPF program type. It is actually just
120
* a uprobe BPF program (which for kernel, at least currently, is just a kprobe
121
* program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
122
* that uprobe is usually attached at the function entry, while USDT will
123
* normally be somewhere inside the function. But it should always be
124
* pointing to NOP instruction, which makes such uprobes the fastest uprobe
125
* kind.
126
*
127
* Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
128
* macro invocations can end up being inlined many-many times, depending on
129
* specifics of each individual user application. So single conceptual USDT
130
* (identified by provider:name pair of identifiers) is, generally speaking,
131
* multiple uprobe locations (USDT call sites) in different places in user
132
* application. Further, again due to inlining, each USDT call site might end
133
* up having the same argument #N be located in a different place. In one call
134
* site it could be a constant, in another will end up in a register, and in
135
* yet another could be some other register or even somewhere on the stack.
136
*
137
* As such, "attaching to USDT" means (in general case) attaching the same
138
* uprobe BPF program to multiple target locations in user application, each
139
* potentially having a completely different USDT spec associated with it.
140
* To wire all this up together libbpf allocates a unique integer spec ID for
141
* each unique USDT spec. Spec IDs are allocated as sequential small integers
142
* so that they can be used as keys in array BPF map (for performance reasons).
143
* Spec ID allocation and accounting is big part of what usdt_manager is
144
* about. This state has to be maintained per-BPF object and coordinate
145
* between different USDT attachments within the same BPF object.
146
*
147
* Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
148
* as struct usdt_spec. Each invocation of BPF program at runtime needs to
149
* know its associated spec ID. It gets it either through BPF cookie, which
150
* libbpf sets to spec ID during attach time, or, if kernel is too old to
151
* support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
152
* case. The latter means that some modes of operation can't be supported
153
* without BPF cookie. Such a mode is attaching to shared library "generically",
154
* without specifying target process. In such case, it's impossible to
155
* calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
156
* is not supported without BPF cookie support.
157
*
158
* Note that libbpf is using BPF cookie functionality for its own internal
159
* needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
160
* provides conceptually equivalent USDT cookie support. It's still u64
161
* user-provided value that can be associated with USDT attachment. Note that
162
* this will be the same value for all USDT call sites within the same single
163
* *logical* USDT attachment. This makes sense because to user attaching to
164
* USDT is a single BPF program triggered for singular USDT probe. The fact
165
* that this is done at multiple actual locations is a mostly hidden
166
* implementation details. This USDT cookie value can be fetched with
167
* bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
168
*
169
* Lastly, while single USDT can have tons of USDT call sites, it doesn't
170
* necessarily have that many different USDT specs. It very well might be
171
* that 1000 USDT call sites only need 5 different USDT specs, because all the
172
* arguments are typically contained in a small set of registers or stack
173
* locations. As such, it's wasteful to allocate as many USDT spec IDs as
174
* there are USDT call sites. So libbpf tries to be frugal and performs
175
* on-the-fly deduplication during a single USDT attachment to only allocate
176
* the minimal required amount of unique USDT specs (and thus spec IDs). This
177
* is trivially achieved by using USDT spec string (Arguments string from USDT
178
* note) as a lookup key in a hashmap. USDT spec string uniquely defines
179
* everything about how to fetch USDT arguments, so two USDT call sites
180
* sharing USDT spec string can safely share the same USDT spec and spec ID.
181
* Note, this spec string deduplication is happening only during the same USDT
182
* attachment, so each USDT spec shares the same USDT cookie value. This is
183
* not generally true for other USDT attachments within the same BPF object,
184
* as even if USDT spec string is the same, USDT cookie value can be
185
* different. It was deemed excessive to try to deduplicate across independent
186
* USDT attachments by taking into account USDT spec string *and* USDT cookie
187
* value, which would complicate spec ID accounting significantly for little
188
* gain.
189
*/
190
191
#define USDT_BASE_SEC ".stapsdt.base"
192
#define USDT_SEMA_SEC ".probes"
193
#define USDT_NOTE_SEC ".note.stapsdt"
194
#define USDT_NOTE_TYPE 3
195
#define USDT_NOTE_NAME "stapsdt"
196
197
/* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
198
enum usdt_arg_type {
199
USDT_ARG_CONST,
200
USDT_ARG_REG,
201
USDT_ARG_REG_DEREF,
202
USDT_ARG_SIB,
203
};
204
205
/* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206
struct usdt_arg_spec {
207
__u64 val_off;
208
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209
enum usdt_arg_type arg_type: 8;
210
__u16 idx_reg_off: 12;
211
__u16 scale_bitshift: 4;
212
__u8 __reserved: 8; /* keep reg_off offset stable */
213
#else
214
__u8 __reserved: 8; /* keep reg_off offset stable */
215
__u16 idx_reg_off: 12;
216
__u16 scale_bitshift: 4;
217
enum usdt_arg_type arg_type: 8;
218
#endif
219
short reg_off;
220
bool arg_signed;
221
char arg_bitshift;
222
};
223
224
/* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
225
#define USDT_MAX_ARG_CNT 12
226
227
/* should match struct __bpf_usdt_spec from usdt.bpf.h */
228
struct usdt_spec {
229
struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
230
__u64 usdt_cookie;
231
short arg_cnt;
232
};
233
234
struct usdt_note {
235
const char *provider;
236
const char *name;
237
/* USDT args specification string, e.g.:
238
* "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
239
*/
240
const char *args;
241
long loc_addr;
242
long base_addr;
243
long sema_addr;
244
};
245
246
struct usdt_target {
247
long abs_ip;
248
long rel_ip;
249
long sema_off;
250
struct usdt_spec spec;
251
const char *spec_str;
252
};
253
254
struct usdt_manager {
255
struct bpf_map *specs_map;
256
struct bpf_map *ip_to_spec_id_map;
257
258
int *free_spec_ids;
259
size_t free_spec_cnt;
260
size_t next_free_spec_id;
261
262
bool has_bpf_cookie;
263
bool has_sema_refcnt;
264
bool has_uprobe_multi;
265
};
266
267
struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
268
{
269
static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
270
struct usdt_manager *man;
271
struct bpf_map *specs_map, *ip_to_spec_id_map;
272
273
specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
274
ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
275
if (!specs_map || !ip_to_spec_id_map) {
276
pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
277
return ERR_PTR(-ESRCH);
278
}
279
280
man = calloc(1, sizeof(*man));
281
if (!man)
282
return ERR_PTR(-ENOMEM);
283
284
man->specs_map = specs_map;
285
man->ip_to_spec_id_map = ip_to_spec_id_map;
286
287
/* Detect if BPF cookie is supported for kprobes.
288
* We don't need IP-to-ID mapping if we can use BPF cookies.
289
* Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
290
*/
291
man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
292
293
/* Detect kernel support for automatic refcounting of USDT semaphore.
294
* If this is not supported, USDTs with semaphores will not be supported.
295
* Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
296
*/
297
man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
298
299
/*
300
* Detect kernel support for uprobe multi link to be used for attaching
301
* usdt probes.
302
*/
303
man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
304
return man;
305
}
306
307
void usdt_manager_free(struct usdt_manager *man)
308
{
309
if (IS_ERR_OR_NULL(man))
310
return;
311
312
free(man->free_spec_ids);
313
free(man);
314
}
315
316
static int sanity_check_usdt_elf(Elf *elf, const char *path)
317
{
318
GElf_Ehdr ehdr;
319
int endianness;
320
321
if (elf_kind(elf) != ELF_K_ELF) {
322
pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
323
return -EBADF;
324
}
325
326
switch (gelf_getclass(elf)) {
327
case ELFCLASS64:
328
if (sizeof(void *) != 8) {
329
pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
330
return -EBADF;
331
}
332
break;
333
case ELFCLASS32:
334
if (sizeof(void *) != 4) {
335
pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
336
return -EBADF;
337
}
338
break;
339
default:
340
pr_warn("usdt: unsupported ELF class for '%s'\n", path);
341
return -EBADF;
342
}
343
344
if (!gelf_getehdr(elf, &ehdr))
345
return -EINVAL;
346
347
if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
348
pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
349
path, ehdr.e_type);
350
return -EBADF;
351
}
352
353
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
354
endianness = ELFDATA2LSB;
355
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
356
endianness = ELFDATA2MSB;
357
#else
358
# error "Unrecognized __BYTE_ORDER__"
359
#endif
360
if (endianness != ehdr.e_ident[EI_DATA]) {
361
pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
362
return -EBADF;
363
}
364
365
return 0;
366
}
367
368
static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
369
{
370
Elf_Scn *sec = NULL;
371
size_t shstrndx;
372
373
if (elf_getshdrstrndx(elf, &shstrndx))
374
return -EINVAL;
375
376
/* check if ELF is corrupted and avoid calling elf_strptr if yes */
377
if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
378
return -EINVAL;
379
380
while ((sec = elf_nextscn(elf, sec)) != NULL) {
381
char *name;
382
383
if (!gelf_getshdr(sec, shdr))
384
return -EINVAL;
385
386
name = elf_strptr(elf, shstrndx, shdr->sh_name);
387
if (name && strcmp(sec_name, name) == 0) {
388
*scn = sec;
389
return 0;
390
}
391
}
392
393
return -ENOENT;
394
}
395
396
struct elf_seg {
397
long start;
398
long end;
399
long offset;
400
bool is_exec;
401
};
402
403
static int cmp_elf_segs(const void *_a, const void *_b)
404
{
405
const struct elf_seg *a = _a;
406
const struct elf_seg *b = _b;
407
408
return a->start < b->start ? -1 : 1;
409
}
410
411
static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
412
{
413
GElf_Phdr phdr;
414
size_t n;
415
int i, err;
416
struct elf_seg *seg;
417
void *tmp;
418
419
*seg_cnt = 0;
420
421
if (elf_getphdrnum(elf, &n)) {
422
err = -errno;
423
return err;
424
}
425
426
for (i = 0; i < n; i++) {
427
if (!gelf_getphdr(elf, i, &phdr)) {
428
err = -errno;
429
return err;
430
}
431
432
pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
433
i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
434
(long)phdr.p_type, (long)phdr.p_flags);
435
if (phdr.p_type != PT_LOAD)
436
continue;
437
438
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
439
if (!tmp)
440
return -ENOMEM;
441
442
*segs = tmp;
443
seg = *segs + *seg_cnt;
444
(*seg_cnt)++;
445
446
seg->start = phdr.p_vaddr;
447
seg->end = phdr.p_vaddr + phdr.p_memsz;
448
seg->offset = phdr.p_offset;
449
seg->is_exec = phdr.p_flags & PF_X;
450
}
451
452
if (*seg_cnt == 0) {
453
pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
454
return -ESRCH;
455
}
456
457
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
458
return 0;
459
}
460
461
static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
462
{
463
char path[PATH_MAX], line[PATH_MAX], mode[16];
464
size_t seg_start, seg_end, seg_off;
465
struct elf_seg *seg;
466
int tmp_pid, i, err;
467
FILE *f;
468
469
*seg_cnt = 0;
470
471
/* Handle containerized binaries only accessible from
472
* /proc/<pid>/root/<path>. They will be reported as just /<path> in
473
* /proc/<pid>/maps.
474
*/
475
if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
476
goto proceed;
477
478
if (!realpath(lib_path, path)) {
479
pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
480
lib_path, errstr(-errno));
481
libbpf_strlcpy(path, lib_path, sizeof(path));
482
}
483
484
proceed:
485
sprintf(line, "/proc/%d/maps", pid);
486
f = fopen(line, "re");
487
if (!f) {
488
err = -errno;
489
pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
490
line, lib_path, errstr(err));
491
return err;
492
}
493
494
/* We need to handle lines with no path at the end:
495
*
496
* 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
497
* 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
498
* 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
499
*/
500
while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
501
&seg_start, &seg_end, mode, &seg_off, line) == 5) {
502
void *tmp;
503
504
/* to handle no path case (see above) we need to capture line
505
* without skipping any whitespaces. So we need to strip
506
* leading whitespaces manually here
507
*/
508
i = 0;
509
while (isblank(line[i]))
510
i++;
511
if (strcmp(line + i, path) != 0)
512
continue;
513
514
pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
515
path, seg_start, seg_end, mode, seg_off);
516
517
/* ignore non-executable sections for shared libs */
518
if (mode[2] != 'x')
519
continue;
520
521
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
522
if (!tmp) {
523
err = -ENOMEM;
524
goto err_out;
525
}
526
527
*segs = tmp;
528
seg = *segs + *seg_cnt;
529
*seg_cnt += 1;
530
531
seg->start = seg_start;
532
seg->end = seg_end;
533
seg->offset = seg_off;
534
seg->is_exec = true;
535
}
536
537
if (*seg_cnt == 0) {
538
pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
539
lib_path, path, pid);
540
err = -ESRCH;
541
goto err_out;
542
}
543
544
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
545
err = 0;
546
err_out:
547
fclose(f);
548
return err;
549
}
550
551
static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
552
{
553
struct elf_seg *seg;
554
int i;
555
556
/* for ELF binaries (both executables and shared libraries), we are
557
* given virtual address (absolute for executables, relative for
558
* libraries) which should match address range of [seg_start, seg_end)
559
*/
560
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
561
if (seg->start <= virtaddr && virtaddr < seg->end)
562
return seg;
563
}
564
return NULL;
565
}
566
567
static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
568
{
569
struct elf_seg *seg;
570
int i;
571
572
/* for VMA segments from /proc/<pid>/maps file, provided "address" is
573
* actually a file offset, so should be fall within logical
574
* offset-based range of [offset_start, offset_end)
575
*/
576
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
577
if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
578
return seg;
579
}
580
return NULL;
581
}
582
583
static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off,
584
size_t desc_off, struct usdt_note *usdt_note);
585
586
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
587
588
static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
589
const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
590
struct usdt_target **out_targets, size_t *out_target_cnt)
591
{
592
size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
593
struct elf_seg *segs = NULL, *vma_segs = NULL;
594
struct usdt_target *targets = NULL, *target;
595
long base_addr = 0;
596
Elf_Scn *notes_scn, *base_scn;
597
GElf_Shdr base_shdr, notes_shdr;
598
GElf_Ehdr ehdr;
599
GElf_Nhdr nhdr;
600
Elf_Data *data;
601
int err;
602
603
*out_targets = NULL;
604
*out_target_cnt = 0;
605
606
err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
607
if (err) {
608
pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
609
return err;
610
}
611
612
if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
613
pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
614
return -EINVAL;
615
}
616
617
err = parse_elf_segs(elf, path, &segs, &seg_cnt);
618
if (err) {
619
pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
620
path, errstr(err));
621
goto err_out;
622
}
623
624
/* .stapsdt.base ELF section is optional, but is used for prelink
625
* offset compensation (see a big comment further below)
626
*/
627
if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
628
base_addr = base_shdr.sh_addr;
629
630
data = elf_getdata(notes_scn, 0);
631
off = 0;
632
while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
633
long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
634
struct usdt_note note;
635
struct elf_seg *seg = NULL;
636
void *tmp;
637
638
err = parse_usdt_note(&nhdr, data->d_buf, name_off, desc_off, &note);
639
if (err)
640
goto err_out;
641
642
if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
643
continue;
644
645
/* We need to compensate "prelink effect". See [0] for details,
646
* relevant parts quoted here:
647
*
648
* Each SDT probe also expands into a non-allocated ELF note. You can
649
* find this by looking at SHT_NOTE sections and decoding the format;
650
* see below for details. Because the note is non-allocated, it means
651
* there is no runtime cost, and also preserved in both stripped files
652
* and .debug files.
653
*
654
* However, this means that prelink won't adjust the note's contents
655
* for address offsets. Instead, this is done via the .stapsdt.base
656
* section. This is a special section that is added to the text. We
657
* will only ever have one of these sections in a final link and it
658
* will only ever be one byte long. Nothing about this section itself
659
* matters, we just use it as a marker to detect prelink address
660
* adjustments.
661
*
662
* Each probe note records the link-time address of the .stapsdt.base
663
* section alongside the probe PC address. The decoder compares the
664
* base address stored in the note with the .stapsdt.base section's
665
* sh_addr. Initially these are the same, but the section header will
666
* be adjusted by prelink. So the decoder applies the difference to
667
* the probe PC address to get the correct prelinked PC address; the
668
* same adjustment is applied to the semaphore address, if any.
669
*
670
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
671
*/
672
usdt_abs_ip = note.loc_addr;
673
if (base_addr && note.base_addr)
674
usdt_abs_ip += base_addr - note.base_addr;
675
676
/* When attaching uprobes (which is what USDTs basically are)
677
* kernel expects file offset to be specified, not a relative
678
* virtual address, so we need to translate virtual address to
679
* file offset, for both ET_EXEC and ET_DYN binaries.
680
*/
681
seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
682
if (!seg) {
683
err = -ESRCH;
684
pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
685
usdt_provider, usdt_name, path, usdt_abs_ip);
686
goto err_out;
687
}
688
if (!seg->is_exec) {
689
err = -ESRCH;
690
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
691
path, seg->start, seg->end, usdt_provider, usdt_name,
692
usdt_abs_ip);
693
goto err_out;
694
}
695
/* translate from virtual address to file offset */
696
usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
697
698
if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
699
/* If we don't have BPF cookie support but need to
700
* attach to a shared library, we'll need to know and
701
* record absolute addresses of attach points due to
702
* the need to lookup USDT spec by absolute IP of
703
* triggered uprobe. Doing this resolution is only
704
* possible when we have a specific PID of the process
705
* that's using specified shared library. BPF cookie
706
* removes the absolute address limitation as we don't
707
* need to do this lookup (we just use BPF cookie as
708
* an index of USDT spec), so for newer kernels with
709
* BPF cookie support libbpf supports USDT attachment
710
* to shared libraries with no PID filter.
711
*/
712
if (pid < 0) {
713
pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
714
err = -ENOTSUP;
715
goto err_out;
716
}
717
718
/* vma_segs are lazily initialized only if necessary */
719
if (vma_seg_cnt == 0) {
720
err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
721
if (err) {
722
pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
723
pid, path, errstr(err));
724
goto err_out;
725
}
726
}
727
728
seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
729
if (!seg) {
730
err = -ESRCH;
731
pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
732
usdt_provider, usdt_name, path, usdt_rel_ip);
733
goto err_out;
734
}
735
736
usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
737
}
738
739
pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
740
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
741
note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
742
seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
743
744
/* Adjust semaphore address to be a file offset */
745
if (note.sema_addr) {
746
if (!man->has_sema_refcnt) {
747
pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
748
usdt_provider, usdt_name, path);
749
err = -ENOTSUP;
750
goto err_out;
751
}
752
753
seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
754
if (!seg) {
755
err = -ESRCH;
756
pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
757
usdt_provider, usdt_name, path, note.sema_addr);
758
goto err_out;
759
}
760
if (seg->is_exec) {
761
err = -ESRCH;
762
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
763
path, seg->start, seg->end, usdt_provider, usdt_name,
764
note.sema_addr);
765
goto err_out;
766
}
767
768
usdt_sema_off = note.sema_addr - seg->start + seg->offset;
769
770
pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
771
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
772
path, note.sema_addr, note.base_addr, usdt_sema_off,
773
seg->start, seg->end, seg->offset);
774
}
775
776
/* Record adjusted addresses and offsets and parse USDT spec */
777
tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
778
if (!tmp) {
779
err = -ENOMEM;
780
goto err_out;
781
}
782
targets = tmp;
783
784
target = &targets[target_cnt];
785
memset(target, 0, sizeof(*target));
786
787
target->abs_ip = usdt_abs_ip;
788
target->rel_ip = usdt_rel_ip;
789
target->sema_off = usdt_sema_off;
790
791
/* notes.args references strings from ELF itself, so they can
792
* be referenced safely until elf_end() call
793
*/
794
target->spec_str = note.args;
795
796
err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
797
if (err)
798
goto err_out;
799
800
target_cnt++;
801
}
802
803
*out_targets = targets;
804
*out_target_cnt = target_cnt;
805
err = target_cnt;
806
807
err_out:
808
free(segs);
809
free(vma_segs);
810
if (err < 0)
811
free(targets);
812
return err;
813
}
814
815
struct bpf_link_usdt {
816
struct bpf_link link;
817
818
struct usdt_manager *usdt_man;
819
820
size_t spec_cnt;
821
int *spec_ids;
822
823
size_t uprobe_cnt;
824
struct {
825
long abs_ip;
826
struct bpf_link *link;
827
} *uprobes;
828
829
struct bpf_link *multi_link;
830
};
831
832
static int bpf_link_usdt_detach(struct bpf_link *link)
833
{
834
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
835
struct usdt_manager *man = usdt_link->usdt_man;
836
int i;
837
838
bpf_link__destroy(usdt_link->multi_link);
839
840
/* When having multi_link, uprobe_cnt is 0 */
841
for (i = 0; i < usdt_link->uprobe_cnt; i++) {
842
/* detach underlying uprobe link */
843
bpf_link__destroy(usdt_link->uprobes[i].link);
844
/* there is no need to update specs map because it will be
845
* unconditionally overwritten on subsequent USDT attaches,
846
* but if BPF cookies are not used we need to remove entry
847
* from ip_to_spec_id map, otherwise we'll run into false
848
* conflicting IP errors
849
*/
850
if (!man->has_bpf_cookie) {
851
/* not much we can do about errors here */
852
(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
853
&usdt_link->uprobes[i].abs_ip);
854
}
855
}
856
857
/* try to return the list of previously used spec IDs to usdt_manager
858
* for future reuse for subsequent USDT attaches
859
*/
860
if (!man->free_spec_ids) {
861
/* if there were no free spec IDs yet, just transfer our IDs */
862
man->free_spec_ids = usdt_link->spec_ids;
863
man->free_spec_cnt = usdt_link->spec_cnt;
864
usdt_link->spec_ids = NULL;
865
} else {
866
/* otherwise concat IDs */
867
size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
868
int *new_free_ids;
869
870
new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
871
sizeof(*new_free_ids));
872
/* If we couldn't resize free_spec_ids, we'll just leak
873
* a bunch of free IDs; this is very unlikely to happen and if
874
* system is so exhausted on memory, it's the least of user's
875
* concerns, probably.
876
* So just do our best here to return those IDs to usdt_manager.
877
* Another edge case when we can legitimately get NULL is when
878
* new_cnt is zero, which can happen in some edge cases, so we
879
* need to be careful about that.
880
*/
881
if (new_free_ids || new_cnt == 0) {
882
memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
883
usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
884
man->free_spec_ids = new_free_ids;
885
man->free_spec_cnt = new_cnt;
886
}
887
}
888
889
return 0;
890
}
891
892
static void bpf_link_usdt_dealloc(struct bpf_link *link)
893
{
894
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
895
896
free(usdt_link->spec_ids);
897
free(usdt_link->uprobes);
898
free(usdt_link);
899
}
900
901
static size_t specs_hash_fn(long key, void *ctx)
902
{
903
return str_hash((char *)key);
904
}
905
906
static bool specs_equal_fn(long key1, long key2, void *ctx)
907
{
908
return strcmp((char *)key1, (char *)key2) == 0;
909
}
910
911
static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
912
struct bpf_link_usdt *link, struct usdt_target *target,
913
int *spec_id, bool *is_new)
914
{
915
long tmp;
916
void *new_ids;
917
int err;
918
919
/* check if we already allocated spec ID for this spec string */
920
if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
921
*spec_id = tmp;
922
*is_new = false;
923
return 0;
924
}
925
926
/* otherwise it's a new ID that needs to be set up in specs map and
927
* returned back to usdt_manager when USDT link is detached
928
*/
929
new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
930
if (!new_ids)
931
return -ENOMEM;
932
link->spec_ids = new_ids;
933
934
/* get next free spec ID, giving preference to free list, if not empty */
935
if (man->free_spec_cnt) {
936
*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
937
938
/* cache spec ID for current spec string for future lookups */
939
err = hashmap__add(specs_hash, target->spec_str, *spec_id);
940
if (err)
941
return err;
942
943
man->free_spec_cnt--;
944
} else {
945
/* don't allocate spec ID bigger than what fits in specs map */
946
if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
947
return -E2BIG;
948
949
*spec_id = man->next_free_spec_id;
950
951
/* cache spec ID for current spec string for future lookups */
952
err = hashmap__add(specs_hash, target->spec_str, *spec_id);
953
if (err)
954
return err;
955
956
man->next_free_spec_id++;
957
}
958
959
/* remember new spec ID in the link for later return back to free list on detach */
960
link->spec_ids[link->spec_cnt] = *spec_id;
961
link->spec_cnt++;
962
*is_new = true;
963
return 0;
964
}
965
966
struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
967
pid_t pid, const char *path,
968
const char *usdt_provider, const char *usdt_name,
969
__u64 usdt_cookie)
970
{
971
unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
972
int i, err, spec_map_fd, ip_map_fd;
973
LIBBPF_OPTS(bpf_uprobe_opts, opts);
974
struct hashmap *specs_hash = NULL;
975
struct bpf_link_usdt *link = NULL;
976
struct usdt_target *targets = NULL;
977
__u64 *cookies = NULL;
978
struct elf_fd elf_fd;
979
size_t target_cnt;
980
981
spec_map_fd = bpf_map__fd(man->specs_map);
982
ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
983
984
err = elf_open(path, &elf_fd);
985
if (err)
986
return libbpf_err_ptr(err);
987
988
err = sanity_check_usdt_elf(elf_fd.elf, path);
989
if (err)
990
goto err_out;
991
992
/* normalize PID filter */
993
if (pid < 0)
994
pid = -1;
995
else if (pid == 0)
996
pid = getpid();
997
998
/* discover USDT in given binary, optionally limiting
999
* activations to a given PID, if pid > 0
1000
*/
1001
err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
1002
usdt_cookie, &targets, &target_cnt);
1003
if (err <= 0) {
1004
err = (err == 0) ? -ENOENT : err;
1005
goto err_out;
1006
}
1007
1008
specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1009
if (IS_ERR(specs_hash)) {
1010
err = PTR_ERR(specs_hash);
1011
goto err_out;
1012
}
1013
1014
link = calloc(1, sizeof(*link));
1015
if (!link) {
1016
err = -ENOMEM;
1017
goto err_out;
1018
}
1019
1020
link->usdt_man = man;
1021
link->link.detach = &bpf_link_usdt_detach;
1022
link->link.dealloc = &bpf_link_usdt_dealloc;
1023
1024
if (man->has_uprobe_multi) {
1025
offsets = calloc(target_cnt, sizeof(*offsets));
1026
cookies = calloc(target_cnt, sizeof(*cookies));
1027
ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1028
1029
if (!offsets || !ref_ctr_offsets || !cookies) {
1030
err = -ENOMEM;
1031
goto err_out;
1032
}
1033
} else {
1034
link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1035
if (!link->uprobes) {
1036
err = -ENOMEM;
1037
goto err_out;
1038
}
1039
}
1040
1041
for (i = 0; i < target_cnt; i++) {
1042
struct usdt_target *target = &targets[i];
1043
struct bpf_link *uprobe_link;
1044
bool is_new;
1045
int spec_id;
1046
1047
/* Spec ID can be either reused or newly allocated. If it is
1048
* newly allocated, we'll need to fill out spec map, otherwise
1049
* entire spec should be valid and can be just used by a new
1050
* uprobe. We reuse spec when USDT arg spec is identical. We
1051
* also never share specs between two different USDT
1052
* attachments ("links"), so all the reused specs already
1053
* share USDT cookie value implicitly.
1054
*/
1055
err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1056
if (err)
1057
goto err_out;
1058
1059
if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1060
err = -errno;
1061
pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1062
spec_id, usdt_provider, usdt_name, path, errstr(err));
1063
goto err_out;
1064
}
1065
if (!man->has_bpf_cookie &&
1066
bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1067
err = -errno;
1068
if (err == -EEXIST) {
1069
pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1070
spec_id, usdt_provider, usdt_name, path);
1071
} else {
1072
pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1073
target->abs_ip, spec_id, usdt_provider, usdt_name,
1074
path, errstr(err));
1075
}
1076
goto err_out;
1077
}
1078
1079
if (man->has_uprobe_multi) {
1080
offsets[i] = target->rel_ip;
1081
ref_ctr_offsets[i] = target->sema_off;
1082
cookies[i] = spec_id;
1083
} else {
1084
opts.ref_ctr_offset = target->sema_off;
1085
opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1086
uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1087
target->rel_ip, &opts);
1088
err = libbpf_get_error(uprobe_link);
1089
if (err) {
1090
pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1091
i, usdt_provider, usdt_name, path, errstr(err));
1092
goto err_out;
1093
}
1094
1095
link->uprobes[i].link = uprobe_link;
1096
link->uprobes[i].abs_ip = target->abs_ip;
1097
link->uprobe_cnt++;
1098
}
1099
}
1100
1101
if (man->has_uprobe_multi) {
1102
LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1103
.ref_ctr_offsets = ref_ctr_offsets,
1104
.offsets = offsets,
1105
.cookies = cookies,
1106
.cnt = target_cnt,
1107
);
1108
1109
link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1110
NULL, &opts_multi);
1111
if (!link->multi_link) {
1112
err = -errno;
1113
pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1114
usdt_provider, usdt_name, path, errstr(err));
1115
goto err_out;
1116
}
1117
1118
free(offsets);
1119
free(ref_ctr_offsets);
1120
free(cookies);
1121
}
1122
1123
free(targets);
1124
hashmap__free(specs_hash);
1125
elf_close(&elf_fd);
1126
return &link->link;
1127
1128
err_out:
1129
free(offsets);
1130
free(ref_ctr_offsets);
1131
free(cookies);
1132
1133
if (link)
1134
bpf_link__destroy(&link->link);
1135
free(targets);
1136
hashmap__free(specs_hash);
1137
elf_close(&elf_fd);
1138
return libbpf_err_ptr(err);
1139
}
1140
1141
/* Parse out USDT ELF note from '.note.stapsdt' section.
1142
* Logic inspired by perf's code.
1143
*/
1144
static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off,
1145
struct usdt_note *note)
1146
{
1147
const char *provider, *name, *args;
1148
long addrs[3];
1149
size_t len;
1150
1151
/* sanity check USDT note name and type first */
1152
if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1153
return -EINVAL;
1154
if (nhdr->n_type != USDT_NOTE_TYPE)
1155
return -EINVAL;
1156
1157
/* sanity check USDT note contents ("description" in ELF terminology) */
1158
len = nhdr->n_descsz;
1159
data = data + desc_off;
1160
1161
/* +3 is the very minimum required to store three empty strings */
1162
if (len < sizeof(addrs) + 3)
1163
return -EINVAL;
1164
1165
/* get location, base, and semaphore addrs */
1166
memcpy(&addrs, data, sizeof(addrs));
1167
1168
/* parse string fields: provider, name, args */
1169
provider = data + sizeof(addrs);
1170
1171
name = (const char *)memchr(provider, '\0', data + len - provider);
1172
if (!name) /* non-zero-terminated provider */
1173
return -EINVAL;
1174
name++;
1175
if (name >= data + len || *name == '\0') /* missing or empty name */
1176
return -EINVAL;
1177
1178
args = memchr(name, '\0', data + len - name);
1179
if (!args) /* non-zero-terminated name */
1180
return -EINVAL;
1181
++args;
1182
if (args >= data + len) /* missing arguments spec */
1183
return -EINVAL;
1184
1185
note->provider = provider;
1186
note->name = name;
1187
if (*args == '\0' || *args == ':')
1188
note->args = "";
1189
else
1190
note->args = args;
1191
note->loc_addr = addrs[0];
1192
note->base_addr = addrs[1];
1193
note->sema_addr = addrs[2];
1194
1195
return 0;
1196
}
1197
1198
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1199
1200
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1201
{
1202
struct usdt_arg_spec *arg;
1203
const char *s;
1204
int arg_sz, len;
1205
1206
spec->usdt_cookie = usdt_cookie;
1207
spec->arg_cnt = 0;
1208
1209
s = note->args;
1210
while (s[0]) {
1211
if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1212
pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1213
USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1214
return -E2BIG;
1215
}
1216
1217
arg = &spec->args[spec->arg_cnt];
1218
len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1219
if (len < 0)
1220
return len;
1221
1222
arg->arg_signed = arg_sz < 0;
1223
if (arg_sz < 0)
1224
arg_sz = -arg_sz;
1225
1226
switch (arg_sz) {
1227
case 1: case 2: case 4: case 8:
1228
arg->arg_bitshift = 64 - arg_sz * 8;
1229
break;
1230
default:
1231
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1232
spec->arg_cnt, s, arg_sz);
1233
return -EINVAL;
1234
}
1235
1236
s += len;
1237
spec->arg_cnt++;
1238
}
1239
1240
return 0;
1241
}
1242
1243
/* Architecture-specific logic for parsing USDT argument location specs */
1244
1245
#if defined(__x86_64__) || defined(__i386__)
1246
1247
static int calc_pt_regs_off(const char *reg_name)
1248
{
1249
static struct {
1250
const char *names[4];
1251
size_t pt_regs_off;
1252
} reg_map[] = {
1253
#ifdef __x86_64__
1254
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1255
#else
1256
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1257
#endif
1258
{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1259
{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1260
{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1261
{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1262
{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1263
{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1264
{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1265
{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1266
{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1267
#undef reg_off
1268
#ifdef __x86_64__
1269
{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1270
{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1271
{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1272
{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1273
{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1274
{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1275
{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1276
{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1277
#endif
1278
};
1279
int i, j;
1280
1281
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1282
for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1283
if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1284
return reg_map[i].pt_regs_off;
1285
}
1286
}
1287
1288
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1289
return -ENOENT;
1290
}
1291
1292
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1293
{
1294
char reg_name[16] = {0}, idx_reg_name[16] = {0};
1295
int len, reg_off, idx_reg_off, scale = 1;
1296
long off = 0;
1297
1298
if (sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^,] , %d ) %n",
1299
arg_sz, &off, reg_name, idx_reg_name, &scale, &len) == 5 ||
1300
sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^,] , %d ) %n",
1301
arg_sz, reg_name, idx_reg_name, &scale, &len) == 4 ||
1302
sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^)] ) %n",
1303
arg_sz, &off, reg_name, idx_reg_name, &len) == 4 ||
1304
sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^)] ) %n",
1305
arg_sz, reg_name, idx_reg_name, &len) == 3
1306
) {
1307
/*
1308
* Scale Index Base case:
1309
* 1@-96(%rbp,%rax,8)
1310
* 1@(%rbp,%rax,8)
1311
* 1@-96(%rbp,%rax)
1312
* 1@(%rbp,%rax)
1313
*/
1314
arg->arg_type = USDT_ARG_SIB;
1315
arg->val_off = off;
1316
1317
reg_off = calc_pt_regs_off(reg_name);
1318
if (reg_off < 0)
1319
return reg_off;
1320
arg->reg_off = reg_off;
1321
1322
idx_reg_off = calc_pt_regs_off(idx_reg_name);
1323
if (idx_reg_off < 0)
1324
return idx_reg_off;
1325
arg->idx_reg_off = idx_reg_off;
1326
1327
/* validate scale factor and set fields directly */
1328
switch (scale) {
1329
case 1: arg->scale_bitshift = 0; break;
1330
case 2: arg->scale_bitshift = 1; break;
1331
case 4: arg->scale_bitshift = 2; break;
1332
case 8: arg->scale_bitshift = 3; break;
1333
default:
1334
pr_warn("usdt: invalid SIB scale %d, expected 1, 2, 4, 8\n", scale);
1335
return -EINVAL;
1336
}
1337
} else if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n",
1338
arg_sz, &off, reg_name, &len) == 3) {
1339
/* Memory dereference case, e.g., -4@-20(%rbp) */
1340
arg->arg_type = USDT_ARG_REG_DEREF;
1341
arg->val_off = off;
1342
reg_off = calc_pt_regs_off(reg_name);
1343
if (reg_off < 0)
1344
return reg_off;
1345
arg->reg_off = reg_off;
1346
} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1347
/* Memory dereference case without offset, e.g., 8@(%rsp) */
1348
arg->arg_type = USDT_ARG_REG_DEREF;
1349
arg->val_off = 0;
1350
reg_off = calc_pt_regs_off(reg_name);
1351
if (reg_off < 0)
1352
return reg_off;
1353
arg->reg_off = reg_off;
1354
} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1355
/* Register read case, e.g., -4@%eax */
1356
arg->arg_type = USDT_ARG_REG;
1357
/* register read has no memory offset */
1358
arg->val_off = 0;
1359
1360
reg_off = calc_pt_regs_off(reg_name);
1361
if (reg_off < 0)
1362
return reg_off;
1363
arg->reg_off = reg_off;
1364
} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1365
/* Constant value case, e.g., 4@$71 */
1366
arg->arg_type = USDT_ARG_CONST;
1367
arg->val_off = off;
1368
arg->reg_off = 0;
1369
} else {
1370
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1371
return -EINVAL;
1372
}
1373
1374
return len;
1375
}
1376
1377
#elif defined(__s390x__)
1378
1379
/* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1380
1381
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1382
{
1383
unsigned int reg;
1384
int len;
1385
long off;
1386
1387
if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1388
/* Memory dereference case, e.g., -2@-28(%r15) */
1389
arg->arg_type = USDT_ARG_REG_DEREF;
1390
arg->val_off = off;
1391
if (reg > 15) {
1392
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1393
return -EINVAL;
1394
}
1395
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1396
} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1397
/* Register read case, e.g., -8@%r0 */
1398
arg->arg_type = USDT_ARG_REG;
1399
arg->val_off = 0;
1400
if (reg > 15) {
1401
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1402
return -EINVAL;
1403
}
1404
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1405
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1406
/* Constant value case, e.g., 4@71 */
1407
arg->arg_type = USDT_ARG_CONST;
1408
arg->val_off = off;
1409
arg->reg_off = 0;
1410
} else {
1411
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1412
return -EINVAL;
1413
}
1414
1415
return len;
1416
}
1417
1418
#elif defined(__aarch64__)
1419
1420
static int calc_pt_regs_off(const char *reg_name)
1421
{
1422
int reg_num;
1423
1424
if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1425
if (reg_num >= 0 && reg_num < 31)
1426
return offsetof(struct user_pt_regs, regs[reg_num]);
1427
} else if (strcmp(reg_name, "sp") == 0) {
1428
return offsetof(struct user_pt_regs, sp);
1429
}
1430
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1431
return -ENOENT;
1432
}
1433
1434
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1435
{
1436
char reg_name[16];
1437
int len, reg_off;
1438
long off;
1439
1440
if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1441
/* Memory dereference case, e.g., -4@[sp, 96] */
1442
arg->arg_type = USDT_ARG_REG_DEREF;
1443
arg->val_off = off;
1444
reg_off = calc_pt_regs_off(reg_name);
1445
if (reg_off < 0)
1446
return reg_off;
1447
arg->reg_off = reg_off;
1448
} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1449
/* Memory dereference case, e.g., -4@[sp] */
1450
arg->arg_type = USDT_ARG_REG_DEREF;
1451
arg->val_off = 0;
1452
reg_off = calc_pt_regs_off(reg_name);
1453
if (reg_off < 0)
1454
return reg_off;
1455
arg->reg_off = reg_off;
1456
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1457
/* Constant value case, e.g., 4@5 */
1458
arg->arg_type = USDT_ARG_CONST;
1459
arg->val_off = off;
1460
arg->reg_off = 0;
1461
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1462
/* Register read case, e.g., -8@x4 */
1463
arg->arg_type = USDT_ARG_REG;
1464
arg->val_off = 0;
1465
reg_off = calc_pt_regs_off(reg_name);
1466
if (reg_off < 0)
1467
return reg_off;
1468
arg->reg_off = reg_off;
1469
} else {
1470
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1471
return -EINVAL;
1472
}
1473
1474
return len;
1475
}
1476
1477
#elif defined(__riscv)
1478
1479
static int calc_pt_regs_off(const char *reg_name)
1480
{
1481
static struct {
1482
const char *name;
1483
size_t pt_regs_off;
1484
} reg_map[] = {
1485
{ "ra", offsetof(struct user_regs_struct, ra) },
1486
{ "sp", offsetof(struct user_regs_struct, sp) },
1487
{ "gp", offsetof(struct user_regs_struct, gp) },
1488
{ "tp", offsetof(struct user_regs_struct, tp) },
1489
{ "a0", offsetof(struct user_regs_struct, a0) },
1490
{ "a1", offsetof(struct user_regs_struct, a1) },
1491
{ "a2", offsetof(struct user_regs_struct, a2) },
1492
{ "a3", offsetof(struct user_regs_struct, a3) },
1493
{ "a4", offsetof(struct user_regs_struct, a4) },
1494
{ "a5", offsetof(struct user_regs_struct, a5) },
1495
{ "a6", offsetof(struct user_regs_struct, a6) },
1496
{ "a7", offsetof(struct user_regs_struct, a7) },
1497
{ "s0", offsetof(struct user_regs_struct, s0) },
1498
{ "s1", offsetof(struct user_regs_struct, s1) },
1499
{ "s2", offsetof(struct user_regs_struct, s2) },
1500
{ "s3", offsetof(struct user_regs_struct, s3) },
1501
{ "s4", offsetof(struct user_regs_struct, s4) },
1502
{ "s5", offsetof(struct user_regs_struct, s5) },
1503
{ "s6", offsetof(struct user_regs_struct, s6) },
1504
{ "s7", offsetof(struct user_regs_struct, s7) },
1505
{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1506
{ "s9", offsetof(struct user_regs_struct, s9) },
1507
{ "s10", offsetof(struct user_regs_struct, s10) },
1508
{ "s11", offsetof(struct user_regs_struct, s11) },
1509
{ "t0", offsetof(struct user_regs_struct, t0) },
1510
{ "t1", offsetof(struct user_regs_struct, t1) },
1511
{ "t2", offsetof(struct user_regs_struct, t2) },
1512
{ "t3", offsetof(struct user_regs_struct, t3) },
1513
{ "t4", offsetof(struct user_regs_struct, t4) },
1514
{ "t5", offsetof(struct user_regs_struct, t5) },
1515
{ "t6", offsetof(struct user_regs_struct, t6) },
1516
};
1517
int i;
1518
1519
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1520
if (strcmp(reg_name, reg_map[i].name) == 0)
1521
return reg_map[i].pt_regs_off;
1522
}
1523
1524
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1525
return -ENOENT;
1526
}
1527
1528
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1529
{
1530
char reg_name[16];
1531
int len, reg_off;
1532
long off;
1533
1534
if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1535
/* Memory dereference case, e.g., -8@-88(s0) */
1536
arg->arg_type = USDT_ARG_REG_DEREF;
1537
arg->val_off = off;
1538
reg_off = calc_pt_regs_off(reg_name);
1539
if (reg_off < 0)
1540
return reg_off;
1541
arg->reg_off = reg_off;
1542
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1543
/* Constant value case, e.g., 4@5 */
1544
arg->arg_type = USDT_ARG_CONST;
1545
arg->val_off = off;
1546
arg->reg_off = 0;
1547
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1548
/* Register read case, e.g., -8@a1 */
1549
arg->arg_type = USDT_ARG_REG;
1550
arg->val_off = 0;
1551
reg_off = calc_pt_regs_off(reg_name);
1552
if (reg_off < 0)
1553
return reg_off;
1554
arg->reg_off = reg_off;
1555
} else {
1556
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1557
return -EINVAL;
1558
}
1559
1560
return len;
1561
}
1562
1563
#elif defined(__arm__)
1564
1565
static int calc_pt_regs_off(const char *reg_name)
1566
{
1567
static struct {
1568
const char *name;
1569
size_t pt_regs_off;
1570
} reg_map[] = {
1571
{ "r0", offsetof(struct pt_regs, uregs[0]) },
1572
{ "r1", offsetof(struct pt_regs, uregs[1]) },
1573
{ "r2", offsetof(struct pt_regs, uregs[2]) },
1574
{ "r3", offsetof(struct pt_regs, uregs[3]) },
1575
{ "r4", offsetof(struct pt_regs, uregs[4]) },
1576
{ "r5", offsetof(struct pt_regs, uregs[5]) },
1577
{ "r6", offsetof(struct pt_regs, uregs[6]) },
1578
{ "r7", offsetof(struct pt_regs, uregs[7]) },
1579
{ "r8", offsetof(struct pt_regs, uregs[8]) },
1580
{ "r9", offsetof(struct pt_regs, uregs[9]) },
1581
{ "r10", offsetof(struct pt_regs, uregs[10]) },
1582
{ "fp", offsetof(struct pt_regs, uregs[11]) },
1583
{ "ip", offsetof(struct pt_regs, uregs[12]) },
1584
{ "sp", offsetof(struct pt_regs, uregs[13]) },
1585
{ "lr", offsetof(struct pt_regs, uregs[14]) },
1586
{ "pc", offsetof(struct pt_regs, uregs[15]) },
1587
};
1588
int i;
1589
1590
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1591
if (strcmp(reg_name, reg_map[i].name) == 0)
1592
return reg_map[i].pt_regs_off;
1593
}
1594
1595
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1596
return -ENOENT;
1597
}
1598
1599
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1600
{
1601
char reg_name[16];
1602
int len, reg_off;
1603
long off;
1604
1605
if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1606
arg_sz, reg_name, &off, &len) == 3) {
1607
/* Memory dereference case, e.g., -4@[fp, #96] */
1608
arg->arg_type = USDT_ARG_REG_DEREF;
1609
arg->val_off = off;
1610
reg_off = calc_pt_regs_off(reg_name);
1611
if (reg_off < 0)
1612
return reg_off;
1613
arg->reg_off = reg_off;
1614
} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1615
/* Memory dereference case, e.g., -4@[sp] */
1616
arg->arg_type = USDT_ARG_REG_DEREF;
1617
arg->val_off = 0;
1618
reg_off = calc_pt_regs_off(reg_name);
1619
if (reg_off < 0)
1620
return reg_off;
1621
arg->reg_off = reg_off;
1622
} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1623
/* Constant value case, e.g., 4@#5 */
1624
arg->arg_type = USDT_ARG_CONST;
1625
arg->val_off = off;
1626
arg->reg_off = 0;
1627
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1628
/* Register read case, e.g., -8@r4 */
1629
arg->arg_type = USDT_ARG_REG;
1630
arg->val_off = 0;
1631
reg_off = calc_pt_regs_off(reg_name);
1632
if (reg_off < 0)
1633
return reg_off;
1634
arg->reg_off = reg_off;
1635
} else {
1636
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1637
return -EINVAL;
1638
}
1639
1640
return len;
1641
}
1642
1643
#else
1644
1645
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1646
{
1647
pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1648
return -ENOTSUP;
1649
}
1650
1651
#endif
1652
1653